PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW SOLUTIONS \#2 : STOCHASTIC PROCESSES

(1) Show that for time scales sufficiently greater than γ^{-1} that the solution $x(t)$ to the Langevin equation $\ddot{x}+\gamma \dot{x}=\eta(t)$ describes a Markov process. You will have to construct the matrix M defined in Eqn. 2.60 of the lecture notes. You should assume that the random force $\eta(t)$ is distributed as a Gaussian, with $\langle\eta(s)\rangle=0$ and $\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle=\Gamma \delta\left(s-s^{\prime}\right)$.

Solution:
The probability distribution is

$$
P\left(x_{1}, t_{1} ; \ldots ; x_{N}, t_{N}\right)=\operatorname{det}^{-1 / 2}(2 \pi M) \exp \left\{-\frac{1}{2} \sum_{j, j^{\prime}=1}^{N} M_{j j^{\prime}}^{-1} x_{j} x_{j^{\prime}}\right\}
$$

where

$$
M\left(t, t^{\prime}\right)=\int_{0}^{t} d s \int_{0}^{t^{\prime}} d s^{\prime} G\left(s-s^{\prime}\right) K(t-s) K\left(t^{\prime}-s^{\prime}\right)
$$

and $K(s)=\left(1-e^{-\gamma s}\right) / \gamma$. Thus,

$$
\begin{aligned}
M\left(t, t^{\prime}\right) & =\frac{\Gamma}{\gamma^{2}} \int_{0}^{t_{\min }} d s\left(1-e^{-\gamma(t-s)}\right)\left(1-e^{-\gamma\left(t^{\prime}-s\right)}\right) \\
& =\frac{\Gamma}{\gamma^{2}}\left\{t_{\min }-\frac{1}{\gamma}+\frac{1}{\gamma}\left(e^{-\gamma t}+e^{-\gamma t^{\prime}}\right)-\frac{1}{2 \gamma}\left(e^{-\gamma\left|t-t^{\prime}\right|}+e^{-\gamma\left(t+t^{\prime}\right)}\right)\right\} .
\end{aligned}
$$

In the limit where t and t^{\prime} are both large compared to γ^{-1}, we have $M\left(t, t^{\prime}\right)=2 D \min \left(t, t^{\prime}\right)$, where the diffusions constant is $D=\Gamma / 2 \gamma^{2}$. Thus,

$$
M=2 D\left(\begin{array}{ccccccc}
t_{1} & t_{1} & t_{1} & t_{1} & t_{1} & \cdots & t_{1} \\
t_{1} & t_{2} & t_{2} & t_{2} & t_{2} & \cdots & t_{2} \\
t_{1} & t_{2} & t_{3} & t_{3} & t_{3} & \cdots & t_{3} \\
t_{1} & t_{2} & t_{3} & t_{4} & t_{4} & \cdots & t_{4} \\
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & \cdots & t_{5} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & \cdots & t_{N}
\end{array}\right)
$$

To find the determinant of M, subtract row \#1 from rows \#2 through \# N, then subtract row $\# 2^{\prime}$ from the rows $\# 3^{\prime}$ through $\# N^{\prime}$, etc. The result is

$$
\widetilde{M}=2 D\left(\begin{array}{ccccccc}
t_{1} & t_{1} & t_{1} & t_{1} & t_{1} & \cdots & t_{1} \\
0 & t_{2}-t_{1} & t_{2}-t_{1} & t_{2}-t_{1} & t_{2}-t_{1} & \cdots & t_{2}-t_{1} \\
0 & 0 & t_{3}-t_{2} & t_{3}-t_{2} & t_{3}-t_{2} & \cdots & t_{3}-t_{2} \\
0 & 0 & 0 & t_{4}-t_{3} & t_{4}-t_{3} & \cdots & t_{4}-t_{3} \\
0 & 0 & 0 & 0 & t_{5}-t_{4} & \cdots & t_{5}-t_{4} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & t_{N}-t_{N-1}
\end{array}\right)
$$

Since \widetilde{M} is obtained from M by consecutive row additions, we have

$$
\operatorname{det} M=\operatorname{det} \widetilde{M}=t_{1}\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right) \cdots\left(t_{N}-t_{N-1}\right)(2 D)^{N} .
$$

The inverse is
$M^{-1}=\frac{1}{2 D}\left(\begin{array}{cccccccc}\frac{t_{2}}{t_{1}} \frac{1}{t_{2}-t_{1}} & -\frac{1}{t_{2}-t_{1}} & 0 & \ldots & & & & \\ -\frac{1}{t_{2}-t_{1}} & \frac{t_{3}-t_{1}}{\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)} & -\frac{1}{t_{3}-t_{2}} & 0 & \cdots & & & \\ \ldots & 0 & -\frac{1}{t_{n}-t_{n-1}} & \frac{t_{n+1}-t_{n-1}}{\left(t_{n}-t_{n-1}\right)\left(t_{n+1}-t_{n}\right)} & -\frac{1}{t_{n+1}-t_{n}} & 0 & \cdots & \\ \cdots & & \ddots & \cdots & 0 & -\frac{1}{t_{N}-t_{N-1}} & \frac{1}{t_{N}-t_{N-1}}\end{array}\right)$.
This yields the general result

$$
\sum_{j, j^{\prime}=1}^{N} M_{j, j^{\prime}}^{-1}\left(t_{1}, \ldots, t_{N}\right) x_{j} x_{j^{\prime}}=\sum_{j=1}^{N}\left(\frac{1}{t_{j-1, j}}+\frac{1}{t_{j, j+1}}\right) x_{j}^{2}-\frac{2}{t_{j, j+1}} x_{j} x_{j+1}
$$

where $t_{k l} \equiv t_{l}-t_{k}$ and $t_{0} \equiv 0$ and $t_{N+1} \equiv \infty$. Now consider the conditional probability density

$$
\begin{aligned}
P\left(x_{1}, t_{1} \mid x_{2}, t_{2} ; \ldots ; x_{N}, t_{N}\right) & =\frac{P\left(x_{1}, t_{1} ; \ldots ; x_{N}, t_{N}\right)}{P\left(x_{2}, t_{2} ; \ldots ; x_{N}, t_{N}\right)} \\
& =\frac{\operatorname{det}^{1 / 2} 2 \pi M\left(t_{2}, \ldots, t_{N}\right)}{\operatorname{det}^{1 / 2} 2 \pi M\left(t_{1}, \ldots, t_{N}\right)} \frac{\exp \left\{-\frac{1}{2} \sum_{j, j^{\prime}=1}^{N} M_{j j^{\prime}}^{-1}\left(t_{1}, \ldots, t_{N}\right) x_{j} x_{j^{\prime}}\right\}}{\exp \left\{-\frac{1}{2} \sum_{k, k^{\prime}=2}^{N} M_{k k^{\prime}}^{-1}\left(t_{2}, \ldots, t_{N}\right) x_{k} x_{k^{\prime}}\right\}}
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{j, j^{\prime}=1}^{N} M_{j j^{\prime}}^{-1}\left(t_{1}, \ldots, t_{N}\right) x_{j} x_{j^{\prime}} & =\left(\frac{1}{t_{0,1}}+\frac{1}{t_{1,2}}\right) x_{1}^{2}-\frac{2}{t_{1,2}} x_{1} x_{2}+\left(\frac{1}{t_{1,2}}+\frac{1}{t_{2,3}}\right) x_{2}^{2}+\ldots \\
\sum_{k, k^{\prime}=2}^{N} M_{k k^{\prime}}^{-1}\left(t_{2}, \ldots, t_{N}\right) x_{k} x_{k^{\prime}} & =\left(\frac{1}{t_{0,2}}+\frac{1}{t_{2,3}}\right) x_{2}^{2}+\ldots
\end{aligned}
$$

Subtracting, and evaluating the ratio to get the conditional probability density, we find
$P\left(x_{1}, t_{1} \mid x_{2}, t_{2} ; \ldots ; x_{N}, t_{N}\right)=\sqrt{\frac{t_{0,1}+t_{1,2}}{4 \pi D t_{0,1} t_{1,2}}} \exp \left\{-\frac{1}{2}\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)\left(\begin{array}{cc}t_{0,1}^{-1}+t_{1,2}^{-1} & -t_{1,2}^{-1} \\ -t_{1,2}^{-1} & t_{1,2}^{-1}-t_{0,2}^{-1}\end{array}\right)\binom{x_{1}}{x_{2}}\right\}$,
which depends only on $\left\{x_{1}, t_{1}, x_{2}, t_{2}\right\}$, i.e. on the current and most recent data, and not on any data before the time t_{2}.
(2) Provide the missing steps in the solution of the Ornstein-Uhlenbeck process described in $\S 2.4 .3$ of the lecture notes. Show that applying the method of characteristics to Eqn. 2.78 leads to the solution in Eqn. 2.79.

Solution:
We solve

$$
\begin{equation*}
\frac{\partial \hat{P}}{\partial t}+\beta k \frac{\partial \hat{P}}{\partial k}=-D k^{2} \hat{P} \tag{1}
\end{equation*}
$$

using the method of characteristics, writing $t=t_{\zeta}(s)$ and $k=k_{\zeta}(s)$, where s parameterizes the curve $\left(t_{\zeta}(s), k_{\zeta}(s)\right)$, and ζ parameterizes the initial conditions, which are $t(s=0)=0$ and $k(s=0)=\zeta$. The above PDE in two variables is then equivalent to the coupled system

$$
\frac{d t}{d s}=1 \quad, \quad \frac{d k}{d s}=\beta k \quad, \quad \frac{d \hat{P}}{d s}=-D k^{2} \hat{P} .
$$

Solving, we have

$$
t_{\zeta}=s \quad, \quad k_{\zeta}=\zeta e^{\beta s} \quad, \quad \frac{d \hat{P}}{d s}=-D \zeta^{2} e^{2 \beta s} \hat{P}
$$

and therefore

$$
\hat{P}(s, \zeta)=f(\zeta) \exp \left\{-\frac{D \zeta^{2}}{2 \beta}\left(e^{2 \beta s}-1\right)\right\}
$$

We now identify $f(\zeta)=\hat{P}\left(k e^{-\beta t}, t=0\right)$, hence

$$
\hat{P}(k, t)=\exp \left\{-\frac{D}{2 \beta}\left(1-e^{-2 \beta t}\right) k^{2}\right\} \hat{P}(k, 0) .
$$

(3) Consider a discrete one-dimensional random walk where the probability to take a step of length 1 in either direction is $\frac{1}{2} p$ and the probability to take a step of length 2 in either direction is $\frac{1}{2}(1-p)$. Define the generating function

$$
\hat{P}(k, t)=\sum_{n=-\infty}^{\infty} P_{n}(t) e^{-i k n},
$$

where $P_{n}(t)$ is the probability to be at position n at time t. Solve for $\hat{P}(k, t)$ and provide an expression for $P_{n}(t)$. Evaluate $\sum_{n} n^{2} P_{n}(t)$.

Solution:
We have the master equation

$$
\frac{d P_{n}}{d t}=\frac{1}{2}(1-p) P_{n+2}+\frac{1}{2} p P_{n+1}+\frac{1}{2} p P_{n-1}+\frac{1}{2}(1-p) P_{n-2}-P_{n} .
$$

Upon Fourier transforming,

$$
\frac{d \hat{P}(k, t)}{d t}=[(1-p) \cos (2 k)+p \cos (k)-1] \hat{P}(k, t),
$$

with the solution

$$
\hat{P}(k, t)=e^{-\lambda(k) t} \hat{P}(k, 0),
$$

where

$$
\lambda(k)=1-p \cos (k)-(1-p) \cos (2 k) .
$$

One then has

$$
P_{n}(t)=\int_{-\pi}^{\pi} \frac{d k}{2 \pi} e^{i k n} \hat{P}(k, t)
$$

The average of n^{2} is given by

$$
\left\langle n^{2}\right\rangle_{t}=-\left.\frac{\partial^{2} \hat{P}(k, t)}{\partial k^{2}}\right|_{k=0}=\left[\lambda^{\prime \prime}(0) t-\lambda^{\prime}(0)^{2} t^{2}\right]=(4-3 p) t
$$

Note that $\hat{P}(0, t)=1$ for all t by normalization.
(4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in §2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Solution:
Most computing languages come with a random number generating function which produces uniform deviates on the interval $x \in[0,1]$. Suppose we have a prescribed function $y(x)$. If x is distributed uniformly on $[0,1]$, how is y distributed? Clearly

$$
|p(y) d y|=|p(x) d x| \quad \Rightarrow \quad p(y)=\left|\frac{d x}{d y}\right| p(x)
$$

where for the uniform distribution on the unit interval we have $p(x)=\Theta(x) \Theta(1-x)$. For example, if $y=-\ln x$, then $y \in[0, \infty]$ and $p(y)=e^{-y}$ which is to say y is exponentially distributed. Now suppose we want to specify $p(y)$. We have

$$
\frac{d x}{d y}=p(y) \quad \Rightarrow \quad x=F(y)=\int_{y_{0}}^{y} d \tilde{y} p(\tilde{y}),
$$

where y_{0} is the minimum value that y takes. Therefore, $y=F^{-1}(x)$, where F^{-1} is the inverse function.

To generate normal (Gaussian) deviates with a distribution $p(y)=(4 \pi D \varepsilon)^{-1 / 2} \exp \left(-y^{2} / 4 D \varepsilon\right)$, we have

$$
F(y)=\frac{1}{\sqrt{4 \pi D \varepsilon}} \int_{-\infty}^{y} d \tilde{y} e^{-\tilde{y}^{2} / 4 D \varepsilon}=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{y}{\sqrt{4 D \varepsilon}}\right)
$$

Figure 1: (a) Wiener process sample path $W(t)$. (b) Cauchy process sample path $C(t)$. From K. Jacobs and D. A. Steck, New J. Phys. 13, 013016 (2011).

We now have to invert the error function, which is slightly unpleasant.
A slicker approach is to use the Box-Muller method, which used a two-dimensional version of the above transformation,

$$
p\left(y_{1}, y_{2}\right)=p\left(x_{1}, x_{2}\right)\left|\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right| .
$$

This has an obvious generalization to higher dimensions. The transformation factor is the Jacobian determinant. Now let x_{1} and x_{2} each be uniformly distributed on $[0,1]$, and let

$$
\begin{array}{ll}
x_{1}=\exp \left(-\frac{y_{1}^{2}+y_{2}^{2}}{4 D \varepsilon}\right) & y_{1}=\sqrt{-4 D \varepsilon \ln x_{1}} \cos \left(2 \pi x_{2}\right) \\
x_{2}=\frac{1}{2 \pi} \tan ^{-1}\left(y_{2} / y_{1}\right) & y_{2}=\sqrt{-4 D \varepsilon \ln x_{1}} \sin \left(2 \pi x_{2}\right)
\end{array}
$$

Then

$$
\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}}=-\frac{y_{1} x_{1}}{2 D \varepsilon} & \frac{\partial x_{2}}{\partial y_{1}}=-\frac{1}{2 \pi} \frac{y_{2}}{y_{1}^{2}+y_{2}^{2}} \\
\frac{\partial x_{1}}{\partial y_{2}}=-\frac{y_{2} x_{1}}{2 D \varepsilon} & \frac{\partial x_{2}}{\partial y_{2}}=\frac{1}{2 \pi} \frac{y_{1}}{y_{1}^{2}+y_{2}^{2}}
\end{array}
$$

and therefore the Jacobian determinant is

$$
J=\left|\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right|=\frac{1}{4 \pi D \varepsilon} e^{-\left(y_{1}^{2}+y_{2}^{2}\right) / 4 D \varepsilon}=\frac{e^{-y_{1}^{2} / 4 D \varepsilon}}{\sqrt{4 \pi D \varepsilon}} \cdot \frac{e^{-y_{2}^{2} / 4 D \varepsilon}}{\sqrt{4 \pi D \varepsilon}}
$$

which says that y_{1} and y_{2} are each independently distributed according to the normal distribution $p(y)=(4 \pi D \varepsilon)^{-1 / 2} \exp \left(-y^{2} / 4 D \varepsilon\right)$. Nifty!

For the Cauchy distribution, with

$$
p(y)=\frac{1}{\pi} \frac{\varepsilon}{y^{2}+\varepsilon^{2}},
$$

we have

$$
F(y)=\frac{1}{\pi} \int_{-\infty}^{y} d \tilde{y} \frac{\varepsilon}{\tilde{y}^{2}+\varepsilon^{2}}=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}(y / \varepsilon)
$$

and therefore

$$
y=F^{-1}(x)=\varepsilon \tan \left(\pi x-\frac{\pi}{2}\right) .
$$

(5) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires don't obey Ohm's law in the limit where the 'inelastic mean free path' is greater than the sample dimensions, which you may assume here. Rather, let $\mathcal{R}(L)=e^{2} R(L) / h$ be the dimensionless resistance of a quantum wire of length L, in units of $h / e^{2}=25.813 \mathrm{k} \Omega$. The dimensionless resistance of a quantum wire of length $L+\delta L$ is then given by

$$
\begin{aligned}
\mathcal{R}(L+\delta L)=\mathcal{R}(L)+\mathcal{R}(\delta L) & +2 \mathcal{R}(L) \mathcal{R}(\delta L) \\
+ & 2 \cos \alpha \sqrt{\mathcal{R}(L)[1+\mathcal{R}(L)] \mathcal{R}(\delta L)[1+\mathcal{R}(\delta L)]}
\end{aligned}
$$

where α is a random phase uniformly distributed over the interval $[0,2 \pi)$. Here,

$$
\mathcal{R}(\delta L)=\frac{\delta L}{2 \ell},
$$

is the dimensionless resistance of a small segment of wire, of length $\delta L \lesssim \ell$, where ℓ is the 'elastic mean free path'.
(a) Show that the distribution function $P(\mathcal{R}, L)$ for resistances of a quantum wire obeys the equation

$$
\frac{\partial P}{\partial L}=\frac{1}{2 \ell} \frac{\partial}{\partial \mathcal{R}}\left\{\mathcal{R}(1+\mathcal{R}) \frac{\partial P}{\partial \mathcal{R}}\right\}
$$

(b) Show that this equation may be solved in the limits $\mathcal{R} \ll 1$ and $\mathcal{R} \gg 1$, with

$$
P(\mathcal{R}, z)=\frac{1}{z} e^{-\mathcal{R} / z}
$$

for $\mathcal{R} \ll 1$, and

$$
P(\mathcal{R}, z)=(4 \pi z)^{-1 / 2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R}-z)^{2} / 4 z}
$$

for $\mathcal{R} \gg 1$, where $z=L / 2 \ell$ is the dimensionless length of the wire. Compute $\langle\mathcal{R}\rangle$ in the former case, and $\langle\ln \mathcal{R}\rangle$ in the latter case.

Solution:
(a) From the composition rule for series quantum resistances, we derive the phase averages

$$
\begin{aligned}
\langle\delta \mathcal{R}\rangle & =(1+2 \mathcal{R}(L)) \frac{\delta L}{2 \ell} \\
\left\langle(\delta \mathcal{R})^{2}\right\rangle & =(1+2 \mathcal{R}(L))^{2}\left(\frac{\delta L}{2 \ell}\right)^{2}+2 \mathcal{R}(L)(1+\mathcal{R}(L)) \frac{\delta L}{2 \ell}\left(1+\frac{\delta L}{2 \ell}\right) \\
& =2 \mathcal{R}(L)(1+\mathcal{R}(L)) \frac{\delta L}{2 \ell}+\mathcal{O}\left((\delta L)^{2}\right),
\end{aligned}
$$

whence we obtain the drift and diffusion terms

$$
F_{1}(\mathcal{R})=\frac{2 \mathcal{R}+1}{2 \ell} \quad, \quad F_{2}(\mathcal{R})=\frac{2 \mathcal{R}(1+\mathcal{R})}{2 \ell}
$$

Note that $2 F_{1}(\mathcal{R})=d F_{2} / d \mathcal{R}$, which allows us to write the Fokker-Planck equation as

$$
\frac{\partial P}{\partial L}=\frac{\partial}{\partial \mathcal{R}}\left\{\frac{\mathcal{R}(1+\mathcal{R})}{2 \ell} \frac{\partial P}{\partial \mathcal{R}}\right\} .
$$

(b) Defining the dimensionless length $z=L / 2 \ell$, we have

$$
\frac{\partial P}{\partial z}=\frac{\partial}{\partial \mathcal{R}}\left\{\mathcal{R}(1+\mathcal{R}) \frac{\partial P}{\partial \mathcal{R}}\right\} .
$$

In the limit $\mathcal{R} \ll 1$, this reduces to

$$
\frac{\partial P}{\partial z}=\mathcal{R} \frac{\partial^{2} P}{\partial \mathcal{R}^{2}}+\frac{\partial P}{\partial \mathcal{R}}
$$

which is satisfied by $P(\mathcal{R}, z)=z^{-1} \exp (-\mathcal{R} / z)$. For this distribution one has $\langle\mathcal{R}\rangle=z$.
In the opposite limit, $\mathcal{R} \gg 1$, we have

$$
\begin{aligned}
\frac{\partial P}{\partial z} & =\mathcal{R}^{2} \frac{\partial^{2} P}{\partial \mathcal{R}^{2}}+2 \mathcal{R} \frac{\partial P}{\partial \mathcal{R}} \\
& =\frac{\partial^{2} P}{\partial \nu^{2}}+\frac{\partial P}{\partial \nu},
\end{aligned}
$$

where $\nu \equiv \ln \mathcal{R}$. This is solved by the log-normal distribution,

$$
P(\mathcal{R}, z)=(4 \pi z)^{-1 / 2} e^{-(\nu+z)^{2} / 4 z} .
$$

Note that

$$
P(\mathcal{R}, z) d \mathcal{R}=(4 \pi z)^{-1 / 2} \exp \left\{-\frac{(\ln \mathcal{R}-z)^{2}}{4 z}\right\} d \ln \mathcal{R}
$$

One then obtains $\langle\ln \mathcal{R}\rangle=z$.

