
PHYS 201 Mathematical Physics, Fall 2015, Midterm

Solutions

1. An infinitely long conducting cylinder of unit radius and potential 0 is placed next
to an infinite conducting plate of potential V . The axis of the cylinder is parallel to
the plate and at a distance of 5/4 units from it. Solve Laplace’s equation and find the
potential in the relevant domain. Follow these steps:

a. Is the domain simply connected or doubly connected?

b. Based off (a), find a bilinear mapping of the form f(z) ∝ z−α
αz−1 (α real) to a domain

where the problem can be solved easily.

c. Obtain the potential in the transformed region and hence find the potential in the
original region.

Solution:

a. In 2D, the domain is a unit circle, assumed to be centered at the origin, and a vertical
line at Re(z) = 5/4. The domain is doubly connected i.e., between any two points,
there are two paths that cannot be smoothly deformed to the other. The problem
can therefore be solved easily by finding a mapping to an annular region.

b. Any mapping of the form z−α
αz−1 with α real maps a unit circle onto itself (can check

by substituting z = eiθ). To find the value of α that maps the vertical line to another
circle, plug in z = 5/4 + iy for real y and make sure |f(z)| is a constant. α = 2
works.

c. Laplace’s equation can be easily solved in the annular region. The real potential is of
the form φ(r, θ) = A+B ln r. The complex potential is therefore Φ(ζ) = A+B ln ζ.
Plug in ζ = f(z) to get the potential in the original domain.

2. Answer any two of the three parts below:

i. Using contour integration, evaluate

I = PV

∫ 1

−1

dx

x+ b

√
1− x
1 + x

for −1 < b < 1. You may leave the answer in terms of assigned labels (for instance,
α1 and α2 as the roots of a quadratic without writing down the explicit form).
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ii. Show that, if −π < α < π, ∫ ∞
0

coshαx

cosh πx
dx =

1

2
sec

α

2

iii. Using contour integration, evaluate∫ ∞
0

ln(1 + x2)

1 + x2
dx

Solution:

i. Plug in x = cos θ and we get

I =

∫ π

0

sin θ

cos θ + b
tan

θ

2
dθ

Notice that this equation is even, so we can equate 2I to the integral from −π to
π. It can be solved like most other trigonometric integrals: substitute z = eiθ and
we have

2I =

∮
|z|=1

i(z − 1)2

z(z2 + 2bz + 1)
dz

The roots of the quadratic in the denominator, α1 and α2, lie on the unit circle i.e.,
|α1| = |α2| = 1 and satisfy α1α2 = 1. There are thus three poles: z = 0, α1, α2.
The latter two contribute only half the residue since they lie on the contour. Either
way, the sum of the residues from these two poles cancel out, as you can check.
The residue at zero is simply i, and therefore I = −π.

ii. Use a rectangular contour with diagonally opposite vertices −R and R+ i as R→
∞. The integrals on the lateral sides of the rectangle go to zero because−π < α < π
and therefore the leading term of the denominator dominates on both sides. There
is a simple pole at i/2 with residue cos(α/2)

πi
. Adding up the contributions from the

two horizontal sections of the contour, we get 2(1+cosα)I = 2πi cosα/2
πi

, which gives
the required answer.

iii. Split the integral as

2I =

∫ ∞
−∞

ln(x+ i)

1 + x2
dx+

∫ ∞
−∞

ln(x− i)
1 + x2

dx

For the first integral, close the contour using an upper semicircle. For the second,
use a lower semicircle. We get I = π ln 2.
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3. Find the leading behavior as x→∞ of

I =

∫ ∞
0

extt−tdt

Solution: The integral can be written as I =
∫∞
0
ext−t ln tdt. The maximum in the

exponent of the integrand is dependent on x, which is a cue to look for a substitution
that avoids this. t = sex does the trick and we get I = ex

∫∞
0
e−e

xs ln sds. The minimum
of s ln s occurs at s = 1/e and the double derivative at that point is e. Expanding the

exponent up to second order, we get the leading behavior as I ∼
√

2πee
x−1
e

x−1
2 .

4. The modified Bessel function has the integral representation

Kν(x) =
1

2

∫ ∞
−∞

dt exp[−x cosh t+ νt]

Show that under the conditions x→∞, p/x→∞ (p and x are both real),

Kip(x) ∼
√

2π(p2 − x2)−1/4e−pπ/2 sinφ(x)

where

φ(x) =
√
p2 − x2 + p ln

(
p+

√
p2 − x2
x

)
+
π

4
+ lower order terms

Follow these steps:

a. Show that the saddle points satisfy sinh t = ip/x. Find all such points (write down
the real and imaginary components of the saddle points).

b. Identify the steepest descent/ascent directions at the saddle points.

c. Show that there exists a constant phase contour that begins at t = −∞ + i0 and
passes through all the saddle points in the upper left and right quadrants. Draw the
constant phase contour.

d. Explain why it is that although there are infinite number of saddle points, only two
contribute to the leading behavior.

e. Derive the formula for Kip(x) by collecting the contributions from the saddle points.

Solution:
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a. The integral is of the form Kip(x) = 1
2

∫∞
−∞ e

h(t)dt. The saddle point satisfies h′(t) = 0
which trivially gives sinh t = ip/x. To find the real and imaginary components of
the saddle points, substitute t = u + iv. We have sinh(u + iv) = sinhu cos v +
i coshu sin v = ip/x and so sinhu = 0 or cos v = 0. The former option is not
possible because if u = 0, then sin v = p/x is unbounded. So we have cos v = 0 with
sin v = 1 so that v = (4n+ 1)π/2. We also have u = ± cosh−1 p/x.

b. The constant phase contour is also the steepest descent/ascent contour. To find this,
notice that the constant phase contour around a saddle point t0 satisfies Im(h(t)) =

Im(h(t0)). Locally, we have h(t) ≈ h(t0) + h′′(t0)
2

(t − t0)2 (we just need to find the
constant phase contour locally since the largest contribution to the integral is from
around the saddle points). The direction in which the imaginary part of h′′(t0)

2
(t −

t0)
2 is zero gives the steepest ascent/descent direction. h′′(t0) = −x cosh t0 =

−xi sinh(u0) where u0 = ± cosh−1 p/x. For positive u0, to make the second deriva-
tive term real and get the Gaussian-like steepest descent, the direction is at a 45◦

angle i.e., t = t0 ± seiπ/4 and for negative u0, the direction is at a −45◦ angle i.e.,
t = t0 ± se−iπ/4.

c. The constant phase contour begins from −∞ + i0 and going up passes through
the saddle points in the upper left quadrant at an angle of −45◦ (or −135◦) as
mentioned in part b. The contour then extends to the upper right quadrant and
forms a symmetric contour going down and passing through all the saddle points at
45◦ (or 135◦).

d. At the saddle points, h(t0) = −x cosh t0 + ipt0 = −xi sinh(u0) + ipu0− pv0. The real
part of the integrand is e−pv0 and therefore only the saddle points with the smallest
v0 matter for the leading behavior. There are two of them: t+ = (cosh−1 p/x, π/2)
and t− = (− cosh−1 p/x, π/2).

e. To get the required answer, add the contribution to h(t) at the two saddle points
along with the Gaussian factor at each one. Some identities which might help are
cosh−1 x = ln(x+

√
x2 − 1), sinh cosh−1(x) =

√
x2 − 1 and

∫∞
−∞ e

−αx2dx =
√
π/α.
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