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1. In class we defined an isometry as a symmetry of the metric tensor. That is, if φ : M →M

is a diffeomorphism, and g is the metric, thenφ is an isometry of g if the pullbackφ∗g agrees
with g , φ∗g = g . Moreover we saw that for continuos symmetries there is a one parameter
set of diffeomorphisms φt , with φt=0 the identity, and that the infinitesimal version of the
isometry condition is the Killing equation, LK g = 0, where the Lie derivative is along the
“Killing” vector field K = ∂/∂t .
In class we also saw that Penrose diagrams use a conformally transformed metric, so we may
want to consider some generalization of symmetry that includes the possibility of making a
conformal transformation. An isometry up to a conformal transformation is a generalization
of this, where the symmetry condition is replaced by φ∗g = Ω2g where Ω2 is a real positive
function,Ω2 : M →R+. For a continuous symmetry,φ∗

t g =Ω2
t g where clearly we needΩ2

t=0 =
1 for consistency.

(i) Show that the infinitesimal version of the isometry up to a conformal factor is (the “con-
formal Killing condition”)

LK g = 2ωg ,

where K = ∂/∂t is a “conformal Killing field” and 2ω= ∂tΩ
2
t |t=0. Expand, in components,

to show K satisfies
K(µ;ν) −ωgµν = 0, (1)

where K(µ;ν) = 1
2 (Kµ;ν+Kν;µ) and Kµ;ν =∇νKµ, as usual.

(ii) For n spacetime dimensions, eliminateω from Eq. (1) (that is, solve forω and plug back).

(iii) What is the conformal killing condition for Minkowski space (with metric η = diag(−+
++))? Write this as an explicit differential equation of Kµ, and do it for arbitrary number
n of dimensions of spacetime.

(iv) Contracting one derivative with the conformal killing equation show that for a flat space-
time with flat n = 2 (and only in this space-time dimension) ∇2Kµ = 0. Find all the solu-
tions of the conformal Killing equation for n = 2 flat Minkowski spacetime. (Note: This
is simpler that it looks. It’s just the wave-equation.)

(v) Find the most general solution to the conformal Killing condition in Minkowski space
for n > 2 (Hint: By judiciously taking two more derivatives of the conformal Killing equa-
tion you can limit the form of the most general solution). How many independent confor-
mal Killing vectors (including Killing vectors) are there? The Killing vectors correspond
to translations and Lorentz transformations, as we saw in class. What do the new solu-
tions correspond to?
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(vi) The electromagnetic vector potential is naturally a 1-form, A = Aµdxµ. The transforma-
tion under an isometry up to a conformal transformation is just the pull-back, A′ =φ∗

t A
and the infinitesimal transformation is then just the Lie derivative, δA = A′−A = tLK A,
where K = ∂t is a conformal Killing vector field and t is infinitesimal. Specializing to
Minkowski space find the variation of the field strength tensor Fµν = ∂µAν−∂νAµ (or,
in terms of forms, F = dA), and show that the action integral S = ∫

d 4x (−1
4 FµνFµν) is

invariant provided n = 4 and the fields vanish sufficiently rapidly at infinity that surface
terms can be neglected.

2. Hyperbolic Spaces. We introduced in class the Poincare half-plane, H2, as the region y > 0
of the cartesian plane (hence “upper-half plane”) with metric

d s2 = a2

y2 (d x2 +d y2). (2)

From here on we will use a = 1; it is easy enough to restore the factor. In this exercise we will
connect this space to other definitions of Hyperbolic spaces, and in the next problem we will
generalize to other dimensions.
The space Hn is defined as the as the n-dimensional surface −(X 0)2 + (X 1)2 + ·· · (X n)2 = −1
embedded in (n + 1)-dimensional Minkowski space, that is, with metric d s2 = −(d X 0)2 +
(d X 1)2 +·· · (d X n)2.

(i) For the case n = 2, eliminate X 0 from the equations defining Hn and introduce polar
coordinates for X 0 and X 1 to show that the metric onH2 is

d s2 = dr 2

1+ r 2 + r 2dθ2. (3)

What is the range of r and θ here?

(ii) Both (2) and (3) describe the same space. Find a transformation that takes you from one
to the other.

(iii) For (2) the space is the upper half plane, while for (3) it is the whole plane (with a coor-
dinate singularity at the origin). Explain the relation.

(iv) If we change the sign in the definition of the surface −(X 0)2 + (X 1)2 + (X 2)2 = 1 (notice
the “+” on the right hand side), show that the resulting metric on this 2-dimensional
space is

d s2 = dr 2

1− r 2 + r 2dθ2.

Interpret this result (Hint: what is
∫ drp

1−r 2
).

Note the three spaces,

d s2 = dr 2

1+kr 2 + r 2dθ2.

for k =+1,0,−1 are maximally symmetric. On to generalizing this:

3. More on Hyperbolic Spaces.
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(i) Evidently the metric in (3) can be written as

d s2 = dχ2 + sinh2χdθ2.

Find a coordinate system for Hn on which the metric is a direct generalization of this,
namely,

d H 2
n ≡ d s2 = dχ2 + sinh2χdΩ2

n−1.

We have given it a special name (much as we do with the spherical line element dΩ2)
because it is common enough that it is convenient to do so. You have already encoun-
tered it! The AdS metric we first wrote down in class had spatial sections with precisely
this metric:

d s2
AdS =−cosh2χd t 2 +dχ2 + sinh2χdΩ2

n−1 =−cosh2χd t 2 +d H 2
n .

(ii) Find the analogs of Eqs. (2) and (3) for the n-dimensional case.

4. We defined both dS and AdS spaces (and H n above) by giving embeddings of 4-dim sur-
faces in 5-dim spaces. Geodesics in these spaces can therefore be found by finding paths
that render

∫
d s an extremum, subject to staying on the 4-dim surface. Use this to find the

geodesics in both dS and AdS spaces.
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