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1. (i) Let’s compute the Lie derivative at a point p for a metric satisfying φ˚t g “ Ω2
tg:

LKg|p “ lim
tÑ0

1

t
pφ˚t g|p ´ g|pq

“ lim
tÑ0

1

t
pΩ2

tg|p ´ g|pq

“ lim
tÑ0

1

t
pΩ2

t ´ 1qg|p

“
dΩ2

t

dt

ˇ

ˇ

ˇ

t“0
g|p

More explicitly, we know from class the left hand side has components 2Kpµ;νq, while the

right hand side is BtΩ
2|t“0gµν “ 2ωgµν . Hence Kpµ;νq “ ωgµν .

(ii) Contracting indices, gµνKpµ;νq “ ωgµνgµν “ nω. Hence ω “ 1
n
gµνKpµ;νq “

1
n
gµνKµ;ν .

Using this in the conformal Killing condition, Kpµ;νq “ ωgµν , we have

Kpµ;νq “
1

n
Kλ

;λgµν (0.1)

or

Kµ;ν `Kν;µ ´
2

n
Kλ

;λgµν “ 0.

(iii) Using gµν “ ηµν above we have BνKµ ` BµKν ´
2
n
B ¨K “ 0.

(iv) Taking ∇ν of (0.1) we have ∇2Kµ ` ∇ν∇µKν ´
2
n
∇µ∇νKν “ 0. Now note that

the last two terms cancel if n “ 2 and the covariant derivatives commute, that is, flat

spacetime. Specializing to this, we have B2Kµ “ 0 each component of Kµ satisfied the wave

equation in 1 ` 1 dimensions. This is solved by arbitrary left and right moving waves:

Kµpt, xq “ Lµpx` tq `Rµpx´ tq. These are all the solutions, and there are infinitely many

of them: take any complete set of functions of the real line, fipxq, with i a positive integer,

say. Then you can expand Lµpx`tq “
ř8

i“1 `iµfipx`tq, where `iµ are expansion coefficients.

And similarly for Rµ.

Another way to see this is instructive. Introduce light cone coordinates, u “ x` t and

v “ x ´ t. Then B2Kµ “ 0 is BuBvKµ “ 0, which is solved by Kµ being independent of

either u or v.

(v) We already saw in (iv) the result of acting with ∇µ, which after going to flat space

gives B2Kµ ` p1 ´
2
n
qBνB ¨K “ 0. Taking the divergence of this we get B2pB ¨Kq “ 0. So
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B ¨Kpxq is linear in x and Kµpxq at most quadratic. We are looking for a solution of the

conformal killing equation in (iii), and we make an ansatz

Kµpxq “ aµ ` bµνx
ν
` 1

2
cµνλx

νxλ.

Notice that by construction cµνλ “ cµλν . Plugging into the equation and equating to zero

separately the different powers of x we find

bµν ` bµν “
2
n
bλληµν (0.2)

cµνλ ` cνµλ “
2
n
cρρληµν (0.3)

The first of these can be solved by separating the matrix bµν into symmetric and antisym-

metri parts, bµν “ Aµν ` Sµν with Aµν “ ´Aνµ and Sµν “ Sνµ. Then Eq. (0.2) gives no

constraint on Aµν and gives that Sµν is proportional to the metric, Sµν “ sηµν . In order

to solve (0.3) we use a trick you may have seen before (in connection with solving for the

connection, Γµνλ): re-write the equation twice, with the indices cyclically permuted,

cµνλ ` cνµλ “
2
n
cρρληµν

cνλµ ` cλνµ “
2
n
cρρµηνλ

cλµν ` cµλν “
2
n
cρρνηλµ

and subtract the middle one from the sum of the outer ones:

cµνλ “
1
n
pcρρληµν ` c

ρ
ρνηλµ ´ c

ρ
ρµηνλq ” cληµν ` cνηλµ ´ cµηνλ

Combining these results we have

Kµ “ aµ `Aµνx
ν
` sxµ ` 2c ¨ xxµ ´ cµx

2

We recognize aµ as generating translations and Aµν generating Lorentz transformations.

Together they form the Poincare group. These are isometries (not merely up to conformal

transformations) and as we know there are n ` 1
2
npn ´ 1q “ 1

2
npn ` 1q of them. It is easy

to recognize s as generating dilatations, xµ Ñ esxµ. The last one is harder to understand.

δxµ “ 2c ¨ xxµ ´ cµx
2 is an infinitesimal version of a conformal transformation. The finite

form of the transformation is most easily described as an inversion (xµ Ñ ´xµ{x2) followed

by a translation (xµ Ñ xµ ` aµ) followed by another inversion.

(vi) Compute, compute, compute... Start from δAµ “ pLKAqµ “ KλBλAµ`BµK
λAλ and

compute the variation of the Lagrangian density, ´1
4
δpF µνFµνq “ ´

1
2
F µνδFµν “ F µνδBνAµ,
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or

δp´1
4
F µνFµνq “ F µν

BνpK
λ
BλAµ ` BµK

λAλq

“ F µν
pBνK

λ
BλAµ `K

λ
BνBλAµ ` BνBµK

λAλ ` BµK
λ
BνAλq

“ F µν
pBνK

λ
BλAµ ` BµK

λ
BνAλ `

1
2
Kλ
BλFνµq

“ BνK
λF µν

pBλAµ ´ BµAλq `
1
4
BλpK

λF µνFνµq ´
1
4
BλK

λF µνFνµ

“ 1
2
F µνF λ

µpBνKλ ` BλKν ´
1
2
ηλνB ¨Kq `

1
4
BλpK

λF µνFνµq

(Steps: line 2 to 3, moved the fourth term in line 2 to second in line 3, and used antisym-

metry in µØ ν toset to zero the antisymmetric combination of BµBν and replace 1
2
Fνµ for

BνAµ; line 3 to 4, combined the first two terms, integrated by parts the third). Now, the

first term has a factor that vanishes if k is a conformal Killing vector in n “ 4 and the

last term is a total derivate which integrates in the action integral, by Stoke’s theorem, to

a surface integral at infinity, which vanishes.

2. (i) We use polar coordinates X1 “ r cos θ and X2 “ r sin θ. Eliminate X0: use

pX0q2 “ 1 ` pX1q2 ` pX2q2 “ 1 ` r2 so that X0dX0 “ ´X1dX1 ´X2dX2 “ ´rdr and for

the metric we need

pdX0
q
2
“ p

rdr

X0
q
2
“

r2

1` r2
dr2 (0.4)

so that the metric is

ds2 “ ´
r2

1` r2
dr2 ` dr2 ` r2dθ2 “

dr2

1` r2
` r2dθ2.

Since r and θ are polar coordinates for X1,2, which are unrestricted, we have r P r0,8q

and θ P r0, 2πq.

(ii) It is easiest to first find an embedding coordinates for the embedding ´pX0q2 `

pX1q2 ` pX2q2 “ ´1 that gives the usual Poincare half-plane metric. To this end let

X0
`X1

“ u

X2
“ xu

This is motivated by the a similar choice made in class for deSitter space, that had t̂ “

lnpw ` uq, x̂ “ x{pw ` uq; see lecture notes. A third relation, needed to fix all three

coordinates X follows from ´pX0q2`pX1q2`pX2q2 “ ´1 using ´pX0q2`pX1q2 “ p´X0`
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X1qpX0 `X1q “ p´X0 `X1qu. So we have

X0
“

1

2

ˆ

u`
1` x2u2

u

˙

X1
“

1

2

ˆ

u´
1` x2u2

u

˙

X2
“ xu

Computing the pull back of this map (the embedding) we get

ds2 “
du2 ` u4dx2

u2
.

Not quite what we wanted, but close. Form the second term it is apparent we want y “ 1{u,

or to be explicit,

X0
“

1

2

ˆ

1

y
` y `

x2

y

˙

X1
“

1

2

ˆ

1

y
´ y ´

x2

y

˙

X2
“ x{y

(0.5)

and the pull back is the desired metric.

We can now exhibit the relation between our px, yq and pr, θq coordinates:

y´1 “ u “ X0
`X1

“ ˘
?

1` r2 ` r cos θ

x{y “ X2
“ r sin θ

(0.6)

Of course, to get x explicitly you can divide the second by the first. There are tow signs

in the square root, taking the upper sign gives y ą 0 while the lower gives y ă 0.

(iii) The question, by design, is a bit ambiguous. What I hoped you would explore is

the question of whether one of the coordinate system covers more of the manifold than

the other. From the embedding in terms of px, yq it is apparent that one could take y ă 0

just as well as y ą 0, but something really bad happens at y “ 0. If you plot the surface

pX0q2 “ 1 ` pX1q2 ` pX2q2 you realize immediately that it consists of two disconnected

pieces, one for X0 ě 1 and the other for X0 ď 1. Our manifold, H2, corresponds to one

of the disconnected components, X0 ě 1, and correspondingly, X0 `X1 ą 0. In the px, yq

coordinate system this means y ą 0, while in the pr, θq system that means we have taken

the positive square root in defining X0, see, eg, Eq. (0.6).

(iv) We now have pX0q2 “ ´1`pX1q2`pX2q2 “ ´1` r2 so that we still have X0dX0 “

´X1dX1 ´X2dX2 “ ´rdr but Eq. (0.4) is now

pdX0
q
2
“ p

rdr

X0
q
2
“ ´

r2

1´ r2
dr2.
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So now the metric is

ds2 “ ´
´r2

1´ r2
dr2 ` dr2 ` r2dθ2 “

dr2

1´ r2
` r2dθ2.

Following the hint,
ş

dr?
1´r2

“ arcsin r. That is, ds2 “ dΩ2
2, the metric on S2.

3. (i) This is much like what we did in class for maximally symmetric spaces, and we

went through the logic then. Choose:

X0
“ coshχ

X1
“ sinhχ cos θ1

...

Xn
“ coshχ sin θ1 ¨ ¨ ¨ sin θn´1 sin θn

To be clear, the spacelike vector pX1, . . . , Xnq of magnitude sinhχ is written in spherical

coordinates in terms of n ´ 1 angles that parametrize points on the unit n-dimensional

sphere.

Now compute the pull-back. Recall, in general, if the map between manifolds (or

rather, between the corresponding coordinate patches) is ya “ yapxµq then the pull back of

g pφ˚gqµνpxq “
Bya

Bxµ
Byb

Bxν
gabpyq. Note that this corresponds formally to replace Bya

Bxµ
dxµ for dya

in ds2 “ gabdy
adyb. So we proceed that way:

ds2 “ ´psinhχdχ` 0` ¨ ¨ ¨ ` 0q2 ` pcoshχ cos θ1dχ´ sinhχ sin θ1dθ1 ` 0` ¨ ¨ ¨ ` 0q2 ` ¨ ¨ ¨

By construction the second through last term correspond to spherical coordinates with

radius sinhχ se we know they add to pd sinχq2 ` sinχ2dΩ2
n´1 “ cosh2 dχ2 ` sinχ2dΩ2

n´1.

Combining with the first term we have

ds2 “ ´ sinhχ2dχ2
` cosh2 dχ2

` sinχ2dΩ2
n´1 “ dχ2

` sinχ2dΩ2
n´1.

(ii) Getting the metric into the analog of the form in Eq. (3) of the assignment is

straightforward: simply let r “ sinhχ, so that dr “ coshχdχ, or dχ “ dr{ coshχ “

dr{
?

1` r2.

To get the metric as in Eq. (2) of the assignment we repeat the procedure in the n “ 2

case, generalizing in an obvious way:

X0
“

1

2

ˆ

u`
1` p

ř

ipx
iq2qu2

u

˙

X1
“

1

2

ˆ

u´
1` p

ř

ipx
iq2qu2

u

˙

X1`i
“ xiu
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where i “ 1, . . . , n´ 1, and u “ 1{y. Then

ds2 “
1

y2
pdy2 `

ÿ

i

pdxiq2q.

4. A geodesic is an extremum of the path length,
ş

ds. To incorporate a constraint into

it we can use the method of Lagrange multipliers, thus:

δS “ 0, where S “

ż

pds` dτλfpXqq .

Here λpτq is the lagrange multiplier, a function of the affine parameter τ , ds is the square

root of ds2 given by

ds2 “ ´pdX0
q
2
` pdX1

q
2
` ¨ ¨ ¨ ` pdX4

q
2 for deSitter, dS

ds2 “ ´pdX0
q
2
´ pdX1

q
2
` ¨ ¨ ¨ ` pdX4

q
2 for anti-deSitter, AdS

and fpXq stands form the constraint that defines the embedded submanifold,

fpXq “ ´pX0
q
2
` pX1

q
2
` ¨ ¨ ¨ ` pX4

q
2
´ α2 for deSitter, dS

fpXq “ ´pX0
q
2
´ pX1

q
2
` ¨ ¨ ¨ ` pX4

q
2
` α2 for anti-deSitter, AdS

Let’s go through this explicitly for the dS case. Writing ds2 “ ηMNdX
MdXN and

fpXq “ ηMNX
MXN ´ α2, we have

δS “

ż

dτ

ˆ

1

epτq
ηMN

dXM

dτ

dδXN

dτ
` δλfpXq ` ληMNX

MδXN

˙

“ 0.

Using the fact that we have chosen τ to be an affine parameter, we have, after integration

by parts, the conditions

´
d2XN

dτ 2
` λXN

“ 0

ηMNX
MXN

´ α2
“ 0

The first of these can be rewritten,

1

X0

d2X0

dτ 2
“

1

X1

d2X1

dτ 2
“ ¨ ¨ ¨ “

1

X4

d2X4

dτ 2
“ λ (0.7)

while taking two derivatives on the second we have

ηMNX
M d

2XN

dτ 2
` ηMN

dXM

dτ

dXN

dτ
“ 0.
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Note that the second term in this expression is set to a constant by our choice of affine

parameter, and the first term can be simplified, using (0.7), thus

ληMNX
MXN

“ ´ηMN
dXM

dτ

dXN

dτ
“ constant

Since the factor multiplying λ is α2, a constant, we learn that λ “constant. We can then

solve the Eqs. (0.7) trivially,

XN
pτq “ aNe

?
λτ
` bNe´

?
λτ

where a and b are arbitrary constants. Of course, if λ ă 0 we have cosine and sine solutions.
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