Physics 225B, General Relativity. Winter 2014 Homework 1

Instructor: Benjamin Grinstein DUE: Monday, January 22, 2014

1. Let \vec{K} be a Killing vector in a metric space with compatible connection and curvature tensor $R^{\rho}_{\sigma\mu\nu}$. Show

$$K^{\rho}_{;\sigma\mu} = \nabla_{\mu} \nabla_{\sigma} K^{\rho} = R^{\rho}_{\sigma\mu\nu} K^{\nu}$$

and

$$K^{\mu}R_{;\mu} = K^{\mu}\nabla_{\mu}R = 0.$$

2. Let x, y, z be coordinates of flat Euclidean 3-dimensional space, R^3 , with metric

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = dx^{2} + dy^{2} + dz^{2}.$$

Consider the paraboloid \mathcal{P} , a sub-manifold of \mathbb{R}^3 defined by the condition

$$z = x^2 + y^2.$$

An embedding of \mathcal{P} in \mathbb{R}^3 is a map between manifolds given by

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = \rho^2$$

where ρ, ϕ are coordinates on the paraboloid, \mathcal{P} , defined in $\rho \in [0, \infty)$ and $\phi \in [0, 2\pi]$.

(a) Determine the *induced metric* in \mathcal{P} , that is, the pull-back of $g_{\mu\nu}$ to \mathcal{P} . Call this \hat{g}_{ij} .

(b) Let \hat{g}^{ij} be the inverse of \hat{g}_{ij} . Determine the push-forward of \hat{g}^{ij} to R^3 . Call this $\tilde{g}^{\mu\nu}$.

(c) Compare $\tilde{g}^{\mu\nu}$ with $g^{\mu\nu}$, the inverse of $g_{\mu\nu}$. Surprised?

3. (a)Consider the *n*-dimensional manifold \mathbb{R}^n . Find the integral curve of the vector field $V^{\mu} = x^{\mu}$ from the point x^{μ}_o in cartesian coordinates. What goes wrong at the origin, that is, if the point $x^{\mu}_o = 0$?

(b) Construct explicitly a one parameter family of diffeomorphisms ϕ_t taking the point p_o with coordinates x_o^{μ} to a point p with coordinates y^{μ} on the integral curve of V^{μ} a parameter distance t away.

(c) For an arbitrary vector field \vec{W} , find the push-forward (by ϕ_{-t}) of $\vec{W}|_p$ and compute the Lie Derivative from its definition (taking the difference of this push-forward and \vec{W} at p_o).

(d) Compute the commutator $[\vec{V}, \vec{W}]$. Compare your answer with part (c).

4. (Exercise B.1 in Carroll). In Euclidean three-space, find and draw the integral curves of the vector fields $(1 - \pi)^2 = (1 + \pi)^2$

$$A = \frac{y - x}{r} \frac{\partial}{\partial x} - \frac{y + x}{r} \frac{\partial}{\partial y}$$

and

$$B = xy\frac{\partial}{\partial x} - y^2\frac{\partial}{\partial y}.$$

Calculate $C = \mathcal{L}_A B$ and draw the integral curves of C. (Note that it says "draw," rather than "find and draw," the integral curves of C.)