Instructor: Benjamin Grinstein
DUE: Monday, January 22, 2014

1. Let $\vec{K}$ be a Killing vector in a metric space with compatible connection and curvature tensor $R^{\rho}{ }_{\sigma \mu \nu}$. Show

$$
K_{; \sigma \mu}^{\rho}=\nabla_{\mu} \nabla_{\sigma} K^{\rho}=R_{\sigma \mu \nu}^{\rho} K^{\nu}
$$

and

$$
K^{\mu} R_{; \mu}=K^{\mu} \nabla_{\mu} R=0
$$

2. Let $x, y, z$ be coordinates of flat Euclidean 3-dimensional space, $R^{3}$, with metric

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=d x^{2}+d y^{2}+d z^{2}
$$

Consider the paraboloid $\mathcal{P}$, a sub-manifold of $R^{3}$ defined by the condition

$$
z=x^{2}+y^{2} .
$$

An embedding of $\mathcal{P}$ in $R^{3}$ is a map between manifolds given by

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=\rho^{2}
\end{aligned}
$$

where $\rho, \phi$ are coordinates on the paraboloid, $\mathcal{P}$, defined in $\rho \in[0, \infty)$ and $\phi \in[0,2 \pi]$.
(a) Determine the induced metric in $\mathcal{P}$, that is, the pull-back of $g_{\mu \nu}$ to $\mathcal{P}$. Call this $\hat{g}_{i j}$.
(b) Let $\hat{g}^{i j}$ be the inverse of $\hat{g}_{i j}$. Determine the push-forward of $\hat{g}^{i j}$ to $R^{3}$. Call this $\tilde{g}^{\mu \nu}$.
(c) Compare $\tilde{g}^{\mu \nu}$ with $g^{\mu \nu}$, the inverse of $g_{\mu \nu}$. Surprised?
3. (a)Consider the $n$-dimensional manifold $R^{n}$. Find the integral curve of the vector field $V^{\mu}=x^{\mu}$ from the point $x_{o}^{\mu}$ in cartesian coordinates. What goes wrong at the origin, that is, if the point $x_{o}^{\mu}=0$ ?
(b) Construct explicitly a one parameter family of diffeomorphisms $\phi_{t}$ taking the point $p_{o}$ with coordinates $x_{o}^{\mu}$ to a point $p$ with coordinates $y^{\mu}$ on the integral curve of $V^{\mu}$ a parameter distance $t$ away.
(c) For an arbitrary vector field $\vec{W}$, find the push-forward (by $\phi_{-t}$ ) of $\left.\vec{W}\right|_{p}$ and compute the Lie Derivative from its definition (taking the difference of this push-forward and $\vec{W}$ at $p_{o}$ ).
(d) Compute the commutator $[\vec{V}, \vec{W}]$. Compare your answer with part (c).
4. (Exercise B. 1 in Carroll). In Euclidean three-space, find and draw the integral curves of the vector fields

$$
A=\frac{y-x}{r} \frac{\partial}{\partial x}-\frac{y+x}{r} \frac{\partial}{\partial y}
$$

and

$$
B=x y \frac{\partial}{\partial x}-y^{2} \frac{\partial}{\partial y}
$$

Calculate $C=\mathcal{L}_{A} B$ and draw the integral curves of $C$. (Note that it says "draw," rather than "find and draw," the integral curves of $C$.)

