Department of Physics, UCSD
 Physics 225B, General Relativity

Winter 2014
Homework 1, solutions

1. (a) From the Killing equation, $\nabla_{\rho} K_{\sigma}+\nabla_{\sigma} K_{\rho}=0$ taking one derivative,

$$
\begin{aligned}
\nabla_{\mu} \nabla_{\rho} K_{\sigma}+\nabla_{\mu} \nabla_{\sigma} K_{\rho} & =0 \\
-\nabla_{\sigma} \nabla_{\mu} K_{\rho}-\nabla_{\sigma} \nabla_{\rho} K_{\mu} & =0 \\
\nabla_{\rho} \nabla_{\mu} K_{\sigma}+\nabla_{\rho} \nabla_{\sigma} K_{\mu} & =0 .
\end{aligned}
$$

Adding these we have

$$
\left(\nabla_{\mu} \nabla_{\rho}+\nabla_{\rho} \nabla_{\mu}\right) K_{\sigma}=\left[\nabla_{\sigma}, \nabla_{\mu}\right] K_{\rho}+\left[\nabla_{\sigma}, \nabla_{\rho}\right] K_{\mu}
$$

Add $\left[\nabla_{\mu}, \nabla_{\rho}\right] K_{\sigma}$ to both sides to obtain (twice) what we are looking for in terms of commutators of derivatives:

$$
2 \nabla_{\mu} \nabla_{\rho} K_{\sigma}=\left[\nabla_{\sigma}, \nabla_{\mu}\right] K_{\rho}+\left[\nabla_{\sigma}, \nabla_{\rho}\right] K_{\mu}+\left[\nabla_{\mu}, \nabla_{\rho}\right] K_{\sigma} .
$$

Fro the very definition of curvature we have, for any vector field A^{λ},

$$
\left[\nabla_{\mu}, \nabla_{\sigma}\right] A_{\rho}=R_{\rho \lambda \mu \sigma} A^{\lambda}
$$

so we have immediately that

$$
\nabla_{\mu} \nabla_{\rho} K_{\sigma}=\frac{1}{2}\left(R_{\rho \lambda \sigma \mu}+R_{\mu \lambda \sigma \rho}+R_{\sigma \lambda \mu \rho}\right) K^{\lambda} .
$$

Now we just need to shuffle indices around a bit. The second term is already of the form we want, $R_{\mu \lambda \sigma \rho}=R_{\sigma \rho \mu \lambda}$. Write the first term as $R_{\rho \lambda \sigma \mu}=R_{\sigma \mu \rho \lambda}$ and combine with the third term using anti-symmetry in the last three indices, $R_{\sigma \mu \rho \lambda}+R_{\sigma \lambda \mu \rho}=-R_{\sigma \rho \lambda \mu}=R_{\sigma \rho \mu \lambda}$, which doubles the second term and the result follows,

$$
\begin{equation*}
\nabla_{\mu} \nabla_{\rho} K_{\sigma}=R_{\sigma \rho \mu \lambda} K^{\lambda} \tag{0.1}
\end{equation*}
$$

(b) We are going to use the Bianchi identity $\frac{1}{2} \nabla_{\mu} R=\nabla_{\lambda} R^{\lambda}{ }_{\mu}$. Contracting indices in the solution to part (a), Eq. (0.1), we have $\nabla_{\mu} \nabla_{\rho} K_{\mu}=R_{\rho \lambda} K^{\lambda}$, and taking ∇^{ρ} of this,

$$
\begin{equation*}
\nabla^{\rho} \nabla_{\mu} \nabla_{\rho} K^{\mu}=\nabla^{\rho}\left(R_{\rho \lambda} K^{\lambda}\right)=\left(\nabla^{\rho} R_{\rho \lambda}\right) K^{\lambda}+R_{\rho \lambda} \nabla^{\rho} K^{\lambda} \tag{0.2}
\end{equation*}
$$

Since the Ricci tensor is symmetric in its indices we can replace $\frac{1}{2} \nabla^{(\rho} K^{\lambda)}$ for $\nabla^{\rho} K^{\lambda}$ in the last term on the right hand side, buy by Killing's equation $\nabla^{(\rho} K^{\lambda)}=0$.

So to prove that $\left(\nabla^{\rho} R_{\rho \lambda}\right) K^{\lambda}=0$ we have to show that the left hand side in 0.2) vanishes:

$$
\begin{aligned}
& \nabla^{\rho} \nabla^{\mu} \nabla_{\rho} K_{\mu}=\left[\nabla^{\rho}, \nabla^{\mu}\right] \nabla_{\rho} K_{\mu} \quad\left(\text { again, since } \nabla_{(\rho} K_{\mu)}=0\right) \\
& =\left[\nabla_{\rho}, \nabla_{\mu}\right] \nabla^{\rho} K^{\mu} \\
& =R^{\mu}{ }_{\rho \mu \lambda} \nabla^{\rho} K^{\lambda}+R^{\lambda}{ }_{\rho \mu \lambda} \nabla^{\mu} K^{\rho} \\
& =R_{\rho \lambda} \nabla^{\rho} K^{\lambda}-R_{\rho \mu} \nabla^{\mu} K^{\rho} \\
& \left.=0 . \quad \text { (once again, since } \nabla_{(\rho} K_{\mu)}=0\right)
\end{aligned}
$$

So $\left(\nabla^{\rho} R_{\rho \lambda}\right) K^{\lambda}=0$, or, by the Bianchi identity, $\left(\nabla_{\lambda} R\right) K^{\lambda}=0$
2.(a) The pullback is

$$
\hat{g}_{i j}=\frac{\partial x^{\mu}}{\partial y^{i}} \frac{\partial x^{\nu}}{\partial y^{j}} g_{\mu \nu},
$$

where x^{μ} are coordinates on \mathbb{R}^{3} and y^{i} are coordinates on \mathcal{P}, and the map $x^{\mu}\left(y^{i}\right)$ is

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=\rho^{2}
\end{aligned}
$$

Compute the derivatives:

$$
\begin{array}{lll}
\frac{\partial x}{\partial \rho}=\cos \phi & \frac{\partial y}{\partial \rho}=\sin \phi & \frac{\partial z}{\partial \rho}=2 \rho \\
\frac{\partial x}{\partial \phi}=-\rho \sin \phi & \frac{\partial y}{\partial \phi}=\rho \cos \phi & \frac{\partial z}{\partial \phi}=0
\end{array}
$$

Using $g_{\mu \nu}=\delta_{\mu \nu}$ we have:

$$
\begin{aligned}
& \hat{g}_{\rho \rho}=\frac{\partial x^{\mu}}{\partial \rho} \frac{\partial x^{\nu}}{\partial \rho} \delta_{\mu \nu}=\cos ^{2} \phi+\sin ^{2} \phi+4 \rho^{2}=1+4 \rho^{2} \\
& \hat{g}_{\rho \phi}=\hat{g}_{\phi \rho}=\frac{\partial x^{\mu}}{\partial \rho} \frac{\partial x^{\nu}}{\partial \phi} \delta_{\mu \nu}=\cos \phi(-\rho \sin \phi)+\sin \phi(\rho \cos \phi)+2 \rho(0)=0 \\
& \hat{g}_{\phi \phi}=\frac{\partial x^{\mu}}{\partial \phi} \frac{\partial x^{\nu}}{\partial \phi} \delta_{\mu \nu}=(-\rho \sin \phi)^{2}+(\rho \cos \phi)^{2}+(0)^{2}=\rho^{2}
\end{aligned}
$$

which is summarized as

$$
d \hat{s}^{2}=\left(1+4 \rho^{2}\right) \mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \phi^{2}
$$

(b)As a matrix, the inverse of $\hat{g}_{i j}$ is

$$
\hat{g}^{i j}=\left(\begin{array}{cc}
\frac{1}{1+4 \rho^{2}} & 0 \\
0 & \frac{1}{\rho^{2}}
\end{array}\right) .
$$

The push-forward, which i will denote by $\tilde{g}^{\mu \nu}$, generally, is given by

$$
\tilde{g}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial y^{i}} \frac{\partial x^{\nu}}{\partial y^{j}} \hat{g}^{i j} .
$$

Computing:

$$
\begin{aligned}
& \tilde{g}^{x x}=\left(\frac{\partial x}{\partial \rho}\right)^{2} \frac{1}{1+4 \rho^{2}}+\left(\frac{\partial x}{\partial \phi}\right)^{2} \frac{1}{\rho^{2}}=\frac{\cos ^{2} \phi}{1+4 \rho^{2}}+\sin ^{2} \phi=\frac{1}{z}\left[\frac{x^{2}}{1+4 z}+y^{2}\right] \\
& \tilde{g}^{x y}=\frac{\partial x}{\partial \rho} \frac{\partial y}{\partial \rho} \frac{1}{1+4 \rho^{2}}+\frac{\partial x}{\partial \rho} \frac{\partial y}{\partial \rho} \frac{1}{\rho^{2}}=\frac{\sin \phi \cos \phi}{1+4 \rho^{2}}-\sin \phi \cos \phi=-\frac{4 \rho^{2} \sin \phi \cos \phi}{1+4 \rho^{2}}=-\frac{4 x y}{1+4 z} \\
& \tilde{g}^{x z}=\frac{\partial x}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{1+4 \rho^{2}}+\frac{\partial x}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{\rho^{2}}=\frac{2 \rho \cos \phi}{1+4 \rho^{2}}=\frac{2 x}{1+4 z} \\
& \tilde{g}^{y z}=\frac{\partial y}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{1+4 \rho^{2}}+\frac{\partial y}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{\rho^{2}}=\frac{2 \rho \sin \phi}{1+4 \rho^{2}}=\frac{2 y}{1+4 z} \\
& \tilde{g}^{y y}=\left(\frac{\partial y}{\partial \rho}\right)^{2} \frac{1}{1+4 \rho^{2}}+\left(\frac{\partial y}{\partial \phi}\right)^{2} \frac{1}{\rho^{2}}=\frac{\sin ^{2} \phi}{1+4 \rho^{2}}+\cos ^{2} \phi=\frac{1}{z}\left[\frac{y^{2}}{1+4 z}+x^{2}\right] \\
& \tilde{g}^{z z}=\left(\frac{\partial z}{\partial \rho}\right)^{2} \frac{1}{1+4 \rho^{2}}+\left(\frac{\partial z}{\partial \phi}\right)^{2} \frac{1}{\rho^{2}}=\frac{4 \rho^{2}}{1+4 \rho^{2}}=\frac{4 z}{1+4 z}
\end{aligned}
$$

Keep in mind that these are defined only on the sub-manifold \mathcal{P} (so, in a sense, it is better to keep the expressions for \tilde{g} as given in terms of ρ and ϕ.
(c) Not much to do here. $g^{\mu \nu}=\delta^{\mu \nu}$ is very different from $\tilde{g}^{\mu \nu}$, but there was no reason to expect them to be the same.
3. (a) The integral curve of $V^{\mu}(x)=x^{\mu}$ is the solution to

$$
\frac{d x^{\mu}(t)}{d t}=V^{\mu}(x(t))=x^{\mu}(t)
$$

We want a solution that satisfies $x^{\mu}(0)=x_{o}^{\mu}$. The integral is simple:

$$
x^{\mu}(t)=x_{o}^{\mu} e^{t} .
$$

For an integral curve through the origin, $x_{o}^{\mu}=0$, the solution above is not a curve but just a map from the real line to a single point. The reason is that at that point the tangent field vanishes: the integral curve needs to know in what direction to move!
(b) The map $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ takes x_{o}^{μ} to $y^{\mu}=x^{\mu}(t)=x_{o}^{\mu} e^{t}$.
(c) The push forward is given by

$$
\left.\left(\phi_{-t *} W\right)^{\mu}\right|_{p_{o}}=\left.\left.\frac{\partial y^{\mu}}{\partial x^{\nu}}\right|_{p} W^{\nu}\right|_{p}
$$

Explicitly, this is

$$
\left(\phi_{-t *} W\right)^{\mu}\left(x_{o}\right)=\frac{\partial\left(x^{\mu} e^{-t}\right)}{\partial x^{\nu}} W^{\nu}\left(x_{o} e^{t}\right)=e^{-t} W^{\mu}\left(x_{o} e^{t}\right)
$$

Notice the minus sign in the exponential. This is because the map ϕ_{-t} takes $y^{\mu}=x^{\mu}(t) \mapsto$ x_{o}^{μ} which we are writing as $x^{\mu} \mapsto e^{-t} x^{\mu}$. The Lie derivative is, by definition,
$\mathcal{L}_{V} W=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\phi_{-t *} W\right)^{\mu}\left(x_{o}\right)-W^{\mu}\left(x_{o}\right)\right]=\frac{\partial}{\partial t} e^{-t} W^{\mu}\left(x_{o} e^{t}\right)=-W^{\mu}\left(x_{o}\right)+x_{o}^{\nu} \partial_{\nu} W^{\mu}\left(x_{o}\right)$
(d) $[V, W]^{\mu}=x^{\nu} \partial_{\nu} W^{\mu}-W^{\nu} \partial_{\nu} x^{\mu}=x^{\nu} \partial_{\nu} W^{\mu}-W^{\mu}$.

This, of course, agrees with the result of part (c).
4. First calculate integral curves of

$$
A=\frac{y-x}{r} \frac{\partial}{\partial x}-\frac{y+x}{r} \frac{\partial}{\partial y}
$$

That is, we look for solutions to

$$
\frac{d x}{d t}=\frac{y-x}{r} \quad \frac{d y}{d t}=-\frac{y+x}{r}
$$

Note that the vector field A has magnitude $\sqrt{2}$ everywhere, is not defined at the origin and is tangential to a circle about the origin, pointing in the clockwise direction. So we expect the integral curves to grow towards the origin as they circulate clockwise.

Now, the fact that A^{μ} depends on x / r and y / r cries out for a description in a polar coordinate system, exactly what the whole formalism is suppose to do for us automatically. That is, if $\xi^{m} u$ is a new coordinate system, with $\xi^{\mu}=\xi^{\mu}\left(x^{\nu}\right)$ and if we denote the vector field A components in the new coordinate system by \tilde{A}^{μ}, then

$$
\tilde{A}^{\mu}=\frac{\partial \xi^{\mu}}{\partial x^{\nu}} A^{\nu}
$$

So we take for new coordinates $\xi^{\mu}=(r, \phi)$ defined so that $x=r \cos \phi$ and $y=r \sin \phi$, that is

$$
\phi=\arctan (y / x) \quad r=\sqrt{x^{2}+y^{2}}
$$

If I can still compute derivatives,

$$
\frac{\partial \xi^{\mu}}{\partial x^{\nu}}=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\frac{1}{r} \sin \phi & \frac{1}{r} \cos \phi
\end{array}\right)
$$

I have written the result in terms of the coordinates ξ so we can write \tilde{A}^{μ} in terms of those coordinates:

$$
\begin{aligned}
& \tilde{A}^{r}=\cos \phi(\sin \phi-\cos \phi)+\sin \phi(-\sin \phi-\cos \phi)=-1 \\
& \tilde{A}^{\phi}=-\frac{1}{r} \sin \phi(\sin \phi-\cos \phi)+\frac{1}{r} \cos \phi(-\sin \phi-\cos \phi)=-\frac{1}{r}
\end{aligned}
$$

The equations for the integral curve are now simple,

$$
\frac{d r}{d t}=-1, \quad \frac{d \phi}{d t}=-\frac{1}{r} .
$$

If the initial point is $\left(r_{0}, \phi_{0}\right)$ at $t=0$, the solution is $r(t)=r_{0}-t$ and $\phi(t)=\phi_{0}+\ln \left(1-t / r_{0}\right)$. In terms of the original coordinates we have then

$$
x(t)=\left(r_{0}-t\right) \cos \left(\phi_{0}+\ln \left(1-t / r_{0}\right)\right), \quad y(t)=\left(r_{0}-t\right) \sin \left(\phi_{0}+\ln \left(1-t / r_{0}\right)\right)
$$

Here is a plot of the curves. I show three curves, going through $(0,1),(0,2)$ and $(0,3)$:

Things are much simpler for the B field, because it is easy to integrate directly. We have

$$
\frac{d x}{d t}=x y, \quad \frac{d y}{d t}=-y^{2} .
$$

The equation for $y(t)$ can be integrated immediately, $y(t)=y_{0} /\left(1+y_{0} t\right)$. Inseting this in the equation for $x(t)$ we have $x(t)=x_{0}\left(1+y_{0} t\right)$. Note that this has $x(t) y(t)=x_{0} y_{0}=\mathrm{constant}$, so the parametric plot is easily drawn:

Here I have taken curves that go through $x=0.1$ at $y=1,2,3$. Of course, there are also analogous integral curves on the other three quadrants of the cartesian plane. We can also see both sets of integral curves together:

Finally, compute $C=\mathcal{L}_{A} B=[A, B]$, or $C^{\mu}=A^{\nu} \partial_{\nu} B^{\mu}-B^{\nu} \partial_{\nu} A^{\mu}$:

$$
\begin{aligned}
C^{x} & =\frac{y-x}{r} \partial_{x}(x y)+\left(-\frac{y+x}{r}\right) \partial_{y}(x y)-\left[x y \partial_{x}\left(\frac{y-x}{r}\right)+\left(-y^{2}\right) \partial_{y}\left(\frac{y-x}{r}\right)\right] \\
& =\frac{y(y-x)}{r}-\frac{x(y+x)}{r}+\frac{2 x y^{2}(y+x)}{r^{3}} \\
& =\frac{y^{4}+2 x^{2} y^{2}-2 x^{3} y-x^{4}}{r^{3}} \\
C^{y} & =\frac{y-x}{r} \partial_{x}\left(-y^{2}\right)+\left(-\frac{y+x}{r}\right) \partial_{y}\left(-y^{2}\right)-\left[x y \partial_{x}\left(-\frac{y+x}{r}\right)+\left(-y^{2}\right) \partial_{y}\left(-\frac{y+x}{r}\right)\right] \\
& =\frac{2 y(y+x)}{r}+\frac{2 x y^{2}(y-x)}{r^{3}} \\
& =\frac{2 y\left(x^{3}+2 x y^{2}+y^{3}\right)}{r^{3}}
\end{aligned}
$$

Below is a plot of the vector field C superimposed on the integral curves of A and B. You can sketch the integral curves of C in an obvious way (by stringing vectors together):

