Department of Physics, UCSD Physics 225B, General Relativity Winter 2014

Homework 1, solutions

1. (a) From the Killing equation, $\nabla_{\rho}K_{\sigma} + \nabla_{\sigma}K_{\rho} = 0$ taking one derivative,

$$\nabla_{\mu}\nabla_{\rho}K_{\sigma} + \nabla_{\mu}\nabla_{\sigma}K_{\rho} = 0$$
$$-\nabla_{\sigma}\nabla_{\mu}K_{\rho} - \nabla_{\sigma}\nabla_{\rho}K_{\mu} = 0$$
$$\nabla_{\rho}\nabla_{\mu}K_{\sigma} + \nabla_{\rho}\nabla_{\sigma}K_{\mu} = 0.$$

Adding these we have

$$(\nabla_{\mu}\nabla_{\rho} + \nabla_{\rho}\nabla_{\mu})K_{\sigma} = [\nabla_{\sigma}, \nabla_{\mu}]K_{\rho} + [\nabla_{\sigma}, \nabla_{\rho}]K_{\mu}.$$

Add $[\nabla_{\mu}, \nabla_{\rho}]K_{\sigma}$ to both sides to obtain (twice) what we are looking for in terms of commutators of derivatives:

$$2\nabla_{\mu}\nabla_{\rho}K_{\sigma} = [\nabla_{\sigma}, \nabla_{\mu}]K_{\rho} + [\nabla_{\sigma}, \nabla_{\rho}]K_{\mu} + [\nabla_{\mu}, \nabla_{\rho}]K_{\sigma}.$$

Fro the very definition of curvature we have, for any vector field A^{λ} ,

$$[\nabla_{\mu}, \nabla_{\sigma}] A_{\rho} = R_{\rho\lambda\mu\sigma} A^{\lambda}$$

so we have immediately that

$$\nabla_{\mu}\nabla_{\rho}K_{\sigma} = \frac{1}{2}(R_{\rho\lambda\sigma\mu} + R_{\mu\lambda\sigma\rho} + R_{\sigma\lambda\mu\rho})K^{\lambda}.$$

Now we just need to shuffle indices around a bit. The second term is already of the form we want, $R_{\mu\lambda\sigma\rho} = R_{\sigma\rho\mu\lambda}$. Write the first term as $R_{\rho\lambda\sigma\mu} = R_{\sigma\mu\rho\lambda}$ and combine with the third term using anti-symmetry in the last three indices, $R_{\sigma\mu\rho\lambda} + R_{\sigma\lambda\mu\rho} = -R_{\sigma\rho\lambda\mu} = R_{\sigma\rho\mu\lambda}$, which doubles the second term and the result follows,

$$\nabla_{\mu}\nabla_{\rho}K_{\sigma} = R_{\sigma\rho\mu\lambda}K^{\lambda}.\tag{0.1}$$

(b) We are going to use the Bianchi identity $\frac{1}{2}\nabla_{\mu}R = \nabla_{\lambda}R^{\lambda}_{\mu}$. Contracting indices in the solution to part (a), Eq. (0.1), we have $\nabla_{\mu}\nabla_{\rho}K_{\mu} = R_{\rho\lambda}K^{\lambda}$, and taking ∇^{ρ} of this,

$$\nabla^{\rho}\nabla_{\mu}\nabla_{\rho}K^{\mu} = \nabla^{\rho}(R_{\rho\lambda}K^{\lambda}) = (\nabla^{\rho}R_{\rho\lambda})K^{\lambda} + R_{\rho\lambda}\nabla^{\rho}K^{\lambda}. \tag{0.2}$$

Since the Ricci tensor is symmetric in its indices we can replace $\frac{1}{2}\nabla^{(\rho}K^{\lambda)}$ for $\nabla^{\rho}K^{\lambda}$ in the last term on the right hand side, buy by Killing's equation $\nabla^{(\rho}K^{\lambda)} = 0$.

So to prove that $(\nabla^{\rho}R_{\rho\lambda})K^{\lambda}=0$ we have to show that the left hand side in (0.2) vanishes:

$$\nabla^{\rho}\nabla^{\mu}\nabla_{\rho}K_{\mu} = [\nabla^{\rho}, \nabla^{\mu}]\nabla_{\rho}K_{\mu} \qquad (again, since \nabla_{(\rho}K_{\mu)} = 0)$$

$$= [\nabla_{\rho}, \nabla_{\mu}]\nabla^{\rho}K^{\mu}$$

$$= R^{\mu}{}_{\rho\mu\lambda}\nabla^{\rho}K^{\lambda} + R^{\lambda}{}_{\rho\mu\lambda}\nabla^{\mu}K^{\rho}$$

$$= R_{\rho\lambda}\nabla^{\rho}K^{\lambda} - R_{\rho\mu}\nabla^{\mu}K^{\rho}$$

$$= 0. \qquad (once again, since \nabla_{(\rho}K_{\mu)} = 0)$$

So $(\nabla^{\rho}R_{\rho\lambda})K^{\lambda}=0$, or, by the Bianchi identity, $(\nabla_{\lambda}R)K^{\lambda}=0$

2.(a) The pullback is

$$\hat{g}_{ij} = \frac{\partial x^{\mu}}{\partial y^{i}} \frac{\partial x^{\nu}}{\partial y^{j}} g_{\mu\nu},$$

where x^{μ} are coordinates on \mathbb{R}^3 and y^i are coordinates on \mathcal{P} , and the map $x^{\mu}(y^i)$ is

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = \rho^2$$

Compute the derivatives:

$$\frac{\partial x}{\partial \rho} = \cos \phi \qquad \qquad \frac{\partial y}{\partial \rho} = \sin \phi \qquad \qquad \frac{\partial z}{\partial \rho} = 2\rho$$

$$\frac{\partial x}{\partial \phi} = -\rho \sin \phi \qquad \qquad \frac{\partial y}{\partial \phi} = \rho \cos \phi \qquad \qquad \frac{\partial z}{\partial \phi} = 0$$

Using $g_{\mu\nu} = \delta_{\mu\nu}$ we have:

$$\hat{g}_{\rho\rho} = \frac{\partial x^{\mu}}{\partial \rho} \frac{\partial x^{\nu}}{\partial \rho} \delta_{\mu\nu} = \cos^{2} \phi + \sin^{2} \phi + 4\rho^{2} = 1 + 4\rho^{2}$$

$$\hat{g}_{\rho\phi} = \hat{g}_{\phi\rho} = \frac{\partial x^{\mu}}{\partial \rho} \frac{\partial x^{\nu}}{\partial \phi} \delta_{\mu\nu} = \cos \phi (-\rho \sin \phi) + \sin \phi (\rho \cos \phi) + 2\rho(0) = 0$$

$$\hat{g}_{\phi\phi} = \frac{\partial x^{\mu}}{\partial \phi} \frac{\partial x^{\nu}}{\partial \phi} \delta_{\mu\nu} = (-\rho \sin \phi)^{2} + (\rho \cos \phi)^{2} + (0)^{2} = \rho^{2}$$

which is summarized as

$$d\hat{s}^{2} = (1 + 4\rho^{2})d\rho^{2} + \rho^{2}d\phi^{2}$$

(b)As a matrix, the inverse of \hat{g}_{ij} is

$$\hat{g}^{ij} = \begin{pmatrix} \frac{1}{1+4\rho^2} & 0\\ 0 & \frac{1}{\rho^2} \end{pmatrix}.$$

The push-forward, which i will denote by $\tilde{g}^{\mu\nu}$, generally, is given by

$$\tilde{g}^{\mu\nu} = \frac{\partial x^{\mu}}{\partial y^{i}} \frac{\partial x^{\nu}}{\partial y^{j}} \hat{g}^{ij}.$$

Computing:

$$\begin{split} \tilde{g}^{xx} &= \left(\frac{\partial x}{\partial \rho}\right)^2 \frac{1}{1+4\rho^2} + \left(\frac{\partial x}{\partial \phi}\right)^2 \frac{1}{\rho^2} = \frac{\cos^2 \phi}{1+4\rho^2} + \sin^2 \phi = \frac{1}{z} \left[\frac{x^2}{1+4z} + y^2\right] \\ \tilde{g}^{xy} &= \frac{\partial x}{\partial \rho} \frac{\partial y}{\partial \rho} \frac{1}{1+4\rho^2} + \frac{\partial x}{\partial \rho} \frac{\partial y}{\partial \rho} \frac{1}{\rho^2} = \frac{\sin \phi \cos \phi}{1+4\rho^2} - \sin \phi \cos \phi = -\frac{4\rho^2 \sin \phi \cos \phi}{1+4\rho^2} = -\frac{4xy}{1+4\rho^2} \\ \tilde{g}^{xz} &= \frac{\partial x}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{1+4\rho^2} + \frac{\partial x}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{\rho^2} = \frac{2\rho \cos \phi}{1+4\rho^2} = \frac{2x}{1+4z} \\ \tilde{g}^{yz} &= \frac{\partial y}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{1+4\rho^2} + \frac{\partial y}{\partial \rho} \frac{\partial z}{\partial \rho} \frac{1}{\rho^2} = \frac{2\rho \sin \phi}{1+4\rho^2} = \frac{2y}{1+4z} \\ \tilde{g}^{yy} &= \left(\frac{\partial y}{\partial \rho}\right)^2 \frac{1}{1+4\rho^2} + \left(\frac{\partial y}{\partial \phi}\right)^2 \frac{1}{\rho^2} = \frac{\sin^2 \phi}{1+4\rho^2} + \cos^2 \phi = \frac{1}{z} \left[\frac{y^2}{1+4z} + x^2\right] \\ \tilde{g}^{zz} &= \left(\frac{\partial z}{\partial \rho}\right)^2 \frac{1}{1+4\rho^2} + \left(\frac{\partial z}{\partial \phi}\right)^2 \frac{1}{\rho^2} = \frac{4\rho^2}{1+4\rho^2} = \frac{4z}{1+4z} \end{split}$$

Keep in mind that these are defined only on the sub-manifold \mathcal{P} (so, in a sense, it is better to keep the expressions for \tilde{g} as given in terms of ρ and ϕ .

- (c) Not much to do here. $g^{\mu\nu} = \delta^{\mu\nu}$ is very different from $\tilde{g}^{\mu\nu}$, but there was no reason to expect them to be the same.
 - 3. (a) The integral curve of $V^{\mu}(x) = x^{\mu}$ is the solution to

$$\frac{dx^{\mu}(t)}{dt} = V^{\mu}(x(t)) = x^{\mu}(t).$$

We want a solution that satisfies $x^{\mu}(0) = x_o^{\mu}$. The integral is simple:

$$x^{\mu}(t) = x_o^{\mu} e^t.$$

For an integral curve through the origin, $x_o^{\mu} = 0$, the solution above is not a curve but just a map from the real line to a single point. The reason is that at that point the tangent field vanishes: the integral curve needs to know in what direction to move!

- (b) The map $\phi_t : \mathbb{R}^n \to \mathbb{R}^n$ takes x_o^{μ} to $y^{\mu} = x^{\mu}(t) = x_o^{\mu}e^t$.
- (c) The push forward is given by

$$(\phi_{-t*}W)^{\mu}|_{p_o} = \frac{\partial y^{\mu}}{\partial x^{\nu}}|_p W^{\nu}|_p$$

Explicitly, this is

$$(\phi_{-t*}W)^{\mu}(x_o) = \frac{\partial (x^{\mu}e^{-t})}{\partial x^{\nu}}W^{\nu}(x_oe^t) = e^{-t}W^{\mu}(x_oe^t).$$

Notice the minus sign in the exponential. This is because the map ϕ_{-t} takes $y^{\mu} = x^{\mu}(t) \mapsto x_o^{\mu}$ which we are writing as $x^{\mu} \mapsto e^{-t}x^{\mu}$. The Lie derivative is, by definition,

$$\mathcal{L}_{V}W = \lim_{t \to 0} \frac{1}{t} \left[(\phi_{-t*}W)^{\mu}(x_o) - W^{\mu}(x_o) \right] = \frac{\partial}{\partial t} e^{-t} W^{\mu}(x_o e^t) = -W^{\mu}(x_o) + x_o^{\nu} \partial_{\nu} W^{\mu}(x_o)$$

(d)
$$[V, W]^{\mu} = x^{\nu} \partial_{\nu} W^{\mu} - W^{\nu} \partial_{\nu} x^{\mu} = x^{\nu} \partial_{\nu} W^{\mu} - W^{\mu}$$
.

This, of course, agrees with the result of part (c).

4. First calculate integral curves of

$$A = \frac{y - x}{r} \frac{\partial}{\partial x} - \frac{y + x}{r} \frac{\partial}{\partial y}$$

That is, we look for solutions to

$$\frac{dx}{dt} = \frac{y - x}{r} \qquad \qquad \frac{dy}{dt} = -\frac{y + x}{r}$$

Note that the vector field A has magnitude $\sqrt{2}$ everywhere, is not defined at the origin and is tangential to a circle about the origin, pointing in the clockwise direction. So we expect the integral curves to grow towards the origin as they circulate clockwise.

Now, the fact that A^{μ} depends on x/r and y/r cries out for a description in a polar coordinate system, exactly what the whole formalism is suppose to do for us automatically. That is, if $\xi^m u$ is a new coordinate system, with $\xi^{\mu} = \xi^{\mu}(x^{\nu})$ and if we denote the vector field A components in the new coordinate system by \tilde{A}^{μ} , then

$$\tilde{A}^{\mu} = \frac{\partial \xi^{\mu}}{\partial x^{\nu}} A^{\nu}$$

So we take for new coordinates $\xi^{\mu} = (r, \phi)$ defined so that $x = r \cos \phi$ and $y = r \sin \phi$, that is

$$\phi = \arctan(y/x)$$
 $r = \sqrt{x^2 + y^2}$

If I can still compute derivatives,

$$\frac{\partial \xi^{\mu}}{\partial x^{\nu}} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\frac{1}{r} \sin \phi & \frac{1}{r} \cos \phi \end{pmatrix}.$$

I have written the result in terms of the coordinates ξ so we can write \tilde{A}^{μ} in terms of those coordinates:

$$\tilde{A}^r = \cos\phi(\sin\phi - \cos\phi) + \sin\phi(-\sin\phi - \cos\phi) = -1$$

$$\tilde{A}^\phi = -\frac{1}{r}\sin\phi(\sin\phi - \cos\phi) + \frac{1}{r}\cos\phi(-\sin\phi - \cos\phi) = -\frac{1}{r}$$

The equations for the integral curve are now simple,

$$\frac{dr}{dt} = -1, \qquad \frac{d\phi}{dt} = -\frac{1}{r}.$$

If the initial point is (r_0, ϕ_0) at t = 0, the solution is $r(t) = r_0 - t$ and $\phi(t) = \phi_0 + \ln(1 - t/r_0)$. In terms of the original coordinates we have then

$$x(t) = (r_0 - t)\cos(\phi_0 + \ln(1 - t/r_0)), \qquad y(t) = (r_0 - t)\sin(\phi_0 + \ln(1 - t/r_0)).$$

Here is a plot of the curves. I show three curves, going through (0,1), (0,2) and (0,3):

Things are much simpler for the B field, because it is easy to integrate directly. We have

$$\frac{dx}{dt} = xy, \qquad \frac{dy}{dt} = -y^2.$$

The equation for y(t) can be integrated immediately, $y(t) = y_0/(1+y_0t)$. Inseting this in the equation for x(t) we have $x(t) = x_0(1+y_0t)$. Note that this has $x(t)y(t) = x_0y_0 = \text{constant}$, so the parametric plot is easily drawn:

Here I have taken curves that go through x = 0.1 at y = 1, 2, 3. Of course, there are also analogous integral curves on the other three quadrants of the cartesian plane. We can also see both sets of integral curves together:

Finally, compute $C = \mathcal{L}_A B = [A, B]$, or $C^{\mu} = A^{\nu} \partial_{\nu} B^{\mu} - B^{\nu} \partial_{\nu} A^{\mu}$:

$$\begin{split} C^x &= \frac{y-x}{r} \partial_x(xy) + \left(-\frac{y+x}{r}\right) \partial_y(xy) - \left[xy \partial_x \left(\frac{y-x}{r}\right) + (-y^2) \partial_y \left(\frac{y-x}{r}\right)\right] \\ &= \frac{y(y-x)}{r} - \frac{x(y+x)}{r} + \frac{2xy^2(y+x)}{r^3} \\ &= \frac{y^4 + 2x^2y^2 - 2x^3y - x^4}{r^3} \\ C^y &= \frac{y-x}{r} \partial_x(-y^2) + \left(-\frac{y+x}{r}\right) \partial_y(-y^2) - \left[xy \partial_x \left(-\frac{y+x}{r}\right) + (-y^2) \partial_y \left(-\frac{y+x}{r}\right)\right] \\ &= \frac{2y(y+x)}{r} + \frac{2xy^2(y-x)}{r^3} \\ &= \frac{2y(x^3 + 2xy^2 + y^3)}{r^3} \end{split}$$

Below is a plot of the vector field C superimposed on the integral curves of A and B. You can sketch the integral curves of C in an obvious way (by stringing vectors together):

