## Physics 211B : ssignment \#2

[1] Rectangular Barrier - Consider a symmetric planar barrier consisting of a layer of $\mathrm{Al}_{x} \mathrm{Ga}_{1-x}$ As of width $2 a$ imbedded in GaAs. The barrier height $V_{0}$ is simply the difference between conduction band minima $\Delta E_{\mathrm{c}}$ at the $\Gamma$ point; energies are defined relative to $E_{\Gamma}^{\mathrm{GaAs}}$. Derive the $\mathcal{S}$-matrix for this problem. Show that

$$
T(E)=\frac{1}{1+\left[\frac{\sinh (b \sqrt{1-\eta})}{2 \sqrt{\eta(1-\eta)}}\right]^{2}} \quad(\eta \leq 1)
$$

and

$$
T(E)=\frac{1}{1+\left[\frac{\sin (b \sqrt{\eta-1})}{2 \sqrt{\eta(\eta-1)}}\right]^{2}} \quad(\eta \geq 1)
$$

where $\eta=E / V_{0}$ and $b=a / \ell$ with $\ell=\hbar / \sqrt{2 m^{*} V_{0}}$. Sketch $T(E)$ versus $E / V_{0}$ for various values of the dimensionless thickness $b$.
[2] Multichannel Scattering - Consider a multichannel scattering process defined by the Hamiltonian matrix

$$
\mathcal{H}_{i j}=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\varepsilon_{i}\right) \delta_{i j}+\Omega_{i j} \delta(x),
$$

which describes the scattering among $N$ channels by a $\delta$-function impurity at $x=0$. The matrix $\Omega_{i j}$ allows a particle in channel $j$ passing through $x=0$ to be scattered into channel $i$. The $\left\{\varepsilon_{i}\right\}$ are the internal (transverse) energies for the various channels. For $x \neq 0$, we can write the channel $j$ component of the wavefunction as

$$
\begin{aligned}
\psi_{j}(x) & =I_{j} e^{i k_{j} x}+O_{j}^{\prime} e^{-i k_{j} x} & & (x<0) \\
& =O_{j} e^{i k_{j} x}+I_{j}^{\prime} e^{-i k_{j} x} & & (x>0)
\end{aligned}
$$

where the $k_{j}$ are positive and determined by

$$
\varepsilon_{\mathrm{F}}=\frac{\hbar^{2} k_{j}^{2}}{2 m}+\varepsilon_{j} .
$$

Show that the incoming and outgoing flux amplitudes are related by a $2 N \times 2 N \mathcal{S}$-matrix:

$$
\left(\begin{array}{ll}
\sqrt{v} & O^{\prime} \\
\sqrt{v} & O
\end{array}\right)=\overbrace{\left(\begin{array}{cc}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right)}^{\mathcal{S}}\left(\begin{array}{c}
\sqrt{v} \\
\sqrt{v} \\
\hline
\end{array}\right)
$$

where $v=\operatorname{diag}\left(v_{1}, \ldots, v_{N}\right)$ with $v_{i}=\hbar k_{i} / m>0$. Find explicit expressions for the component $N \times N$ blocks $r, t, t^{\prime}, r^{\prime}$, and show that $\mathcal{S}$ is unitary, i.e. $\mathcal{S}^{\dagger} \mathcal{S}=\mathcal{S S}^{\dagger}=\mathbb{I}$.
[3] Spin Valve - Consider a barrier between two halves of a ferromagnetic metallic wire. For $x<0$ the magnetization lies in the $\hat{\boldsymbol{z}}$ direction, while for $x>0$ the magnetization is
directed along the unit vector $\hat{\boldsymbol{n}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. The Hamiltonian is given by

$$
\mathcal{H}=-\frac{\hbar^{2}}{2 m^{*}} \frac{d^{2}}{d x^{2}}+\mu_{\mathrm{B}} \boldsymbol{H}_{\mathrm{int}} \cdot \boldsymbol{\sigma},
$$

where $\boldsymbol{H}_{\text {int }}$ is the (spontaneously generated) internal magnetic field and $\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}} c$ is the Bohr magneton ${ }^{1}$. The magnetization $\boldsymbol{M}$ points along $\boldsymbol{H}_{\text {int }}{ }^{2}$. For $x<0$ we therefore have

$$
E_{\mathrm{F}}=\frac{\hbar^{2} k_{\uparrow}^{2}}{2 m^{*}}+\Delta=\frac{\hbar^{2} k_{\downarrow}^{2}}{2 m^{*}}-\Delta,
$$

where $\Delta=\mu_{\mathrm{B}} H_{\mathrm{int}}$. A similar relation holds for the Fermi wavevectors corresponding to spin states $|\hat{\boldsymbol{n}}\rangle$ and $|-\hat{\boldsymbol{n}}\rangle$ in the region $x>0$.

Consider the $\mathcal{S}$-matrix for this problem. The 'in' and 'out' states should be defined as local eigenstates, which means that they have different spin polarization axes for $x<0$ and $x>0$. Explicitly, for $x<0$ we write

$$
\binom{\psi_{\uparrow}(x)}{\psi_{\downarrow}(x)}=\left\{A_{\uparrow} e^{i k_{\uparrow} x}+B_{\uparrow} e^{-i k_{\uparrow} x}\right\}\binom{1}{0}+\left\{A_{\downarrow} e^{i k_{\downarrow} x}+B_{\downarrow} e^{-i k_{\downarrow} x}\right\}\binom{0}{1},
$$

while for $x>0$ we write

$$
\binom{\psi_{\uparrow}(x)}{\psi_{\downarrow}(x)}=\left\{C_{\uparrow} e^{i k_{\uparrow} x}+D_{\uparrow} e^{-i k_{\uparrow} x}\right\}\binom{u}{v}+\left\{C_{\downarrow} e^{i k_{\downarrow} x}+D_{\downarrow} e^{-i k_{\downarrow} x}\right\}\binom{-v^{*}}{u}
$$

where $u=\cos (\theta / 2)$ and $v=\sin (\theta / 2) \exp (i \phi)$. The $\mathcal{S}$-matrix relates the flux amplitudes of the in-states and out-states:

$$
\left(\begin{array}{l}
b_{\uparrow} \\
b_{\downarrow} \\
c_{\uparrow} \\
c_{\downarrow}
\end{array}\right)=\overbrace{\left(\begin{array}{lll}
r_{11} & r_{12} & t_{11}^{\prime} \\
r_{21} & r_{22}^{\prime} & t_{21}^{\prime} \\
t_{22}^{\prime} \\
t_{11} & t_{12} & r_{11}^{\prime} \\
t_{21} & t_{22}^{\prime} & r_{21}^{\prime}
\end{array} r_{22}^{\prime}\right.}^{\prime})\left(\begin{array}{l}
a_{\uparrow} \\
a_{\downarrow} \\
d_{\uparrow} \\
d_{\downarrow}
\end{array}\right) .
$$

Derive the $2 \times 2$ transmission matrix $t$ (you don't have to derive the entire $\mathcal{S}$-matrix) and thereby obtain the dimensionless conductance $g=\operatorname{Tr}\left(t^{\dagger} t\right)$. Define the polarization $P$ by

$$
P=\frac{n_{\uparrow}-n_{\downarrow}}{n_{\uparrow}+n_{\downarrow}},
$$

where $n_{\sigma}=k_{\sigma} / \pi$ is the electronic density. Find $g(P, \theta)$.

[^0][4] Distribution of Resistances of a One-Dimensional Wire - In this problem you are asked to derive an equation governing the probability distribution $P(\mathcal{R}, L)$ for the dimensionless resistance $\mathcal{R}$ of a one-dimensional wire of length $L$. The equation is called the Fokker-Planck equation. Here's a brief primer on how to derive Fokker-Planck equations.

Suppose $x(t)$ is a stochastic variable. We define the quantity

$$
\begin{equation*}
\delta x(t) \equiv x(t+\delta t)-x(t), \tag{1}
\end{equation*}
$$

and we assume

$$
\begin{aligned}
\langle\delta x(t)\rangle & =F_{1}(x(t)) \delta t \\
\left\langle[\delta x(t)]^{2}\right\rangle & =2 F_{2}(x(t)) \delta t
\end{aligned}
$$

but $\left\langle[\delta x(t)]^{n}\right\rangle=\mathcal{O}\left((\delta t)^{2}\right)$ for $n>2$. The $n=1$ term is due to drift and the $n=2$ term is due to diffusion. Now consider the conditional probability density, $P\left(x, t \mid x_{0}, t_{0}\right)$, defined to be the probability distribution for $x \equiv x(t)$ given that $x\left(t_{0}\right)=x_{0}$. The conditional probability density satisfies the composition rule,

$$
P\left(x, t \mid x_{0}, t_{0}\right)=\int_{-\infty}^{\infty} d x^{\prime} P\left(x, t \mid x^{\prime}, t^{\prime}\right) P\left(x^{\prime}, t^{\prime} \mid x_{0}, t_{0}\right)
$$

for any value of $t^{\prime}$. Therefore, we must have

$$
P\left(x, t+\delta t \mid x_{0}, t_{0}\right)=\int_{-\infty}^{\infty} d x^{\prime} P\left(x, t+\delta t \mid x^{\prime}, t\right) P\left(x^{\prime}, t \mid x_{0}, t_{0}\right)
$$

Now we may write

$$
\begin{aligned}
P\left(x, t+\delta t \mid x^{\prime}, t\right) & =\left\langle\delta\left(x-x^{\prime}-\delta x(t)\right)\right\rangle \\
& =\left\{1+\langle\delta x(t)\rangle \frac{d}{d x^{\prime}}+\frac{1}{2}\left\langle[\delta x(t)]^{2}\right\rangle \frac{d^{2}}{d x^{\prime 2}}+\ldots\right\} \delta\left(x-x^{\prime}\right),
\end{aligned}
$$

where the average is over the random variables. Upon integrating by parts and expanding to $\mathcal{O}(\delta t)$, we obtain the Fokker-Planck equation,

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left[F_{1}(x) P(x, t)\right]+\frac{\partial^{2}}{\partial x^{2}}\left[F_{2}(x) P(x, t)\right] .
$$

That wasn't so bad, now was it?
For our application, $x(t)$ is replaced by $\mathcal{R}(L)$. We derived the composition rule for series quantum resistors in class:

$$
\begin{aligned}
\mathcal{R}(L+\delta L)= & \mathcal{R}(L)+\mathcal{R}(\delta L)+2 \mathcal{R}(L) \mathcal{R}(\delta L) \\
& -2 \cos \beta \sqrt{\mathcal{R}(L)[1+\mathcal{R}(L)] \mathcal{R}(\delta L)[1+\mathcal{R}(\delta L)]}
\end{aligned}
$$

where $\beta$ is a random phase. For small values of $\delta L$, we needn't worry about quantum interference and we can use our Boltzmann equation result. Show that

$$
\mathcal{R}(\delta L)=\frac{e^{2}}{h} \frac{m^{*}}{n e^{2} \tau} \delta L=\frac{\delta L}{2 \ell}
$$

where $\ell=v_{\mathrm{F}} \tau$ is the elastic mean free path. (Assume a single spin species throughout.)
Find the drift and diffusion functions $F_{1}(\mathcal{R})$ and $F_{2}(\mathcal{R})$. Show that the distribution function $P(\mathcal{R}, L)$ obeys the equation

$$
\frac{\partial P}{\partial L}=\frac{1}{2 \ell} \frac{\partial}{\partial \mathcal{R}}\left\{\mathcal{R}(1+\mathcal{R}) \frac{\partial P}{\partial \mathcal{R}}\right\} .
$$

Show that this equation may be solved in the limits $\mathcal{R} \ll 1$ and $\mathcal{R} \gg 1$, with

$$
P(\mathcal{R}, z)=\frac{1}{z} e^{-\mathcal{R} / z}
$$

for $\mathcal{R} \ll 1$, and

$$
P(\mathcal{R}, z)=(4 \pi z)^{-1 / 2} \frac{1}{\mathcal{R}} e^{-(\ln \mathcal{R}-z)^{2} / 4 z}
$$

for $\mathcal{R} \gg 1$, where $z=L / 2 \ell$ is the dimensionless length of the wire. Compute $\langle\mathcal{R}\rangle$ in the former case, and $\langle\ln \mathcal{R}\rangle$ in the latter case.


[^0]:    ${ }^{1}$ Note that it is the bare electron mass $m_{\mathrm{e}}$ which appears in the formula for $\mu_{\mathrm{B}}$ and not the effective mass $m^{*!}$ ).
    ${ }^{2}$ For weakly magnetized systems, the magnetization is $\boldsymbol{M}=\mu_{\mathrm{B}}^{2} g\left(\varepsilon_{\mathrm{F}}\right) \boldsymbol{H}_{\mathrm{int}}$, where $g\left(\varepsilon_{\mathrm{F}}\right)$ is the total density of states per unit volume at the Fermi energy.

