
Physics 211B : Assignment #1

[1] Drude formula – Consider a hypothetical monovalent s-band metal with a simple cubic
crystal structure. The valence band dispersion is given by the tight binding result,

ε(k) = −2t
{

cos(kxa) + cos(kya) + cos(kza)
}
.

Compute the DC conductivity tensor σαβ. Show that σαβ = σ δαβ is diagonal, and obtain
an expression for σ. Numerically evaluate any integrals. The following result may prove
useful:

π∫
−π

du

π∫
−π

dv δ(cosu+ cos v + 2λ) = 4 K(
√

1− λ2) Θ(1− λ2) ,

where K(x) is the complete elliptic integral of the second kind. Compare your result with
the Drude value you would obtain by approximating the band as parabolic, based on its
curvature at the zone center.

[2] Thermal transport in a magnetic field – Consider a metal with a parabolic band ε(k) =
~2k2/2m∗ in the presence of a uniform magnetic field B. Use the Boltzmann equation*
to compute (a) the resistivity tensor ρ, (b) the thermal conductivity tensor κ, (c) the
thermopower tensor Q, and (d) the Peltier tensor u. Assume T is small, and work to
lowest nontrivial order in the temperature T . Also assume a constant relaxation time τ .
Does the Wiedemann-Franz law hold for the matrices κ and ρ ?

[3] Two bands – Calculate the frequency-dependent conductivity tensor for a direct gap
semiconductor in the presence of a magnetic field B = Bẑ. You should begin with the
Boltzmann equation in the relaxation time approximation (f0 → f̄0, δf → δf̄ for holes),

∂δf

∂t
− ev · E ∂f0

∂ε
− e

~c
v ×B · ∂δf

∂k
= −δf

τ
,

and the conduction and valence band dispersions,

εv(k) = εv
0 − 1

2~2mv
αβ
−1 kα kβ

εc(k) = εc
0 + 1

2~2mc
αβ
−1 kα kβ .

Assume the two bands behave independently, and solve the two Boltzmann equations for
the conduction electrons and valence holes. In each case, try a solution of the form

δf(k, t) = kµAµ(ε(k)) e−iωt .

The currents are {
jc

jv

}
= 2e

∫
Ω̂

d3k

(2π)3

{
−vc δfc

+ vv δf̄v

}
.
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Compute σαβ along principal axes of the effective mass tensors. You may assume that mv

and mc commute, i.e. they have the same eigenvectors. You should further assume that B
lies along a principal axis.

[4] Spin disorder resistivity (for the brave only!) – Consider an isolated trivalent Tb im-
purity ion in a crystal field. Application of Hund’s rules gives a total angular momentum
J = 6. A cubic crystal field splits this 13-fold degenerate multiplet into six levels: two
singlets, one doublet, and three triplets. The ground state is a singlet. Using the first Born
approximation, calculate the temperature-dependent resistivity in a free electron model
with a scattering Hamiltonian

Himp = −A (g − 1)
Nimp∑
j=1

δ(r −Rj) S · Jj/~2 ,

where r and S are the conduction electron position and spin operators Rj and Jj are the
impurity position and angular momentum of the jth Tb impurity. A is the strength of the
exchange interaction, and g = 3

2 is the gyromagnetic factor.

(a) In general the relaxation time is energy-dependent: τ = τ(ε). Show that the resistivity
is given by ρ = m/ne2〈τ〉, where the average is with respect to the weighting function
ε g(ε) (−∂f0/∂ε). Show also that

1
〈τ〉
≤ 〈τ−1〉,

which provides an upper bound for ρ which can often be computed.

(b) Use the results of (a) to derive the approximate expression for the resistivity ρ '
ρ0 pij Qji, where

pij =
e−Ei/kBT∑
k e

−Ek/kBT
· (Ei − Ei)/kBT

1− e−(Ei−Ej)/kBT

Qij = 1
2

∣∣〈 i ∣∣ J+
∣∣ j 〉∣∣2 + 1

2

∣∣〈 i ∣∣ J− ∣∣ j 〉∣∣2 +
∣∣〈 i ∣∣ Jz ∣∣ j 〉∣∣2 ,

where the ionic energy levels are denoted by Ei and where the summations run over the
(2J + 1) crystal field states. Show that

ρ0 =
3πm (g − 1)2A2 nimp

8e2~3εF

.

(c) Show that the high temperature limiting value of ρ is J(J + 1) ρ0. This is often called
the spin-disorder resistivity.

[5] Cyclotron resonance in Si and Ge – Both Si and Ge are indirect gap semiconductors
with anisotropic conduction band minima and doubly degenerate valence band maxima. In
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Si, the conduction band minima occur along the 〈100〉 (〈ΓX〉) directions, and are six-fold
degenerate. The equal energy surfaces are cigar-shaped, and the effective mass along the
〈ΓX〉 principal axes (the ‘longitudinal’ effective mass) is m∗

l ' 1.0me, while the effective
mass in the plane perpendicular to this axis (the ‘transverse’ effective mass) is m∗

t ' 0.20me.
The valence band maximum occurs at the unique Γ point, and there are two isotropic hole
branches: a ‘heavy’ hole with m∗

hh ' 0.49me, and a ‘light’ hole with m∗
lh ' 0.16me.

In Ge, the conduction band minima occur at the fourfold degenerate L point (along the
eight 〈111〉 directions) with effective masses m∗

l ' 1.6me and m∗
t ' 0.08me. The valence

band maximum again occurs at the Γ point, where the hole masses are m∗
hh ' 0.34me and

m∗
lh ' 0.044me. Use the following figures to interpret the cyclotron resonance data shown

below. Verify whether the data corroborate the quoted values of the effective masses in Si
and Ge.

Figure 1: Constant energy surfaces near the conduction band minima in silicon. There are
six symmetry-related ellipsoidal pockets whose long axes run along the 〈100〉 directions.

Figure 2: Cyclotron resonance data in Si (G. Dresselhaus et al., Phys, Rev, 98, 368 (1955).)
The field lies in a (110) plane and makes an angle of 30◦ with the [001] axis.
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Figure 3: Constant energy surfaces near the conduction band minima in germanium. There
are eight symmetry-related half-ellipsoids whose long axes run along the 〈111〉 directions,
and are centered on the midpoints of the hexagonal zone faces. With a suitable choice
of primitive cell in k-space, these can be represented as four ellipsoids, the half-ellipsoids
on opposite faces being joined together by translations through suitable reciprocal lattice
vectors.

Figure 4: Cyclotron resonance data in Ge (G. Dresselhaus et al., Phys, Rev, 98, 368 (1955).)
The field lies in a (110) plane and makes an angle of 60◦ with the [001] axis.
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