6.6

$$
\begin{aligned}
Q=c(p+i m \omega q) & P=(p-i \omega a \omega q) c \\
\Rightarrow \dot{Q}=c(\dot{p}+i m \omega \dot{q}) & \dot{P}=(\dot{p}-i m \omega \dot{q}) c
\end{aligned}
$$

(spensm+s $\left.\left.{ }^{5} q\right)^{s}\right)^{3} \cdot=$
Harnonic oscilatar: $H=\frac{1}{2} \frac{p^{2}}{m}+\frac{1}{2} m \omega^{2} q^{2}$

$$
\begin{aligned}
& \Rightarrow \dot{p}=-\frac{\partial H}{\partial q}=-m \omega^{2} q, \quad \dot{q}=\frac{\partial H}{\partial p}=p / m \\
& \dot{Q}=c\left(-m \omega^{2} q+i m \omega(p / m)\right)=i \omega c(i m \omega q+p)=i \omega Q \\
& \dot{P}=C\left(-m \omega^{2} q-i m \omega(p / m)\right)=-i \omega C(-i m \omega q+p)=-i \omega P \\
& \dot{E}=-\frac{\partial \tilde{H}}{\partial Q}, \dot{Q}=\frac{\partial \tilde{H}}{\partial P} \quad I \\
& \tilde{H}_{1}=-\int \dot{\mathrm{P}} d Q=-\int(-i \omega P) d Q=i \omega P Q \frac{26}{16}, \frac{26}{}=q \Leftrightarrow \\
& \tilde{H}_{2}=\int \dot{Q} d P=\int \operatorname{in} Q d P=i \omega P Q=2 \quad=\frac{9}{S}+\operatorname{comin}=\frac{26}{P B} \\
& \Rightarrow \tilde{H}=i \omega P Q \\
& \tilde{H}(p, Q, t)=H(p, q, t)+\frac{\partial}{\partial t} F(q, Q, t) \\
& F=F(q, Q) \Rightarrow \tilde{H}=H>p)^{p} p+9 \backslash I p+{ }^{s} 9 \frac{1}{s}=2 k \\
& { }^{\text {or }}=S(q, p) \Rightarrow \tilde{H}=H
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{H}(P, Q)=H(p, q) \\
& \tilde{H}(P, Q)=i \omega C^{2}(p-i \omega \omega q)(p+i m \omega q) \\
& =i \omega C^{2}\left(p^{2}+m^{2} \omega^{2} q^{2}\right) \\
& H(p, q)=\frac{1}{2 m}\left(p^{2}+m^{2} w^{2} q^{2}\right) \\
& \Rightarrow \frac{1}{2 m}=i m \omega c^{2} \Rightarrow C=\left(2 m^{2} \omega_{i}\right)^{-1 / 2} \\
& \oint(p d q-P d Q)=0) د w_{x}-=\left((\mathrm{m} \mid q) \text { omix }-p^{s} w \mathrm{~m}-\right)>=\dot{q} \\
& \Rightarrow \oint(p d q+Q d P)=0 \\
& \Rightarrow p=\frac{\partial S}{\partial q}, Q=\frac{\partial S}{\partial \underline{S}} \\
& p=\frac{\partial S}{\partial q}=i m \omega q+\frac{p}{c} \Rightarrow S_{1}=\frac{1}{2} \text { im } \omega q 2+\frac{p q}{c} \\
& Q=\frac{\partial S}{\partial R}=c(p+i m \omega q)=\overbrace{C(p-i m \omega q)}^{P}+2 c i m \omega q \\
& \Rightarrow S_{2}=\int[P+2(i m \omega q)] d P=\frac{1}{2} P^{2}+2 C_{i m \omega q} P \\
& \Rightarrow S=\frac{1}{2} P^{2}+q P / c^{2}+q^{2} / 4 c^{2} \\
& \dot{Q}=\partial \tilde{H} / \partial P=i \omega Q \quad \Rightarrow \quad Q=Q_{0} e^{i \omega+\varphi_{1}} \\
& \dot{P}=-\partial \tilde{H} / \partial Q=-i \omega P \Rightarrow \quad \underline{P}=E_{0} e^{-i \omega+\varphi_{2}}
\end{aligned}
$$

2.) $(6,7)$
A) a IZ ona insk perdent vowrable (cose 2)

Fisar val. tovenotim:

$$
f\left(p^{2} q-F d Q\right)=f\left(p_{1} d q+Q d f\right)=0
$$

aktan Ieyzabk tranafor mation Sat canul to:

$$
\begin{aligned}
& g(p d t+Q d P)=\oint d S_{0}=0 \\
&=\oint\left(\frac{\partial S_{2} d q}{\partial q}+\frac{\partial S}{\partial p} d f\right) \\
& p=\frac{\partial S}{\partial q}=f \quad Q=\frac{\partial S}{\partial p}=q
\end{aligned}
$$

b) $\operatorname{Le}+S^{\prime}=S_{c}+H d t=\sum_{6} \pi_{6} \frac{p}{6}+H+t$

$$
\frac{v^{2}}{\partial z}=p=p+\frac{2 t}{\partial q} d t
$$

$$
P=p-2 t \frac{\partial t}{\partial q}=p+d t\left(\frac{d p}{d t}\right)
$$

$$
f=p(t+\lambda t)
$$

$$
\begin{aligned}
\frac{\partial S^{\prime}}{\frac{\partial p}{\partial f}}=Q & =q+\frac{\partial H}{\partial f} \\
& =q+d t \frac{d t}{d t}
\end{aligned}
$$

Phys 200B (Theoretical Mechanics), Problem Set II
Fetter \& Walecka, problem \#6.8.
Done by Munirov V. R.

Throughout this problem we deal with cartesian coordinates q_{i} and function (we will use the dummy summation convention in this problem):

$$
S_{0}(\mathbf{q}, \mathbf{P})=\sum_{i} q_{i} P_{i} \equiv q_{i} P_{i}
$$

a) Infinitesimal translation in space

We are given the generating function

$$
F(\mathbf{q}, \mathbf{P})=S_{0}+\mathbf{P} d \mathbf{r}=S_{0}+P_{j} d r_{j}
$$

Since F is type II generating function the following is true:

$$
\begin{aligned}
Q_{i} & =\frac{\partial F}{\partial P_{i}} \\
p_{i} & =\frac{\partial F}{\partial q_{i}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
Q_{i} & =\frac{\partial S_{0}}{\partial P_{i}}+\frac{\partial}{\partial P_{i}}\left(P_{j} d r_{j}\right)= \\
& =q_{i}+d r_{j} \delta_{i j}=q_{i}+d r_{j} \\
p_{i} & =\frac{\partial S_{0}}{\partial q_{i}}+\frac{\partial}{\partial q_{i}}\left(P_{j} d r_{j}\right)=P_{i}
\end{aligned}
$$

Thus we just proved that

$$
\begin{aligned}
Q_{i} & =q_{i}+d r_{i} \\
P_{i} & =p_{i}
\end{aligned}
$$

Or in vector notations

$$
\begin{aligned}
& \mathbf{R}=\mathbf{r}+d \mathbf{r} \\
& \mathbf{P}=\mathbf{p}
\end{aligned}
$$

Therefore we see that F generates infinitesimal translation in space, QED.

b) Infinitesimal rotation

In this part we have the generating function

$$
F(\mathbf{q}, \mathbf{P})=S_{0}+\hat{\mathbf{n}} \mathbf{L} d \varphi
$$

Here $\hat{\mathbf{n}}$ is a unit vector in the direction of rotation, while $\mathbf{L}=[\mathbf{r} \times \mathbf{P}]$ is angular momentum. Since F is type II generating function we again have

$$
\begin{aligned}
Q_{i} & =\frac{\partial F}{\partial P_{i}} \\
p_{i} & =\frac{\partial F}{\partial q_{i}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
Q_{i} & =q_{i}+d \varphi \frac{\partial}{\partial P_{i}}(\hat{\mathbf{n}}[\mathbf{r} \times \mathbf{P}]), \\
p_{i} & =P_{i}+d \varphi \frac{\partial}{\partial q_{i}}(\hat{\mathbf{n}}[\mathbf{r} \times \mathbf{P}]) .
\end{aligned}
$$

Now let us consider the derivative $\frac{\partial}{\partial q_{i}}(\hat{\mathbf{n}}[\mathbf{r} \times \mathbf{P}])$.

$$
\begin{aligned}
\frac{\partial}{\partial q_{i}}(\hat{\mathbf{n}}[\mathbf{r} \times \mathbf{P}])=\frac{\partial}{\partial q_{i}}\left(n_{l} \varepsilon_{l j k} q_{j} P_{k}\right)=n_{l} \varepsilon_{l j k} \frac{\partial q_{j}}{\partial q_{i}} P_{k}= \\
=n_{l} \varepsilon_{l j k} \delta_{i j} P_{k}=n_{l} \varepsilon_{l i k} P_{k}=\varepsilon_{i k l} P_{k} n_{l}=[\mathbf{P} \times \hat{\mathbf{n}}]_{i},
\end{aligned}
$$

where $\varepsilon_{l j k}$ is the Levi-Civita symbol. Analogously, we can show that $\frac{\partial}{\partial q_{i}}(\hat{\mathbf{n}}[\mathbf{r} \times \mathbf{P}])=$ $[\hat{\mathbf{n}} \times \mathbf{r}]_{i}$. Thus we just proved that

$$
\begin{aligned}
Q_{i} & =q_{i}+d \varphi[\hat{\mathbf{n}} \times \mathbf{r}]_{i} \\
P_{i} & =p_{i}+d \varphi[\hat{\mathbf{n}} \times \mathbf{p}]_{i}
\end{aligned}
$$

We changed \mathbf{P} to \mathbf{p} in the last formula, we can do this because this substitution introduces error of the order $O\left(d \varphi^{2}\right)$, but we are only interested in the terms up to $O(d \varphi)$.
If we write canonical transformations in vector form we get

$$
\begin{aligned}
& \mathbf{R}=\mathbf{r}+d \varphi[\hat{\mathbf{n}} \times \mathbf{r}] \\
& \mathbf{P}=\mathbf{p}+d \varphi[\hat{\mathbf{n}} \times \mathbf{p}]
\end{aligned}
$$

Therefore we see that in this case F generates infinitesimal rotation, QED.
6.8) Prow So tride gecentes inturtesiad triusilation dì and So $+\hat{i} \cdot \vec{L} d p$ gereates infurtanal votations $d \theta$ As betrun, ...for sotheds

$$
\begin{aligned}
& Q_{\sigma}=\frac{\partial S}{\partial f_{\sigma}}=q+d \hat{q}_{\sigma} \\
& p_{\sigma}=\frac{\partial S}{\partial q_{\sigma}}=f_{\sigma}+0
\end{aligned}
$$

Which s the equetions deccribery tavelevien,
Similambs for $S+\hat{n} \cdot \bar{L} d s$

$$
\begin{aligned}
& Q_{5}=\frac{25}{2 P_{\sigma}}=q+\frac{2 L_{\sigma}}{2 p_{p}} d \phi=q+p \times r d \phi \\
& P_{\sigma}=\frac{25}{2 q}=P_{\sigma}+\frac{2 L}{2 q} d \phi=f_{\sigma}+p \times \hat{y} d \phi
\end{aligned}
$$

Which ane the equation
describus retution,
(6.17.) $\int\left(q_{1}, q_{2}, \ldots a_{n}, f_{1}, \ldots \quad f_{n}, t\right)=\sum_{\sigma} q_{\sigma} f_{\sigma}+\varepsilon G\left(q_{1}, q_{2}, \ldots q_{n}, f_{1}, \ldots, f_{1}, t\right)$
a) Shou resultyy tranefreso gines

$$
\begin{aligned}
& p_{\sigma}=p_{0}-\varepsilon \frac{26}{29}+0\left(\varepsilon^{2}\right) \\
& Q_{\sigma}=q_{\sigma}+\varepsilon \frac{2 \sigma}{2 p_{\sigma}} \text { to }(\varepsilon) \\
& p_{\sigma}=f_{\sigma}+\varepsilon \frac{\partial G}{\partial Q_{\sigma}} \quad, \quad p_{\sigma}=p_{\sigma}+\varepsilon \frac{\partial 6}{2 Q_{\sigma}} \\
& Q_{\sigma}=q_{\sigma}+\varepsilon \frac{\partial G}{2 p_{\sigma}}=q_{\sigma}+\varepsilon \frac{\partial G}{\partial p_{\sigma}} \frac{\partial p_{\sigma}}{\partial p_{\sigma}}=q_{\sigma}+\varepsilon \frac{\partial G}{\partial p_{\sigma}}\left(1+\varepsilon \frac{\partial G}{\partial a_{\sigma} \partial f_{0}}\right) \\
& Q_{\sigma}=q_{\sigma}+\varepsilon \frac{\partial 6}{\partial p}+O\left(\varepsilon^{2}\right) \\
& f_{\sigma}=p_{\sigma}-\varepsilon \frac{\partial G}{\partial Q_{\sigma}}=\frac{P_{\sigma}}{}-\varepsilon \frac{\partial G}{\partial q_{\sigma}} \frac{\partial Q_{\sigma}}{\partial Q_{\sigma}}=p_{\sigma}-\varepsilon \frac{\partial G}{\partial q_{0}}\left(1-\varepsilon \frac{\partial^{2} G}{\partial g_{0} \partial P_{0}}\right) \\
& \left.P_{\sigma}=P_{\sigma}-\varepsilon \frac{26}{2 q_{0}}+O\left(\varepsilon^{2}\right)\right\}
\end{aligned}
$$

b.) $F\left[q_{1}, \ldots, q_{n}, p_{1}, \ldots p_{n}\right]$ thatrinems to
$F+d F$
When $d F=\varepsilon[F, G]_{P B}$

$$
=\sum_{\sigma}\left(\frac{\partial F}{\partial q} \frac{\partial G}{\partial p_{\sigma}}-\frac{\partial F}{\partial p} \frac{\partial G}{\partial q_{\sigma}}\right)
$$

Cbealy,

$$
\begin{aligned}
& F \rightarrow F+\sum \frac{\partial F}{\partial q_{0}} d q+\sum \frac{\partial F}{\partial p_{\sigma}} d p_{\sigma} \\
& d q_{\sigma}=\sum \frac{\partial \sigma}{\partial p_{\sigma}} \\
& d p_{\sigma}=-\varepsilon \frac{26}{\partial q_{0}}
\end{aligned}
$$

So

$$
\begin{aligned}
F \rightarrow & F_{+} \sum_{\sigma}\left(\varepsilon \frac{2 F}{2 q_{0}} \frac{26}{\partial p_{p}}-\varepsilon \frac{2 F}{2 p_{c}} \frac{26}{2 q_{p}}\right) \\
& =F+\varepsilon[F, G]_{P g}
\end{aligned}
$$

QED
C) by $\mathrm{B}, \mathrm{H} \rightarrow \mathrm{H}+\varepsilon[H, 6]$
if 6 is a constant of notion, $[H, 6]=0$.

$$
\begin{aligned}
& =[H, 6]
\end{aligned}
$$

So $H \rightarrow H$ QED.
 or roturiontly Sypatic respectivl, (recells, 6.8)

Phys $200 \mathrm{~B}, \mathrm{HW}$ 2, \#6|: Find the freq. of a 3D HO w/ unequal spring constants using action angle variables.
(1) Start with the 3-D Hamiltonian:

$$
H=\frac{p_{1}{ }^{2}+p_{2}{ }^{2}+p_{3}^{2}}{2 m}+\frac{1}{2}\left[k_{1} q_{1}{ }^{2}+k_{2} q_{2}{ }^{2}+k_{3} q_{3}{ }^{2}\right] \rightarrow \text { leave }
$$

- Jacobi: Let's choose the momentum cords to be the \int 's of the motion: and Make a transformation where $(q, p) \rightarrow(\theta, I)$ via the generating in $S(q, I) \rightarrow p=\frac{\partial S}{\partial q}, \theta=\frac{d S}{\partial I} \rightarrow \underset{I}{ } \rightarrow \begin{aligned} & \theta \text { is coord. con jugate to }\end{aligned}$ the action variable.

That is, we choose

- Then Hamilton's eqns show ns that: "angle-like" variables since the coords \uparrow

Leave \leftarrow

$$
\dot{p}=-\frac{\partial H}{\partial q} \rightarrow \dot{I}=-\frac{\partial H}{\partial \theta}=0 \Rightarrow I \text { const }
$$

linearly w/o found.

$$
\begin{array}{r}
\dot{q}=\frac{\partial H}{\partial p} \longrightarrow \dot{\theta}=\frac{\partial H}{\partial I}=\omega(I) \Rightarrow \theta=\omega(I) t+\theta_{0} \\
\quad \text { L fund. free. of os } c . \rightarrow \omega
\end{array}
$$

\rightarrow fund. freq. of os $c \rightarrow$ what we are
(2) The $H-J$ eqn is then: looking for.

$$
H\left(q_{1} \frac{\partial s}{\partial q^{\prime}}\right)=\frac{1}{2 m}\left[\left(\frac{\partial s_{1}}{\partial q_{1}}\right)^{2}+\left(\frac{\partial s_{2}}{\partial q_{2}}\right)^{2}+\left(\frac{\partial s_{3}}{\partial q_{3}}\right)^{2}\right]+\frac{1}{2}\left[k_{1} q_{1}^{2}+k_{2} q_{2}^{2}+k_{3} q_{3}^{2}\right]=E=\text { cost }
$$

\rightarrow The $\begin{aligned} & H \text { is separable: } H=f(1)+f(2)+f(3)=E,\left|\begin{array}{l}\bar{f}(1)\end{array}=\frac{1}{2 m}\left(p^{2}\right)+\frac{1}{2} k_{1} q_{1}^{2}\right|, f(2)=e t \\ &=E_{1}=\text { canst }\end{aligned}$ and $E_{1}+E_{2}+E_{3}=E \rightarrow$ total E

$$
=E_{1}=\text { cons }
$$

(3) Now well find the action, I, which is an \int of the orbit, or the area in PS TAKEN BY 1 PERIOD OF THE MORON. \rightarrow the "new"'momentum! The action is a

$$
I \equiv \frac{1}{2 \pi} \oint p d q=\frac{1}{2 \pi}(p S \text { AreA })
$$ constant of the motion since the shape of the orbit it describes (a toms) is invariant.

We know that:
\rightarrow For ea. DOF we get an action variable: I_{1}, I_{2}, I_{3}
$\rightarrow p= \pm\left[2 m\left(E-\frac{1}{2} k q^{2}\right)\right]^{1 / 2} \rightarrow$ will take \oplus since when we \int around one cycle in $P S$ $p d q$ is always >0.
To DESCRIBE A CYCLIC WWTION, θ wILL BE Chosen so it relates to of by:
$\rightarrow q_{1} \equiv\left[\frac{2 E}{k}\right]^{1 / 2} \sin \theta \Rightarrow$ definition

$$
\rightarrow d q=\left[\frac{2 E}{k}\right]^{1 / 2} \cos \theta d \theta
$$

Then $I=\frac{1}{2 \pi} \oint p d q=\frac{1}{2 \pi} \oint\left[2 m\left(E-\frac{1}{2} k q^{2}\right)\right]^{1 / 2} d q$
subst. for q od d (see expansion Below)

$$
\begin{aligned}
I & =\frac{2 E}{\pi}\left[\frac{m}{k}\right]^{1 / 2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta \\
\Rightarrow I & =E\left(\frac{m}{k}\right)^{1 / 2} \quad \text { or } \quad E=I\left(\frac{k}{m}\right)^{1 / 2}
\end{aligned}
$$

(4) Separability implies that the total Hamiltonian is additive:

$$
H\left(I_{1}, I_{2}, I_{3}\right)=E_{1}+E_{2}+E_{3}=I_{1}\left(\frac{K_{1}}{m}\right)^{1 / 2}+I_{2}\left(\frac{K_{2}}{m}\right)^{1 / 2}+I_{3}\left(\frac{K_{3}}{m}\right)^{1 / 2}
$$

From the def. of ω above,

$$
\omega(I)=\frac{\partial H(I)}{\partial I}=\left(\frac{K_{1}}{m}\right)^{1 / 2}, \omega(I)=\text { fundamental freq. of os. }
$$

Then,

$$
\omega_{1}=\left(\frac{k_{1}}{m}\right)^{1 / 2}, \quad \omega_{2}=\left(\frac{k_{2}}{m}\right)^{1 / 2}, \quad \omega_{3}=\left(\frac{k_{3}}{m}\right)^{1 / 2}
$$

So the idea is that this method allows us to compute frequencies (periods) of the individual indep. motions $w / 0$ solving the complete multi-dim mechanical problem.

$$
\begin{aligned}
I=\frac{1}{2 \pi} \oint p d q & =\frac{1}{2 \pi} \oint \sqrt{(2 m)^{1 / 2}\left(E-\frac{1}{2} k q^{2}\right)^{1 / 2}} d q=\frac{1}{2 \pi} \oint(2 m)^{1 / 2}\left(E-\frac{1}{2} k \sqrt{\left(\frac{2 E}{k}\right)^{2} \sin ^{2} \theta}\right)^{1 / 2}\left(\frac{2 P}{k}\right)^{1 / 2} \cos \theta d \theta \\
& =\frac{1}{2 \pi}\left(\frac{4 m E}{k}\right)^{1 / 2} \int_{-\pi / 2}^{\pi / 2} E^{1 / 2}\left(1-\sin ^{2} \theta\right)^{1 / 2} \cos \theta d \theta \\
& =\frac{1}{2 \pi}\left(\frac{4 m E}{k}\right)^{1 / 2} \int_{\pi / 2}^{\pi / 2} E^{1 / 2} \underbrace{\cos \theta d \theta}_{\left.\frac{1+\frac{\cos 2 \theta}{2}}{\left(1-\frac{1-\cos 2 \theta}{2}\right.}\right)^{1 / 2}} \cos ^{2} \theta \\
& =\frac{2 E}{\pi}\left(\frac{m}{k}\right)^{1 / 2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta=\frac{2 E}{\pi}\left(\frac{m}{k}\right)^{1 / 2} \frac{\pi}{2}=E\left(\frac{m}{k}\right)^{1 / 2}=I,
\end{aligned}
$$

7.) $\quad L=1 / 2 m \dot{x}^{2}-1 / 2 k x^{2}$

For a slowly varying parameter $\omega\left(\tau_{\text {mp }} \quad\right.$ where $\tau_{i m} \gg \frac{2 \pi}{\omega} \quad \tau_{\text {sher }}=\frac{2 \pi}{\omega}$
Solutions look like
a $\sin (\omega t)$

$$
\begin{aligned}
& L=y_{2} a^{2} m(\omega)^{2} \sin ^{2}(\omega t)-y_{2} K a^{2} \sin ^{2}(\omega t) \\
& L=1 / 2 a^{2} \sin ^{2}(\omega t)\left[m \omega^{2}-k\right] \\
& S=\int_{0}^{\tau_{\text {cor }}} L(a, w, t) d t \\
& \therefore \bar{s}=\frac{1}{t_{\text {that }}} \int_{0}^{\tau_{\text {shat }}} s d t \\
& \bar{L}=\frac{a^{2}}{4}\left[m \omega^{2}-k\right] \\
& \bar{s}=\int_{0}^{2(100)} \bar{L}\left(a, \phi_{t}\right) d t \\
& \phi_{t}=\frac{\partial \psi}{\partial t}=w
\end{aligned}
$$

Extremize the action

$$
\begin{aligned}
& \delta \bar{S}=0=\int_{0}^{\tau_{\text {and }}}\left[\frac{\partial L}{\partial a} \delta a+\frac{\partial L}{\partial\left(\phi_{t}\right)} \delta \phi_{t}\right] d t \\
& \int_{0}^{\tau} \frac{\partial I}{\partial(\phi t)} \delta\left(\frac{\partial t}{\partial t}\right)=\int_{0}^{\tau} \frac{\partial \tau}{\partial(\phi t)} \frac{\partial}{\partial t}(f \phi) \\
& =\left.\frac{\partial \tau}{\partial\left(\omega_{t}\right)} \delta \phi\right|_{0} ^{\tau}-\int_{0}^{\tau} \frac{\partial}{\partial t} \frac{\partial \tau}{\partial\left(\psi_{t}\right)} \delta \phi d t
\end{aligned}
$$

$$
\begin{aligned}
& \delta \bar{S}=\int_{0}^{\tau}\left[\frac{\partial L}{\partial a} S a-\frac{d}{d t} \frac{\partial L}{\partial d_{t}} \delta \phi\right] d t=0 \\
& \frac{\partial \bar{L}}{\partial a}=0=a / 2\left[m w^{2}-k\right] \Rightarrow w^{2}=k / m \\
& \frac{d}{d t} \frac{\partial L}{\partial a_{t}}=0 \quad \frac{d}{d t}\left[\frac{a^{2} m w}{2}\right]=0 \Rightarrow \frac{a^{2} m w}{2}=\text { canst. }
\end{aligned}
$$

Relationship to WKB Approximation

Recall solution to $w k B: \quad \ddot{x}+\frac{Q(t)}{\varepsilon^{2}} x=0$

$$
x(t)-\frac{1}{Q^{1 / 4}} e^{i / \varepsilon \int \sqrt{Q} d t}
$$

For M.O. oscillator with slowly changing $\omega(T)$ where $\tau=\varepsilon t \quad \varepsilon \ll \mathbb{1}$

$$
\begin{aligned}
& \frac{\partial^{2} x}{\partial \tau^{2}} \quad \omega^{2}(\tau) x=0 \Rightarrow \varepsilon^{2} \frac{\partial^{2} x}{\partial \tau^{2}}+\omega^{2}(\tau) x=0 \\
& \frac{\partial^{2} x}{\partial \tau^{2}}+\frac{\omega^{2}(\tau)}{\varepsilon^{2}} x=0
\end{aligned}
$$

So $\quad Q=\omega^{2} \quad x(t)-\frac{1}{\sqrt{\omega}} e^{i}$
Amplitude $\sim W^{-1 / 2}$
Back to Adiabatic $H_{1} \mathrm{O}_{1}$
If $a^{2} w=$ const.

$$
\begin{aligned}
a_{0}^{2} w_{0}^{2} & =a^{2} w^{2} \\
a & =a \sqrt{\frac{w_{0}}{w}} \quad a \sim w^{-1 / 2}
\end{aligned}
$$

