# Physics 176/276 Quantitative Molecular Biology

# Instructor: Massimo Vergassola Winter 2014

http://physics.ucsd.edu/students/courses/ winter2014/physics176

# **Historical perspective**

#### 18-19th-century: industrial revolution

- -- steam boats, railways, assembly line
- -- chemical, electrical, steel industries
- -- automobiles, tanks, airplanes, ...

controlled conversionof chemical energy for useful mechanical work

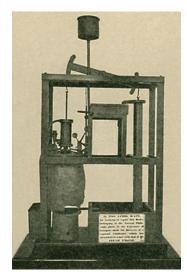
- ➔ key technology: steam engine, piston, turbine & reaction engines
- scientific foundation: thermodynamics, physical chemistry

#### 20th-century: information revolution

- -- transistors, integrated circuits, microprocessors
- -- calculators, personal computers, internet
- -- wireless, nano, smart materials, ...

designed manipulation of electronic flow for info processing

- → key technology: integrated circuits manufacturing & material processing
- ➔ scientific foundation: quantum mechanics, information theory


#### 21st-century: bio revolution

- -- biofuel, bioremediation
- -- rational drug design
- -- personalized medicine

designed manipulation or informed
intervention of biological organisms
for useful purposes = synthetic biology

- ➔ key technology: DNA sequencing/synthesis, 'omics ?
- ➔ scientific foundation: quantitative & systems biology ???

#### Historical perspective on theory/applications



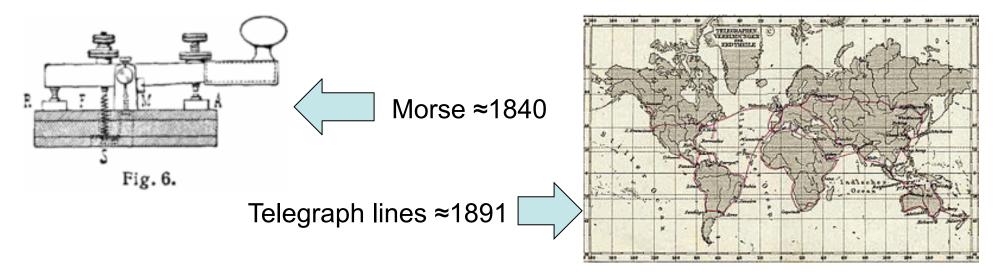
Savery engine ≈ 1700 Newcomen engine ≈1710

James Watt ≈1765





Sadi Carnot ≈1824 REFLECTIONS ON THE • MOTIVE POWER OF HEAT. FROM THE ORIGINAL FRENCH OF N.-L.-S. QARNOT,


Graduate of the Folytechnic School. ACCOUPANIED BY AN ACCOUNT OF CARNOT'S THEORY. BY SIR WILLIAM THOMSON (LORD KELVIN).

EDITED BY R. H. THURSTON, M.A., LL.D., DR.ENG'G; Director of Stibley College, Cornell University; "Officier de l'Instruction Publique de France,"

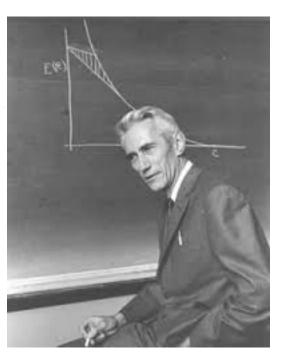
BECOND, REVISED, EDITION BER THOUSAND. NEW YORK: JOHN WILEY & SONS. DANN & HALL, LIMITED. 1897. Steam engines (inefficient) were built on a practical basis well before theoretical understanding.

In Carnot's paper you can count equations on the fingers of your hands

#### Historical perspective on theory/applications



#### The Bell System Technical Journal


Vol. XXVII

July, 1948

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON



#### Why quantitative biology?

- -- because biology is quantitative
- -- needed to formulate falsifiable predictions
- -- demanded by synthetic biology

### What is quantitative biology?

 $\rightarrow$  quantitative biology  $\neq$  biology-inspired physics

≠ application of pre-existing methods to bio problems

Use numbers to gain quantitative and qualitative understanding Role of theory

- link across different scales, i.e., from components to systems
- formulate expectations and predictions (via quantitative models)
- guide the design of new experiments, e.g. more discriminatory, and technology, e.g. more effective.
- power: the generality of (falsifiable) ideas and principles
- "cost" : basic principles usually streamline, simplify the guess-and-try process of technological progress.

#### New concepts and principles lead to new perspectives

"Heavier than air flying machines are impossible."

-- Lord Kelvin

"Flight by machines heavier than air is impractical and insignificant, if not utterly impossible."

-- Simon Newcomb, Director, U.S. Naval Observatory, 1902

"Aerial flight is one of that class of problems with which man will never be able to cope."

-- Simon Newcomb, 1903

"The popular mind often pictures gigantic flying machines speeding across the Atlantic carrying innumerable passengers in a way analogous to our modern steam ships. . . it seems safe to say that such ideas are wholly visionary and even if the machine could get across with one or two passengers the expense would be prohibitive to any but the capitalist who could use his own yacht."

-- William Henry Pickering, Astronomer, 1910

# A few successful paradigmatic examples

- -- Mendel's laws of genetics
- -- Luria-Delbrück experiment and fluctuation test
- -- Hopfield's theory of kinetic proof-reading
- -- Ho-Perelson's model of HIV kinetics



#### Mendel's laws of genetics



#### First law of Segregation

| Parental Cross           | F <sub>1</sub><br>Phenotype | F <sub>2</sub> Phenotypic Ratio | F <sub>2</sub><br>Ratio |
|--------------------------|-----------------------------|---------------------------------|-------------------------|
| Round x Wrinkled<br>Seed | Round                       | 5474 Round:1850<br>Wrinkled     | 2.96:1                  |
| Yellow x Green Seeds     | Yellow                      | 6022 Yellow:2001 Green          | 3.01:1                  |
| Red x White Flowers      | Red                         | 705 Red:224 White               | 3.15:1                  |
| Tall x Dwarf Plants      | Tall                        | I787 Tall:227 Dwarf             | 2.84:1                  |

d

Union of Gametes D At Random

#### D d

- DD Dd (Tall) (Tall)
- dd Dd (Tall) (Short)

Mendel's conclusions

- Hereditary determinants are of a particulate nature (genes).
- Each parent has a gene pair for each trait.
- One member of the gene pair segregates into a gamete, i.e. each gamete carries one member of the gene pair.
- Gametes unite at random, irrespective of the other gene pairs involved.
- For the examples here, one of the two types (alleles) is dominant.



# Second law Independent Assortment

|         |    | Female Gametes                    |                                      |                                   |                                      |
|---------|----|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
|         |    | GW                                | Gw                                   | gW                                | gw                                   |
|         | GW | <b>GGWW</b><br>(Yellow,<br>round) | GGWw<br>(Yellow,<br>round)           | <b>GgWW</b><br>(Yellow,<br>round) | <b>GgWw</b><br>(Yellow,<br>round)    |
| Male    | Gw | <b>GGWw</b><br>(Yellow,<br>round) | GGww<br>(Yellow,<br>wrinkled)        | <b>GgWw</b><br>(Yellow,<br>round) | <b>Ggww</b><br>(Yellow,<br>wrinkled) |
| Gametes | gW | <b>GgWW</b><br>(Yellow,<br>round) | <b>GgWw</b><br>(Yellow,<br>round)    | <b>ggWW</b><br>(Green,<br>round)  | <b>ggWw</b><br>(Green,               |
|         | gw | <b>GgWw</b><br>(Yellow,<br>round) | <b>Ggww</b><br>(Yellow,<br>wrinkled) | <b>ggWw</b><br>(Green,<br>round)  | <b>ggww</b><br>(Green,<br>wrinkled)  |

Phenotype

9 Yellow, Round Seed

3 Yellow, Wrinkled Seed

- 3 Green, Round Seed
- 1 Green, Wrinkled Seed

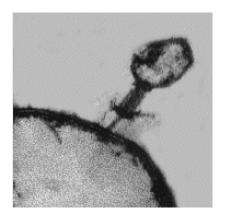
Genotype

G\_W\_ G\_ww ggW\_ ggww

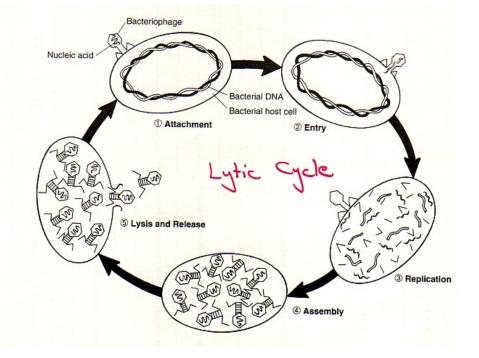
#### Remarkable features

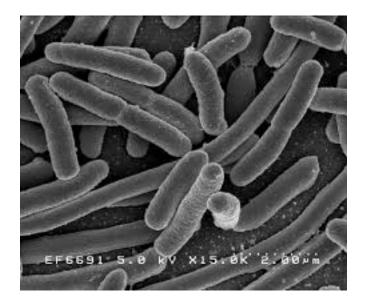
- Quantitative experiments (engineered pure lines and used statistics) and did not just describe what he saw: physicists do not have the monopole....
- Strong abstraction (laws synthesizing data and predicting results of new experiments, e.g. backcrossing or co-dominant traits) with new concepts (gene) going even beyond the existing limits (it will not be clear what a gene is for more than a century....).
- Created the new field of genetics (even though it took some time to rediscover...).
- A bit of luck helps..... Not all traits are Mendelian and segregate independently.

#### MUTATIONS OF BACTERIA FROM VIRUS SENSITIVITY TO VIRUS RESISTANCE<sup>1,2</sup>


Theoretical

Microbiologist S. E. LURIA<sup>3</sup> AND M. DELBRÜCK Physicist

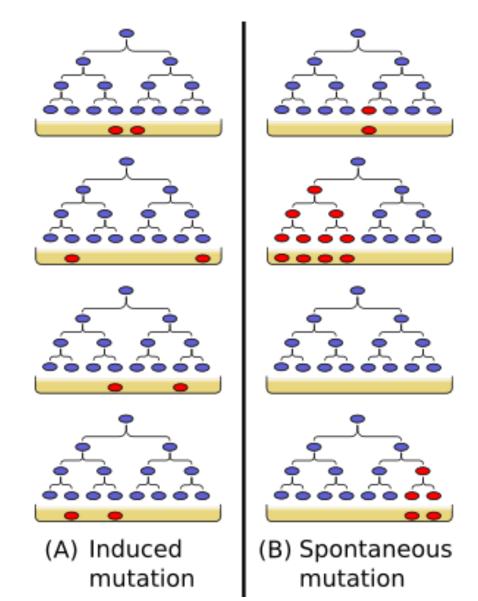

Indiana University, Bloomington, Indiana, and Vanderbilt University, Nashville, Tennessee


Received May 29, 1943

Are mutations random or induced by natural selection?



(Bacterio)Phages are viruses of bacteria






Use the phage-bacteria system for an experiment to discriminate between the two hypotheses: random vs induced mutations ?

**Poisson statistics** 

# A small fraction of *E. coli* bacteria in a colony are resistant to infection by phages.



| SAMPLE NO. | EXP. NO. 10a<br>RÉSISTANT COLONIES | EXP. NO. 11a       | EXP. NO. 3         |
|------------|------------------------------------|--------------------|--------------------|
|            | RESISTANT COLONIES                 | RESISTANT COLONIES | RESISTANT COLONIES |
| I ·        | 14                                 | 46                 | 4                  |
| 2          | 15                                 | 56                 | 2                  |
| 3          | 13                                 | 52                 | 2                  |
| 4          | 21                                 | 48                 | I                  |
| 5          | 15                                 | 65                 | 5                  |
| 6          | 14                                 | 44                 | 2                  |
| 7          | 26                                 | 49                 | 4                  |
| 8          | 16                                 | 51                 | 2                  |
| 9          | 20                                 | 56                 | 4                  |
| 10         | 13                                 | 47                 | 7                  |
| mean       | 16.7                               | 51.4               | 3-3                |
| variance   | 15                                 | 27                 | 3.8                |
| $\chi^2$   | 9                                  | 5.3                | I 2                |
| Р          | .4                                 | .8                 | . 2                |

TABLE I The number of resistant bacteria in different samples from the same culture.

#### The experiment invalidates the hypothesis of directed **mutations**

TABLE 2 The number of resistant bacteria in series of similar cultures.

# **Luria-Delbruck Fluctuation Test** sample repeatedly

| EXPERIMENT NO.                                | I    | 10   | tı   | 15   | 16              | 17   | 21a  | 21b  |
|-----------------------------------------------|------|------|------|------|-----------------|------|------|------|
| Number of cultures                            | 9    | 8    | 10   | 10   | 20              | 12   | 19   | 5    |
| Volume of cultures, cc                        | 10.0 | 10.0 | 10.0 | 10.0 | . 2*            | . 2* | . 2  | 10.0 |
| Volume of samples, cc                         | .05  | .05  | .05  | .05  | .08             | .08  | .05  | .05  |
| Culture No.                                   |      |      |      |      |                 |      |      |      |
| r                                             | 10   | 29   | 30   | 6    | I               | I    | 0    | 38   |
| 2                                             | 18   | 41   | 10   | 5    | 0               | 0    | 0    | 28   |
| 3                                             | 125  | 17   | 40   | 10   | 3               | 0    | •    | 35   |
| 4                                             | 10   | 20   | 45   | 8    | 0               | 7    | 0    | 107  |
| 5                                             | 14   | 31   | 183  | 24   | 0               | 0    | 8    | 13   |
| 6                                             | 27   | 30   | 12   | 13   | 5               | 303  | I    |      |
| 7                                             | 3    | 7    | 173  | 165  | 0               | 0    | 0    |      |
| 8                                             | 17   | 17   | 23   | 15   | 5               | 0    | I    |      |
| 9                                             | 17   |      | 57   | 6    | 0               | 3    | 0    |      |
| 10                                            |      |      | 51   | 10   | 6               | 48   | 15   |      |
| II                                            |      |      |      |      | 107             | I    | 0    |      |
| 12                                            |      |      |      |      | 0               | 4    | 0    |      |
| 13                                            |      |      |      |      | 0               |      | 19   |      |
| 14                                            |      |      |      |      | 0               |      | 0    |      |
| 15 .                                          |      |      |      |      | r               |      | 0    |      |
| 16                                            |      |      |      |      | 0               |      | 17   |      |
| 17                                            |      |      |      |      | 0               |      | II   |      |
| 18                                            |      |      |      |      | 64 <sup>-</sup> |      | 0    |      |
| 19                                            |      |      |      |      | 0               |      | ٥    |      |
| 20                                            |      |      |      |      | 35              |      |      |      |
| Average per sample<br>Variance (corrected for | 26.8 | 23.8 | 62   | 26.2 | 11.35           | 30   | 3.8  | 48.2 |
| sampling)                                     | 1217 | 84   | 3498 | 2178 | 694             | 6620 | 40.8 | 1171 |

culture separately

# Kinetic proofreading (Hopfield, PNAS, 1974; Ninio, Biochimie, 1975)

How can differences in affinity of ligands be amplified?

$$C + c \stackrel{k'c}{\rightleftharpoons} Cc \stackrel{W}{\rightarrow} correct \text{ product } K_{C} = k'_{C}/k_{C}$$

$$D + c \stackrel{k'c}{\rightleftharpoons} Dc \stackrel{W}{\rightarrow} error \text{ product } K_{D} = k'_{D}/k_{D}$$

$$C + c \stackrel{k'c}{\rightleftharpoons} Cc \stackrel{m'}{\rightleftharpoons} Cc^{*} \stackrel{W}{\rightarrow} \text{ product } C + c \stackrel{\tilde{kc}}{\rightleftharpoons} Cc \stackrel{\tilde{m'}}{\rightarrow} Cc^{*} \stackrel{\tilde{m'}}{\rightarrow} product$$

$$C + c \stackrel{\tilde{kc}}{\rightrightarrows} Cc^{*} \stackrel{\tilde{m'}}{\rightarrow} l_{c} \downarrow l'_{c} \rbrace^{3} \stackrel{\tilde{4}}{4}$$

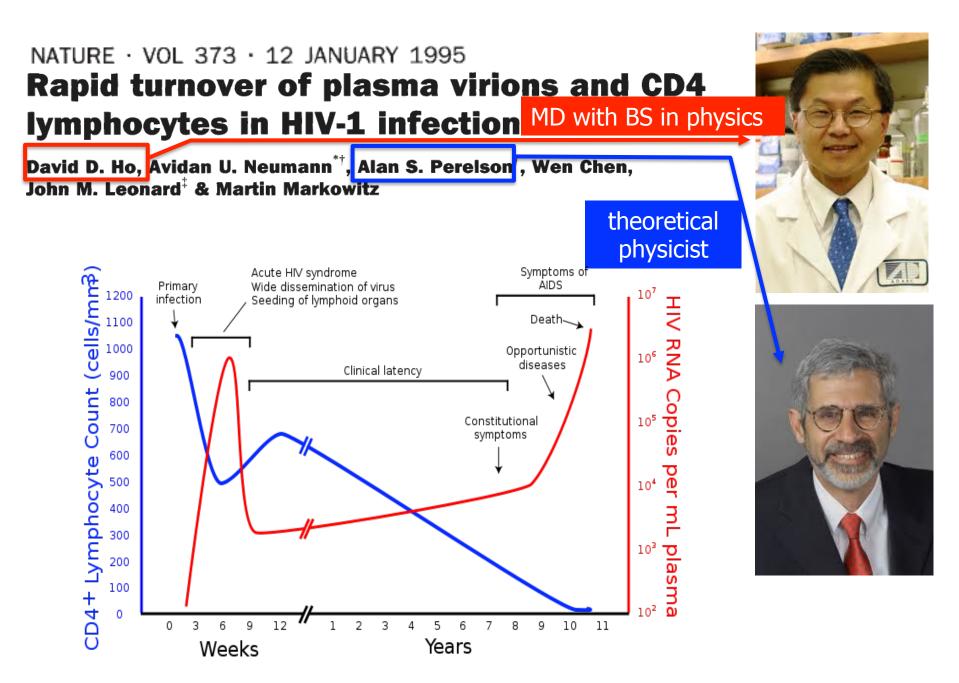
$$C + c \stackrel{\tilde{kc}}{\leftarrow} Cc \stackrel{\tilde{m'}}{\rightarrow} Cc^{*} \stackrel{\tilde{m'}}{\rightarrow} product$$

$$C + c \stackrel{\tilde{kc}}{\leftarrow} Cc \stackrel{\tilde{m'}}{\rightarrow} l_{c} \downarrow l_{c} \rbrace^{3}$$

$$C + c$$
Equilibrium Non-equilibrium: energy

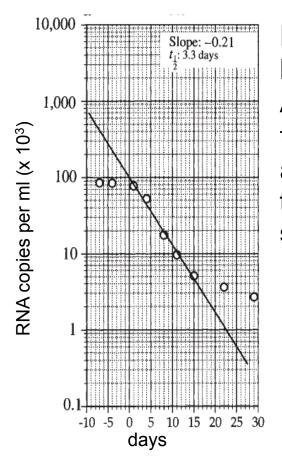
Non-equilibrium: energy expended in the phosphorylation steps

If reactions strongly biased towards dissociation, i.e. they circulate many times before product, then specificity squared


Proofreading costs energy!

# Proofreading processes are crucial for the cellular dynamics

Replication: DNA polymerase adds incorrect nucleotides with a rate ≈10<sup>-5</sup> which is reduced by proofreading processes to the observed error rate≈10<sup>-9</sup>.


Translation: the fidelity of aminoacids in proteins is improved by proofreading with respect to the bare accuracy ensured by tRNAs

Immune discrimination: first self-non self discrimination by T-cells involves a proofreading cascade (McKeithan PNAS 1995; Altan-Bonnet & Germain, PLoS Comp. Biol. 2005; Francois et al, PNAS 2013)



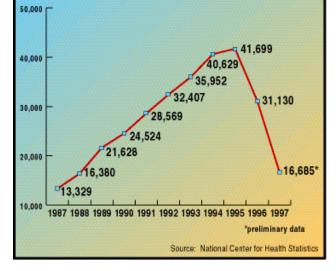
AIDS: a disease with long latency (~10 years)

[Ho et al, Nature 1995]



Production-clearance balance perturbed by ABT-538 administered to patients; kinetics assayed (response function of a dynamical system!).

 $T_{1/2} = 3.3 \text{ days}$ 


About 10<sup>9</sup> virions/day get cleared and a similar amount of lymphocytes produced!

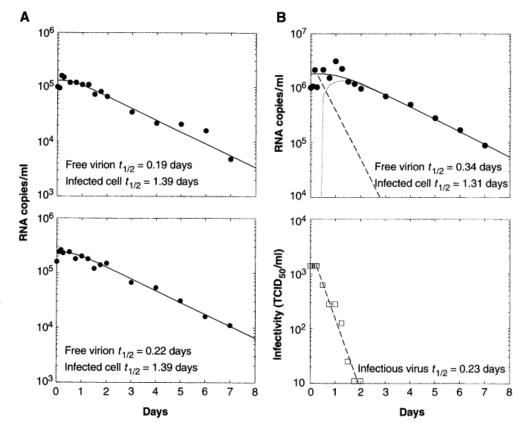
- rapid viral clearance by the immune system: long latency due to balance of fast viral production & clearance
- intervention strategy: treat early with multiple drugs



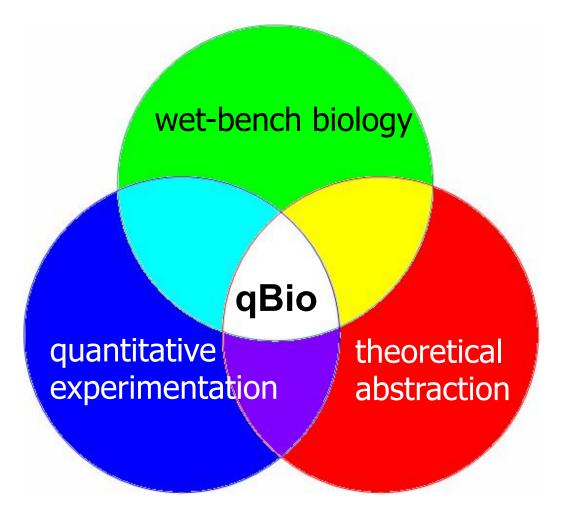
#### AIDS Deaths Since 1987

This chart includes deaths for all ages, races, and both genders. Though the AIDS epidemic began around 1979, data on deaths were unreliable until 1987. Figures from 1997 are preliminary.




SCIENCE • VOL. 271 • 15 MARCH 1996

### HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time


Alan S. Perelson, Avidan U. Neumann, Martin Markowitz, John M. Leonard, David D. Ho\*

Estimates of the clearance rate c of virions and the lifetime  $\delta$  of infected cells

$$V(t) = V_0 \exp(-ct) + \frac{cV_0}{c - \delta}$$
$$\left\{\frac{c}{c - \delta} [\exp(-\delta t) - \exp(-ct)] - \delta t \exp(-ct)\right\}$$



#### Three key elements of quantitative biology



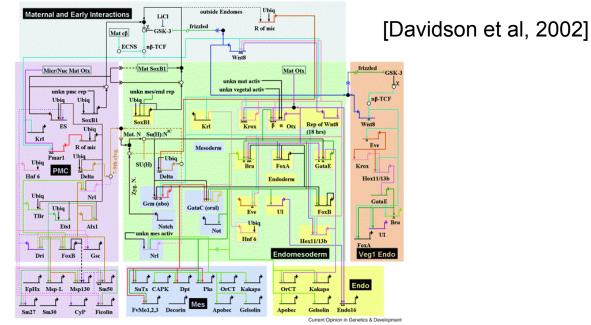
Collaboration of labs with different expertise

→ New generation of researchers combining multiple expertise

#### This course: quantitative molecular biology of bacteria

-- the state of bacterial cells strongly depends on environmental conditions and on a huge number of parameters

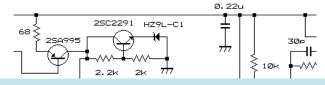
- -- how can it ever work?
- -- how can it be "understood"?


"Now in the further development of science, we want more than just a formula. First we have an observation, then we have numbers that we measure, then we have a law which summarizes all the numbers. But the real glory of science is that we can find a way of thinking such that the law is evident."

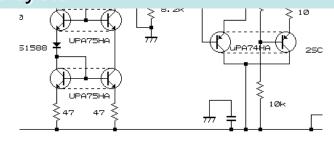
from The Feynman Lectures on Physics

# Systems biology

#### 1. Scope and focus:

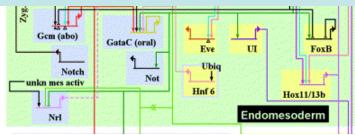

- biological systems whose <u>functions</u> are derived from the interaction of <u>many sub-components</u>
- > ex: from macromolecluar assemblies to ecological communities
- current focus: subcellular and cellular processes, e.g., genetic circuits, protein interaction networks




 $\succ$  long-term goals:

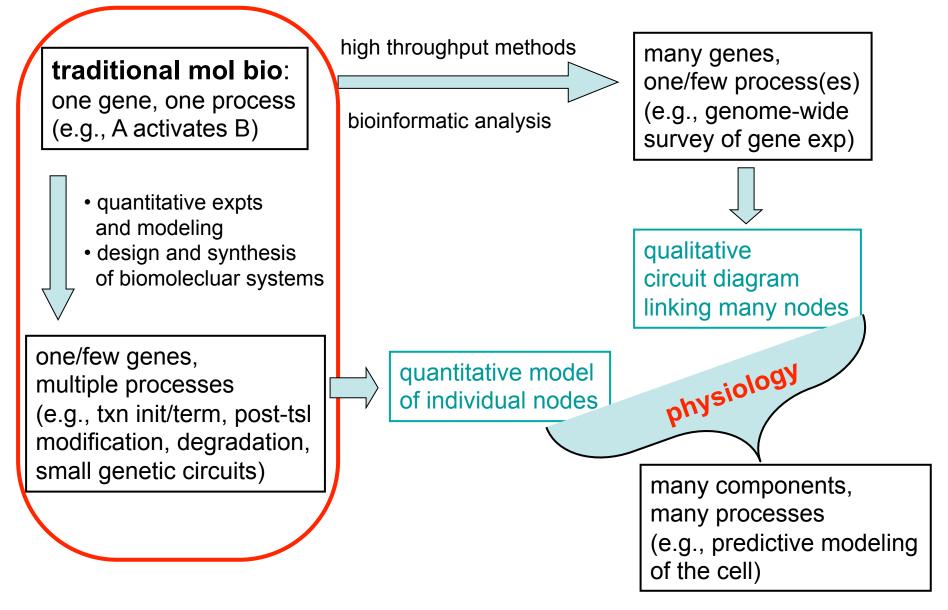
mapping out the complete wiring diagram of the cell
quantitative, predictive computational model of the cell

#### 2. Circuit diagram as system-level descriptor ?




circuit diagram supplemented by component parameters provides a concise quantitative description of the system






circuit topology not necessarily predictive of system function; need to know the properties of the nodes



|                       | electronic circuits                                                                   | genetic circuits                                                    |  |
|-----------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| components            | simple & well characterized;<br>many (~10 <sup>9</sup> ); fast (10 <sup>-9</sup> sec) | heterogeneous, most rates unknown;<br>few (~1000); slow ( >10 min)  |  |
| connectivity          | physical interconnect between<br>well-insulated components<br>(1~2 inputs per node)   | multiply-connected (1~10 inputs per node); regulation at all stages |  |
| network<br>complexity | iterated cascades from<br>complex network wiring                                      | combinatorial signal integration from complex molecular control     |  |

#### **Experimental & Computational Approaches**



#### Scope of this course

- focus on simple systems (mostly bacteria)
- role of theory, modeling, and computation
- multiple aspects (e.g., tsx initiation, post-tsx control, degradation)
- emphasize **quantitative connections** between molecular and physiological (functional) aspects

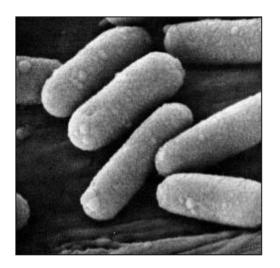
#### course content

- review of molecular microbiology
- molecular interactions: ligand-protein, protein-DNA and protein-protein
- transcriptional initiation control: activation, repression, and combo
- post-transcriptional control: attenuation, termination, degradation
- modeling genetic circuits: bistability and oscillation
- stochastic gene expression and phenotype
- growth physiology and control
- bacterial motility

# **Overview of molecular microbiology**


# Plan

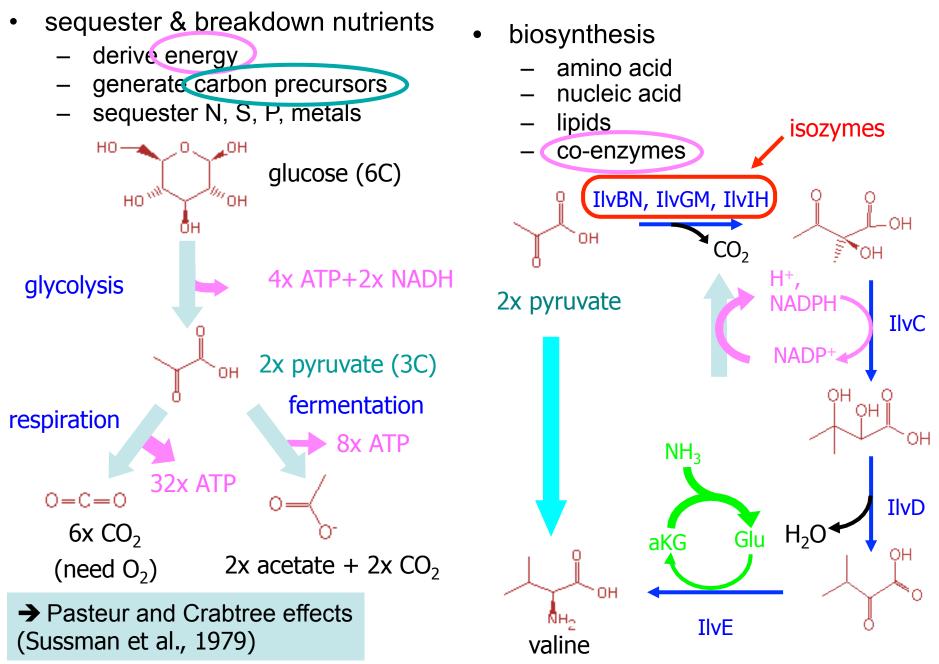
- 1. biochemical aspects
- 2. mechanistic aspects
- 3. regulatory aspects
- 4. genomic aspects
- 5. physical aspects
- 6. comparison to eukaryotes


#### life of a bacterium:

- chemical composition of biomass: CH<sub>1.80</sub>O<sub>0.43</sub>N<sub>0.143</sub> (+ S, P, Mg, Fe, ...) ullet
- molecular composition: [total weight: 10-12 g per cell; 70% water] ullet

matter + energy  $\rightarrow$  biomass




energy cost of biosynthesis: [minimal medium: ~ 560 J/g dry weight]



| molecular species | %dry weight | energy cost (J/g) |
|-------------------|-------------|-------------------|
| protein           | 55          | 220               |
| RNA               | 20          | 200               |
| DNA               | 3           | 30                |
| small molecules   | 3           | 10                |
| lipid membrane    | 9           | 80                |
| cell wall         | 10          | 20                |

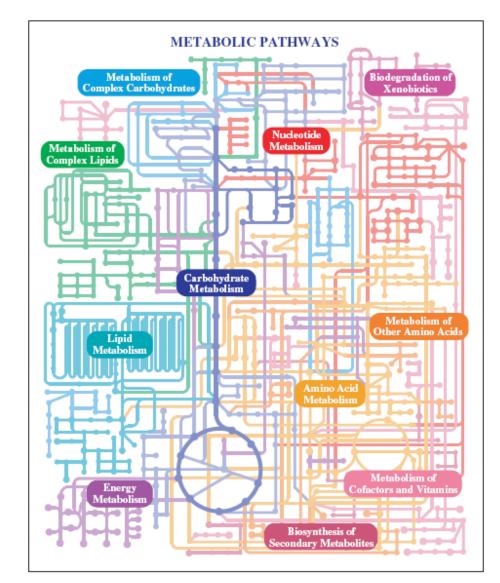
NB: latent heat of melting  $H_2O$ : 334 J/g; cost for proteins is several fold the cost for the peptide bonds holding together the protein: proofreading

#### metabolism



#### metabolism

• typical biochemical reaction:


 $S + C \bullet b \rightleftarrows S \bullet b + C$ 

- S: substrate
- b: component (e.g., CH<sub>3</sub>, NH<sub>2</sub>, e<sup>-</sup>)
- C: co-enzyme

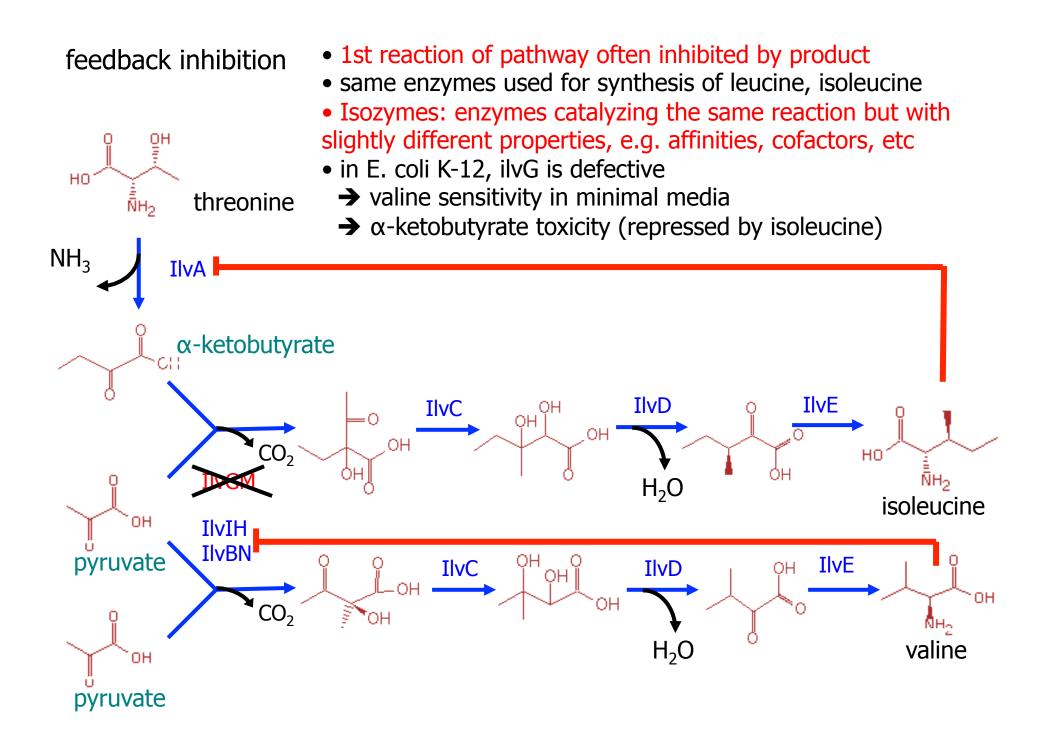
(needed for difficult reactions)

- most reactions catalyzed by enzymes (proteins)
- flux of the products and "byproducts" need to be balanced

metabolic control via <u>coordinated regulation</u> of enzyme abundance/ activity



Many enzymes and products are common to different pathways, which branch out of one another. That produces the structure of the graph above. It also leads to interference effects such as growth inhibition.

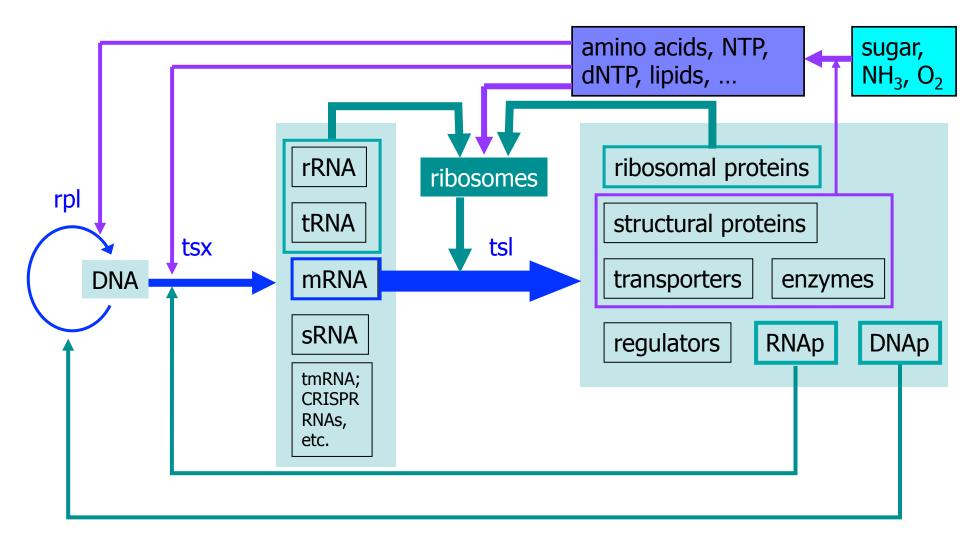

| TABLE | 1. | Growth inhibition by amino acids among |
|-------|----|----------------------------------------|
|       |    | 356 E. coli strains"                   |

| Amino acid tested   | No. of<br>strains<br>inhibited |
|---------------------|--------------------------------|
| α-Aminobutyric acid | 4                              |
| Aspartic acid       | 13                             |
| Cystine             | 40                             |
| Histidine           | 2                              |
| Lysine              | 3                              |
| Methionine          | 4                              |
| Norleucine          | 333                            |
| Norvaline           | 261                            |
| Serine              | 42                             |
| Threonine           | 2                              |
| Tyrosine            | 2                              |
| Valine              | 3                              |

It is very common that growth is inhibited when one amino acid is added to a minimal medium. Growth is often rescued by adding a (specific) second one.

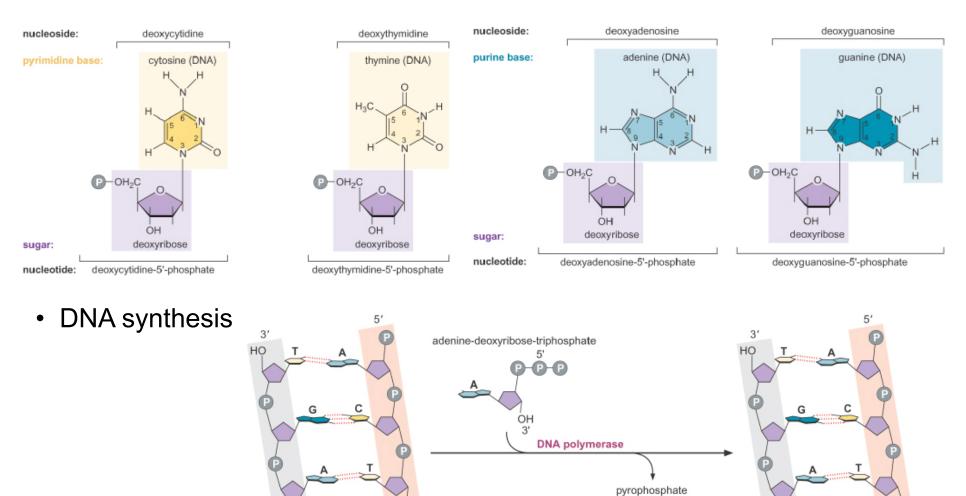
TABLE 2. Prevention of amino acid growth inhibition by other amino acids in various E. coli strains<sup>a</sup>

| No. of<br>strains<br>tested | Inhibition by: | Prevented by:                       |
|-----------------------------|----------------|-------------------------------------|
| 1                           | Aspartic acid  | Lysine                              |
| 1                           | Aspartic acid  | Valine                              |
| 8                           | Cystine        | Methionine                          |
| 3                           | Lysine         | Methionine                          |
| 1                           | Methionine     | Leucine or lysine                   |
| 12                          | Norleucine     | Methionine                          |
| 5                           | Norvaline      | Leucine or methionine               |
| 4                           | Serine         | Glycine                             |
| 1                           | Valine         | Isoleucine or leucine               |
| 1                           | Valine         | Isoleucine or leucine or methionine |




# **Overview of molecular microbiology**

## Plan


- 1. biochemical aspects
- 2. mechanistic aspects
- 3. regulatory aspects
- 4. genomic aspects
- 5. physical aspects
- 6. comparison to eukaryotes





## DNA replication

• the four "bases" of DNA: pyrimidines (C, T) and purines (A, G)



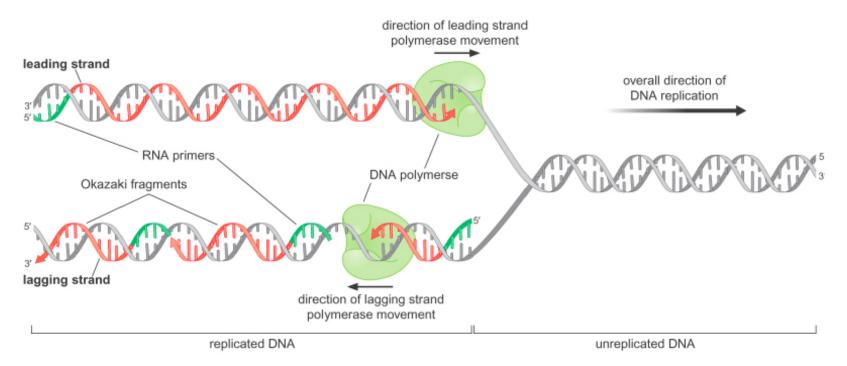
OH

3'

5'

P

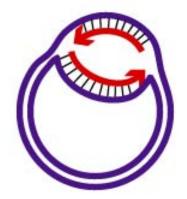
phosphate


pyrophosphatase

5'

OH

3'

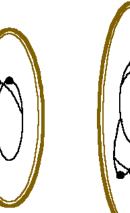

• the replication fork

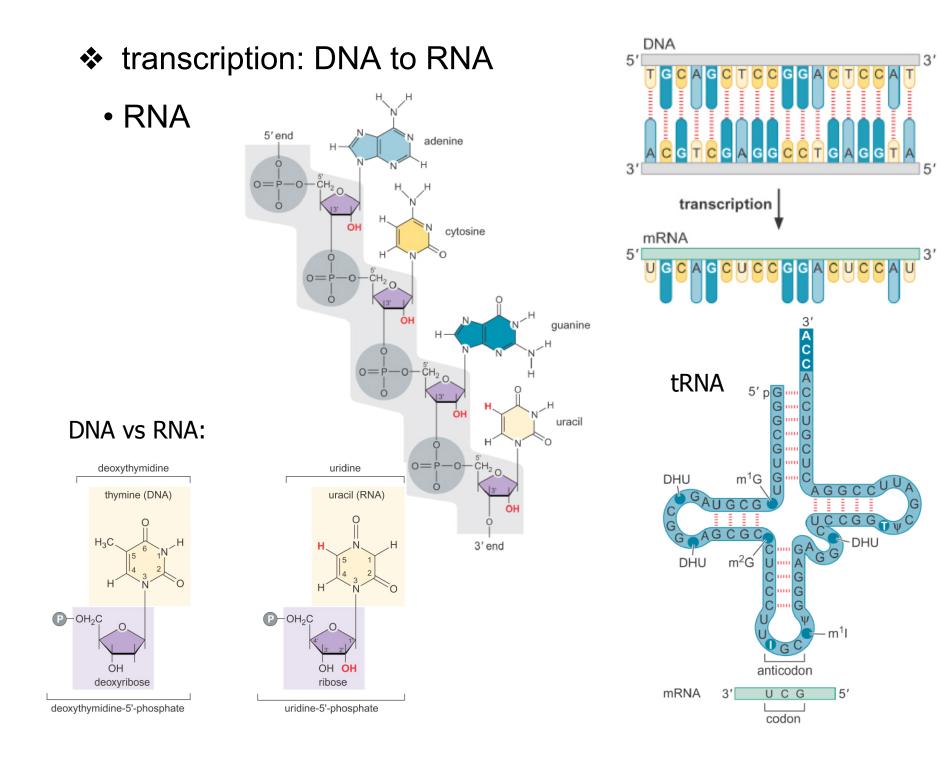


#### TABLE 8-2 Activities and Functions of DNA Polymerases

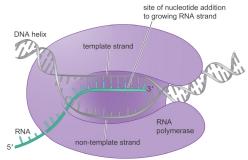
| Prokaryotic (E. coli) | Number of<br>subunits | Function                                    |
|-----------------------|-----------------------|---------------------------------------------|
| Pol I                 | 1                     | RNA primer removal, DNA repair              |
| Pol II (Din A)        | 1                     | DNA repair                                  |
| Pol III core          | 3                     | Chromosome replication                      |
| Pol III holoenzyme    | 9                     | Chromosome replication                      |
| Pol IV (Din B)        | 1                     | DNA repair, Trans Lesion Synthesis<br>(TLS) |
| Pol V (UmuC, UmuD'2C) | 3                     | TLS                                         |

- initiation of DNA replication
  - doubling time of *E. coli* can vary over 10x
     [fastest doubling time: ~20 min]
  - 40 min required to replicate chromosome
  - fixed time of 20 min between completion of one round of replication and cell division

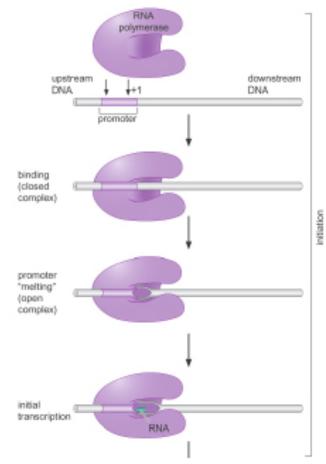




- → doubling time > 60 min: waiting time between division & replication
- ➔ doubling time < 60 min: multiple replication forks</p>
- → one replication origin every 1.7 µm (length of unit cell): fast growing cells are larger!

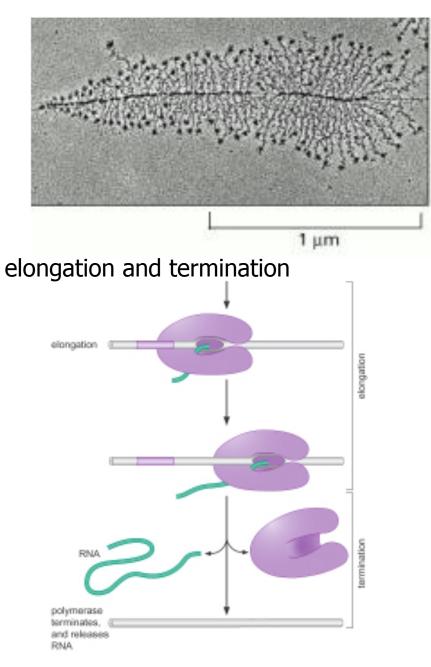
Questions:


- how does the cell "measure" and controls its size?

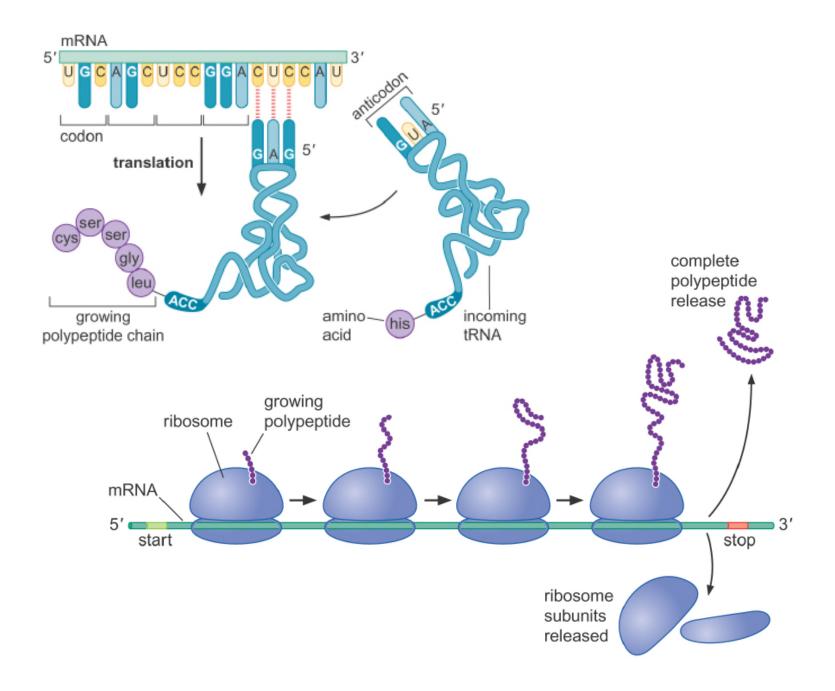
- Position on the chromosome of genes and its relation to expression levels?



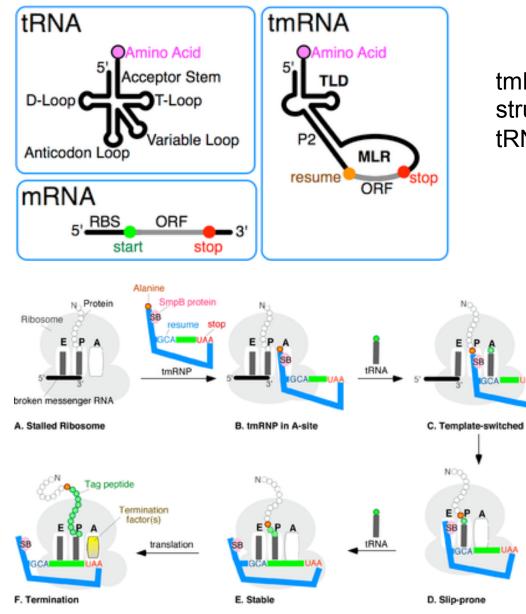




• RNA synthesis:




#### transcriptional initiation




# heavily transcribed genes coding ribosomal RNA



#### translation: mRNA to protein



#### translation: tmRNAs



tmRNAs are a structural hybrid of tRNA and mRNA

> In *trans*-translation, tmRNA binds to bacterial ribosomes which have stalled, it recycles them and adds a proteolysisinducing tag to the unfinished polypeptide, which gets degraded.