Problem 1 (10 pts)

The heat pump shown in the figure does 50 J of work per cycle, extracts heat $\mathrm{Q}_{2}=5000 \mathrm{~J}$ per cycle from a heat reservoir at 100 K and exhausts heat Q_{1} per cycle to a heat reservoir at 200 K . It also exhausts heat $Q_{3}>0$ per cycle to or extracts heat $Q_{3}<0$ per cycle from a heat reservoir at temperature T.
(a) If $\mathrm{Q}_{1}=5049 \mathrm{~J}$, what is the range of possible values of T ?
(b) If $T=50 \mathrm{~K}$, what is the range of possible values of Q_{1} and Q_{3} ?
(c) What is the maximum possible value of T, and what values of Q_{1} and Q_{3} does that require? $\left(\mathrm{Q}_{3}\right.$ may be positive or negative, $\left.\mathrm{Q}_{1} \geq 0\right)$.

Problem 2 (10 pts)
An ideal monoatomic gas is used as a heat engine going in a reversible cycle through processes connecting states 1,2 and 3 as follows:
State 1: initial state at temperature T_{1}, volume V_{1}.
Process 1 to 2: adiabatic expansion to volume $8 \mathrm{~V}_{1}$.
Process 2 to 3: isothermal compression back to volume V_{1}.
Process 3 to 1 : isovolumetric heating back to temperature T_{1}.
(a) Draw the cycle in a PV diagram, and indicate in it where the gas absorbs heat and where it releases heat.
(b) Find the temperature of state $2, \mathrm{~T}_{2}$, in terms of T_{1}.
(c) Find the efficiency of this heat engine, defined as $\mathrm{e}=\mathrm{W} / \mathrm{Q}_{1}$, with W the work done in a cycle and Q_{1} the heat absorbed in a cycle. Hint: calculate heats rather than work.
(d) Compare the efficiency found in (c) with the efficiency of a Carnot engine operating between the same temperatures T_{1} and T_{2}. If they are not equal, explain why.

Problem 3 (10 pts)

Consider the three processes shown in the Figure undergone by n moles of an ideal gas. Assume they are all isothermal, the gas is always at the same temperature T, in some cases heat is being interchanged with a heat reservoir at the same temperature T that is not shown. In process 1, a partition is removed and the gas undergoes free expansion to three times the initial volume. In process 2 , there are initially 3 equal weights on a weightless movable piston, balancing the pressure of the gas. 2 weights are removed at the same time, and the piston moves up to where the gas occupies 3 times the initial volume. In process 3 , first one weight is removed, the piston moves up, later after equilibrium was reached another weight is removed and the piston moves up further.

Find the change in the entropy of the universe (final entropy minus initial entropy) as a number multiplying nR for:
(a) process 1
(b) process 2
(c) process 3
(d) for a case where instead of 3 masses there are 3000 masses each of which is $1 / 1000$ of the ones shown in the figure, and 2000 are removed one by one so that the final state of the gas is the same as in the other processes. Your answer here may be approximate.

