Problem 1 (10 pts)
An ideal gas has 32,000 molecules moving with velocity in the x direction in the range $-1 \mathrm{~m} / \mathrm{s}$ to $1 \mathrm{~m} / \mathrm{s}$, and 16,000 molecules moving with velocity in the x direction in the range $199 \mathrm{~m} / \mathrm{s}$ to $201 \mathrm{~m} / \mathrm{s}$.
(a) Approximately how many molecules are moving with velocity in the y direction between $198 \mathrm{~m} / \mathrm{s}$ and $202 \mathrm{~m} / \mathrm{s}$?
(b) How many molecules are moving with velocity in the x direction between $399 \mathrm{~m} / \mathrm{s}$ and $401 \mathrm{~m} / \mathrm{s}$?
(c) If this ideal gas is oxygen (molecular weight 32), what is its temperature, in K?
(d) If the temperature is increased by a factor of 2 , does the number of molecules with velocity in the x direction in the range $-1 \mathrm{~m} / \mathrm{s}$ to $1 \mathrm{~m} / \mathrm{s}$ increase, decrease or stay the same?
Justify your answer.
(e) Same as (d) for the number of molecules with velocity in the x direction in the range $199 \mathrm{~m} / \mathrm{s}$ to $201 \mathrm{~m} / \mathrm{s}$.

Use $\mathrm{k} / \mathrm{u}=8311 \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \mathrm{~K}\right)$ ($\mathrm{u}=$ unified atomic mass unit, $\mathrm{k}=$ Boltzmann constant)

Problem 2 (10 pts)
1.5 kg of ice at temperature $-20^{\circ} \mathrm{C}$ are put into 2 kg of water at temperature T. What happens is either: (i) all the ice melts; (ii) part of the ice melts; (iii) part of the water freezes.
(a) Explain why "(iv) all the water freezes" can't happen.
(b) Find for which ranges of T (in ${ }^{\circ} \mathrm{C}$) the outcomes (i), (ii) and (iii) will occur.
(c) If the outcome is that exactly half of the ice melts, what was the initial water temperature T ? (in ${ }^{\circ} \mathrm{C}$)
Ignore any heat flow to the surroundings
Specific heat of ice $2.1 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, of water $4.186 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, heat of fusion of ice $333 \mathrm{~kJ} / \mathrm{kg}$

Problem 3 (10 pts+3 extra credit)
n moles of a monoatomic ideal gas at temperature T_{1} occupying volume V_{1} expand quasistatically at constant pressure to volume $\mathrm{V}_{2}=3 \mathrm{~V}_{1}$, absorbing $50,000 \mathrm{~J}$ of heat in the process.
(a) What is the final temperature, T_{2}, in terms of T_{1} ?
(b) How much work (in J) did the gas do in this process? Did its internal energy increase or decrease? By how much (in J)?
(c) Subsequently, the gas is compressed adiabatically (and quasistatically) back to volume V_{1}. Find the final temperature, T_{3}, in terms of T_{1}.
(d) Draw these processes in a PV diagram.
(e) (for extra credit) Find the work done in the adiabatic compression, in J.

