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The local structure of turbulence in incompressible 
viscous fluid for very large Reynolds numberst 

BY A. N. KOLMOGOROV 

? 1. We shall denote by 

Ua(P) = u(Xl, x2, x3,t), x = 1,2,3, 

the components of velocity at the moment t at the point with rectangular cartesian 
coordinates x,x2, x3. In considering the turbulence it is natural to assume the 
components of the velocity u,(P) at every point P = (x1, x2, x3, t) of the considered 
domain G of the four-dimensional space (x1, x2, x3, t) are random variables in the sense 
of the theory of probabilities (cf. for this approach to the problem Millionshtchikov 
(1939)). 

Denoting by A the mathematical expectation of the random variable A we suppose 
that 

u2 and (du,/dxp)2 

are finite and bounded in every bounded subdomain of the domain G. 
Introduce in the four-dimensional space (x1, x2, x3, t) new coordinates 

Y7 = (x-)-x-U(P(?)) (t--t(?)) 
s = t-t() 

where p() = (x0), x(), x), t) 

is a certain fixed point from the domain G. Observe that the coordinates ya of any 
point P depend on the random variables u,(P()) and hence are themselves random 
variables. The velocity components in the new coordinates are 

wa(P) = ua(P)- uj(P?0). (2) 

Suppose that for some fixed values of uk(P(O)) the points Pt), k = 1, 2, ..., n, having 
the coordinates yk) and s(k) in the coordinate system (1), are situated in the domain 
G. Then we may define a 3n-dimensional distribution law of probabilities Fn for the 

quantities 
wk) = w(P(k)), = 1,2,3; k = 1,2,...,n, 

where u() = u(P(o)) 

are given. 
Generally speaking, the distribution law Fn depends on the parameters x), t(), u) 

(k), s(k) 

Definition 1. The turbulence is called locally homogeneous in the domain G, if for 
every fixed n, y() and s(k), the distribution law Fn is independent from x), t() and u(? 
as long as all points p(k) are situated in G. 

t First published in Russian inDokl. Akad. Nauk SSSR (1941) 30(4). Paper received 28 December 1940. This 
translation by V. Levin, reprinted here with emendations by the editors of this volume. 
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Definition 2. The turbulence is called locally isotropic in the domain G, if it is 

homogeneous and if, besides, the distribution laws mentioned in Definition 1 are 
invariant with respect to rotations and reflections of the original system of coordinate axes 
(x1, X2, x3). 

In comparison with the notion of isotropic turbulence introduced by Taylor (1935) 
our definition of locally isotropic turbulence is narrower in the sense that in our 
definition we demand the independence of the distribution law Fn from t(), i.e. 
steadiness in time, and is wider in the sense that restrictions are imposed only on the 
distribution laws of differences of velocities and not on the velocities themselves. 

?2. The hypothesis of isotropy in the sense of Taylor is experimentally quite well 
confirmed in the case of turbulence caused by passing of a flow through a grid (cf. (3)). 
In the majority of other cases interesting from the practical point of view it may be 
considered only as a rather far approximation of reality even for small domains G and 

very large Reynolds numbers. 
On the other hand we think it rather likely that in an arbitrary turbulent flow with 

a sufficiently large Reynolds numbert 

R =LU/v 

the hypothesis of local isotropy is realized with good approximation in sufficiently 
small domains G of the four-dimensional space (xl, , ,x3, t) not lying near the 

boundary of the flow or its other singularities. By a 'small domain' we mean here a 
domain, whose linear dimensions are small in comparison with L and time 
dimensions- in comparison with 

T= U/L. 

It is natural that in so general and somewhat indefinite a formulation the just 
advanced proposition cannot be rigorously proved. : In order to make its ex- 

t Here L and U denote the typical length and velocity for the flow in the whole. 

I We may indicate here only certain general considerations speaking for the advanced hypothesis. For very 
large R the turbulent flow may be thought of in the following way: on the averaged flow (characterized by the 
mathematical expectations u,) are superposed the 'pulsations of the first order' consisting in disorderly 
displacements of separate fluid volumes, one with respect to another, of diameters of the order of magnitude 
1(1 = I (where I is the Prandtl's mixing path); the order of magnitude of velocities of these relative velocities 
we denote by v(). The pulsations of the first order are for very large R in their turn unsteady, and on them are 

superposed the pulsations of the second order with mixing path 1(2) < 1() and relative velocities v(2) < v(); such 
a process of successive refinement of turbulent pulsations may be carried until for the pulsations of some 

sufficiently large order n the Reynolds number 

R(n) = l(n)v(n)/p 

becomes so small that the effect of viscosity on the pulsations of the order n finally prevents the formation of 
pulsations of the order n + 1. 

From the energetical point of view it is natural to imagine the process of turbulent mixing in the following 
way: the pulsations of the first order absorb the energy of the motion and pass it over successively to pulsations 
of higher orders. The energy of the finest pulsations is dispersed in the energy of heat due to viscosity. 

In virtue of the chaotical mechanisms of the translation of motion from the pulsations of lower orders to the 
pulsations of higher orders, it is natural to assume that in domains of the space, whose dimensions are small 
in comparison with 1(1), the fine pulsations of the higher orders are subjected to approximately space-isotropic 
statistical regime. Within small time-intervals it is natural to consider this regime approximately steady even 
in the case, when the flow in the whole is not steady. 

Since for very large R the differences 

w,(P) = u(P)-u,(P?) 
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Incompressible viscous fluid for very large Reynolds numbers 11 

perimental verification possible in particular cases we indicate here a number of 

consequences of the hypothesis of local isotropy. 

?3. Denoting by y the vector with components Yl, Y2, y3, we consider the random 
variables 

Wa(y) = Wa(Yl Y2, y3) = U - (x + Y1, X2 + y2, xy + y3, t)-ua(xl, x2, x 3, t). (3) 

In virtue of the assumed local isotropy their distribution laws are independent from 
x1, x2, x3 and t. From the first moments of the quantities wJ(y) it follows from the local 

isotropy that 
wM(y) = 0. (4) 

We proceed therefore to the consideration of the second momentst 

Bo#(y1)1, y(2)) = w )(y(l))w#(y(2)). (5) 

From the local isotropy follows that 

B (y(l), y(2)) = l[B (y1)' y(1) +) (y(2), y(2)) _Bxf(y(2) y_l) Y(2)_ y(6) 
2^\y^) 

= ^ f)B\(y )+B_ -B y -y ) ] (6) 

In virtue of this formula we may confine ourselves to the second moments of the form 
B (y, y). For them 

B,(y, y) =B(r) cos 06 cos 0 + S,Bnn(r), (7) 

where 

r =y?+yl+y], yV=rcos, =0 for ca /, = y for a= , 

B(r) =Bdd(r)-Bnn(r), (8) 

Bdd(r) = [l(r, 0,0)]2, 

Bnn(r) = [w2(r, 0, O)]2. 

For r = 0 we have 

Bdd(O) = Bn(O) = B(O)= 
a 

Bnn() =0, (10) ar ar 

-a=2 Bdd(O) - 2 a2, 

2Bn&f(0) 
= 2 ,ay) = 2a- 

The formulae (6)-(11) were obtained without use of the assumption of 

incompressibility of the fluid. From this assumption follows the equation 

raBdd/ar = -2B, (12) 

enabling us to express Bnn through Bdd. From (12) and ( 1) follows that 

n= 2a. (13) 

of the velocity components in neighbouring points P and P(0) of the four-dimensional space (xz, x2, x t) are 
determined nearly exclusively by pulsations of higher orders, the scheme just exposed leads us to the hypothesis 
of local isotropy in small domains G in the sense of Definitions 1 and 2. 

t All results of ?3 are quite similar to that obtained in (1), (2) and (4) for the case of isotropic turbulence 
in the sense of Taylor. 
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It is, further, easy to calculate that (assuming the incompressibility) the average 
dispersion of energy in unit of time per unit of mass is equal to 

I= r\2( l) +2( 2) ?2(a ) W (Vala2 wl 2) 

+(Y2 
+ W y3/) 3 +W3' = 15va2. (14) + y1+ 

?4. Consider the transformation of coordinates 
yj = Y/v, ' = s/c. (15) 

The velocities, the kinematical viscosity and the average dispersion of energy are 
expressed in the new system of coordinates by the following formulae: 

X = Wc/v, V' = V/2, ' = 6e3/2. (16) 
We introduce now the following hypothesis. 

The first hypothesis of similarity. For the locally isotropic turbulence the 
distributions Fn are uniquely determined by the quantities v and e. 

The transformation of coordinates (15) leads for 

= -A =- %/(v/C) = 
^/64 (17) 

and o = 1/a = /(v/e) (18) 
to the quantities v'= 1, i' = 1. 

In virtue of the accepted hypothesis of similarity the corresponding function 

Bdd(r') = /add(r) (19) 
must be the same for all cases of locally isotropic turbulence. The formula 

Bd(r) = v (vP) dd/(r/A) (20) 
shows in combination with the already deduced that in the case of locally isotropic 
turbulence the second moments B.(y(l), y(2)) are uniquely expressed through v, e and 
the universal function /4d. 

?5. To determine the behaviour of the function add(r') for large r' we introduce 
another hypothesis. 

The second hypothesis of similarity.t If the moduli of the vectors y(k) and of their 
differences y(k) y(k') (where k # k') are large in comparison with A, then the distribution 
laws Fn are uniquely determined by the quantity E and do not depend on v. 

Put Y =yJ/k3, s" = S'/k2 (21) 
where y' and s' are determined in accordance with the formulae (15), (17) and (18). 
Since for every k ' = " = i, for r' large in comparison with A' = 1 we have in virtue 
of the accepted hypothesis 

Bd(r ) ' d Bd(rT) = 1'dd(r'/k3). 

t In terms of the schematical representation of turbulence developed in the footnote ,, A is the scale of the 
finest pulsations, whose energy is directly dispersed into heat energy due to viscosity. The sense of the second 
hypothesis of similarity consists in that the mechanism of translation of energy from larger pulsations to the 
finer ones is for pulsations of intermediate orders, for which 1() is large in comparison with A, independent from 
viscosity. 
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Incompressible viscous fluid for very large Reynolds numbers 13 

On the other hand, from the formula (20) follows that 

B~d(r") = kC2Bd(r') = kC2/dd(r') 

Thus for large r' /?a(r'/k3) k-2/Jdd(r'), 
2 

whence fdd(r') C(r')3 (22) 

where C is an absolute constant. In virtue of (17), (20) and (22) we have for r large 
in comparison with A 

Bd(r) - Cer3. (23) 

From (23) and (12) it is easy to deduce that for r large in comparison with A 

Bnn (r) - PBdd(r)' (24) 

As regards the last formula, observe that for r small in comparison with A in virtue 
of (13) holds the relation 

Bnn(r) 2Bdd(r). (25) 
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