PHYSICS 239 : SUPERCONDUCTIVITY HW ASSIGNMENT #2

(1) Reread §1.3 of the lecture notes on London theory. Show that the Coulomb gauge $\nabla \cdot A = 0$ is compatible with Pippard's nonlocal electrodynamics. *Hint: Try writing the steady state continuity equation* $\nabla \cdot \mathbf{j}_s = 0$ *in Fourier space.*

(2) Analyze the problem of a bound state in the vicinity of the bottom of a band where the dispersion behaves as $\varepsilon(\mathbf{k}) \propto k^4$. Under what conditions do you expect a bound state to form for arbitrarily weak attractive interactions?

(3) Prove that the BCS ground state in Eqn. (3.71) of the notes satisfies $\gamma_{k\sigma} | \mathbf{G} \rangle = 0$.

(4) Derive an expression, at T = 0, for the RMS number fluctuations $\langle (\Delta \hat{N})^2 \rangle$ in a BCS superconductor. Evaluate your expression for the model $V_{kk'}$ interaction from section 3.6 of the lecture notes.

(5) In §3.6.1 of the notes, we solved the BCS gap equation at T = 0 for a model attractive interaction. What about the particle number equation, $N = \sum_{k,\sigma} \langle c_{k\sigma}^{\dagger} c_{k\sigma} \rangle$? Investigate this equation and show how the two equations together determine the two unknowns μ and Δ .