
The zeros of h(1)
l (l = 1, 2) are then

x11 = −i

x21 =
√

3
2
− 3i

2
, x22 = −

√
3

2
− 3i

2

while the zeros of [ζh(1)
l (ζ)]′ (l = 1, 2) are

y11 =
√

3
2
− i

2
, y12 = −

√
3

2
− i

2
y21 ≈ −1.596i, y22 ≈ 1.807− 0.702i, y23 ≈ −1.807− 0.702i

Since the complex frequencies are given by these zeros multiplied by c/a, we end
up with

Modenlm λ/a τ/(a/c)
TE11m ∞ 1/2
TE12m 4π/

√
3 1/3

TM11m 4π/
√

3 1
TM12m ∞ 0.313
TM22m 3.476 0.712

where the wavelength λ and the energy decay time τ is given by

ω =
2πc
λ
− i

2τ

10.1 a) Show that for arbitrary initial polarization, the scattering cross section of a per-
fectly conducting sphere of radius a, summed over outgoing polarizations, is given
in the long-wavelength limit by

dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
4
− |~ε0 · n̂|2 −

1
4
|n̂ · (n̂0 × ~ε0)|2 − n̂0 · n̂

]
where n̂0 and n̂ are the directions of the incident and scattered radiations, respec-
tively, while ~ε0 is the (perhaps complex) unit polarization vector of the incident
radiation (~ε0∗ · ~ε0 = 1; n̂0 · ~ε0 = 0).

If all polarizations are specified, the conducting sphere scattering cross section is
given by

dσ

dΩ
(n̂,~ε; n̂0,~ε0) = k4a6|~ε ∗ · ~ε0 − 1

2 (n̂× ~ε ∗) · (n̂0 × ~ε0)|2 (11)

What we would like to do is to sum this over both orthogonal outgoing polariza-
tions. One way to do this is to introduce a linear polarization basis transverse
to the outgoing direction n̂. To do so, we first assume the scattering is not in



the forward direction. Then the incoming direction n̂0 may be used to define
orthogonal polarizations

~ε 1 =
n̂× n̂0

sin θ
, ~ε 2 = n̂× ~ε 1 =

n̂(n̂ · n̂0)− n̂0

sin θ

where θ is the angle between n̂ and n̂0. In particular, we may write sin2 θ =
1− (n̂ · n̂0)2. In this case, the cross section summed over outgoing polarizations
becomes

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂× (n̂× n̂0)) · (n̂0 × ~ε0)|2

+ |(n̂(n̂ · n̂0)− n̂0) · ~ε0 − 1
2 (n̂× (n̂(n̂ · n̂0)− n̂0)) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂(n̂ · n̂0)− n̂0) · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂0 × n̂) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)− 1

2 (n̂ · n̂0)n̂ · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂ · ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)|2(1− 1

2 (n̂ · n̂0))2

+ |n̂ · ~ε0|2( 1
2 − (n̂ · n̂0))2

]
Note that we have used transversality of the initial polarization, n̂0 · ~ε0 = 0. To
proceed, we expand the squares and rewrite the above as

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
( 5
4 − (n̂ · n̂0))(|n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2)

− (1− (n̂ · n̂0)2)( 1
4 |n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2

]
(12)

The second line cancels the denominator. However the first line needs a bit of
work. We now use the fact that ε0 is a unit polarization vector orthogonal to n̂0.
As a result, the three vectors

n̂0, ~ε0, n̂0 × ~ε0 (13)

form a normalized right-handed coordinate basis spanning the three-dimensional
space. (There is a slight subtlety if ~ε0 is complex, although the end result is okay,
provided we are careful with magnitude squares.) The components of n̂ expanded
in this basis are

n̂ · n̂0, n̂ · ~ε0, n̂ · (n̂0 × ~ε0)

and since n̂ is a unit vector, the sum of the squares of these components must be
one. In other words

(n̂ · n̂0)2 + |n̂ · ~ε0|2 + |n̂ · (n̂0 × ~ε0)|2 = 1



where we have been careful about complex quantities. Using this result, we see
that the denominator in (12) can be completely eliminated, resulting in

dσ

dΩ
(n̂; n̂0,~ε0) = k4a6[ 54 − (n̂ · n̂0)− 1

4 |n̂ · (n̂0 × ~ε0)|2 − |n̂ · ~ε0|2] (14)

b) If the incident radiation is linearly polarized, show that the cross section is
dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
8

(1 + cos2 θ)− cos θ − 3
8

sin2 θ cos 2φ
]

where n̂ · n̂0 = cos θ and the azimuthal angle φ is measured from the direction of
the linear polarization.

As stated, the scattering angle θ is given by n̂ · n̂0 = cos θ. The azimuthal angle
φ is the one between n̂ and ~ε0, measured in the plan perpendicular to n̂0. What
this means is that, using the basis vectors (13) with ~ε0 real, the components of n̂
can be written as

n̂ = n̂0 cos θ + ~ε0 sin θ cosφ+ (n̂0 × ~ε0) sin θ sinφ
or alternatively

n̂ · n̂0 = cos θ, n̂ · ~ε0 = sin θ cosφ, n̂ · (n̂0 × ~ε0) = sin θ sinφ
Substituting this into (14) gives

dσ

dΩ
(θ, φ) = k4a6[ 54 − cos θ − 1

4 sin2 θ sin2 φ− sin2 θ cos2 φ]

= k4a6[ 54 − cos θ − 1
8 sin2 θ(1− cos 2φ)− 1

2 sin2 θ(1 + cos 2φ)]

= k4a6[ 58 (1 + cos2 θ)− cos θ − 3
8 sin2 θ cos 2φ]

c) What is the ratio of scattered intensities at θ = π/2, φ = 0 and θ = π/2, φ = π/2?
Explain physically in terms of the induced multipoles and their radiation patterns.

At θ = π/2, we have
dσ

dΩ
(π/2, φ) = k4a6[ 58 −

3
8 cos 2φ]

Hence
dσ

dΩ
(π/2, 0) = 1

4k
4a6,

dσ

dΩ
(π/2, π/2) = k4a6

Scattering at 90◦ is fairly easy to understand physically. For φ = 0, the scattered
wave is lined up with the incident polarization ε0. Since the polarization is given
by the electric field vector, this indicates that the induced electric dipole of the
sphere is lined up with the direction of the scattered wave. Since the radiation
must be transverse, no dipole radiation can be emitted on axis, and in this case
the scattering must be purely magnetic dipole in nature. On the other hand, for
φ = π/2, the scattered wave is lined up with the incident magnetic field, and
hence the scattering must be purely electric dipole in nature. This demonstrates
that the maximum strength of magnetic dipole scattering is a quarter that of
electric dipole scattering. This is in fact evident by the factor of 1/2 in the
magnetic dipole term in the cross section expression (11).



To lowest order in δ, this is simply

σabs ≈ 3π(kδ)a2

On the other hand, for δ = a, we find

σabs ≈ 3π(kδ)a2 ×
(

2
5

)
Hence the true value of the absorption cross section for δ = a is 2/5 as large as
the simple first order approximation. (This is all done in the long wavelength
approximation, of course. Note furthermore that when δ = a, the skin depth is
comparable to the size of the sphere. In this case, we can hardly expect to trust
the analysis of Section 8.1.)

10.9 In the scattering of light by a gas very near the critical point the scattered light is
observed to be “whiter” (i.e., its spectrum is less predominantly peaked toward the
blue) than far from the critical point. Show that this can be understood by the fact
that the volumes of the density fluctuations become large enough that Rayleigh’s law
fails to hold. In particular, consider the lowest order approximation to the scattering
by a uniform dielectric sphere of radius a whose dielectric constant εr differs only
slightly from unity.

a) Show that for ka � 1, the differential cross section is sharply peaked in the
forward direction and the total scattering cross section is approximately

σ ≈ π

2
(ka)2|εr − 1|2a2

with a k2, rather than k4, dependence on frequency.

Since εr differs only slightly from unity, we may use the first Born approximation.
The scattering amplitude then has the form

~ε ∗ · ~A(1)
sc

D0
=
k2

4π

∫
ei~q·~x

[
~ε ∗ · ~ε0

δε

ε0
+ (n̂× ~ε ∗) · (n̂0 × ~ε0)

δµ

µ0

]
d3x

where ~q = k(n̂0 − n̂), so that

q2 = k2(2− 2 cos θ) = (2k)2 sin2 θ

2
(10)

Here θ is the angle between n̂ and n̂0 (ie the incident and scattered waves). For
the dielectric sphere, we set δµ = 0. Noting that

δε

ε0
=
{
εr − 1 r < a
0 r > a



we end up with

~ε ∗ · ~A(1)
sc

D0
=
k2

4π
(εr − 1)(~ε ∗ · ~ε0)

∫
r<a

ei~q·~xd3x

The integral can be performed in spherical coordinates∫
r<a

ei~q·~xd3x =
∫
r<a

eiqr cos γr2drd cos γdφ

= 2π
∫ a

0

dr

∫ 1

−1

d cos γ r2eiqr cos γ

=
4π
q

∫ a

0

r sin(qr)dr =
4π
q3

[sin(qa)− qa cos(qa)]

As a result

~ε ∗ · ~A(1)
sc

D0
=

(ka)2

q
(εr − 1)(~ε ∗ · ~ε0)

sin(qa)− qa cos(qa)
(qa)2

=
(ka)2

q
(εr − 1)(~ε ∗ · ~ε0)j1(qa)

where j1 is the l = 1 spherical Bessel function

j1(ζ) =
sin ζ
ζ2
− cos ζ

ζ

The differential cross section is then

dσ

dΩ
=

∣∣∣∣∣~ε ∗ · ~A(1)
sc

D0

∣∣∣∣∣
2

= k4a6|εr − 1|2
(
j1(qa)
qa

)2

|~ε ∗ · ~ε0|2

where q is given by (10). The unpolarized cross section is

dσ

dΩ
= k4a6|εr − 1|2

(
j1(qa)
qa

)2 1 + cos2 θ
2

(11)

Note that in the long wavelength limit (ka � 1) we also have qa � 1. In this
case, we use the small argument expansion of the spherical Bessel function

j1(ζ) ≈ ζ

3
− · · · (ζ → 0)

to obtain
dσ

dΩ
≈ a2

9
(ka)4|εr − 1|2 1 + cos2 θ

2



which agrees with the long wavelength dipole approximation when εr is close to
unity.

We are, of course, more interested in the short wavelength limit ka� 1. In this
case, we note that the argument of the spherical Bessel function is

qa = 2ka sin
θ

2
(12)

This quantity vanishes in the forward direction (θ = 0), but otherwise is very
large when ka� 1. In fact, the behavior of j1(ζ)/ζ is as follows

j1(ζ)
ζ
∼
{

1/3 ζ � 1
− cos ζ/ζ2 ζ � 1

This is peaked when ζ ≈ 0
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1/ ζ2

ζ

j1( ζ)/ ζ

As a result, the cross section (11) falls off as

dσ

dΩ
∼ 1

(qa)4
=

1
[2ka sin(θ/2)]4

(ka� 1)

away from the forward direction. Looking at the figure, we see that the cross
section is large for qa<∼2 but rapidly falls off for qa>∼2. From (12), we see that
this forward peak corresponds to a cone with

θ<∼
2
ka
� 1

With this in mind, we may make a rough estimate of the total cross section

σ = k4a6|εr − 1|2
∫ (

j1(qa)
qa

)2 1 + cos2 θ
2

dΩ

≈ k4a6|εr − 1|2
(

1
3

)2

× (πθ2)
∣∣∣
θ=2/ka

=
4π
9
k2a4|εr − 1|2



We can make a better estimate by approximating the integral more carefully.
Since the integrand is highly peaked at θ ≈ 0, we take∫ (

j1(qa)
qa

)2 1 + cos2 θ
2

dΩ ≈ 2π
∫ π

0

(
j1(qa)
qa

)2

sin θ dθ

≈ 2π
∫ π

0

(
j1(kaθ)
kaθ

)2

θ dθ

≈ 2π
(ka)2

∫ ∞
0

j1(ζ)2
dζ

ζ
=

π

2(ka)2

This gives an approximate value of the total cross section

σ ≈ πa2

2
(ka)2|εr − 1|2



This results in the asymptotic forms of the coefficients (8)

Bl ∼ x′ cot(x′ − lπ

2
)− 1 →∞

B′
l ∼

1
√

εr
x cot(x′ − lπ

2
)− 1 → −1

Substituting this into (7) gives

tan δl =
jl(x)
nl(x)

, tan δ′l =
xj′l(x) + jl(x)
xn′l(x) + nl(x)

=
d
dxxjl(x)
d
dxxnl(x)

which reproduce exactly the perfectly conducting sphere phase shifts.

10.10 The aperture or apertures in a perfectly conducting plane screen can be viewed as the
location of effective sources that produce radiation (the diffracted fields). An aperture
whose dimensions are small compared with a wavelength acts as a source of dipole
radiation with the contributions of other multipoles being negligible.

a) Beginning with (10.101) show that the effective electric and magnetic dipole mo-
ments can be expressed in terms of integrals of the tangential electric field in the
aperture as follows:

~p = εn̂

∫
(~x · ~Etan) da

~m =
2

iωµ

∫
(n̂× ~Etan) da

where ~Etan is the exact tangential electric field in the aperture, n̂ is the normal to
the plane screen, directed into the region of interest, and the integration is over
the area of the openings.

The diffraction result (10.101) states

~E(~x ) =
1
2π

~∇×
∫

apertures

(n̂′ × ~E)
eikR

R
da′ (9)

In the radiation zone, we may take

eikR

R
≈ eikr

r
e−i~k·~x′

Furthermore, for a small aperture (long wavelength limit), we may expand the
second exponential

eikR

R
≈ eikr

r
(1− i~k · ~x′)



Inserting this into (9) and noting that we may use the replacement ~∇ → i~k in
the radiation zone, we obtain the expansion

~E =
i

2π

eikr

r
~k ×

∫
(n̂′ × ~E)(1− i~k · ~x′ ) da′ (10)

We start with the first term in the expansion

~E1 =
i

2π

eikr

r
~k ×

∫
n̂′ × ~E da′

which may be compared with the electric field of magnetic dipole radiation (in
the radiation zone)

~E = −Z0

4π
k2 eikr

r
k̂ × ~m

This allows us to read off the effective magnetic dipole moment

~m =
2

ikZ0

∫
n̂′ × ~E da′ =

2
iωµ0

∫
n̂′ × ~E da′ (11)

The effective electric dipole moment is somewhat trickier to extract. It is related
to the second term in (10), which we write as

~E2 =
1
2π

eikr

r
~k ×

∫
(n̂′ × ~E)(~k · ~x ′) da′ (12)

Since we have a flat screen, the normal vector n̂′ is constant. Furthermore, the
outgoing momentum vector ~k is unrelated to the integration coordinates (which
line on the screen). Thus these two vectors may be pulled out of the integral.
This means, we need to evaluate the integral (given in components)∫

Eix
′
j da′

where the indices i and j only lie in the screen directions (ie i, j = 1, 2 if we take
n̂′ = ẑ). We now show that∫

Eix
′
j da′ = 1

2δij

∫
~E · ~x ′ da′ (13)

where we reemphasize that i and j lie in the screen directions only. Perhaps the
most direct way to prove this is to write Eix

′
j in tensor form

~E ⊗ ~x ′ =
(

E1x
′
1 E1x

′
2

E2x
′
1 E2x

′
2

)
=

1
2

(
E1x

′
1 + E2x

′
2 0

0 E1x
′
1 + E2x

′
2

)
+

1
2

(
E1x

′
1 − E2x

′
2 2E1x

′
2

2E2x
′
1 −E1x

′
1 + E2x

′
2

)
= 1

2δij( ~E · ~x ′) + 1
2 [Eix

′
j − (n̂′ × ~x ′)i(n̂′ × ~E)j ]

(14)



The second term vanishes when integrated over the openings. This is because we
may use ~∇× ~E = 0 in a source-free region. Then

0 =
∫

x′ix
′
j n̂

′ · (~∇′ × ~E) da′ = εklmn̂′k

∫
x′ix

′
j∂lEm da′

= −εklmn̂′k

∫
∂l(x′ix

′
j)Em da′ = n̂′k

∫
(εikmx′j + εjkmx′i)Em da′

=
∫

[x′i(n̂
′ × ~E)j + x′j(n̂

′ × ~E)i] da′

(15)

Note that the surface term arising from the integration by parts vanishes because
it is proportional to E‖, which must vanish on the boundaries of the openings.
Substituting in explicit components ij = 11, 12, and 22 then proves that the
integral of E2x

′
1, E1x

′
1−E2x

′
2, and E1x

′
2 vanish, as needed to remove the second

term from (14). This can also be seen directly by taking a cross product of (15)
with n̂′ in the ith component to get∫

[(n̂′ × ~x ′)i(n̂′ × ~E)j − x′jEi] da′ = 0

In any case, the result is simply (13), which may be substituted into (12) to
obtain

~E2 =
1
4π

eikr

r
~k × (n̂′ × ~k)

∫
~x ′ · ~E da′

= − 1
4π

eikr

r
~k × (~k × n̂′)

∫
~x ′ · ~E da′

Comparing this with the radiation patter for electric dipole radiation

~E = − k2

4πε0

eikr

r
k̂ × (k̂ × ~p)

gives an effective electric dipole moment

~p = ε0n̂
′
∫

~x ′ · ~E da′

Note the curious fact that the magnetic dipole term comes from the lowest order
in the expansion of (9), while the electric dipole term comes from the next order.
This is ‘backwards’ from what happens for a conventional source given by a
specified current density.

b) Show that the expression for the magnetic moment can be transformed into

~m =
2
µ

∫
~x(n̂ · ~B) da



Be careful about possible contributions from the edge of the aperture where some
components of the fields are singular if the screen is infinitesimally thick.

To relate the electric field to the magnetic field, we may use Faraday’s equation
for harmonic fields ~∇× ~E − iω ~B = 0 to write

n̂′ · (~∇′ × ~E) = iω(n̂′ · ~B)

Multiplying this by a vector ~x ′ and integrating gives

iω

∫
~x ′(n̂′ · ~B) da′ =

∫
~x ′[n̂′ · (~∇′ × ~E)] da′

=
∫

~x ′εijkn̂′i∂jEk da′

= −
∫

∂j(~x ′)εijkn̂′iEk da′ =
∫

n̂′ × ~E da′

Note that for integration by parts, we use the fact that n̂′ is a constant surface
normal vector and that E‖ vanishes at the edges of the aperture. More precisely,
the generalization of Stokes’ theorem indicates that the surface term is of the
form ∮

~x ′( ~E · d~l )

so the electric field contribution indeed arises only from the parallel component
to the edge of the aperture. Finally, substituting this integrated relation between
~E and ~B into (11) gives

~m =
2

iωµ0

∫
n̂′ × ~E da′ =

2
µ0

∫
~x ′(n̂′ · ~B) da′



Physics 6347, Electromagnetic Theory II
Homework 8

1. Jackson 10.20. A suspension of transparent fibers is modeled as a collection of scatters,
each being a right circular cylinder of radius a and length L of a uniform dielectric
material whose dielectric constant differs from the surrounding medium by a fractional
amount δε/ε(0).

(a) We want to calculate the differential scattering cross section per scatterer in the
first Born approximation, for unpolarized incident light. The general result is

dσ

dΩ
=
|ε∗ ·Asc|2

D(0)
, (1)

where the scattering amplitude in the first Born approximation is

ε∗ ·Asc

D0

=
k2

4π
ε∗ · ε0

∫
d3x eiq·x

δε(x)

ε(0)
. (2)

For the cylinder,∫
d3x eiq·x

δε(x)

ε(0)
=

δε

ε(0)

∫
cylinder

d3x eiq⊥·x⊥+iq‖z (3)

=
δε

ε(0)

∫ a

0
ρ dρ

∫ 2π

0
dφ
∫ L/2

−L/2
dz eiq⊥ρ cosφ+iq‖z

=
δε

ε(0)
πa2L

2J1(q⊥a)

q⊥a

sin(q‖L/2)

q‖L/2
.

Assuming that the incident light is unpolarized, we have ε∗ · ε0 = (1 + cos2 θ)/2.
Pulling all of these results together,

dσ

dΩ
=

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2
k4a4L2

32
(1 + cos2 θ)

[
2J1(q⊥a)

q⊥a

sin(q‖L/2)

q‖L/2

]2

. (4)

(b) Next, assume that the cylinders in the suspension are slender, in the sense that
ka� 1. Then 2J1(q⊥a)/q⊥a ≈ 1, and the cross section is

dσ

dΩ
=

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2
k4a4L2

32
(1 + cos2 θ)

[
sin(q‖L/2)

q‖L/2

]2

. (5)

If we have an ensemble of cylinders with random orientations, we can average over

the orientations; this is equivalent to averaging over q‖ =
√
q2 − q2

⊥, which ranges

1



between 0 and q. Therefore,〈[
sin(q‖L/2)

q‖L/2

]2〉
=

1

q

∫ q

0
dq‖

[
sin(q‖L/2)

q‖L/2

]2

(6)

=
4

qL

∫ qL

0
du

sin2(u/2)

u2

=
2

qL
Si(qL)−

[
sin(qL/2)

qL/2

]2

,

where the last line was obtained by integrating by parts, and Si(x) is the sine
integral,

Si(x) =
∫ x

0

sinu

u
du. (7)

Therefore, 〈
dσ

dΩ

〉
=

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2
k4a4L2

32
(1 + cos2 θ)F (qL), (8)

where

F (x) =
2

x
Si(x)−

[
sin(x/2)

x/2

]2

=

{
1− x2/36 +O(x4) x� 1
π/x+O(x−2) x� 1

(9)

and q = k
√

2(1− cos θ).

(c) In the limit kL� 1, the ensemble averaged differential cross section is〈
dσ

dΩ

〉
=

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2
k4a4L2

32
(1 + cos2 θ), (10)

which when integrated over solid angles gives

σ =
π2

6

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2

k4a4L2. (11)

The k4 dependence is characteristic of Rayleigh scattering.

In the limit kL� 1 (but ka� 1) we have〈
dσ

dΩ

〉
=

∣∣∣∣∣ δεε(0)
∣∣∣∣∣
2
k4a4L2

32
(1 + cos2 θ)

π

kL
√

2(1− cos θ)
. (12)

Integrating over solid angles, we have

σ =

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2
πk3a4L

32
2π
∫ 1

−1
d(cos θ)

1 + cos2 θ√
2(1− cos θ)

. (13)

2



The integral has the value 44/15, so the final result is

σ =
11π2

60

∣∣∣∣∣ δεε(0)

∣∣∣∣∣
2

k3a4L. (14)

Note that in this frequency regime there is less scattering at short wavelengths
than the Rayleigh case (k3 vs. k4).

2. Jackson 11.3. Show that two successive Lorentz transformations in the same direction
are equivalent to a single Lorentz transformation with a velocity

v =
v1 + v2

1 + v1v2/c2
. (15)

Solution. Let the boost between frames K and K ′ be along the x1 direction. Then the
Lorentz transformation may be written in matrix form as(

x′0
x′1

)
=

(
γ1 −β1γ1

−β1γ1 γ1

)(
x0

x1

)
, (16)

where β1 = v1/c and γ1 = 1/
√

1− β2
1 . Similarly, the transformation between frames

K ′ and K ′′ is (
x′′0
x′′1

)
=

(
γ2 −β2γ2

−β2γ2 γ2

)(
x′0
x′1

)
. (17)

Therefore, the transformation between K and K ′′ is obtained by multiplying the ma-
trices, (

x′′0
x′′1

)
=

(
γ2 −β2γ2

−β2γ2 γ2

)(
γ1 −β1γ1

−β1γ1 γ1

)(
x0

x1

)
(18)

=

(
(1 + β1β2)γ1γ2 −(β1 + β2)γ1γ2

−(β1 + β2)γ1γ2 (1 + β1β2)γ1γ2

)(
x0

x1

)
.

However, we want (
x′′0
x′′1

)
=

(
γ −βγ
−βγ γ

)(
x0

x1

)
. (19)

Comparing, we see that
γ = γ1γ2(1 + β1β2), (20)

γβ = γ1γ2(β1 + β2). (21)

Dividing these two, we have

β =
β1 + β2

1 + β1β2

, (22)

which is Eq. (15).
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