```
Problem 11.3
    \(P=I^{2} R=q_{0}^{2} \omega^{2} \sin ^{2}(\omega t) R\) (Eq. 11.15) \(\Rightarrow\langle P\rangle=\frac{1}{2} q_{0}^{2} \omega^{2} R\). Equate this to Eq. 11.22:
\(\frac{1}{2} q_{0}^{2} \omega^{2} R=\frac{\mu_{0} q_{0}^{2} d^{2} \omega^{4}}{12 \pi c} \Rightarrow R=\frac{\mu_{0} d^{2} \omega^{2}}{6 \pi c} ;\) or, since \(\omega=\frac{2 \pi c}{\lambda}\),
    \(R=\frac{\mu_{0} d^{2}}{6 \pi c} \frac{4 \pi^{2} c^{2}}{\lambda^{2}}=\frac{2}{3} \pi \mu_{0} c\left(\frac{d}{\lambda}\right)^{2}=\frac{2}{3} \pi\left(4 \pi \times 10^{-7}\right)\left(3 \times 10^{8}\right)\left(\frac{d}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{d}{\lambda}\right)^{2} \Omega=789.6(d / \lambda)^{2} \Omega\).
```

For the wires in an ordinary radio, with $d=5 \times 10^{-2} \mathrm{~m}$ and (say) $\lambda=10^{3} \mathrm{~m}, R=790\left(5 \times 10^{-5}\right)^{2}=2 \times 10^{-6} \Omega$, which is negligible compared to the Ohmic resistance.

Problem 11.4

By the superposition principle, we can $a d d$ the potentials of the two dipoles. Let's first express V (Eq. 11.14) in Cartesian coordinates: $V(x, y, z, t)=-\frac{p_{0} \omega}{4 \pi \epsilon_{0} c}\left(\frac{z}{x^{2}+y^{2}+z^{2}}\right) \sin [\omega(t-r / c)]$. That's for an oscillating dipole along the z axis. For one along x or y, we just change z to x or y. In the present case,
$\mathbf{p}=p_{0}[\cos (\omega t) \hat{\mathbf{x}}+\cos (\omega t-\pi / 2) \hat{\mathbf{y}}]$, so the one along y is delayed by a phase angle $\pi / 2$: $\sin [\omega(t-r / c)] \rightarrow \sin [\omega(t-r / c)-\pi / 2]=-\cos [\omega(t-r / c)]$ (just let $\omega t \rightarrow \omega t-\pi / 2$). Thus

$$
\begin{aligned}
V & =-\frac{p_{0} \omega}{4 \pi \epsilon_{0} c}\left\{\frac{x}{x^{2}+y^{2}+z^{2}} \sin [\omega(t-r / c)]-\frac{y}{x^{2}+y^{2}+z^{2}} \cos [\omega(t-r / c)]\right\} \\
& =-\frac{p_{0} \omega}{4 \pi \epsilon_{0} c} \frac{\sin \theta}{r}\{\cos \phi \sin [\omega(t-r / c)]-\sin \phi \cos [\omega(t-r / c)]\} . \\
\mathbf{A} & =-\frac{\mu_{0} p_{0} \omega}{4 \pi r}\{\sin [\omega(t-r / c)] \hat{\mathbf{x}}-\cos [\omega(t-r / c)] \hat{\mathbf{y}}\} .
\end{aligned}
$$

We could get the fields by differentiating these potentials, but I prefer to work with Eqs. 11.18 and 11.19, using superposition. Since $\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}$, and $\cos \theta=z / r$, Eq. 11.18 can be written $\mathbf{E}=\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r} \cos [\omega(t-r / c)]\left(\hat{\mathbf{z}}-\frac{z}{r} \hat{\mathbf{r}}\right)$. In the case of the rotating dipole, therefore,

$$
\mathbf{E}=\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\left\{\cos [\omega(t-r / c)]\left(\hat{\mathbf{x}}-\frac{x}{r} \hat{\mathbf{r}}\right)+\sin [\omega(t-r / c)]\left(\hat{\mathbf{y}}-\frac{\mathrm{y}}{r} \hat{\mathbf{r}}\right)\right\},
$$

$$
\mathbf{B}=\frac{1}{c}(\hat{\mathbf{r}} \times \mathbf{E}) .
$$

$$
\mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})=\frac{1}{\mu_{0} c}[\mathbf{E} \times(\hat{\mathbf{r}} \times \mathbf{E})]=\frac{1}{\mu_{0} c}\left[E^{2} \hat{\mathbf{r}}-(\mathbf{E} \cdot \hat{\mathbf{r}}) \mathbf{E}\right]=\frac{E^{2}}{\mu_{0} c} \hat{\mathbf{r}} \text { (notice that } \mathbf{E} \cdot \hat{\mathbf{r}}=0 \text {). Now }
$$

$$
E^{2}=\left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{a^{2} \cos ^{2}[\omega(t-r / c)]+b^{2} \sin ^{2}[\omega(t-r / c)]+2(\mathbf{a} \cdot \mathbf{b}) \sin [\omega(t-r / c)] \cos [\omega(t-r / c)]\right\}
$$

where $\mathbf{a} \equiv \hat{\mathbf{x}}-(x / r) \hat{\mathbf{r}}$ and $\mathbf{b} \equiv \hat{\mathbf{y}}-(y / r) \hat{\mathbf{r}}$. Noting that $\hat{\mathbf{x}} \cdot \mathbf{r}=x$ and $\hat{\mathbf{y}} \cdot \mathbf{r}=y$, we have

$$
\begin{aligned}
a^{2}=1 & +\frac{x^{2}}{r^{2}}-2 \frac{x^{2}}{r^{2}}=1-\frac{x^{2}}{r^{2}} ; b^{2}=1-\frac{y^{2}}{r^{2}} ; \mathbf{a} \cdot \mathbf{b}=-\frac{y}{r} \frac{x}{r}-\frac{x}{r} \frac{y}{r}+\frac{x y}{r^{2}}=-\frac{x y}{r^{2}} . \\
E^{2}= & \left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{\left(1-\frac{x^{2}}{r^{2}}\right) \cos ^{2}[\omega(t-r / c)]+\left(1-\frac{y^{2}}{r^{2}}\right) \sin ^{2}[\omega(t-r / c)]\right. \\
& \left.-2 \frac{x y}{r^{2}} \sin [\omega(t-r / c)] \cos [\omega(t-r / c)]\right\} \\
= & \left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{1-\frac{1}{r^{2}}\left(x^{2} \cos ^{2}[\omega(t-r / c)]+2 x y \sin [\omega(t-r / c)] \cos [\omega(t-r / c)]+y^{2} \sin ^{2}[\omega(t-r / c)]\right)\right\} \\
= & \left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{1-\frac{1}{r^{2}}(x \cos [\omega(t-r / c)]+y \sin [\omega(t-r / c)])^{2}\right\} \\
& \operatorname{But} x=r \sin \theta \cos \phi \text { and } y=r \sin \theta \sin \phi . \\
= & \left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{1-\sin ^{2} \theta(\cos \phi \cos [\omega(t-r / c)]+\sin \phi \sin [\omega(t-r / c)])^{2}\right\} \\
= & \left(\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{1-(\sin \theta \cos [\omega(t-r / c)-\phi])^{2}\right\} .
\end{aligned}
$$

$\mathrm{S}=\frac{\mu_{0}}{c}\left(\frac{p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left\{1-(\sin \theta \cos [\omega(\boldsymbol{t}-r / c)-\phi])^{2}\right\} \hat{\mathbf{r}}$.
$\langle\mathbf{S}\rangle=\frac{\mu_{0}}{c}\left(\frac{p_{0} \omega^{2}}{4 \pi r}\right)^{2}\left[1-\frac{1}{2} \sin ^{2} \theta\right] \hat{\mathbf{r}}$.

$$
P=\int\langle\mathbf{S}\rangle \cdot d \mathrm{a}=\frac{\mu_{0}}{\mathrm{c}}\left(\frac{p_{0} \omega^{2}}{4 \pi}\right)^{2} \int \frac{1}{r^{2}}\left(1-\frac{1}{2} \sin ^{2} \theta\right) r^{2} \sin \theta d \theta d \phi
$$

$$
=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{16 \pi^{2} c} 2 \pi\left[\int_{0}^{\pi} \sin \theta d \theta-\frac{1}{2} \int_{0}^{\pi} \sin ^{3} \theta d \theta\right]=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{8 \pi c}\left(2-\frac{1}{2} \cdot \frac{4}{3}\right)=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{6 \pi c} .
$$

This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). In general, $\mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})=$ $\frac{1}{\mu_{0}}\left[\left(\mathbf{E}_{1}+\mathbf{E}_{2}\right) \times\left(\mathbf{B}_{1}+\mathbf{B}_{2}\right)\right]=\frac{1}{\mu_{0}}\left[\left(\mathbf{E}_{1} \times \mathbf{B}_{1}\right)+\left(\mathbf{E}_{2} \times \mathbf{B}_{2}\right)+\left(\mathbf{E}_{1} \times \mathbf{B}_{2}\right)+\left(\mathbf{E}_{2} \times \mathbf{B}_{1}\right)\right]=\mathbf{S}_{1}+\mathbf{S}_{2}+$ cross terms. In this particular case, the fields of 1 and 2 are 90° out of phase, so the cross terms go to zero in the time averaging, and the total power radiated is just the sum of the two individual powers.
11.8

$$
P=\frac{\mu_{0}}{6 \pi c}[\ddot{p}]^{2}
$$

Here the dipole moment is

$$
\begin{aligned}
p & =Q(t) d \\
& =Q_{0} \exp (-t / R C) d
\end{aligned}
$$

This leads to

$$
P=\frac{\mu_{0}}{6 \pi c}\left[\frac{Q_{0} d}{(R C)^{2}} \exp (-t / R C)\right]^{2}
$$

Integrate to find the energy radiated away.

$$
\begin{aligned}
E_{r a d} & =\int_{0}^{\infty} d t P \\
& =\frac{\mu_{0}}{12 \pi c} \frac{Q_{0}^{2} d^{2}}{R^{3} C^{3}}
\end{aligned}
$$

Given $E_{0}=Q_{0}^{2} / 2 C$, the fraction of energy radiated away is

$$
\frac{E_{r a d}}{E_{0}}=\frac{\mu_{0}}{6 \pi c} \frac{d^{2}}{R^{3} C^{2}}
$$

Given $C=1 \mathrm{pF}, R=1000 \Omega$, and $d=0.1 \mathrm{~mm}$, the fractional energy loss is

$$
\frac{E_{r a d}}{E_{0}} \approx 2 \cdot 10^{-21}
$$

which is safe to neglect.

11.9

$\mathrm{p}(t)=p_{0}[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}] \Rightarrow \ddot{\mathbf{p}}(t)=-\omega^{2} p_{0}[\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}] \Rightarrow$
$[\overrightarrow{\mathbf{p}}(t)]^{2}=\omega^{4} p_{0}^{2}\left[\cos ^{2}(\omega t)+\sin ^{2}(\omega t)\right]=p_{0}^{2} \omega^{4}$. So Eq. 11.59 says $\mathbf{S}=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{16 \pi^{2} c} \frac{\sin ^{2} \theta}{r^{2}} \hat{\mathbf{r}}$. (This appears to disagree with the answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of $\ddot{\mathrm{p}}\left(t_{0}\right)$; as the dipole rotates, so do the axes. Thus the angle θ here is not the same as in Prob. 11.4.) Meanwhile, Eq. 11.60 says $P=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{6 \pi c}$. (This does agree with Prob. 11.4, because we have now integrated over all angles, and the orientation of the polar axis irrelevant.)

11.10

At $t=0$ the dipole moment of the ring is

$$
\begin{aligned}
\mathbf{p}_{0} & =\int \lambda \mathbf{r} d l=\int\left(\lambda_{0} \sin \phi\right)(b \sin \phi \hat{\mathbf{y}}+b \cos \phi \hat{\mathbf{x}}) b d \phi=\lambda_{0} b^{2}\left(\hat{\mathbf{y}} \int_{0}^{2 \pi} \sin ^{2} \phi d \phi+\hat{\mathbf{x}} \int_{0}^{2 \pi} \sin \phi \cos \phi d \phi\right) \\
& =\lambda b^{2}(\pi \hat{\mathbf{y}}+0 \hat{\mathbf{x}})=\pi b^{2} \lambda_{0} \hat{\mathbf{y}} .
\end{aligned}
$$

As it rotates (counterclockwise, say) $\mathbf{p}(t)=p_{0}[\cos (\omega t) \hat{\mathbf{y}}-\sin (\omega t) \hat{\mathbf{x}}]$, so $\ddot{\mathbf{p}}=-\omega^{2} \mathbf{p}$, and hence $(\ddot{\mathbf{p}})^{2}=\omega^{4} p_{0}^{2}$. Therefore (Eq. 11.60) $P=\frac{\mu_{0}}{6 \pi c} \omega^{4}\left(\pi b^{2} \lambda_{0}\right)^{2}=\frac{\pi \mu_{0} \omega^{4} b^{4} \lambda_{0}^{2}}{6 c}$.

