These solutions are from the $3^{\text {rd }}$ edition of the book, but with the problem number from the $4^{\text {th }}$ edition. Some of the equations that are referred to in the solutions may not correspond to the same equation in the $4^{\text {th }}$ edition of the book.
9.20
(a) Use the binomial expansion for the square root in Eq. 9.126:

$$
\kappa \cong \omega \sqrt{\frac{\epsilon \mu}{2}}\left[1+\frac{1}{2}\left(\frac{\sigma}{\epsilon \omega}\right)^{2}-1\right]^{1 / 2}=\omega \sqrt{\frac{\epsilon \mu}{2}} \frac{1}{\sqrt{2}} \frac{\sigma}{\epsilon \omega}=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} .
$$

So (Eq. 9.128) $d=\frac{1}{\kappa} \cong \frac{2}{\sigma} \sqrt{\frac{\epsilon}{\mu}}$. qed
For pure water, $\left\{\begin{array}{l}\epsilon=\epsilon_{r} \epsilon_{0}=80.1 \epsilon_{0} \quad \text { (Table 4.2), } \\ \mu=\mu_{0}\left(1+\chi_{m}\right)=\mu_{0}\left(1-9.0 \times 10^{-6}\right) \cong \mu_{0} \quad \text { (Table 6.1), } \\ \sigma=1 /\left(2.5 \times 10^{5}\right) \quad(\text { Table 7.1). }\end{array}\right.$
So $d=(2)\left(2.5 \times 10^{5}\right) \sqrt{\frac{(80.1)\left(8.85 \times 10^{-12}\right)}{4 \pi \times 10^{-3}}}=1.19 \times 10^{4} \mathrm{~m}$.
(b) In this case $(\sigma / \epsilon \omega)^{2}$ dominates, so (Eq. 9.126) $k \cong \kappa$, and hence (Eqs. 9.128 and 9.129) $\lambda=\frac{2 \pi}{k} \cong \frac{2 \pi}{\kappa}=2 \pi d$, or $d=\frac{\lambda}{2 \pi}$. qed

Meanwhile $\kappa \cong \omega \sqrt{\frac{\epsilon \mu}{2}} \sqrt{\frac{\sigma}{\epsilon \omega}}=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\frac{\left(10^{15}\right)\left(4 \pi \times 10^{-7}\right)\left(10^{7}\right)}{2}}=8 \times 10^{7} ; d=\frac{1}{\kappa}=\frac{1}{8 \times 10^{7}}=$ $1.3 \times 10^{-8}=13 \mathrm{~nm}$. So the fields do not penetrate far into a metal-which is what accounts for their opacity.
(c) Since $k \cong \kappa$, as we found in (b), Eq. 9.134 says $\phi=\tan ^{-1}(1)=45^{\circ}$. qed

Meanwhile, Eq. 9.137 says $\frac{B_{0}}{E_{0}} \cong \sqrt{\epsilon \mu \frac{\sigma}{\epsilon \omega}}=\sqrt{\frac{\sigma \mu}{\omega}}$. For a typical metal, then, $\frac{B_{0}}{E_{0}}=\sqrt{\frac{\left(10^{7}\right)\left(4 \pi \times 10^{-7}\right)}{10^{15}}}=$ $10^{-7} \mathrm{~s} / \mathrm{m}$. (In vacuum, the ratio is $1 / c=1 /\left(3 \times 10^{8}\right)=3 \times 10^{-9} \mathrm{~s} / \mathrm{m}$, so the magnetic field is comparatively about 100 times larger in a metal.)

9.21

(a) $u=\frac{1}{2}\left(\epsilon E^{2}+\frac{1}{\mu} B^{2}\right)=\frac{1}{2} e^{-2 \kappa z}\left[\epsilon E_{0}^{2} \cos ^{2}\left(k z-\omega t+\delta_{E}\right)+\frac{1}{\mu} B_{0}^{2} \cos ^{2}\left(k z-\omega t+\delta_{E}+\phi\right)\right]$. Averaging over a full cycle, using $\left\langle\cos ^{2}\right\rangle=\frac{1}{2}$ and Eq. 9.137:

$$
\langle u\rangle=\frac{1}{2} e^{-2 \kappa z}\left[\frac{\epsilon}{2} E_{0}^{2}+\frac{1}{2 \mu} B_{0}^{2}\right]=\frac{1}{4} e^{-2 \kappa z}\left[\epsilon E_{0}^{2}+\frac{1}{\mu} E_{0}^{2} \epsilon \mu \sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}\right]=\frac{1}{4} e^{-2 \kappa z} \epsilon E_{0}^{2}\left[1+\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}\right] .
$$

But Eq. $9.126 \Rightarrow 1+\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}=\frac{2}{\epsilon \mu} \frac{k^{2}}{\omega^{2}}$, so $(u\rangle=\frac{1}{4} e^{-2 \kappa z} \epsilon E_{0}^{2} \frac{2}{\epsilon \mu} \frac{k^{2}}{\omega^{2}}=\frac{k^{2}}{2 \mu \omega^{2}} E_{0}^{2} e^{-2 \kappa z}$. So the ratio of the magnetic contribution to the electric contribution is

$$
\frac{\left\langle u_{\text {mag }}\right\rangle}{\left\langle u_{\text {elec }}\right\rangle}=\frac{B_{0}^{2} / \mu}{E_{0}^{2} \epsilon}=\frac{1}{\mu \epsilon} \mu \epsilon \sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}=\sqrt{1+\left(\frac{\sigma}{\epsilon \omega}\right)^{2}}>1 . \text { qed }
$$

(b) $\mathbf{S}=\frac{1}{\mu}(\mathbf{E} \times \mathbf{B})=\frac{1}{\mu} E_{0} B_{0} e^{-2 \kappa z} \cos \left(k z-\omega t+\delta_{E}\right) \cos \left(k z-\omega t+\delta_{E}+\phi\right) \hat{\mathbf{z}} ;\langle\mathbf{S})=\frac{1}{2 \mu} E_{0} B_{0} e^{-2 \kappa z} \cos \phi \hat{\mathbf{z}}$. [The average of the product of the cosines is $(1 / 2 \pi) \int_{0}^{2 \pi} \cos \theta \cos (\theta+\phi) d \theta=(1 / 2) \cos \phi$.] So $I=\frac{1}{2 \mu} E_{0} B_{0} e^{-2 \kappa z} \cos \phi=$ $\frac{1}{2 \mu} E_{0}^{2} e^{-2 \kappa z}\left(\frac{K}{\omega} \cos \phi\right)$, while, from Eqs. 9.133 and $9.134, K \cos \phi=k$, so $I=\frac{k}{2 \mu \omega} E_{0}^{2} e^{-2 \kappa z} . \quad$ qed

9.23

(a) We are told that $v=\alpha \sqrt{\lambda}$, where α is a constant. But $\lambda=2 \pi / k$ and $v=\omega / k$, so $\omega=\alpha k \sqrt{2 \pi / k}=\alpha \sqrt{2 \pi k}$. From Eq. 9.150, $v_{g}=\frac{d \omega}{d k}=\alpha \sqrt{2 \pi} \frac{1}{2 \sqrt{k}}=\frac{1}{2} \alpha \sqrt{\frac{2 \pi}{k}}=\frac{1}{2} \alpha \sqrt{\lambda}=\frac{1}{2} v$, or $v=2 v_{g}$.
(b) $\frac{i(p x-E t)}{\hbar}=i(k x-\omega t) \Rightarrow k=\frac{p}{\hbar}, \omega=\frac{E}{\hbar}=\frac{p^{2}}{2 m \hbar}=\frac{\hbar k^{2}}{2 m}$. Therefore $v=\frac{\omega}{k}=\frac{E}{p}=\frac{p}{2 m}=\frac{\hbar k}{2 m}$; $v_{g}=\frac{d \omega}{d k}=\frac{2 \hbar k}{2 m}=\frac{\hbar k}{m}=\frac{p}{m}$. So $v=\frac{1}{2} v_{g}$. Since $p=m v_{c}$ (where v_{c} is the classical speed of the particle), it follows that v_{g} (not v) corresponds to the classical veloctity.
9.25

Equation $9.170 \Rightarrow n=1+\frac{N q^{2}}{2 m \epsilon_{0}}\left[\left(\omega_{0}^{2}-\omega_{0}^{2}-\omega^{2}\right)\right.$ 设 $\left.\omega^{2}\right\}$. Let the denominator $\equiv D$. Then $\frac{d n}{d \omega}=\frac{N q^{2}}{2 m \epsilon_{0}}\left\{\frac{-2 \omega}{D}-\frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{D^{2}}\left[2\left(\omega_{0}^{2}-\omega^{2}\right)(-2 \omega)+\gamma^{2} 2 \omega\right]\right\}=0 \Rightarrow 2 \omega D=\left(\omega_{0}^{2}-\omega^{2}\right)\left[2\left(\omega_{0}^{2}-\omega^{2}\right)-\gamma^{2}\right] 2 \omega ;$
$\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}=2\left(\omega_{0}^{2}-\omega^{2}\right)^{2}-\gamma^{2}\left(\omega_{0}^{2}-\omega^{2}\right)$, or $\left(\omega_{0}^{2}-\omega^{2}\right)^{2}=\gamma^{2}\left(\omega^{2}+\omega_{0}^{2}-\omega^{2}\right)=\gamma^{2} \omega_{0}^{2} \Rightarrow\left(\omega_{0}^{2}-\omega^{2}\right)= \pm \omega_{0} \gamma ;$
$\omega^{2}=\omega_{0}^{2} \mp \omega_{0} \gamma, \omega=\omega_{0} \sqrt{1 \mp \gamma / \omega_{0}} \cong \omega_{0}\left(1 \mp \gamma / 2 \omega_{0}\right)=\omega_{0} \mp \gamma / 2$. So $\omega_{2}=\omega_{0}+\gamma / 2, \omega_{1}=\omega_{0}-\gamma / 2$, and the width of the anomalous region is $\Delta \omega=\omega_{2}-\omega_{1}=\gamma$.

From Eq. 9.171, $\alpha=\frac{N q^{2} \omega^{2}}{m \epsilon_{0} c} \frac{\gamma}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}$, so at the maximum ($\omega=\omega_{0}$), $\alpha_{\max }=\frac{N q^{2}}{m \epsilon_{0} c \gamma}$.
At ω_{1} and $\omega_{2}, \omega^{2}=\omega_{0}^{2} \mp \omega_{0} \gamma$, so $\alpha=\frac{N q^{2} \omega^{2}}{m \epsilon_{0} c} \frac{\gamma}{\gamma^{2} \omega_{0}^{2}+\gamma^{2} \omega^{2}}=\alpha_{\max }\left(\frac{\omega^{2}}{\omega^{2}+\omega_{0}^{2}}\right)$. But
$\frac{\omega^{2}}{\omega^{2}+\omega_{0}^{2}}=\frac{\omega_{0}^{2} \mp \omega_{0} \gamma}{2 \omega_{0}^{2} \mp \omega_{0} \gamma}=\frac{1}{2} \frac{\left(1 \mp \gamma / \omega_{0}\right)}{\left(1 \mp \gamma / 2 \omega_{0}\right)} \cong \frac{1}{2}\left(1 \mp \frac{\gamma}{\omega_{0}}\right)\left(1 \pm \frac{\gamma}{2 \omega_{0}}\right) \cong \frac{1}{2}\left(1 \mp \frac{\gamma}{2 \omega_{0}}\right) \cong \frac{1}{2}$.
So $\alpha \cong \frac{1}{2} \alpha_{\text {max }}$ at ω_{1} and ω_{2}. qed
(a) From Eqs. 9.176 and $9.177, \nabla \times \tilde{\mathbf{E}}=-\frac{\partial \tilde{\mathbf{B}}}{\partial t}=i \omega \tilde{\mathbf{B}}_{0} e^{i(k z-\omega t)} ; \nabla \times \tilde{\mathbf{B}}=\frac{1}{c^{2}} \frac{\partial \tilde{\mathbf{E}}}{\partial t}=-\frac{i \omega}{c^{2}} \tilde{\mathbf{E}}_{0} e^{i(k z-\omega t)}$.

In the terminology of Eq. 9.178:

$$
\begin{aligned}
& (\nabla \times \tilde{\mathrm{E}})_{x}=\frac{\partial \tilde{E}_{z}}{\partial y}-\frac{\partial \tilde{E}_{y}}{\partial z}=\left(\frac{\partial \dot{E}_{0_{x}}}{\partial y}-i k \tilde{E}_{0_{y}}\right) e^{i(k z-\omega t)} . \quad \text { So (ii) } \frac{\partial E_{z}}{\partial y}-i k E_{y}=i \omega B_{x} . \\
& (\nabla \times \tilde{E})_{y}=\frac{\partial \tilde{E}_{x}}{\partial z}-\frac{\partial \tilde{E}_{z}}{\partial x}=\left(i k \tilde{E}_{0_{z}}-\frac{\partial \tilde{E}_{0_{z}}}{\partial x}\right) e^{i(k z-\omega t)} \text {. So (iii) } i k E_{x}-\frac{\partial E_{z}}{\partial x}=i \omega B_{y} \text {. } \\
& (\nabla \times \tilde{\mathbf{E}})_{z}=\frac{\partial \tilde{E}_{y}}{\partial x}-\frac{\partial \tilde{E}_{x}}{\partial y}=\left(\frac{\partial \tilde{E}_{0_{y}}}{\partial x}-\frac{\partial \tilde{E}_{0_{z}}}{\partial y}\right) \mathrm{e}^{i(k z-\omega t)} \text {. So (i) } \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=i \omega B_{z} \text {. } \\
& (\nabla \times \tilde{\mathbf{B}})_{z}=\frac{\partial \tilde{B}_{z}}{\partial y}-\frac{\partial \bar{B}_{y}}{\partial z}=\left(\frac{\partial \hat{B}_{0_{z}}}{\partial y}-i k \tilde{B}_{0_{y}}\right) e^{i(k z-\omega t)} \text {. So (v) } \frac{\partial B_{z}}{\partial y}-i k B_{y}=-\frac{i \omega}{c^{2}} E_{x} \text {. } \\
& (\nabla \times \tilde{\mathbf{B}})_{y}=\frac{\partial \tilde{B}_{x}}{\partial z}-\frac{\partial \tilde{B}_{z}}{\partial x}=\left(i k \tilde{B}_{0_{z}}-\frac{\partial \tilde{B}_{0_{z}}}{\partial x}\right) e^{i(k z-\omega t)} \text {. So (vi) } i k B_{x}-\frac{\partial B_{z}}{\partial x}=-\frac{i \omega}{c^{2}} E_{y} \text {. } \\
& (\nabla \times \tilde{\mathbf{B}})_{z}=\frac{\partial \tilde{B}_{y}}{\partial x}-\frac{\partial \tilde{B}_{x}}{\partial y}=\left(\frac{\partial \tilde{B}_{0_{y}}}{\partial x}-\frac{\partial \tilde{B}_{0_{z}}}{\partial y}\right) e^{i(k z-\omega t)} \text {. So (iv) } \frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}=-\frac{i \omega}{c^{2}} E_{z} \text {. }
\end{aligned}
$$

This confirms Eq. 9.179. Now multiply (iii) by k, (v) by ω, and subtract: $i k^{2} E_{z}-k \frac{\partial E_{z}}{\partial x}-\omega \frac{\partial B_{z}}{\partial y}+i \omega k B_{y}=$ $i k \omega B_{y}+\frac{i \omega^{2}}{c^{2}} E_{x} \Rightarrow i\left(k^{2}-\frac{\omega^{2}}{c^{2}}\right) E_{x}=k \frac{\partial E_{z}}{\partial x}+\omega \frac{\partial B_{z}}{\partial y}$, or (i) $E_{x}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial E_{z}}{\partial x}+\omega \frac{\partial B_{z}}{\partial y}\right)$.

Multiply (ii) by k, (vi) by ω, and add: $k \frac{\partial E_{z}}{\partial y}-i k^{2} E_{y}+i \omega k B_{x}-\omega \frac{\partial B_{z}}{\partial x}=i \omega k B_{x}-\frac{i \omega^{2}}{c^{2}} E_{y} \Rightarrow i\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right) E_{y}=$
$-k \frac{\partial E_{z}}{\partial y}+\omega \frac{\partial B_{z}}{\partial x}$, or (ii) $E_{y}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial E_{z}}{\partial y}-\omega \frac{\partial B_{z}}{\partial x}\right)$.
Multiply (ii) by ω / c^{2}, (vi) by k, and add: $\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial y}-i \frac{\omega k}{c^{2}} E_{y}+i k^{2} B_{x}-k \frac{\partial B_{z}}{\partial x}=i \frac{\omega^{2}}{c^{2}} B_{x}-i \frac{\omega k}{c^{2}} E_{y} \Rightarrow$ $i\left(k^{2}-\frac{\omega^{2}}{c^{2}}\right) B_{x}=k \frac{\partial B_{z}}{\partial x}-\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial y}$, or (iii) $B_{x}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial B_{z}}{\partial x}-\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial y}\right)$.

Multiply (iii) by ω / c^{2}, (v) by k, and subtract: $i \frac{\omega k}{c^{2}} E_{x}-\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial x}-k \frac{\partial B_{z}}{\partial y}+i k^{2} B_{y}=i \frac{\omega^{2}}{c^{2}} B_{y}+\frac{i \omega k}{c^{2}} E_{x} \Rightarrow$ $i\left(k^{2}-\frac{\omega^{2}}{c^{2}}\right) B_{y}=\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial x}+k \frac{\partial B_{z}}{\partial y}$, or (iv) $B_{y}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial B_{z}}{\partial y}+\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial x}\right)$.

This completes the confirmation of Eq. 9.180.
(b) $\boldsymbol{\nabla} \cdot \tilde{\mathbf{E}}=\frac{\partial \tilde{E}_{z}}{\partial x}+\frac{\partial \tilde{E}_{y}}{\partial y}+\frac{\partial \tilde{E}_{z}}{\partial z}=\left(\frac{\partial \tilde{E}_{0_{z}}}{\partial x}+\frac{\partial \tilde{E}_{0_{y}}}{\partial y}+i k \tilde{E}_{0_{2}}\right) e^{i(k z-\omega t)}=0 \Rightarrow \frac{\partial E_{z}}{\partial x}+\frac{\partial E_{y}}{\partial y}+i k E_{z}=0$. Using Eq. 9.180, $\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial^{2} E_{z}}{\partial x^{2}}+\omega \frac{\partial^{2} B_{z}}{\partial x \partial y}\right)+\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial^{2} E_{z}}{\partial^{2} y}-\omega \frac{\partial^{2} B_{z}}{\partial x \partial y}\right)+i k E_{z}=0$, or $\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial^{2} y}+\left[(\omega / c)^{2}-k^{2}\right] E_{z}=0$.

Likewise, $\boldsymbol{\nabla} \cdot \tilde{\mathbf{B}}=0 \Rightarrow \frac{\partial B_{z}}{\partial x}+\frac{\partial B_{y}}{\partial y}+i k B_{z}=0 \Rightarrow$
$\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial^{2} B_{z}}{\partial x^{2}}-\frac{\omega}{c^{2}} \frac{\partial^{2} E_{z}}{\partial x \partial y}\right)+\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial^{2} B_{z}}{\partial y^{2}}+\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial x \partial y}\right)+i k B_{z}=0 \Rightarrow$ $\frac{\partial^{2} B_{z}}{\partial x^{2}}+\frac{\partial^{2} B_{z}}{\partial^{2} y}+\left[(\omega / c)^{2}-k^{2}\right] B_{z}=0$.

This confirms Eqs. 9.181 . [You can also do it by putting Eq. 9.180 into Eq. 9.179 (i) and (iv).]

