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We prove a new theorem on the impossibility of combining space-time and internal symmetries in any
but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the S matrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the S matrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincare group. (2) For any M&0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and t,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and
the Poincard group.

I. INTRODUCTION

lNT&L a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincare group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)'; these raised. the dazzling
possibility of a relativistic symmetry group which was
not simply such a direct product. Unfortunately, all
attempts to And such a group came to disastrous ends,
and the situation was finally settled by the discovery of
a set of theorems' which showed that, for a wide class
of Lie groups, any group which contained the Poincare
group and admitted supermultiplets containing finite
numbers of particles was necessarily a direct product.

However, although these theorems served their
polemic purposes, they are in many ways displeasing:
Their statements involve many unnatural and artificial
assumptions, typically concerning the normality of the
translation subgroup. Even worse, they are restricted
to Lie groups —this despite the fact that in6nite-
parameter groups have been proposed in the literature.
The theories based on these groups were destroyed not
by general theorems but by particular arguments.
Typically, these arguments showed that these groups
do not allow scattering except in the forward and back-
ward directions. ' Thus, if one accepts the usual dogma
on the analyticity of scattering amplitudes, they allow
no scattering at all.

The purpose of this paper is to tie up these loose ends.
We prove the following theorem: Let G be a connected
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symmetry group of the S matrix, which contains the
Poincare group and which puts a finite number of
particles in a supermultiplet. Let the S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and t in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then 0 is locally isomorphic to
the direct product of the Poincare group and an in-
ternal symmetry group. (This is a loose statement of
the theorem; a more precise one follows below. )

We believe that all of the assumptions in this theorem
are physical, except for the last one, which, although
weak, is ugly. We hope that it can be eliminated with
suKciently careful analysis; to date we have been
unable to do so.

We emphasize that our theorem has application only
to groups which are symmetries of the S matrix. There-
fore it has nothing to say about symmetry groups arising
from the saturation of current commutators; these
groups generate symmetries of form factors only.

The remainder of this section contains a precise state-
ment of the theorem and some remarks about its impli-
cations. Section II contains the proof. Although at
times this attains mathematical levels of obscurity, we
make no claim for corresponding standards of rigor.

A. Statement of the Theorem

We begin by briefly reviewing some of the funda-
mental definitions of scattering theory. The Hilbert
space of scattering theory, K, is an infinite direct sum
of subspaces,

X=K"'Q+BC&'&Q+

X&"' is called the n-particle subspace. It is a subspace
(determined by the generalized exclusion principle) of
the direct product of e Hilbert spaces, each isomorphic
to R&'&. The S matrix S is a unitary operator on K.
A unitary operator U on X is said to be a symmetry
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transformation (of the S matrix) if: (1) U turns one-
particle states into one-particle states; (2) U acts on
many-particle states as if they were tensor products of
one-particle states; and (3) U commutes with S. A
group of such transformations is said to be a symmetry
group (of S). S is said to be Lorentz-invariant if it
possesses a symmetry group locally isomorphic to the
Poincare group I'. In this case we may introduce a
basis for K('&, consisting of the plane-wave states
~u, X,p), where p is the four-momentum of the state,
) is the spin index, and n labels the particle type (tech-
nically, the irreducible subspaces of R"' under the
action of P).' The number of irreducible representations
of I' contained in X&'& is called the number of particle
types.

A symmetry transformation is said to be an internet
symmetry transformation if it commutes with P. This
implies that it acts only on particle-type indices, and
has no matrix elements between particles of different
four-momentum or diferent spin. A group composed
of such transformations is called an ie/erma/ symmetry

group.
The T matrix is defined in the usual way:

S= 1 i (2s-)'8 (I'—„8„')T. — (2)

4 Spin bases for different moment are connected by the usual
conventions of E. P. Wigner, Ann. Math. 40, 149 (1939).

' "Connected" means arcwise connected in the weak operator
topology.

Equation (2), of course, defines T only between states
of the same four-momentum. The scattering amplitudes
are the matrix elements of T'.

It will be convenient for some of our subsequent
arguments to define a subset of X('&, called S. S is the
set of all single-particle states whose momentum-space
wave functions are test functions —that is to say, in-

finitely diRerentiable functions with compact support.
We are now in a position to state the main result of

our investigation:
Theorem: Let G be a connected' symmetry group of

the 5 matrix, and let the following five conditions hold:

1. (Lorentz invariance. ) G contains a subgroup lo-

cally isomorphic to I'.
2. (Particle-finiteness. ) All particle types correspond

to positive-energy representations of I'. For any finite

M, there are only a Qnite number of particle types with

mass less than M.
3. (Weak elastic analyticity. ) Elastic-scattering am-

plitudes are analytic functions of center-of-mass energy,
s, and invariant momentum transfer, f, in some neigh-

borhood of the physical region, except at normal
thresholds.

4. (Occurrence of scattering. ) Let ~p) and
~

p') be

any two one-particle momentum eigenstates, and let

~ p,p') be the two-particle state made from these. Then

except perhaps for certain isolated values of s. Phrased

briefly, at almost all energies, any two plane waves
scatter.

5. (An ugly technical assumption. ) The generators of
G, considered as integral operators in momentum space,
have distributions for their kernels. More precisely:
There is a neighborhood of the identity in G such that
every element of G in this neighborhood lies on some
one-parameter group g(1) Fur. ther if x and y are any
two states in S, theo

exists at t=O, and defines a continuous' function of x
and y, linear in y and antilinear in x.

Thee, G is locally isomorphic to the direct product of
an internal symmetry group and the Poincare group.

3, Remarks

i. Note that we do not assume that G is a finite-

parameter group. Note also that the theorem possesses
a trivial corollary a result reminiscent of the famous
theorem of O'Raifeartaigh': All the particles in a G
supermultiplet have the same mass. This is surprising,
for it is known that there exist infinite-parameter

groups which do not obey O'Raifeartaigh's theorem. '
We are able to reject these groups because our assump-

tions are stronger than those of O'Raifeartaigh; our
analysis shows that these groups can not be symmetry

group of a nontrivial S matrix.
2. Lorentz invariance is a necessary condition for

there are many examples of Galilean-invariant spin-

independent theories, '" for which the corresponding
theorem does not hold.

3. Particle-finiteness is also necessary, in order to
exclude the well-known infinite-supermultiplet theo-

ries, most intensively investigated by Fronsdal and
collaborators. "

4. The analyticity assumption is somewhat surpris-

ing in this group-theoretical context. However, it is
something that most physicists believe to be a property
of the real world, and we will use it continually in our

proof. If it is eliminated completely, the theorem is not
true; groups are known which are not direct products,
but which do allow scattering, although only in the
forward and backward directions. '

"Continuous" means continuous in the usual (Schwartz}
topology for test functions.

' Alternatively, A may be thought of as a linear function from
L) to its dual space.

L. O'Raifeartaigh, Phys. Rev. Letters 14, 575 (1965); Phys.
Rev. 139, 81052 (1965);R. Jost, Helv. Phys. Acta 39, 369 (1966);
I. Segal, I. Functional Anal. (to be published).
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"A survey is contained in the contribution of P. Sudini and

C. Fronsdal, High Ener gy Physics and Elementary Particles
(International Atomic Energy Agency, Vienna, 1966).
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5. Some form of nontriviality is certainly required,
for if S=1, the group of all unitary transformations on
K") satis6es all the other conditions of the theorem.
However, assumption 4 is much stronger than S/1.
We believe it is possible to derive our assumption from
much weaker assumptions, essentially equivalent to
SW1, with the aid of somewhat stronger analyticity
conditions (in particular, the crossing relations); but
we have not yet completed this investigation.

6. Our fifth assumption is, as we have said, both
technical and ugly. It is necessary for our proof be-
cause we are physicists, and accustomed to the manipu-
lation of infinitesimal generators. Since there is, in

general, no analytic-vector theorem for infinite-param-
eter groups, a special assumption is needed to justify
such manipulations. We feel that the assumption we
have chosen is a weak one; for example, it does not
imply that 5) is in the domain of all the group genera-
tors. However, we have no doubt that more competent
analysts will be able to weaken it further, and perhaps
even eliminate it altogether.

7. It has sometimes been suggested that nonunitary
bounded linear operators which commute with the S
matrix might be of physical interest. " These opera-
tors, of course, would not represent symmetries in the
usual sense, but they still might restrict scattering
amplitudes in interesting ways. The proof for the
unitary case also works here, with the addition of a
few minor supplementary arguments. For the reader
interested in this case, we give these arguments, where

they are required, as footnotes.
8. The theorem is not true if, in the conclusion, local

isomorphism is replaced by global isomorphism. For
example, it is possible to construct theories in which

only particles of half-integral spin have half-integral
hypercharge. The symmetry groups of these theories
are locally, but not globally, isomorphic to SU(2)QXP.

9. Finally, if there are only a finite number of par-
ticle types, the theorem implies that the internal sym-
metry group has compact closure. However, if there are
an infinite number of particle types, spread out along
the mass spectrum, this need not be so. For example,
every particle type could have associated with it an
independent particle-number convervation law. The
internal symmetry group would then be a direct product
of an infinite number of factors, each isomorphic to
U(1). This is not a compact group.

II. PROOF OF THE THEOREM

We begin with some trivial remarks about the genera-
tors of G, defined by Eq. (4). We may readily extend

"S. Coleman (Ref. 2); H. Lipkin, Phys. Rev. 139,81633 (1965).
It has also been suggested that invariance under an algebra, with
the representation ot the algebra such that it can not be exponenti-
ated to form a representation of the corresponding group, might
be of physical interest. LM. Flato and D. Sternheimer, Phys.
Rev. Letters 15, 934 {1965);16, 1185 (1966).g Our theorem also
holds in this case, with the obvious recasting of our assumptions
into purely algebraic language.

The fact that 6 commutes with S implies that"

(S[ytQxys], AS/x, Qxx,])= (y,Qxy„A t x,Qxx,)). (Sb)

Lorentz invariance implies that if A is any distribution
obeying Eqs. (5), then so is U(A. ,a)+AU(A, u) where

U(A, a) is, as usual, the unitary operator representing
the element (A.,a) of P. Likewise, any convergent sum
or integral of distributions obeying (5) will also obey
(5). We denote by 8 the set of all distributions obeying
Eq. (5).'4

As any reader of Dirac knows, it is sometimes con-
venient to speak of a distribution as if it were a function.
We will follow this practice, and define

A..g. ), (P',P) = (ts')t'P'~A ~nXP), (6)

a distribution in momentum space. Sometimes we will

suppress the indices, and speak of A(P', P), a matrix-
valued distribution.

We are now ready for the first stage of the proof. Let
f be a test function, with support in a region R in p
space, and let f be the Pourier transform of f. It is
easy to show that the integral

d'u U+(1,rJ)AU(1, a)f(a)= f A (7)

converges, and defines a distribution in 8,. Since

then

U(l, o) ~o,),P)=e-*'.~~,),P),

f A(P'P)=f(P P')&(O'P)—
Thus f A only has matrix elements between states
whose supports in P space are such that they may be
connected by a vector in R.

Now, by our particle-finiteness assumption, the mo-
mentum support of one-particle states is restricted to a
countable set of mass hyperboloids. It requires only
trivial algebra (which we leave to the reader) to show
that if R is sufIiciently small, and does not contain the
zero vector, there will be regions on these hyperboloids
such that, if any vector in R is added to any vector in
these regions, a vector is obtained which is on none of
the hyperboloids. Thus, any state in S whose support
lies within these regions must be annihilated by f A.

» The analyticity of the scattering amplitude guarantees that
the left-hand side of Eq. (Sb) is well defined.

'4 Note that we do not assert that 8, is a Lie algebra, nor that
every element of 8 is obtained by differentiating a one-parameter
gl oup.

our definition of the generators to two-particle states;
indeed, if xtQxxs and ytQxys are two-particle states in
K)QxS, it is easy to show that

1
——(yy. , g(1)P j)=(yy, At. j)
i dt = (yt, Axt) (ys, xs)+ (yt, xt) (ys, Axs) . (Sa)
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at least one particle type n, np scattering is zero at
these values of s and t for any particle p.

But now we can choose a slightly diferent configura-
tion, and change the values of s and t continuously.
Thus we deduce that scattering vanishes for a range of
s and t. By analyticity, this means that np scattering
vanishes everywhere. This is in contradiction with the
nontrivia, lity of the S matrix. Thus, x=0, and f A
annihilates all states with support on the lowest mass
hyperboloid. Now we can go on, inductively, to the
higher-mass hyperboloids. By simple repetition of the
arguments above, we finally conclude that

f A=O. (12)

FIG. 1. The x-y plane in P space for particles of lowest mass.
The operator f A annihilates all states whose momentum sup-
ports are outside the shaded bands.

Figure 1 depicts the hyperboloid of lowest mass for a
particular situation. E has been chosen to be a small
sphere surrounding a vector lying in the x direction.
One-particle states whose supports lie outside the shaded
bands are annihilated by f A. There is one band for
every mass hyperboloid. For the sake of clarity, we
will construct all our subsequent arguments for this
situation; they may easily be extended to the general
case.

Let x be a state in X~'~ orthogonal to a11 states anni-
hilated by f A Let p be .a momentum in the support
of x. By the arguments above, p must lie in one of the
shaded bands. Let q, p', q', be points as shown, chosen
such that

P+q=P'+q'.

Let us define, as usual

s= (P+q)' and f= (P—P')', (11)

and let s be chosen so that it lies below the threshold
for production of pairs of the next-heaviest particle.

Now, let us construct an initial two-particle state by
putting one particle in the state x and another particle
in an arbitrary state with momentum support localized
about q. Likewise, let us construct a final two-particle
state by putting one particle in an arbitrary state with
support localized about p' and the other in an arbitrary
state with support localized about q'. The S-matrix
element between these two states must be zero, because

f A obeys Eqs. (5). This implies that the elastic scat-
tering amplitude vanishes for s and t as defined by Eq.
(11), if the particle with momentum p is in a state
determined by the wave function of x evaluated at p.
However, by making a rotation in the rest frame of p-
that is to say, by transforming q, q', and p' in accordance
with such a rotation —and realizing that the whole

argument goes through without change in this case, we

can eliminate this last restriction, and deduce that for

Since f is an arbitrary test function whose support does
not include the zero vector, this implies:

Lemma 1:The support of A(p', p) is restricted to the
set p=p.

In particular, this lemma implies that A can not
connect states on diferent mass hyperboloids; there-
fore, neither can G. We thus have a generalization of
O'Raifeartaigh's theorem" for symmetry groups of the
S matrix.

It is a well-known result of distribution theory that
a distribution whose support is a point is a finite sum
of derivatives of 6-functions. In our case, this means
that on each mass hyperboloid, A may be written as a
differential operator. Of course, since 2 acts only on
functions with support on the hyperboloid, this dif-
ferential operator does not involve differentiation with
respect to all four components of p, but with respect
to the three components tangent to the hyperboloid.
That is to say, on each mass hyperboloid, A is a poly-
nomial in the tangential differential operator:

V'„= 8jap„—m 'P„P„B)BP„. (13)

(We adopt the summation convention for Greek in-
dices. ) The next lemma is a restatement of these trivial
consequences of lemma 1 in terms of equations.

Lemma Z: Any element of 8, may be written in the
form

where the A'") are matrix-valued distributions. Also,

"In this connection, it is worth noting that Lemma 1 holds
if the particle-finiteness condition is replaced by the following
(much weaker) condition: For any M) 0 there is an m) M, such
that m is not a limit point of the one-particle mass spectrum.
Thus, even if we allow an infinite number of particles with a given
mass, 6 still cannot connect particles of different mass, unless the
one-particle mass spectrum contains all sufficiently large masses.
A closely related result has been obtained by H. J. Bernstein and
F. Halpern t Phys. Rev. 151, 1226 (1966)J under the assumptions
essentially equivalent to ours, plus the additional assumption that
the generators of the group commute, on K(», with the velocity
operators PjE. One of us (S.C.) would like to thank Dr. Bern-
stein for a discussion of this work. See also J, Formanek, Czech.
J. Phys. $17, 99 (1967).
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(p, ql U(e)rip, q)wo, (16)
for 0&8.

For, by unitary and Eq. (3), the left-hand side of
Eq. (16) is not zero for e=o, and, by the analyticity
assumption, it is a continuous function of 8.

Let 5 be the subset of 6, consisting of all Hermitian
distributions which commute with the space-time trans-
lations. "If J3 is any element of 5, it may be thought of
as an operator that multiplies the wave function of any
state in S by a matrix valued Hermitian distribution
$(P). Let Se be the subset of 5 consisting of all ele-
ments for which $(p) is an infinitely-differentiable
function. Note that if 8 is in b~ it makes sense to think
of 8 as an operator acting on momentum eigenstates,
a procedure which we shall adopt.

We will now show that any element of 5 is the sum
of an infinitesimal translation and an infinitesimal in-
ternal symmetry transformation (as defined in Sec. I).
The argument proceeds in three stages: In Lemmas 4,
5, and 6 we show that the traceless part of any element
of 5~ is an infinitesimal internal sylzunetry transforma-
tion. In Lemma 7 we show that the trace of any such
element is the sum of an in6nitesimal translation and
an infinitesimal internal symmetry transformation.
Finally, in Lemma 8 we extend our results from 5 to b.

If B is any element of d, and f(A) is any test function
on the homogeneous Lorentz group, then

Br= deaf(A) U(A, O)BU(A, O)+, (17)

where dA denotes the invariant integral on the homo-
geneous Lorentz group, is in 5~.

On any given mass hyperboloid. , we may divide B(p)
into a traceless part and a multiple of the identity

"If6 is not assumed to be unitary, we de6ne 5' to consist of
the Hermitian and anti-Hermitian parts of all the elements of I
which commute with space-time translations. 5 is evidently a
subset of 5.The arguments above should then be taken as applying
to 5' rather than 5, until Lemma 8.

since A is a polynomial in V'„,

L~,p"p.]=o, (15)

acting on any state in X).
We now lay aside this line of argument and initiate

an independent one. We will not return to Lemma 2
until almost the end of the proof. We begin with a pre-
liminary lemma, and a volley of de.nitions.

Assumption 4 states that Eq. (3) is valid except for
certain isolated values of s. We call pairs of momenta
corresponding to such values riglL pairs.

Lemma 3:Let
l p) and

l q) be any two single-particle
momentum eigenstates, a,nd let

l p, q) be the two-particle
state made from these. Let U(8) be the unitary trans-
formation corresponding to space rotations by an angle
0 about an arbitrary axis in the rest frame of the two-
particle system. Then if (p, q) is not a null pair, there
exists a 8 such that

matrix. We call the traceless part $*(p). For any p,
we define K(P) as the set of all B's in Se for which

$*(p)=o. (18)

All of this is for one-particle states. We may use Eq. (5)
to define 8 on two-particle states; in the obvious
notation,

$(p,q) = rB(p) 8I] LI$(q)] (19)

We define K(p, q) as the set of all B's in Se for which

$*(p,q) =0. (20)

It follows from Eq. (19) that

K(p, q) =K(p)nK(q). (21)

K(p, q) =K(p', q')

Therefore, by Eq. (21),

K(p) &K(p,q)
and

K(p') &K(p', q') =K(p, q) .
Thus,

(24)

(25a)

(25b)

K(p,p') &K(p,q) . (26)

But p+ p'N p+q. Thus we have passed from one value
of the total momentum to another. It is easy to see that
by iterating this procedure we can show that

K (k)QK (p,q), (27)

where k is any momentum on the hyperboloid. Thus we
have established:

Lemma 5:Let (p,q) be any non-null pair on any mass
hyperboloid. Let 8 be any element of 58. Then if

$*(p,q) =0, (2g)

8*vanishes on the entire hyperboloid.
The traceless parts of all 8's in 58, restricted to a

given mass hyperboloid, form an algebra closed under

Now, let (p, q) be any non-null pair, and let J be the
generator of space rotations about any axis in the (p,q)
center-of-mass frame. Assume there is a B in K(p, q)
such that [B,J] is not in K(p,q). Then

8"(p', q') go, (22)

for any (p', q') obtained by a sufliciently small rotation
from (p,q). Equation (22) implies that $(p', q') has at
least two distinct eigenvalues. At least one of these is
not equal to the single eigenvalue of $(p,q). Since B
commutes with 5, the eigenvector corresponding to this
eigenvalue must have zero amplitude to scatter to any
two-particle state with momentum (p, q). But this
contradicts lemma 3; therefore (B,J]must be in K(p, q).
That is to say, K(p, q) is invariant under rotations in
the (p,q) center-of-mass frame; this is equivalent to:

Lemma 4: K(p, q) is a function only of p+q.
Let (p, q) and (p', q') be any two non-null pairs on the

same hyperboloid such that

p+q= p +q ~ (23)
By Lemma 4,
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commutation, and with the Lorentz transformations as
a group of automorphisms. Let us call this algebra S.
If we pick a non-null pair (p, q), there is a natural horno-

morphism of 8 into the algebra of SU(e)3SU(m),
where n is the number of states with momentum p.
Lemma 5 asserts that this homomorphism is an iso-
morphism. Thus S is isomorphic to a subalgebra of a
compact Lie algebra; therefore it is a direct sum of a
compact semisimple Lie algebra and an Abelian Lie
algebra.

The elements of the semisimple Lie algebra must
commute with Lorentz transformations, since the con-
nected part of the group of automorphisms of a compact
semisimple Lie algebra is known to be the corresponding
compact semisimple group, and the only homomorphism
of the Lorentz group into such a group is the trivial one.
Hence the semisimple algebra is composed of in6nitesi-
mal internal symmetry transformations.

The Abelian algebra requires a special argument. Let
us go to a frame in which the space parts of p and q

are aligned along the s axis. The SO(2) group of rota-
tions about this axis acts as automorphisms on the
Abelian algebra. Thus we may write every element of
this algebra as a linear combination of elements which
transform as irreducible representations of S0(2). It is

easy to see that if there is an element which transforms
nontrivially (i.e., changes J',), it can not commute with

its adjoint, in contradiction to the Abelian nature of
the algebra. Thus, every element of S commutes with
this particular 0(2) subgroup of the homogeneous
Lorentz group. But we can do the same argument for

any non-null pair; thus every element of 55 commutes
with every element of the Lorentz group, i.e., is an
infinitesimal internal symmetry transformation on the
hyperboloid in question.

The above argument holds for every hyperboloid;
thus we obtain:

Lemma 6: If 8 is in bs, B*(P) is an infinitesimal in-

ternal synunetry transforms, tion. LThat is to say, B*(p)
does not depend on p and commutes with rota, tions. j

All that remains is to analyze TrS. If, armed with

Lemma 6, we return to the same hypothetical scattering
experiment we used to establish Lemma 4, it is easy to
see that the same arguments used there imply that if

where a„ is a constant four-vector and 0 is a constant
Hermitian matrix that does not involve spin indices. "

%e ale now in a position to prove the theorem. Ke
will use only Lemmas 2 and 8. Let us commute A,
given by Eq. (14), with p„, 1V times:

Lp. Lp" ~3 "j=A' '.,-' (p). (31)

The right-hand side of this equation is in 8, therefore
in b. Hence, by Lemma 8,

A(~)
PI "PX ~&III" PiV/ ~ ~/41" IJX' (32)

Now let us commute A with E 1p„'s a—nd one p„p"
By Eq. (15), this must give zero:

Lp.p', Lp., "~l" &=a.„,.p p"-'

+hi -p"'"
=0

(33)

for every p on the mass hyperboloid. This implies

PI ~ ~ ~ P~ 0b (34)

unless E=0, in which case we can not do the required
commuta, tion. Equation (33) also implies that

rIzI" Ijtv (35)

where a is antisymmetric. But this is just the space part
of an infinitesimal Lorentz transformation. Let us call

this Lorentz transformation M. Then 3—M is in 5,
and Lemma 8 applies again. Thus we find:

Lemma 0: Any A in Ol is the sum of an in6nitesimal

Lorentz transformation, an infinitesimal translation,
and an in6nitesimal internal symmetry transformation.

Lemma 9 is just the infinitesimal form of our theorem.
This completes the proof.

except again for A'=0. However, for, 1V)1, Eq. (35)
is inconsistent with the symmetry of u under the inter-

change of the p, 's.
Therefore, iV is always either zero or one. In the latter

case,

8 8

~pl

then
p+~= p'+~'
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B(p)=o.p"+b (30)

TrB(p)+TrB(Y) =TrB(p')+TrB(0'). (»)
But this is only possible if TrB(p) is a linear function of

p. Thus we obtain:
Lemma 7: For any 8 in Ss, TrB(p) is a linear func-

tion of p.
Lemmas 6 and 7 have been established for elements

of 5 . However, for any 8 in 5, B~, defined by Eq.
(17), isin 5 .Thus Brmust obey the lemmas, forany f.
Hence 8 must obey the lemmas. Thus we obtain:

I-emma, 8: Any element of b is of the form
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"If G is not assumed to be unitary, this follows because every
element of 'b is the sum of two elements of 5'. The matrix b need
not be Hermitian, but a„must still be real; otherwise G would not
consist of bounded operators.

' A discussion of a very rough preliminary version of the
theorem proved here wiH appear in the ProceeChngs of the Istanbll
School (%. H. I'"reeman and Company, San Francisco, to be
published).


