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Gauge theory studies the redundant degrees of freedom in a physical system by determining which
transformations keep the action of the theory invariant. These redundant degrees of freedom are
mathematically described by the theory of fiber bundles. The connections between fiber bundles
and gauge theory are discussed, and these ideas are then applied to an example from scalar O(n)
gauge theory.

INTRODUCTION

Gauge theory studies the redundant degrees of freedom
in a physical system by determining which local transfor-
mations keep the action of the theory invariant. Gauge
theories are physically important for a number of reasons,
potentially the most important being they serve as the
basis for our understanding of the Standard Model. The
SU(3)×SU(2)×U(1) gauge group, for instance, predicts
and is consistent with the existence of the fundamental
particles we know to exist.

Gauge theories are mathematically described by ob-
jects called fiber bundles, which are generally studied as
topological or geometric spaces. Viewing gauge theories
as a geometric structure of fiber bundles gives us a deeper
understanding of the physics.

The next section includes a few mathematical defini-
tions that will be relevant for the discussion. If the reader
is not familiar with these definitions, or other mathemat-
ical concepts that are introduced, refer to [2], [4] for a
further discussion on these topics.

The following section develops scalar O(n) gauge the-
ory with the theory of fiber bundles. The remaining sec-
tion is included as a summary of the connections between
the mathematics and physics.

MATHEMATICAL PRELIMINARIES

A few mathematical definitions and results are nec-
essary before the connection between fiber bundles and
gauge theory can be made.

Definition: A fiber bundle is a structure
(E,M,F, G, π), where:

• E is the “total space”

• M is the “base space” (in this paper, this corre-
sponds to an R4 space-time, though it need not be
this in general)

• F is the “fiber space”. The fiber above a single
point is denoted Fx = π−1(x)

• G is the “structure group” with left action on F
• π : E→M is a projection map

These objects are best understood graphically (see Fig-
ure 1). The fiber space can be thought of as strands
sticking off of the base space. Any point along a single
fiber will get mapped to the same base point under the
projection map. Although the fibers are typically drawn
in as being one-dimensional, they can be of arbitrary di-
mension. Mathematically, π(g) = x ∀ g ∈ Fx. The
structure group is used to move along points in Fx.

To give an example take M = S1, the circle in R2.
Take the fiber at each point to be a finite line segment,
which can be visualized as sticking off of S1 into R3. The
trivial fiber space is a cylinder; the non-trivial fiber space
is the Mobius strip. In this case, the difference between
trivial and non-trivial is that in the latter case, the fibers
twist around in R3, whereas in the former case they do
not.

Definition: A fiber bundle that has Fx ∼= G is called
a principle bundle, where the equality is taken as a home-
omorphism. Fiber bundles will be assumed to be princi-
pal from now on. Note that if this is the case, G is a Lie
Group.

FIG. 1: A principle bundle which shows: M, Fx, G, π. Image
from [1].
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Definition: A connection on E is a unique separation
of the tangent space into a horizontal and vertical sub-
space, that satisfies various “nice” properties. A connec-
tion is used to move a vector around E in a well defined
way. Well defined here just means that the connection
allows us to compare vectors in different parts of E.

Definition: A local section is a continuous map
s : U → E, U ∈ M, such that (π ◦ s)|U = idU . See
Figure 2.

s

E

FIG. 2: A section of E and corresponding π, M. Image from
[3].

EXAMPLE: SCALAR O(n) GAUGE THEORY

To elaborate on the connection between gauge theory
and fiber bundles, scalar O(n) gauge theory will be dis-
cussed in this section. Assuming there are n real scalar
fields of equal mass, the Lagrangian density takes the
form

Lglob =
1

2
(∂µΦ)

T
(∂µΦ)− 1

2
m2ΦTΦ (1)

where ΦT ≡ (φ1, φ2, ..., φn). For a gauge transforma-
tion Φ → Φ′ = GΦ , G ∈ O(n), the Lagrangian density
will automatically remain invariant if G does not vary
over E. If G is allowed to vary over E, a little more work
is required to maintain Lagrangian invariance. In the
former case, the theory is said to have a global symme-
try; the latter theory is said to have a gauge symmetry.
Explicitly:

Case 1: Global symmetry.
∂µG = 0 ∀ x ∈ E⇒ (∂µΦ)′ = ∂µ

′Φ′ = G∂µΦ.
Lagrangian invariance is automatically maintained. To
show this, simply use (AB)T = BTAT . Geometrically,
this means the connection is trivial.

Case 2: Gauge symmetry.
∂µG 6= 0 ∀ x ∈ E⇒ (∂µΦ)′ = ∂µ

′Φ′ 6= G(∂µΦ).
Lagrangian invariance is not automatically maintained.
Geometrically, this means a nontrivial connection needs
to be established.

Since gauge symmetries are global symmetries as well,
only Case 2 will be discussed further. It will turn out that
enforcing a gauge symmetry will produce gauge bosons,
which mathematically are seen as generators of the con-
nection. To start out, let’s try to reproduce the global
symmetry statement by introducing a new differential
operator so that

(DµΦ)′ = Dµ
′Φ′ ≡ GDµΦ

If such a Dµ exists, then L will trivially remain invari-
ant. In this case, L is seen to be an extension of Equation
1:

Lgauge =
1

2
(DµΦ)

T
(DµΦ)− 1

2
m2ΦTΦ (2)

Dµ is called the gauge covariant derivative. Since Dµ

should involve ∂µ in some way, the naive approach would
be to add a vector, let’s call it ηµ, to ∂µ. This turns out
to be the correct approach in scalar O(n) gauge theory.
With no proof, ηµ turns out to be proportional to the
gauge field:

Dµ = ∂µ + ηµ = ∂µ + igAµ(x)

where g is a physical coupling constant, and i is in-
cluded as a convention. Plugging Dµ into the above def-
inition gives:

A′µ = GAµG
−1 +

i

g
(∂µG)G−1

This transformation is equivalent to how connection
one-forms are defined in E, so Aµ is seen to be a con-
nection. Specifically, it is a Lie-Algebra valued differ-
ential one-form. We see that a gauge transformation
Φ → Φ′ = GΦ forces Aµ to transform as given above.
So requiring a gauge symmetry produces interactions in
the scalar fields. This can be seen by taking the differ-
ence of the gauge symmetric and globally symmetric La-
grangians, which is called the “interaction Lagrangian”:

Lgauge − Lglob ≡ Lint

= i
g

2
ΦTATµ (∂µΦ) + i

g

2
(∂µΦ)TAµΦ− g2

2
(AµΦ)TAµΦ

(3)

Since there are no derivatives of Aµ in this theory, this
field is static. If we want to impose dynamics on it, a term
needs to be added that is gauge and Lorentz invariant,
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and involves derivatives of Aµ. One way to do this is to
introduce the Yang-Mills field Lagrangian:

LYM = −1

2
Tr(FµνFµν), Fµν ≡ 1

ig
[Dµ, Dν ]

So, we are left with a gauge symmetric theory with a
dynamical gauge field:

L = Lgauge + LYM = Lglob + Lint + LYM (4)

CONNECTION TO FIBER BUNDLES

Some connections were made in the previous section
between scalar O(n) gauge theory and fiber bundles. A
further discussion of these connections follows. Table I
summarizes these connections.

E is seen to be the “arena” in which most of the con-
cepts of gauge theory live. Gauge transformations push
points along each Fx to other points in the same fiber. A
connection (also seen to be the gauge field) in E estab-
lishes sections in E. The physics of the scalar fields can
either be studied in M where they are defined to “live”,
or in a local section of E. Geometrically, this can be vi-
sualized as the gauge transformation pushing the section
up or down in E.
Aµ(x) can be decomposed as a sum of generators of G,

so there are as many gauge fields as there are generators:
Aµ =

∑
aA

a
µT

a. For instance, taking an SO(2) gauge
theory, we see that there is one gauge field produced by
the single generator. Since SO(2) is isomorphic to U(1),
which is the gauge in electromagnetism, this gauge field
corresponds to the photon.

The connection Aµ(x) can be interpreted as a differ-
ential one-form. A generalization to curvature in differ-

ential geometry is the covariant derivative of the connec-
tion one-form, which in the case of Riemannian geometry,
turns out to be the Riemann curvature tensor. So, Fµν
can be considered a local curvature at points in E.

Fiber theory objects Gauge theory objects

E Where sections are defined

Fx Where gauge and global

symmetries take place

M The original manifold where

real scalar fields are defined,

i.e. space-time. This can be R4

or some non-trivial manifold.

Local section Where the real scalar fields

can also be studied

G Generates gauge bosons

Connection Gauge potential

Curvature Fµν

TABLE I: Relationships between mathematical and
physical concepts
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