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Coleman and Mandula showed that under certain assumptions, the only allowed symmetries of
the S matrix consist of the Poincare group and internal symmetries. The only way to combine these
two types of symmetries is through a local direct product. Haag, Lopuszanski and Sohnius show
that if the assumptions of Coleman and Mandula are relaxed to allow for anticommutation relations,
there is an additional symmetry of the S matrix generated by supercharges. In this case the two
symmetry types are mixed. We discuss the massive field case of the proof.

INTRODUCTION

Before Coleman and Mandula, physicists assumed that
the symmetries of the S matrix could be written as local
direct products of the Poincare group with a group of
internal symmetries. After investigation of SU(6) by the
scientific community, some thought that perhaps there
existed symmetry groups which had a richer structure.
By proving that the symmetries of the S matrix must
be locally isomorphic to the direct product of spacetime
symmetries with the internal symmetry group, Coleman
and Mandula put the final nail in the coffin for such the-
ories - or so they thought.

In seeming contrast to the Coleman-Mandula Theo-
rem, Wess and Zumino proved the existence of a su-
persymmetry generated by supercharges - Fermi opera-
tors that transform bosonic to fermionic fields (and vice-
versa), transforming like spinors under the Lorentz group
[3]. The algebra of these operators is closed under com-
mutation and anticommutation relations, and so is a part
of a pseudo Lie algebra, or superalgebra.

Haag, Lopuszanski and Sohnius sought to extend the
Coleman-Mandula Theorem to include these supersym-
metric operators by considering superalgebras instead of
Lie algebras. Coleman and Mandula had considered Lie
algebras of symmetry generators, which do not have an-
ticommutation relations, so the supercharge operators
were excluded from their analysis.

RESULTS

Haag et al. found that the algebra of symmetry oper-
ators is not a direct product of the Poincare group and
another group. The addition of the Fermi supercharges
mixes spacetime and internal symmetries in the following
way.

Let Pµ be the energy-momentum operators, Mµν the
generators of the homogeneous Lorentz group, and Bl the
Bose scalar charges, of which there are a finite number.
All of these operators are Bose type.

Divide the Fermi supercharge operators by their trans-
formation character using van der Waerden notation: QLα
and Q̄Lα̇ (L = 1, . . . , v;α = 1, 2). We choose the basis of

our superalgebra such that (QLα)† = Q̄Lα̇.

Then

{QLα, QMβ } = εαβZ
LM , (1)

where ZLM ≡ εαβ
∑
l

(al)LMBl (2)

and [ZLM , G] = 0 for all G in the superalgebra, (3)

{QLα, (QMβ )†} = δLMσµ
αβ̇
Pµ, (4)

[QLα, Bl] =
∑
M

sLMl QMα , (5)

[Bl, Bm] = i
∑
k

cklmBk. (6)

We also have the Poincare transformation properties
of spinor and scalar charges as follows:

[QLα, Pµ] = [Bl, Pµ] = [Bl,Mµν ] = 0, (7)

[QLα,Mµν ] =
1

2
(σµν)βαQ

L
β . (8)

The cklm are structure coefficients of a compact Lie
group, the sl are the Hermitian matrices of a ν-
dimensional representation of the generators, and the al
are matrices such that sma

l = −als̄m.

Equations (7) and (8) follow from the properties of
spinor and scalar charges. The rest of the relations are
more interesting. Equation (1) says that the Fermi op-
erators do not form their own subalgebra. In fact, the
anticommutator of two such operators is in the center of
the superalgebra (3).

Furthermore, the anticommutator of QLα with (QMβ )† is
a combination of energy-momentum operators (4). This
shows that the internal symmetries mix with the space-
time symmetries; that is, we cannot write the superal-
gebra as a direct product of these two symmetries. If
we could, then {QLα, (QMβ )†} would have to be contained
within a subalgebra of internal symmetries, which clearly
it is not.

Equation (5) gives the commutation relation between
Fermi and Bose charges, and (6) shows that the Bose
charges form their own Lie subalgebra.
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PROOF

Equations (3)-(8) had already been verified by other
sources [2]. So we must prove Equations (1) and (2).

We define a symmetry of the S matrix to be an oper-
ator G on a Hilbert space such that

(i) [G,S] = 0, (9)

(ii) G =
∑
i,j,r,s

∫
d3pd3p′ain†js (p′)Kjs;ir(p

′, p)ainir(p), (10)

for K a c-number kernel. In plain language this means
that G commutes with the S matrix (9) and that G acts
additively on multi-particle states (10).

These two properties along with non-triviality of the S
matrix imply a third property: G only connects particles
with the same mass [1]. More specifically K is written as

K(p′, p) =
∑
n

K(n)(p)∂nδ(p− p′), (11)

where ∂n is a monomial in derivatives ∂/∂pi and the sum
is finite [1].

Because K(p′, p) has this form, it is easy to divide
up the elements of the symmetry group into manageable
chunks. Define S(N) as the set of symmetry generators
where K(p′, p) only contains derivatives up to and in-
cluding Nth order.

Generators which commute with translations

Suppose G ∈ S(0). Then G commutes with translations
and we can write the kernel as

Kjs;ir(p
′, p) = Kjs;ir(p)δ(p− p′). (12)

For a Bose type generator we can borrow the results
from [1], which state that a basis for the Bose operators
in S(0) can be given by the Pµ and the scalar charges
Bl. The Lie algebra L of the scalar charges is the direct
product of a semisimple and abelian subalgebra [2].

We continue to borrow results from [1] and note that
Fermi type generators have the property that if K(p)
vanishes for p and p′ on a mass hyperboloid, then it van-
ishes on the entire hyperboloid. K(p) is the submatrix
of Kjs;ir(p) for one mass multiplet. Therefore if we know
two K(p) matrices we can find G.

Classification of translation invariant Fermi type generators

We have a finite number of Fermi generators because
K(p) has finite dimensionality and G is determined by
two K(p) matrices. Moreover the homogeneous Lorentz
transformations stabilize S(0).

Therefore we can say that S(0) is a finite dimensional
representation of the Lorentz group, which is semisim-
ple hence completely reducible. The irreducible repre-
sentations of the Lorentz group are classified by indices
(j, j′). For a irreducible representation (j, j′) we will have
generators of the form Qα1...α2j ;β1...β2j′ . Since these are
Fermi operators we must have 2(j + j′) odd. Further-
more, {Q,Q†} is of Bose type and an element of S(0).

Now if we consider just one component of {Q,Q†} we
notice that it is a component of a spinor with 2(j + j′)
undotted and 2(j + j′) dotted indices, symmetric in the
dotted and undotted indices. Therefore it must belong
to the representation (j + j′, j + j′). However we can
only have Bose type generators in such a representation
if j + j′ ≤ 1

2 . Therefore if {Q,Q†} does not vanish then
we must have Q in ( 1

2 , 0) or (0, 12 ). If {Q,Q†} vanishes
then the original Q vanishes as well.

Therefore we can say

{Qα, (Qβ)†} = cσµ
αβ̇
Pµ, (13)

for some complex number c. The reason this true is be-
cause we have determined that {Q,Q†} is an element of
the representation ( 1

2 ,
1
2 ). Elements of this representa-

tion are four-vectors. The only four vectors in S(0) (the
set of generators which commute with translations) are
Pµ. Therefore we can write {Q,Q†} as some linear com-
bination of these.

In the case of multiple charges QL we can generalize
to

{QLα, (QMβ )†} = δLMσµ
αβ̇
Pµ. (14)

We have proved (4). Now consider {QLα, QMβ }, which is

also an element of S(0). The antisymmetric part must be
a scalar, so it must be a linear combination of the Bose
scalar charges Bl. The symmetric part is an element of
(1, 0) and is a self-dual skew-symmetric tensor. However
we have no such tensors in S(0) so {QLα, QMβ } is entirely
antisymmetric.

Therefore we can write

{QLα, QMβ } = εαβZ
LM , (15)

where ZLM ≡ εαβ
∑
l

(al)LMBl (16)

and (al)LM = −(al)ML, (17)

since the anticommutator should be symmetric.

Generators which do not commute with translations

Here we will comment on the results on G ∈ S(N)

from [2] without proof. In the massive case, all Bose
generators of degree one are linear combinations of Mµν .
There are no Bose generators of degree higher than one.
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Furthermore, there are no Fermi charges of degree 1 or
higher.

This result is interesting because it states that the su-
peralgebra of symmetry generators has fermionic part
with spin 1

2 . This shows how we can build up everything
from spin 1

2 , even in the supersymmetric case.
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