Large N Limit in 1/N Expansion
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This paper summarizes works in chapter 1/N of Coleman’s lecture notes. 1/N expansion for o
theory, the Gross-Neveu model, and the CPY =1 model are summarized.

INTRODUCTION

Interactive field theories with quartic interactions can
be expanded using Feynman diagrams in the orders of
1/N. When N is large, the leading term, terms propor-
tional to 1/N, in this expansion dominates. This theory
can be used to show the symmetry breaking in asymp-
totically free field theories (Gross-Neveu model), and is
consistent with the CPV~1 model.

1/N EXPANSION FOR ¢* THEORY

To see the emergence of orders in 1/N, consider a sys-
tem with a set of N scalar fields, ¢%, a = 1...N, and its
Lagrangian density is
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The scattering by perturbation theory is shown by dia-
grams in Fig. 1. The first diagram is of order O(A¢), the
second one is O(A\2N) since there are N possible choices
for the internal index ¢, and the third one is O(A\3) due
to fixed internal indices. However, if we define
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and set it fixed as taking the limit of large- NV, then the or-
ders of the diagrams in Fig. 1 become O(go/N), O(g3/N),
and O(g2/N?), respectively.

Then, following Ref. [1] and Ref. [2], by introducing an
auxiliary field, o, we can add a term to the Lagrangian
density without affecting the dynamics of the theory:
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The equation of motion for the auxiliary field, o, is
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which is an equation of constraint. As a result, the Feyn-
man rules of the new Lagrangian are different. Note that
the new Lagrangian is
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where the only non-trivial interaction is the 0¢®¢® cou-
pling term. The corresponded graphs to this Lagrangian

is shown in Fig. 2. Further, keeping only those ¢ lines in
closed loops, plus doing all the momentum integrals over
the closed ¢ loops, we get graphs with only o lines, as
shown by Fig. 3. For such graphs, there is an effective
action, Scf¢(0), which is obtained by functional integral
over ¢s:
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Each term in the above effective action is proportional
to N such that

Sepf(o,N) = NSess(0,1). (7)

In addition, each external and internal line carries a fac-
tor of 1/N since the propagator is obtained by inverting
the quadratic part of the Lagrangian; each vertex car-
ries a factor of N. Thus the order of a given graph is
NV—I=FE_ Using the relation L = I — V + 1, the order
is finally N~FP~L*1  Consequently, the leading power of
1/N is given by graphs with no loops (i.e. tree graphs)
and with the minimum number of external lines. As a
result, the leading order of the above meson-meson scat-
tering case is 1/N.

In order to eliminate the infinite number of tree graphs
with two external lines (i.e. the linear vertex for Sesy),
we define a shifted field

o' =0 — oy, (8)
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Thus, the newly defined Lagrangian can be expressed, in

terms of o/, as

where oy is a constant chosen such that
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where the constant term is omitted and p? = pZ +0p. In
the above Lagrangian, there is an additional linear vertex
emerging from the last term which can be used to elimi-
nate the linear (in o) vertex of the previous statements.

THE GROSS-NEVEU MODEL

The Gross-Neveu model is a 2-dimension theory de-
fined by
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where ¥ and ¥ are Dirac fields.

Duplicating the construction of 1/N approximation for
¢* theory, introducing an auxiliary field, o, we get the
new Lagrangian from (11):
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Sequently, Serf(c) can be obtained by integrating over
¥ loops. Since the trace of odd powers of Dirac matrices
is zero, only even powers of the auxiliary field, o, survive.
The diagrams for consequent Ses¢(o) are shown in Fig. 4.
This is also followed by a conclusion that ¢ = 0 is a
stationary point of Sesf(0).

Next, we’ll show that other stationary points exist. To
do this, we compute S,y for constant ¢. Define

~ V(o) =, lim S.s(0)/LT. (12)
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Each stationary point of V' leads to a 1/N expansion, and
thus defines a possible vacuum state (in terms of 1/N).
In this philosophy, summing the Feynman diagrams in
Fig. 4, we can calculate V to be
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Note that the momentum integral is ultraviolet divergent,

so we cut it off by restricting p% < A2, where A is some
large number. As a result, we have

o? 1 o?
V=N|—+—0c*(ln5-1])]|. 14
R Gl
Further, rewrite this in terms of a renormalized coupling
constant, g, which is conveniently defined by

such that V is given by
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By taking derivative of V over ¢ and setting it to be zero,
we can find the stationary point
2
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and the effective potential at this point
V = —No?/4r. (18)

With the effective potential at this stationary point less
than V'(0), this gives rise to the breakdown of symmetry,
and to a nonzero mass, og, of fermions.
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FIG. 1: First few diagrams for scattering of two mesons of
type a into two mesons of type b with the Lagrangian given
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FIG. 2: Corresponded graphs with the Lagrangian given by
(5). Dashed lines are o propagators.

THE CPY~! MODEL

The CPY~! model is a formal limit of a linear the-
ory. The linear theory is a theory of N2 — 1 scalar fields,
assembled into a N x N traceless Hermitian matrix, ¢,
with Lagrangian

£ = %Tr 8,00" ¢ — ATr P(¢), (19)

where P is a polynomial in ¢. This theory has SU(N)
symmetry. Choose P such that the minima of Tr P are
matrices with N — 1 equal eigenvalues and one unequal
eigenvalue. The ground states are then constant fields

¢=g; N7zt — N21], (20)

where 2 is constrained to be of unit length, i.e. zfz = 1.

As X goes to infinity, the formal limit of the above
theory turns into the CPY~! model. Rescaling z —
golN *%z, the Lagrangian is simplified to
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FIG. 3: Graphs for the effective action, Sesy(0).
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FIG. 4: Graphs for the effective action, Seff(o), of Gross-
Neveu model. Graphs with odd number of o vertices vanish.

where j, = (2i)71[z70,2z — (0,27)2], and the constraint
equation is

2Tz = N/gk. (22)

With this Lagrangian, we can follow the same steps as
in previous two sections, introducing an auxiliary field
to eliminate quartic interactions, and then shifting to a
stationary point of effective potential. The difference is
that the auxiliary field is a vector field since the interac-
tion term in the Lagrangian is in terms of vectors. The
Lagrangian with the auxiliary vector field, A, is

L = (0, —iA,)ZT (0, +iA,)z. (23)

To get the Lagrangian satisfying the constraint, add
another auxiliary field, o, which is a scalar field and acts
as a Lagrange multiplier. This leads to

L= (0, —iA,)21 (0, +iA,)z — olzTz — gy 2 N]. (24)

The process of computing V' is almost the same except
for that now there are two auxiliary fields, A, and o.
Thus, with the coupling constant, g, renormalized, the
effective potential is
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As as result, the stationary point is at ¢ = oy =

M?Zexp(—4m/g?) where V = -1 (lnal0 - 1).
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