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The Casimir effect has been of steadily increasing interest over the past six and a half decades.
Here we discuss its origins from the zero point energy of the modes of the system. The importance
and non-negligibility of the zero point energy is first motivated using ordinary quantum mechanics.
The effect is discussed in the context of real scalar quantum field theory for parallel plates with
Dirchlet boundary conditions. Finally, different geometries are discussed in the context of repulsive
forces.

INTRODUCTION

The Casimir effect, first introduced in its modern form
as a manifestation of zero point energy in 1948, has been
of increasing interest. Indeed, citations of Casimir’s origi-
nal paper on the topic have been increasing exponentially
with a half-life of only 12 years [1]. Much of this can
be attributed to the confluence of work on the vacuum
catastrophe in fundamental physics with the continuing
ascension of MEMS/NEMS in the technological sector,
bringing the problem under the purview of both pure
theorists as well as applied physicists and engineers.

While zero point energy is a relatively uncontrover-
sial aspect of ordinary quantum mechanics—likely on ac-
count of its finite magnitude in that regime—its discus-
sion in the context of field theory remains tinged with
discomfort in much the same way that renormalization
seems to have been until the work of Wilson in the 1970s.
Various authors have gone through considerable effort to
recast the problem in terms of retarded interactions be-
tween the objects themselves [1]. Here we will focus on
the mode expansion technique, directly addressing the
zero point energy in the fields themselves. But first, let’s
see why the Casimir effect cannot be disposed of by a
redefinition of the Hamiltonian.

ZERO POINT ENERGY IN ORDINARY QM

One of the classic problems in ordinary quantum me-
chanics is that of the one dimensional infinite square well.
Consider such a well of width L with the minimum of
the potential defined to be zero. Assuming the system
is in its ground state, then the energy of the particle is
E = ~2π2/2mL2.

Consider now an extension of this problem. A (mas-
sive, thin) plate is placed within the well at some posi-
tion xp. Two distinguishable particles of equal mass are
placed in the well, one on each side of the impenetrable
plate. Then the ground state energy of the system is the
sum of the ground state energies of each of the particles:

E =
~2π2

2m

[
1

x2p
+

1

(L− xp)2

]

If we assume that the plate moves slowly enough for the
adiabatic theorem to hold, then a (conservative) force
can be calculated. The energy of these particles, which
is an even function about xp = L/2, gives rise to a force
Fp = −∂xp

E on the plate of the form:

Fp =
~2π2

m

[
1

x3p
− 1

(L− xp)3

]
This force is directed towards xp/2, and is a natural

consequence of the zero point energy of the ground state
of the infinite square well. While the Hamiltonian can be
redefined to eliminate the zero point energy for a partic-
ular set of boundary conditions, allowing the boundaries
themselves to be dynamical forces us to recognize that
variations of the zero point energy with the system con-
figuration gives rise to measurable consequences.

REAL SCALAR FIELDS

With the previous example from ordinary quantum
mechanics as a guide, we now turn to the simplest quan-
tum field theory. Define a real scalar field φ(~x, t) on
~x ∈ Ω with Lagrangian density L = 1

2 (∂φ)2 + 1
2m

2φ2.
Generally speaking, we will be interested in embedding
some objects—call them {Oi}—into Ω, enforcing physi-
cally appropriate boundary conditions for φ on the var-
ious spatial boundaries {∂Ω, ∂ΩOi}, and computing the
resulting variation in the zero point energy as a function
of the location and/or orientation of Oi. The general
procedure is as follows [2]:

• Determine the classical modes of the system and
their associated temporal frequencies ωj , where j is
a stand-in for any suitable indexing of the modes.

• Compute the zero point energy as E0 =
∑

j ~ωj/2
using an appropriate regulator.

• Extract measurable quantities from E0, then re-
move the regulator.

Here we will discuss a parallel plate geometry embed-
ded in a finite-volume cubic universe of side-length L, as
done by Pluniun et al. [2]. Consider two (infinitely thin)
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plates, parallel to the x-y plane, that enforce φ = 0 on
their boundaries. We will use periodic boundary condi-
tions and assume the plates are separated by a distance
d � L. Then the modes between the plates have the
spectrum

ωnx,ny,nz
=

√
m2 +

~2π2

L2
(n2x + n2y) +

~2π2

d2
n2z,

and those outside the plates have the spectrum

ωnx,ny,nz
=

√
m2 +

~2π2

L2
(n2x + n2y) +

~2π2

(L− d)2
n2z.

Here nx, ny ∈ {...− 1, 0, 1...}, and nz ∈ {1, 2, 3...} due to
the loss of translational symmetry along ẑ.

Clearly, the zero point energy itself, E0 =
∑

~ω/2, will
diverge. This is due to the presence of an infinite number
of modes, since there are an infinite number of spatial
points. However, differences in the zero point energy will
turn out to be finite. To this end, define

∆E0(d) ≡ E0(d)− Esingle plate
0 .

Here, Esingle plate
0 is the zero point energy of a single

plate being in the volume, which is the finite-spatial-
volume equivalent of taking d → ∞. Then, converting
the sums over nx and ny into integrals since L is taken
to be large, we find:

∆E0(d) =
~L2

2(2π)2

∫
d2kq

[ ∞∑
nz=1

√
m2 + ~k2q +

(2π

d

)2
n2z −

∫ ∞
0

dnz

√
m2 + ~k2q +

(2π

d

)2
n2z

]
(1)

Both the sum and the integral over nz are divergent. To
make sense out of this difference of infinite quantities
mathematically, we must regularize each term in ∆E0

first, then take the difference, and only afterwards remove
the regulator [3]. But is there a physical justification for
such a procedure?

In certain cases, there is. Take the example of the
electromagnetic field, and assume the plates are in-
finitely conductive. This enforces the boundary condition
n̂ × ~E = 0 on the electric field. However, any real con-
ductor will have its conductivity σ(ω) → 0 as ω → ∞,
if for no other reason than the inertia of its electrons.
Thus, when computing ∆E0, modes of sufficiently high
frequencies do not see the plates at all, and therefore do
not contribute to ∆E0. So we may anticipate this by dis-
carding those high frequency modes before carrying out
the sums. Then, if ∆E0 is found to be well behaved in
the limit of no cutoff, we may remove the regulator. [3]

We might expect that such an argument can be made
quite generically when dealing with material-induced
boundary conditions. This is because the effect a mate-
rial system has on the field must be due to the response of
its constituent particles to the field’s perturbations. All
materials have a finite response time to external stimuli
due to their constituent particles’ inertia, and thus will
have a linear response coefficient that tends to zero as
ω → ∞, as before. Even materials with massless quasi-
particle excitations are bound by this discussion, as the
range of ω that is affinely related to ~k is limited.

Following this previous discussion, Pluniun et al. [2]
calculated the Casimir energy, ∆E0, in the low mass

limit:

∆E0(d) =
−L2π2

1440

1

d3

[
1 +O(d2m2)

]
,

and in the high mass limit:

∆E0(d) = −L
2m

3
2

16π
3
2

1

d
3
2

e−2md.

Both of these cases show that ∆E0(d) is minimized for
d→ 0, and thus there exists an attractive force between
the plates.

Plunien et al. describe the exponential damping of
∆E0 in the high-mass case as “...reflecting the fact that
the Casimir energy vanishes in the classical limit of par-
ticles with large mass.” [2] It is a curious classical limit,
as the zero point energy diverges regardless of the mass
of the scalar particle, and fact that the field is massive is
exactly what makes it have no clean classical limit as a
field theory (as opposed to electromagnetism and gravi-
tation). What perhaps can be said more precisely is that,
in the large mass limit, the summand in (1) varies less
from integer increments in nz, and so the sum approaches
the integral exponentially rapidly as m� 2π/d. In more
physical terms, the mass dominates the energy of the
modes at low |~k|, and modes with nearly ~k-independent
frequencies ω~k do not contribute to the Casimir energy
∆E0.
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REPULSIVE CASIMIR FORCES

It is tempting to think that the Casimir force, which in
the case of parallel plates is attractive, generally acts to
compress an objectO procided φ satisfies Dirchlet bound-
ary conditions on ∂ΩO. The (incorrect) reasoning goes
as follows: within the enclosed volume ΩO, the spectrum
of the Hamiltonian is discretized. Decreasing the size of
ΩO increases the spacing between the mode frequencies
rapidly enough that, despite the smaller volume of ΩO,
the zero total point energy of the fields drops. There-
fore the Casimir force is attractive, and tends to shrink
enclosed volumes.

Indeed, Casimir himself seemed to think so, and used
this to attempt to patch the classical Abraham-Lorentz
model of the electron as a spherical shell of charge. In
his augmented model, the supposedly attractive Casimir
force would balance the electrostatic repulsion of the
charge distribution, and the balance point would allow
a purely geometric calculation of the fine structure con-
stant by requiring the electrostatic energy to be equal to
that of the rest mass of the electron.[4]

The heuristic argument for the generic attractive na-
ture of the Casimir force does not hold, however, as Boyer
showed in 1968 [4]. The failure in this thinking is that it
neglects the evanescent surface modes on the exterior of
∂ΩO. The contribution of these modes is evidently large
enough that the lower energy configuration is one where
the radius r → ∞ [1]. For a spherical conductor, the
relevant Casimir energy increases as the radius r → 0.
Thus, spherical conductors tend to be expanded by the
Casimir effect, with

∆E0 = +
0.04618...

r
.

While the calculation of this result is rather involved, it

seems to be rather general for spherical geometries for
both vector and scalar fields in various dimensions [5].
Unfortunately, there does not seem to be any simple cri-
teria for whether a given geometry experiences a com-
pressive or expansive force.

It should be noted that a sphere is not the only known
geometry for which repulsive Casimir forces have been
shown to exist. Cylindrical-type geometries exhibit re-
pulsive Casimir forces as well, though only if the length
of the cylinder is long enough. For short prisms of var-
ious cross sections, including circular, the Casimir force
is attractive. [5]
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