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In this brief report, an intuitive and physical derivation of Davies-Unruh effect (an effect where
a detector undergoing uniform acceleration a through a vacuum field, with respect to an inertial
observer, perceives the vacuum as a thermal bath of temperature T = ~a

2πkc
) has been given for a

scalar field in 1+1 dimension. A formal proof of the aforementioned effect based on KMS condition
has also been included for the sake of completeness with physical insights on how detector perceives
the thermal bath.

INTRODUCTION

Davies and Unruh predicted [1, 2] that a uniformly
accelerated detector (observer) moving through a con-
ventional quantum field theory’s vacuum defined with re-
spect to usual flat (Minkowski) space-time perceives the
vacuum as a thermal bath of particles with temperature
(famous as Hawking-Unruh temperature) given by

T =
~a

2πkc
=

a

2πk
(1)

where a is the acceleration in the instantaneous rest
frame of the detector, c, ~, k represent speed of light in
vacuum, Plank’s constant and Boltzmann’s constant re-
spectively. The second equality follows upon employing
choice of natural unit i.e. ~ = c = 1.

Hawking [3, 4] has also shown in an earlier paper
that a black hole should radiate with a temperature given
by eq. (1). If we use principle of equivalence, we realise
Hawking effect is intimately related to Davies-Unruh ef-
fect since, a uniform accelerated observer can be thought
of an inertial observer in presence of gravity. In fact, sta-
tionary observer sitting just outside the horizon of black
hole has to undergo a constant acceleration just to be at
rest.

The work of Hawking, Davies and Unruh has pro-
found implication regarding the merger of general relativ-
ity with quantum field theory. The results obtained has
brought forth a host of questions which includes questions
regarding the formulation of quantum theory of gravity,
information loss paradox. However, we will not delve into
those details in this report though. The purpose of this
brief report is to present an intuitive and physical under-
standing of Davies-Unruh effect in 1+1 dimension along
with a formal development of the topic based on KMS
condition.

The write-up is organised as follows. In section
II, we briefly mention the essential features of uniform
acceleration along with an introduction to Rindler co-
ordinates. In section III, Hwaking-Unruh temperature
(1) is obtained via considering the Doppler effect. In Sec
IV, we introduce the famous KMS condition and formally
show that the two point correlation function of free scalar
field theory appears to satisfy KMS condition when writ-
ten in terms of co-ordinates adapted to instantaneous rest
frame of accelerated observer (detector), hence define a

thermal state with temperature given by eq. (1). We con-
clude with a discussion on the physics of Davies-Unruh
effect with some important remarks.

UNIFORM ACCELERATION: RINDLER
SPACE-TIME

In this section and here on, an observer moving with
constant velocity in a flat space time will be referred as
Minkowski observer: M while we will refer to a Rindler
observer: R as one who travels with uniform acceleration
with respect to the former i.e inertial observer. By uni-
form acceleration, we mean a constant acceleration a > 0
in the positive x direction, as measured in the instanta-
neous inertial frame of reference in which R is at rest.
The orbit of R is given by:

t(τ) =
1

a
sinh (aτ) , x(τ) =

1

a
cosh (aτ) (2)

where t is the time of inertial observer and τ is the proper
time, as measured by R in his instantaneously rest frame.

In this connection, we will take a detour to un-
derstand Rindler space-time, which we will use in the
formal development of the Davies-Unruh effect in sec
IV.

Rindler Detour In this detour we will show,
Rindler space-time is nothing but the Minkowski space-
time described in a co-ordinate system adapted to the
accelerated observer R. We will now elucidate what we
mean by adapted co-ordinate.

We start with a Minkowski space-time (1+1 dimen-
sional) with invariant distance given by

ds2 =
(
dx0
)2 − (dx1

)2
, (3)

and do the following transformation:

x0 = eλ sinh(θ), x1 = eλ cosh(θ) (4)

so that (3) can be recast into

ds2 = e2λ
[
(dθ)

2 − (dλ)
2
]

(5)

The co-ordinate transformation (4) is adapted to
the accelerated observer in the sense that if we com-
pare the transformation (4) with the orbit of Rindler
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observer (2), we deduce the motion of R is given by
λ = −ln (a) =constant upon following identification:
dτ = eλdθ = dθ

a and x1 = x. Hence, translation in θ
i.e τ variable (i.e. dλ = 0) is in fact acceleration in x1

direction.

DOPPLER EFFECT APPEARS AS THERMAL
EFFECT

We will consider a plane wave with vector ~K =
±Kx̂ and frequency ωK = K > 0 in M. Now R in his
instantaneous rest frame will perceive this as ω′K(τ) given
by

ω′K(τ) = γ (ωK −Kv(τ)) = ωKe
∓aτ (6)

In small τ approximation ω′K ∼ ωK (1∓ aτ), which
is the well known Doppler shift. This very Doppler
shift is what causes the observer R to observe the wave
with a time dependent phase factor given by φ(τ) =∫
ω′K(τ ′)dτ ′ = ωK

a e
∓aτ . As a result, the power spec-

trum,measured by R is given by [5]

S(Ω) = |
∫ ∞
−∞

dτeıΩeıφ(τ)|2 =
2π

Ωa

1

e
2πΩ
a − 1

(7)

We identify the equation (7) as containing a factor
mimicking the Bose-Einstein distribution function with
the temperature T given by

2πΩ

a
=

Ω

kT
⇔ T =

a

2πk
(8)

which is exactly same as (1). Similar analysis in Rindler
space-time has also been put forward by T. Padmana-
van and coauthors in [6] but with real cosine waves. To
generalise the idea presented, we will now look at a quan-
tum field in vacuum having components at all frequencies
rather than confining our attention to a single field fre-
quency ωK . To be specific, we first compute a particular
two point correlation function (to be defined later) of
a thermal quantum field theory and compare it to the
same correlation function of a quantum field theory, liv-
ing in Rindler space-time i.e expectation value will be
taken with respect ot the Rindler vacuum. We will show
both of them bears the same Bose-Einstein distribution
function.

A massless scalar field Φ can be written as:

Φ =

∫
dK

1√
(2π)(2ωK)

[
e−ıKxaK + eıKxa†K

]
(9)

Now we consider a fourier transformed operator
g(Ω) = 1

2π

∫∞
−∞ dtΦ(t, 0)eıΩt = 1√

(2π)(2ωK)
aΩ where for

simplicity we have taken Ω > 0 and considered the
field at x = 0. We define the correlation function as
〈g†g〉 ≡ 〈g†(Ω)g(Ω′〉, which comes out to be

〈g†g〉 = 〈a†ΩaΩ〉δ (Ω− Ω′) =
2/Ω

e
Ω
kT − 1

δ (Ω− Ω′)

where we have used the fact that for a Bosonic ther-
mal state (particle content of scalar field is Bosonic)

〈a†KaK〉 = [e
ωK
kT − 1]−1. It deserves mention although we

start with all Fourier components, yet by doing Fourier
transform, we essentially reduce the calculation to the
same done previously.

As discussed earlier, to a Rindler observer, the fre-
quency gets Doppler shifted and at x = 0, we have

Φ =

∫
dK

1√
(2π)(2ωK)

[
e−ıφ(τ)aKR + eıφ(τ)a†KR

]
(10)

where the subscript R denotes these creation, annihila-
tion operators live in Rindler space-time. The integral
measure is same as in eq. (9) because of its invariance
under Lorentz transformation. Now we employ results
from conventional quantum field theory and use the fol-
lowing facts involving vacuum with respect to Rindler
observer (henceforth called |0R〉)

〈aKRa†KR〉 ≡ 〈0R|aKRa
†
K′R|0R〉 = δ (K −K ′) (11)

aKR|0R〉 = 0 (12)

and the integral over τ (we did the same to find power
spectrum) to arrive at

〈g†g〉 =
2/Ω

e
2πΩ
a − 1

δ (Ω− Ω′) (13)

Comparing the eq. (13) with the eq. (10), we arrive at
the expression for Hawking-Unruh temperature i.e T =
a

2πk .

KMS CONDITION: A PHYSICAL PERSPECTIVE

Without going into technical details of KMS condi-
tion, in this section we will try to motivate it physically
and as a by product, we are going to obtain Hawking-
Unruh temperature. We look at the Minkowski two point
correlation function ω2 ≡ 〈0M |Φ(x)Φ†(x′)|0M 〉 evaluated
at two points on Rindler orbit, (Minkowski vacuum is
referred as |0M 〉) for a massless scalar field,

ω2(x, x′) =

∫
d ~K

e−ıK(x−x′)

2ω
(14)

and express it in terms of Rindler co-ordinates as (We
recall resullts from section II. and note λ is fixed )

ω2(θ, θ′) =

∫
dK

2ω
exp

[
−ıωeλ(sinh θ − sinh θ′)

]
(15)

× exp
[
ıKeλ(cosh θ − cosh θ′)

]
(16)

which turns out to satisfy the following condition [7]:

ω2(θ, θ′) = ω2(θ′, θ − ı2π) (17)

Now in terms of the fourier transform g(Ω) ≡
1

2π

∫
dτeıΩ(τ−τ ′)ω2(θ, θ′), (we note that θ is related to
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time of R i.e τ variable and ω2(θ, θ′) = ω2(θ − θ′) due
to Lorentz invariance since translation in θ implies boost
along x direction) we can cast the eq (17) in following
form:

g(Ω) = e−
2πΩ
a g(−Ω) (18)

With the identification T = a
2πk , this becomes

g(Ω) = e−
Ω
kT g(−Ω) (19)

which has a direct physical interpretation [8] as follows:
Density of states being even function of Ω (Takagi[8]

showed it explicitly, but here we are not including it
to keep the write up brief), we can relate g(Ω) to be
proportional to the transition rate of detector to go from
a state with energy E to a state with energy E + Ω
where we have assumed Ω > 0 without loss of generality
whereas g(−Ω) represents the transition rate from level
E + Ω to level E. Now the Boltzmann factor sitting
in the eq (19) represents relative population of upper
energy level with respect to the lower one, provided
detector’s internal degrees of freedom were initially in
thermal equilibrium at temperature T . The eq. (19)
is nothing but equation of detailed balance implying
there is no net change in population of detector’s energy
levels after it is switched on, provided it is initially in
thermal equilibrium with the thermal bath of particle it
is observing.

The condition (17) is famously known as KMS con-
dition. The two point correlation function satisfying this
condition translates into a nice interpretation in terms
of accelerated detector perceiving a thermal bath of par-
ticles with Hawking-Unruh temperature. Hence, we can
take KMS condition (17) to be a signature of thermal
state and deduce the Minkowski vacuum correlation func-
tion is indeed thermal in nature.

DISCUSSION

In this work, we have looked at the physical ori-
gin of Unruh effect. The first derivation is based on
two facts that there are fluctuations in vacuum state i.e
〈aKRa†KR〉 6= 0 and the accelerated observer perceives
a time dependent Doppler shifted frequency while the
second derivation based on KMS condition gives insight
to how accelerated detector responses to Minkowski vac-
uum.

We can in fact trace back the Unruh effect to
the very definition of vacuum state, which is observer
dependent. To see that, we note the orbit of accelerated
observer is confined to the region x > 0, x > |t|, bounded
by asymptotes t = ±x, which is called Right Rindler
wedge. The left wedge can similarly be obtained for
the observer accelerating in −x direction. It is very
easy to show that the left and the right wedge are
not causally connected. Hence, the Minkowski vacuum

which pervades the all space time can’t be equal to the
vacuum state perceived by the observer living on right
Rindler wedge (or left Rindler wedge). As a result,
when Rindler observer moves through the Minkowski
vacuum, it does not appear to be vacuum to him, rather
it is an excited state brimming with particles compared
to his own Rindler vacuum. The particle distribution
precisely follows Bose-Einstein statistics for scalar field
theory in even space-time dimension. To be precise,
the restriction of Minkowski vacuum to the right (left)
Rindler wedge is a thermal state with temperature given
by the eq. (1). In this connection, it deserves mention
that the Bose-Einstein distribution with Hawking-Unruh
temperature for scalar fields is arrived at by showing

〈0M |a†KRaKR|0M 〉 ∼
[
exp

(
Ω
kT

)
− 1
]−1

, which is basi-
cally showing the expectation value of number operator
with respect to Minkowski vacuum (|0M 〉) behaves like
as if there is a thermal bath. This is what Takagi [8]
refers as thermalization theorem and he shows that the
thermalisation theorem is not equivalent to the effect
where an accelerating particle detector picks up thermal
character of the power spectrum of vacuum noise defined
by the fourier transform of two point correlation function
ω2(τ, τ ′) ≡ 〈0M |Φ(τ)Φ†(τ ′)|0M 〉 [5, 8]. These two effect
turns out to give same result only in even space-time
dimension and this fact is intimately connected to the
expression for density of states [8].

It deserves mention that the Unruh effect may seem
to be paradoxical since the particle content of the theory
appears to depend on the observer. This apparent para-
dox goes away if we think the concept of particle being a
mere label to certain states. In fact, the natural notion
of particles with respect to an observer depends on time
translation, perceived by him in his co-ordinate and it
turns out that the concept of time translation is different
in two frames M and R. In Rindler frame what we under-
stand as the time translation (translation in τ or θ) is in
fact acceleration in Minkowski frame, hence, not same as
translation in ordinary time t. With respect to τ trans-
lation, the restriction of Minkowski vacuum to Rindler
wedge appears to be thermal, brimming with particles,
but it is a non thermal vacuum state with respect to
t translation. This picture manifests in the second ap-
proach where we show that the correlation function sat-
isfies the KMS condition and hence represent a thermal
state. Nevertheless, we should arrive at same physical
prediction, in whichever way we want to label our par-
ticle states, that there is a finite probability of particle
detector carried by Rindler observer making a transition
to excited state, which the accelerating observer will de-
scribe as absorption of particle by the detector (he does
see the vacuum as an excited state brimming with parti-
cles) whereas an inertial observer will describe the same
as emission of a particle by the detector along with radi-
ation reaction back on the detector [9, 10].

As a last remark, we should add that for macro-
scopic acceleration, the Davies-Unruh effect is really
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small compared to any macroscopic temperature scale.
For example, an observer with acceleration of 5ms−1

will perceive the Minkowski vacuum as a thermal bath of
T ∼ 10−19K. But this effect could be relevant for linear
particle accelerators and as we mentioned, it does have
profound implication concerning the merger of quantum
field theory with gravity.
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