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This paper presents a simple introduction to the T.D. Lee model for solvable field theories. First,
the framework for the model is laid out and the key assumptions made are discussed. It is then
shown how the model develops scattering states and renormalizes the coupling constant to find a
scattering amplitude free of divergence. Finally, applications and comparissons of the model to
traditional methods are discussed.

INTRODUCTION

A common issue among quantum field theories is that
of renormalization. Often divergent terms appear and
prevent the theory from having a usable form, while still
being a correct theory. The hope, then, is to find some
way to renormalize the theory in such a way that the
divergent terms don’t appear in any physical measured
quantity. The most thorough and general way to do so
is the perturbation power series method of computing
Feynman diagrams in powers of the coupling constant.
While accurate, this method is cumbersome and difficult
so the preferred method is to alter the model in such a
way that straightforward calculations of physical quanti-
ties end up having all divergent terms suppressed. The
T.D. Lee model accomplishes just this for a class of field
theories. The original implementation of the model solves
a scattering process involving a single boson but has since
been applied to further field theories.

THE T.D. LEE MODEL

The example to which the T.D. Lee model was intro-
duced is a scattering process between two fermions, la-
beled V and N , and a single scalar boson, θ. The masses
for each particle are mV , mN , and µ respectively. The
free field Hamiltonian density for these particles is

H0 = mV ψ
†
V ψV +mNψ

†
NψN +

1

2

[
π2 + (∇φ)

2
+ µ2φ2

]
(1)

where ψV and ψN are the annihilation operators associ-
ated to the particles V and N respectively, and φ is the
usual scalar boson field operator [1]. Something impor-
tant to note is that the V and N particles have no kinetic
terms so they are treated essentially as fixed objects in
this model. Some treatments of the T.D. Lee model even
hold the θ particle fixed as well [2] but in following Lee’s
original the work kinetic terms for θ were left in. The
φ field can be expressed as a sum of the φ(+) and φ(−)

operators summing over the allowed wavevectors ~k in a
finite volume Ω.

φ(x) =
∑
k

(2EkΩ)
− 1

2

[
αke

ik·r + α†ke
−ik·r

]
(2)

From here we examine the scattering process of V �
N + θ, which has the following interaction Hamiltonian
density,

H1 = g
[
ψ†V ψNφ

(+) + ψV ψ
†
Nφ

(−)
]

+ δmV ψ
†
V ψV (3)

Here g is the coupling constant of the interaction and
δmV is used to correct for any change in mass of the V
particle due to the interaction and will be solved for later.
The form of the Hamiltonian is what we’d intuitively
expect from the V � N + θ interaction as the first term
describes annihilating a N and θ particle in exchange
for the creation of a V particle, while the second term
describes the reverse process. This leads us to observe
the following two conserved quantities:

NV + NN (4)

NV + Nθ (5)

where Ni is the number operator of the i particle. With
the help of these conserved quantities we can now diago-
nalize the total Hamiltonian, H = H0 +H1, in terms of
the eigenstates of the free field Hamiltonian. The eigen-
states of H0 are just the V , N , and θ particle states
denoted as |V 〉, |N〉, and (αk |0〉) respectively. By exam-
ination we can see that |N〉 and (αk |0〉) are still eigen-
states of the total Hamiltonian, but the eigenstate we
will associate with the V particle changes. A guess for
the new V particle eigenstate, denoted |V 〉, would be one
that is a superposition of |V 〉 and (αk |N〉) as these are
the terms that swap places under the interaction Hamil-
tonian. We’ll start with an arbitrary superposition of
these states of the form,

|V 〉 = Z
1
2

(
|V 〉+ g

∑
k

f(k)α†k |N〉

)
(6)

where f(k) is some probability distribution and Z is a
normalization constant. We know this state solves the
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Schrodinger equation so we can operate on this state by
the total Hamiltonian and enforce that it has the eigen-
value mV , which will constrain f(k) and δmV . Doing so
yields,

δmV = −g2
∑
k

(2EkΩ)
−1

(mV −mN − Ek)
−1

(7)

f(k) = (2EkΩ)
− 1

2 (mV −mN − Ek)
−1

(8)

Now we can normalize |V 〉 to find,

Z−1 = 1 + g2
∑
k

(2EkΩ)
−1

(mV −mN − Ek)
−2

(9)

Note that Z is a divergent quantity so we’ll need to ad-
dress it at some point in the future.

We now have what we need to apply this model to
various scattering processes and see that we can express
the scattering amplitudes without any divergent terms.
Consider the scattering process N + θ → N + θ. We
can use a similar process as before where we guess an
eigenfunction for |N + θ〉 of the form,

|N + θ〉 = c |V 〉+
∑
k

χ(k)α†k |N〉 (10)

and enforce that it is an eigenstate of the Hamiltonian
with eigenvalue, mN +Ek′ , to constrain c and χ(k). The
result is

c = −〈V |
∑
k

χ(k)α†k |N〉 (11)

χ(k) = g2Z (Ek − E′k)
−1
∫
W (k, k′′)χ(k′′)d3k′′ (12)

where

W (k, k′′) =
(mV −mN − Ek) (4EkEk′′)

− 1
2

8π3 (mV −mN − Ek) (mV −mN − E′′k )
(13)

From here we can use this form of the eigenstate to cal-
culate scattering amplitudes and phase shifts as Lee does
in his original paper [1]. But the most important thing to
note at this time is whether or not this form of |N + θ〉 is
divergent. We now have to address the divergence of Z
as it appears in the expression for χ(k). From (9) we see
that evaluating the sum in Z gives us Z → −∞. But if we
define a renormalized coupling constant, g2c = g2Z, it is
possible to keep this finite by letting the unrenormalized

coupling constant, g, approach 0 in such a way that keeps
gc finite. Something to note, however, is that to make gc
positive g needs to be imaginary, which breaks the Her-
miticity of the original Hamiltonian. We resolve this by
noting that the scattering matrix would only depend on
the real quantity gc so it is still unitary and we can just
apply a similarity transformation to the Hamiltonian to
restore it to being hermitian [2].

DISCUSSION

We’ve now seen how the Lee model produces renormal-
ized elements of the scattering matrix but it’s interest-
ing to compare Lee’s treatment to the traditional model
studied in [3]. The standard interaction Hamiltonian for
the scattering process examined in the previous section
is,

H1 = g
[
ψ†V ψN + ψV ψ

†
N

]
φ (14)

The only difference between this and (3) is that the ex-
change of a V particle with an N particle is coupled to
both the creation and anihilation of a θ particle. This
model is solvable but with considerably more work. In
terms of Feynman diagrams, the Lee model offers a sim-
plification to (14) by breaking the symmetry that allows
for an infinite number of self energy diagrams in the tra-
ditional model [3].

An important bennefit of the Lee model is that it al-
lows us to compute the commutation relation,

{
ψV , ψ

†
V

}
= Z−1 (15)

With this we can find various propagators is the LSZ
formalism [4]. For instance we can find

〈0|T
[
ψV (t′)ψ†V (t)

]
|0〉 (16)

entirely in terms of renormalized quantities.
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