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There is a large class of extensions to the Standard Model which propose a symmetry that relates
bosons and fermions, known as supersymmetry. A theorem due to Coleman and Mandula proved
the impossibility of combining space-time and internal symmetries in all but a trivial way, and the
Haag-Lopuszanski-Sohnius theorem later generalized this to show supersymmetries are the only way
of extending the Poincare algebra. Supersymmetric extensions of the Standard Model have been
heavily studied for the last 50 years for their many theoretically attractive qualities, including fixing
the divergent corrections to the Higgs mass and providing potential dark matter candidates.

INTRODUCTION

While the Standard Model (SM) has been experimen-
tally very successful, we have theoretical reasons to be-
lieve it is incomplete. In the construction of beyond-SM
theories, it is a natural question to ask – what possible
symmetries can the theory contain? Suppose we are try-
ing to describe the set of all possible symmetries of the S
matrix of some scattering theory. S is Lorentz invariant
if it contains a group of symmetries isomorphic to the
Poincare group P. Symmetries which commute with P
are called internal symmetries, and only act on particle-
type indices. The question then arises – can we build
theories with symmetries that cannot be expressed as a
direct product of the Poincare group and internal sym-
metries?

Coleman and Mandula published a solution to this
question in 1967 with a proof that for the symmetry
group G of a large class of field theories (which we dis-
cuss later), G must be locally isomorphic to a direct
product of the Poincare group and an internal symmetry
group [1]. Haag, Lopuszanski, and Sohnius later gener-
alized this theorem and showed that the only possible
non-trivial symmetries (which are not Poincare or typi-
cal internal symmetries) are supersymmetries, those that
exchange bosons with fermions (and vice versa). Super-
symmetric (SUSY) extensions of the SM thus contain a
supersymmetric partner particle (sparticle) for each SM
particle.

SUSY theories offer very theoretically appealing
beyond-SM candidates since they naturally solve many
open questions. For example, we know corrections to the
Higgs mass are quadratically divergent in the SM, and
it fails to explain the nature of dark matter (for which
we have an abundance of cosmological evidence). SUSY
elegantly solves these problems, and so has become the
dominant model for building beyond-SM theories [2, 3].

POSSIBLE SYMMETRIES OF THE S MATRIX

We begin with a discussion of Coleman and Mandula’s
’no-go theorem’ for combining space-time and internal

symmetries [1]. Suppose G is the (continuous) symme-
try group of the S matrix. Furthermore, suppose the
following:

1. (Lorentz invariance) G contains a subgroup isomor-
phic to the Poincare group P.

2. (Particle finiteness) For any finite M, there are only
finitely many particles with mass less than M.

3. (Scattering analycity) Elastic scattering ampli-
tudes are analytic functions of center-of-mass en-
ergy (s) and momentum transfer (t), except at nor-
mal thresholds.

4. (Non-trivial scattering) For any two one-particle
momentum eigenstates, scattering is non-trivial
(except possibly at isolated values of s).

5. (A technical assumption) The generators of G have
distributions for their kernels.

All these assumptions are physical, except possibly as-
sumption (5), which Coleman-Mandula described as a
necessary technical assumption “which, although weak,
is ugly”, but which they found necessary to manipulate
infinitesimal generators in the course of the proof (though
they hoped it could be weakened or removed completely
in the future). The Coleman-Mandula theorem states
that if assumptions (1)-(5) hold, then G is isomorphic to
a direct product of the Poincare group and an internal
symmetry group. In other words, the only possible sym-
metries of the S matrix factor into three distinct groups:

1. Poincare symmetries, since our theories are Lorentz
invariant.

2. Internal symmetries, whose generators act on
particle-type. Their commutators form a Lie al-
gebra: [Ai, Aj ] = ickijAk

3. Discrete symmetries (i.e. C, P, T).

These results were greatly generalized by Haag, Lo-
puszanski, and Sohnius in 1975 when they proved an
analogous version of the theorem for a weaker set of
assumptions. By allowing anticommutating (as well as
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commutating) generators, they showed the Poincare al-
gebra could be extended to allow for supersymmetries [4].
The generators of these supersymmetries act on particle
states turning bosons (fermions) into fermions (bosons),
with the anticommutation relations

{Qα, Q†
β} = 2σµαβPµ

where Pµ is the total energy-momentum 4-vector [3].
Since the anticommuting generators transform as spinors,
they cannot be internal symmetries (and in fact extend
the Poincare symmetries) [2]. Other attempts at further
weakening the assumptions of the Haag-Lopuszanski-
Sohnius theorem have been made (e.g. [5]), but since
they do not offer the same theoretical appeal of SUSY, it
is widely believed that SUSY is the only possible exten-
sion of space-time symmetries in the SM.

CONSEQUENCES OF SUPERSYMMETRY

The inclusion of supersymmetry in beyond-SM theories
has many favorable implications, both theoretically and
phenomenologically.

Theoretically, SUSY solves many of the divergence
problems in the SM. Since each bosonic particle has a
fermionic partner of the same mass, they must have the
same mass renormalization. But since fermionic mass
terms can only be logarithmically divergent and bosonic
mass terms can be quadratically divergent, by applying
the supersymmetry it is clear the quadratic divergences
(of scalars) must vanish at every order of perturbation
theory [2, 3]. This automatically fixes problems such as
the (quadratically) divergent Higgs mass corrections in
the SM. Furthermore, since the vacuum state is super-
symmetric (i.e. Qα|0〉 = Q†

β |0〉 = 0) the vacuum en-
ergy must be zero (〈0|H|0〉 = 0), and in fact the bosonic

and fermionic contributions to the vacuum energy exactly
cancel at all orders in perturbation theory[3].

However, there is clearly no evidence for SUSY parti-
cles with the exact same mass as their SM partners, since
we would have seen them already in our particle colllid-
ers. Thus if supersymmetry is realized in nature, it must
not be an exact symmetry, but spontaneously broken. It
is possible to have an approximate supersymmetry that
still fixes the quadratic divergence of the Higgs mass at
the right scales, so long as the mass differences are not
too large [2]. Since such SUSY theories have a large spec-
trum of sparticles which are weakly coupled to the SM
sector, they offer good candidates for dark matter parti-
cles to help explain cosmological observations.

A spontaneously broken supersymmetry is phe-
nomenologically rich, and such sparticles should be
within reach of the latest particle colliders. The most
recent searches at the Large Hadron Collider (LHS) have
yet to reveal experimental evidence for any SUSY the-
ories. Nonetheless, search efforts preparing for the next
LHC run at

√
s = 13 TeV are underway, and there is still

parameter space to explore.
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