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In this paper I present an introduction of the large N approximation method for certain models
of quantum field theories. Naively, one expects that adding more types of particles will increase
the complexity of a theory. However, under certain conditions, the opposite is true and one can
even obtain nonperturbative results. I will first illustrate the formulation of the 1/N expansion by
analyzing the structure of diagrammatic perturbation theory, and then discuss what new insights it
may provide.

INTRODUCTION

The large N expansion is based on an observation that
under certain conditions, a perturbation series is orga-
nized in such a way that it can be partially resummed to
obtain nonperturbative results. Generally, in perturba-
tion theory we start writing down Feynman diagrams and
usually evaluate only diagrams which contain no more
than two loops. This is partially due to the technical
difficulty of evaluating higher order diagrams, but also
because it is thought that the relevant physics should be
apparent at the one or two loop level. Occasionally, how-
ever, it turns out that it is possible to go beyond this and
actually sum an (infinite) part of the full expression. In
these cases, we can obtain some qualitatively new results.
Partial resummations are the basis of multiple approxi-
mation schemes, such as 1/N which we discuss here, or
the RPA approximation in condensed matter.

First, I remind the reader of the Feynman rules for the
φ4 model
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The Feynman rules for this theory are as follows, where
internal propagators are integrated over:

i
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(a) Propagator

−iλ

(b) Vertex

We know without doing any calculations that as we
add vertices, the contributions of the diagrams become
suppressed by higher powers of the small parameter λ (at
least until the symmetry factor overwhelms the ‘small-
ness’ of λn). The situation can change when we introduce
additional φ fields and are careful about our expansion
parameter.

LARGE N FORMULATION FOR (φ2)2

Now we consider the following model: let φ be a vector
valued field whose components are distinct scalar fields

φα with α = 1...N. The Lagrangian is
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where the repeated index is summed over. This La-
grangian is invariant under an O(N) symmetry which
rotates the components of φ. We wish to investigate the
limit of N becoming large, but before we do this, we will
make two modifications. The first is that we rescale our
coupling constant λ by N ; let g0 ≡ λN , and consider the
limit N →∞ as g0 is held constant. The reason for this
can be seen by considering the one loop correction to the
propagator:
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This diagram is proportion to λN because we need to
sum over N possible field indices for the loop. Higher
order corrections will go like even higher powers of N .
Therefore, taking the N → ∞ limit with λ fixed is not
sensical. If instead we take the limit with g0 fixed, the
factor of N from the loop is cancelled. It turns out that in
this case all corrections to the propagator will be O(N0)
or lower, so an expansion in powers of 1/N is well defined
and diagrams such as the one above are the only ones
which contribute in the large N limit.

At second (and higher) order in g0 there is a distinction
between loops where we need to sum over the N possi-
ble particles running around, and those where the field
indices are fixed by the external legs. We can make this
distinction evident by decoupling the interaction using
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FIG. 2: The new propagator after decoupling the
original interaction
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(a) First order
contribution. One σ
propagator, no loops:

O(g0/N)

(b) One of the second order
corrections. Two internal σ lines, one

loop: O(g2o/N)

(c) The other second order
correction. We have two

internal σ lines, but no loops,
so this diagram is O(g20/N

2)

FIG. 3: The first order and two second order contributions to the four point function.

an auxiliary field. We introduce a Hubbard-Stratonovich
field σ(x) so that the Lagrangian becomes

L′ = 1
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where φ2 = φaφa. We have traded a (φ2)2 interaction for
a σφ2 interaction and an extra field to integrate over. The
benefit of doing this is that all of the power counting is
now contained in the σ propagator Gσ = ig0/N , denoted
by a dotted line, and the number of φ loops, which are

each proportional to N . Now it becomes simpler to figure
out what the leading contributions to certain processes
are; all we do is connect the lines, and count the number
of internal σ lines and φ loops.

Consider the four point function G(4)(φα1 , φ
β
2 , φ

γ
3 , φ

δ
4)

where superscript indicates field index and φi ≡ φ(xi).
Due to the nature of the interaction, the indices must
come in pairs, i.e. α = β, γ = δ or permutations. The
diagram which appear at first and second order in g0
are illustrated Figure 3. Note that the two second order
corrections have different N dependence, as promised.

At higher order (O(g50) for the diagram shown) we will
have structures like

By counting the number of σ lines and φ loops, we may
convince ourselves of the following fact: for every loop
which contains a σ, the contribution is less by a factor
of N . The point is that to leading order in 1/N , the
diagrams that survive are the ones which have the most
φ loops. They look like this (omitting external legs):

+ + + ...

This sequence of bubbles is a geometric series which we
can be evaluated explicitly. Denote by Π(p2) the value
of the loop integral,

Π(p2) =

∫
ddk

(2π)d
i

k2 −m2 + iε

i

(k − p)2 −m2 + iε
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Then the series above reads

Gσ +GσΠ(p2)Gσ +GσΠ(p2)GσΠ(p2)Gσ + ...

= Gσ ×
∞∑
n=0

(
Π(p2)Gσ

)n
= Gσ ×

[
1−GσΠ(p2)

]−1
(5)

Restoring the external legs we find

G(4) =
1

G−1σ −Π(p2)
×

4∏
n=1

i

k2n −m2 + iε
(6)

When we apply the LSZ reduction formula, the external
legs are amputated, so we focus on the first part of the
above expression. Evidently, when G−1σ −Π(p2) = 0, the
scattering amplitude has a pole. Thus, through the 1/N
expansion, we have discovered a metastable bound state
in the two body scattering process.

WHAT ELSE CAN HAPPEN? GROSS-NEVEU
MODEL

The large N expansion can reveal other interesting
physics; in this section I briefly describe its application
to another theory. The Gross-Neveu model is defined in
terms of a set of massless interacting Dirac fields:

L = ψ̄a /∂ψa + g0
N (ψ̄aψa)2 (7)
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This Lagrangian is SU(N) invariant.
As before, we introduce an auxiliary field to decouple

(ψ̄ψ)2 → σψ̄ψ. The derivation of the following results re-
quires slightly more advanced technology, so I state them
mostly without justification.

One can derive an effective potential for this theory
by minimization of the action, which involves some func-
tional integration tricks. The effective potential is a sum
of a series of Feynman diagrams, but once again the
quantity 1/N is the hero of the story: it allows us to
restrict our attention to a subset of diagrams which may
be summed exactly.

It can be shown that the minimum of the effective po-
tential occurs at a nonzero value of σ = σ0. On the other
hand, this value σ0 acts like a mass for the ψ fields due to
the interaction term σψ̄ψ! We began with massless Dirac
fields, but to leading order in 1/N , the fields acquire a
mass.

CONCLUSION

I have motivated that in some field theories, when we
send the number of different types of fields to infinity

while keeping the coupling g0 = λN fixed, there is a
drastic effect on which diagrams in the perturbative ex-
pansion matter. Working to lowest order in 1/N allows
us to resum the series to all orders in g0 and obtain non-
perturbative results.

This expansion has enjoyed success in QCD (even
though there N is only 3) and is also frequently used
in condensed matter theory. The application of this ex-
pansion to matrix valued field theories was the beginning
in the historical development of the AdS/CFT correspon-
dence. In this paper, I have sought to provide a flavor
of the basics of large N methods without going into the
technical details.
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