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Abstract

The Casimir force, which is the attraction of two uncharged material bodies due to modification
of the zero-point energy associated with the electromagnetic modes in the space between them,
has been measured with per cent-level accuracy in a number of recent experiments. A review
of the theory of the Casimir force and its corrections for real materials and finite temperature
are presented in this report. Applications of the theory to a number of practical problems are
discussed.
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1. Introduction

The force between uncharged conducting surfaces, the so-called ‘Casimir force’, was described
by Schwinger as one of the least intuitive consequences of quantum electrodynamics. For
conducting parallel flat plates separated by a distance d, this force per unit area has the
magnitude [1]

F(d)

A
= π2

240

h̄c

d4
= 0.013

1

d4
dyn(µm)4 cm−2. (1)

This relationship can be derived by consideration of the electromagnetic mode structure be-
tween the two plates, as compared with free space, and by assigning a zero-point energy of
1
2 h̄ω to each electromagnetic mode (photon). The change in total energy density between the
plates due to modification of the mode structure compared with free space, as a function of the
separation, d , leads to the force of attraction. This result is remarkable partly because it was
one of the first predictions of a physical consequence directly due to zero-point fluctuations,
and was contemporary with, but independent of, Bethe’s treatment of the Lamb shift. Although
the existence of this force was predicted over half a century ago, it has been measured to high
accuracy (per cent level) only recently, within the last eight years.

The only fundamental constants that enter equation (1) are h̄ and c; the electron charge, e,
is absent, implying that the electromagnetic field is not coupling to matter in the usual sense.
Perhaps this is stating the obvious, but the plates impose boundary conditions on the field and
so their microscopic properties, in the limit of perfect conductivity, are not important. The role
of c in equation (1) is to convert the electromagnetic mode wavelength to a frequency, while
h̄ converts the frequency to an energy.

The term ‘Casimir effect’ is applied to a number of long-range interactions, such as
those between atoms or molecules (retarded van der Waals interaction) and an atom and a
material surface (Casimir–Polder interaction) and the attraction between bulk material bodies.
The latter effect is generally referred to as the Casimir force and depends only on the bulk
properties of the material bodies under consideration. This report will be limited primarily to a
discussion of, and literature references to, the Casimir force because this forms a complete and
distinct subject among the various Casimir effects. This report will also be limited primarily
to applications in the realm of electromagnetism; as is well-known, the basic idea that the
boundaries of a system can affect its physical properties has far-reaching consequences from
condensed matter studies to quantum chromodynamics. (See [2–4] for reviews of the broader
applications.) More specific reviews are presented in [5], in [6], which was compiled in
honour of Dr Casimir’s 80th birthday, and in [7], in honour of his 90th birthday. The most
comprehensive recent review of the field is given in [8].

This report will give a background discussion on the meaning of the Casimir force, which
remains controversial, i.e. does it prove that the electromagnetic field contains zero-point
energy? An overview of theoretical and experimental developments over the last five years or
so will be provided. Finally, applications of the Casimir force to some unusual and not-widely-
appreciated physical situations will be discussed. The breadth of the field is so great that a
comprehensive review of the literature is no longer possible or desirable in a single work [9].

The view that the Casimir force is simply the long-range (retarded) van der Waals
interaction between material bodies is not accurate because the effect of the material boundaries
must be considered in the calculation of the force. Furthermore, the van der Waals interactions
between particles is non-additive, with the deviation increasing with density. Even in the case
of three molecules, the van der Waals interaction is modified [10]. However, as shown in [5]
(pp 249–51), a reasonable estimate of the Casimir force can be obtained by considering the
pairwise interactions between the molecules contained in parallel plates with the polarizability
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determined from the dielectric constant, ε, and the Clausius–Mosetti relation. In the limit of
ε → ∞, a 1/d4 force law with magnitude about 80% of Casimir’s result is obtained. The lack
of additivity is further addressed in [5], pp 254–8.

As mentioned above, one manifestation of a Casimir effect has its origin in molecular
(van der Waals or dispersion force) interactions; this is the force of attraction between dielectric
bodies which, in the case of tenuous media, can be interpreted as arising from the retarded
(1/r7) and short-range (1/r6) van der Waals potentials between the molecules that make up
the bodies, as was first discussed by London [11]. When the bodies are sufficiently dense, it
is no longer valid to consider molecule–molecule interactions alone, and one must take into
account the boundary conditions for the electromagnetic fields at the material surfaces and
intermolecular effects. Lifshitz [12]1 first developed in 1956 the theory for the attractive force
between two plane surfaces made of a material with a generalized susceptibility. His work was
motivated by experimental results from force measurements between dielectric bodies that were
much smaller than expected due to van der Waals interactions alone [13,14]. Remarkably, the
Lifshitz result does not explicitly involve a body’s molecular properties; the attractive force
is a function of only bulk material properties and the separation between the planes. The
commentary in [14] indicates that before the Lifshitz analysis, it was expected that solid body
force measurements would directly measure intermolecular forces, effectively amplified by
the sheer number of participating pairs. The Lifshitz result indicates the importance of the
boundaries, and in the limit of high density it is no longer possible to discuss the problem in
terms of pair interactions.

For the case of perfect conductivity (near infinite electrical permittivity) the Lifshitz result
is identical to equation (1), i.e. the force of attraction is independent of the electron charge or
properties of the material bodies. The simplicity of the Casimir derivation leads one to ascribe a
certain reality to electromagnetic field zero-point fluctuations, implying that the Casimir force
is an intrinsic property of space. However, there is a point of view that the attractive force
is due only to the interactions of the material bodies themselves, as implied by the Lifshitz
derivation. There is a considerable body of literature concerning the source of the Casimir
force (see [5] for an extensive discussion). This point is further discussed in section 2.3.
Because the Casimir and Lifshitz approaches are in some respects at the opposite extremes,
a brief discussion of the fundamentals of the Lifshitz calculation is relevant. However, the
reader should be warned that the Lifshitz calculation is mathematically complicated; Ginzberg
( [5], footnote p 233) comments that the calculations are ‘so cumbersome that they were not
even reproduced in the relevant Landau and Lifshitz volume ([15], chapter 9) where, as a rule,
all important calculations are given’. (The calculations, using Green’s function techniques,
are presented in [16], chapter 13, while the original chapter 9 of [15] has been deleted from the
most recent editions.) The complexity of the calculations are sufficiently great for the validity
of the Lifshitz result to have been initially doubted, but the same result was eventually obtained
using a number of more transparent methods (see [5], chapter 7, [17]).

For real materials, equation (1) must break down when the separation, d, is so small
that the mode frequencies are higher than the plasma frequency (for a metal) or higher than
the absorption resonances (for a dielectric) of the material used to make the plates; for suf-
ficiently small separation, the force of attraction varies as 1/d3, as discussed in particular by
Lifshitz [12]. In analogy with the attractive forces between atoms, the force in this range is
sometimes referred to as the London–van der Waals attraction, while the 1/d4 range is referred
to as the retarded van der Waals (Casimir) interaction. For the Casimir force, the crossover

1 A typographical error in equation (1.13) should be noted (in the equation for wz, the argument of the exponential
has the wrong sign, both in the original article and in the translation).
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distance between the regimes is d ∼ 100 nm, much larger than the atomic spacings in the
materials, and so it still makes sense to describe the materials by their bulk properties (index
of refraction); the 1/d3 versus 1/d4 interaction is in this case due to the truncation of the
mode frequencies that are affected by the changing plate separation. Therefore the crossover
between the two regimes appears to be of physically different origin compared with the case
of the attractive forces between isolated atoms. Of course, when the plates are sufficiently flat
and clean, when they are brought together the force does not go to infinity, but the plates fuse
together with molecular or atomic bonding. When this bonding occurs, the maximum energy
from the attractive force has been extracted.

The Casimir force and its calculation represent an electromagnetic waveguide problem,
where imperfect materials are used in the construction of the waveguide. The zero-point fields
are those associated with the waveguide; these modes do not exist in free space, and so the
idea that the Casimir force represents a negative energy density compared with free space is
controversial. It has also been suggested that the Casimir force might be a source of unlimited
energy. Negative energy might be a necessary ingredient for time travel [18], and so the
Casimir force has attracted some popular attention. As described in this report, the source of
the Casimir force can be interpreted as due to fluctuations of charges within the material body;
in the context of this picture, the negative energy idea can be questioned. In addition, Hawking
further points out that zero-point fluctuations would lead to the rapid collapse and dissipation
of a cosmic ‘worm hole’. Finally, the Casimir force might be thought of as a ‘precursor’
to chemical bonding, that is the long-range attractive force that eventually leads to chemical
combination. The amount of energy available from the long-range part of the chemical energy
is infinitesimal compared with the full bonding energy (see [19]).

Given that the distances where the force of attraction is sufficiently strong to be experi-
mentally detected are d ∼ 1000 nm or less, the frequencies of interest are in the infrared and
optical ranges. Thus an accurate theoretical description of an experimental system must take
into account the optical properties of the plate material, as will be discussed later in this report.

There have been only a few dozen published experimental measurements of the Casimir
force, to be compared with more than 1000 theoretical papers on the subject. Perhaps very few
doubt the strict validity of equation (1) or its modification for real materials as derived in [12].
Because of the unavoidable uncertainties in bulk material and surface properties, verification
of equation (1) as a test of QED will likely always be inferior to measurements of the Lamb
shift or g − 2 of the electron. However, Casimir’s idea remains central to theoretical physics,
as evidenced by the exponential growth of references to his original paper, as illustrated in
figure 1 (after [5]).

Only recently have measurements of the Casimir force with accuracy at the per cent-
level of precision become possible. However, the existence of short-range cohesive forces has
been recognized since the earliest days of modern physics. Cavendish [20] considered this a
possible correction to his measurements of the gravitational constant, as discussed in his 1798
publication describing his work which marks the beginnings of modern experimental science:

Another objection, perhaps, may be made to these experiments, namely, that it is
uncertain whether, in these small distances, the force of gravity follows exactly the
same law as in greater distances. There is no reason, however, to think that any
irregularity of this kind takes place, until the bodies come within the action of what
is called the attraction of cohesion, and which seems to extend only to very minute
distances.

Cavendish tested whether there was an anomalous force at small separations, and found none.
So not only did Cavendish set a possible limit on the magnitude of the Casimir force, but also
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Figure 1. Number of citations per year of Casimir’s 1948 paper. The time constant of exponential
increase is about 12 years.
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Figure 2. Coordinate system for calculating the Casimir force.

on other possible forces that are again the nouvelle vague in the context of string and particle
field theories.

2. Source of the Casimir force

2.1. Casimir’s calculation [1]

The geometry for calculation of the Casimir force is shown in figure 2. For perfectly conducting
plates, the boundary condition is that the parallel component of the electric field is zero at the
surfaces of the plates. This places a quantization on kz:

kz = nπ

d
, (2)

while kx and ky are continuous in the case of plates of large area. The zero-point energy is
calculated by assigning h̄ω/2 to each mode,

E(d) = 2
′∑

kx ,ky ,kz

h̄ωkx,ky,kz

2
=

′∑
kx ,ky ,n

πh̄c

√
k2
x + k2

y +
n2π2

d2
, (3)
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where the factor of 2 is for the two polarization modes, and the prime on the sum indicates that
there is only one polarization state for the n = 0 mode where the electric field is perpendicular
to the plates. The sum over kx and ky is replaced by an integral,

∑
kx

→ (L/π)
∫ ∞

0 dkx ,
and similarly for ky . If d is made arbitrarily large, the sum over n can also be replaced by an
integral.

The Casimir force is determined by the change in energy when the plates are at finite d

and when d → ∞, which determines the potential energy

U(d) = E(d) − E(∞) = h̄c
L2

π2

∫ ∞

0

∫ ∞

0
dkx dky

[ ′∑
n

√
k2
x + k2

y +
n2π2

d2

− d

π

∫ ∞

0
dkz

√
k2
x + k2

y + k2
z

]
. (4)

Now Casimir’s trick was to introduce a cutoff function, f (ω/c) = f (k) = f ((k2
x + k2

y +
k2
z )

1/2, which has the property that f (k) = 1 for k � km and f (k) = 0 for k � km, where
ckm ≈ ωp, the plasma frequency for the metal costituting the plates. Using polar coordinates

to specify kx,y with k =
√

k2
x + k2

y and substituting x = k2d2/π2 and κ = kzd/π ,

U(d) =
[
π2h̄c

4d3

]
L2

[
1

2
F(0) +

∞∑
n=1

F(n) −
∫ ∞

0
dκF(κ)

]
, (5)

where

F(κ) =
∫ ∞

0
dx(x + κ2)1/2f

((π

d

)
(x + κ2)1/2

)
. (6)

The potential energy can be calculated by use of the Euler–Maclaurin summation formula [21],

∞∑
n=1

F(n) −
∫ ∞

0
dκF(κ) = −1

2
F(0) − 1

12
F ′(0) +

1

720
F ′′′(0) + · · · , (7)

if F(∞) = 0. The derivatives can be calculated by noting that

F(κ) =
∫ ∞

κ2
du

√
uf

((π

d

) √
u
)

→ F ′(κ) = −2κ2f
((π

d

)
κ
)

(8)

by the fundamental theorem of calculus. Assuming that all derivatives of the cutoff function
go to zero as κ → 0, the only contribution is the F ′′′(0) term; therefore

U(d) =
[
π2h̄c

4d3

]
L2 × −4

720
= −

[
π2h̄c

720d3

]
L2 (9)

and calculating the force as −dU(d)/dd reproduces equation (1).
The interesting point of this calculation is that the specific form of the cutoff function

does not enter. Introducing the cutoff function makes the otherwise divergent integral vanish,
and so it is tempting to believe that the cancellation would occur without the cutoff. An
alternative point of view is that there are no zero-point excitations of the fields near the plates
for frequencies much higher than ωp. It can be shown that the dominant contribution to the
force occurs at k ≈ 1/4d , with contributions from higher k falling off exponentially. So for
large separations it is not surprising that the result does not depend on ωp.
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2.2. Lifshitz calculation

The Lifshitz calculation [12] is developed from Rytov’s theory [22] of charge and current
fluctuations in a material body. These fluctuations serve as a source term for Maxwell’s
equations, i.e. classical fields, subject to the boundary conditions presented by the body
surfaces. These fluctuations, as described in [22], are a result of Johnson noise in a dissipative
medium, and can be understood from the following considerations. If a small cubical volume
cell �V = L3 inside one of the bodies is taken, the current and electric polarization
fluctuations within that volume can be determined by use of the fluctuation–dissipation
theorem [23, 24].

Any specific material body has a frequency-dependent complex electromagnetic
permittivity (which is called the dielectric constant in the case of non-conducting bodies)
ε(ω) = ε′(ω)+iε′′(ω), where the imaginary part of ε leads to dissipation of the electromagnetic
energy in the material body. (It is assumed here that the magnetic permeability is unity.) In the
case of a conductor with static electrical conductivity σ , ε(ω) = 4π iσ/ω (using Gaussian units
for this and subsequent equations). Consider a current I from one cube face to the opposite one;
as the current flows, charge will accumulate on either face, leading to an electrical polarization
across the cube, 90˚ out of phase with the current. The electrical resistance across the cell is
R = 1/σL; from the fluctuation–dissipation theorem, the random current spectral density is

|I (ω)|2 = h̄ω

π
R−1

[
1

2
+

1

eh̄ω/kT − 1

]
, (10)

where k is Boltzmann’s constant and T is the absolute temperature. (This can be derived by
analogy with a harmonic oscillator, with charge Q and current I analogous to the conjugate
variable’s position x and momentum p.)

The oscillating current, I (ω), will lead to an oscillating charge, Q(ω), per unit area
(total area L2) on either side of a cell, and this represents an electric polarization field
K(ω) = Q(ω)/L2 within the cell. Because I (ω) = Q̇(ω)/4π , the magnitude of the charge
fluctuation is |Q| = 4π |I |/ω. (In the case of a non-conducting dielectric with absorption, this
argument also applies because the absorption will lead to a fluctuating polarization that can be
interpreted as a current.) The spectral density of the electrical polarization within a small cell
is therefore

|K(ω)|2 = |4πQ(ω)|2
(ωL2)2

= 4h̄

[
4πσ

ω

]
1

L3

[
1

2
+

1

eh̄ω/kT − 1

]

= 2h̄ε′′ coth
h̄ω

2kT

1

L3
. (11)

It can be assumed that the electrical fluctuations (that is, electrical charge movement due
to thermal fluctuations as opposed to that driven by a field generated external to the cell)
between the three sets of opposite cube faces are uncorrelated, and that fluctuations at different
cells in the bodies are uncorrelated. These assumptions are valid for a material with a linear
electrical response, implying that the magnitude and spectrum of the fluctuations are unaltered
by fields in the body. Furthermore, as �V → 0, 1/L3 = δ(	r − 	r ′), where 	r ′ labels the cell
location. Labelling the directions across the cube as i, j, k, the average polarization fluctuation
spectral density can be written as

Kω
i (	r)Kω

j (	r ′) = 2h̄ε′′ coth

[
h̄ω

2kT

]
δij δ(	r − 	r ′). (12)
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This is the Lifshitz calculation source term. The fluctuations persist at T = 0, and appear to be
associated with the material body, in contrast to Casimir’s calculation, where the fluctuations
were associated with the electromagnetic field.

In this analysis, a linear electrical response was taken, implying that the fluctuating fields
do not modify the material properties. The modifications of non-additivity in the pairwise
interactions of the molecules of a body are accounted for in the bulk electrical properties of
the material. Unfortunately, these properties are difficult to calculate from first principles or
molecular properties, and so properties of relevance to accurate determination of the Casimir
force must, to a large degree, be measured by experiment.

In light of more transparent calculational techniques, further commentary on the Lifshitz
paper is not warranted, but it remains one of the most elegant works in the history of
mathematical physics.

2.3. Identification of the source of the Casimir force

The calculation of the Casimir force in terms of changes in the zero-point energy of the
electromagnetic field energy seems so natural that the Casimir effect has been generally
taken as proof of the reality of the zero-point electromagnetic vacuum field energy. However,
Schwinger et al [25] produced a derivation of the Casimir force from a theory for which there
are no nontrivial vacuum fields, and Milonni [26] has produced a derivation without reference
to the vacuum radiation field. The fact that the Casimir force can be largely explained by the
van der Waals pairwise interaction between molecules in the plates, which can be calculated
without reference to the electromagnetic vacuum field, along with Schwinger and Milonni’s
considerations, indicates that the Casimir force is not sufficient proof for the existence of the
zero-point of the electromagnetic vacuum field.

The approaches in Casimir and Lifshitz calculations directly illustrate the problem in
ascribing the source of the Casimir force to the zero-point vacuum field. The Lifshitz
calculation makes use of the fluctuation–dissipation theorem which is based on the energy
storage in an electric field, and in a certain sense, the quantization of the stored energy indirectly
implies that the zero-point of the electromagnetic field modes is automatically filled to a
minimum energy of h̄ω/2 for every mode; however, the Lifshitz calculation of the attractive
force does not require quantization of the electromagnetic field, and in this respect is analogous
to the Planck analysis of the black body spectrum; one cannot decide whether the quantization
lies in the fluctuation spectrum of the material body, or with the electromagnetic field [27].
On the other hand, Casimir assigned a certain reality to the zero-point excitations by his
assumption of h̄ω/2 energy for each mode in his calculation. The two approaches represent
different realizations of the same phenomenon; they have in fact been shown to be identical
( [28–30]. As stated by Milonni, interpretation of the Casimir force in terms of the vacuum
field is a matter of taste ([5], pp 250–1).

However, the question of whether zero-point fluctuations of the free-space electromagnetic
field exist might be moot. Milne suggests that space is not an object, but a map invented to
describe the location of objects: ‘It is an unreflecting person who views space as a visible
emptiness’ [31]. The point is that our universe contains matter; a region of unconnected
emptiness is elsewhere—the very presence of matter within our observable universe implies
an excitation of the electromagnetic field, if there is to be equilibrium between the matter
and the electromagnetic field at zero temperature, in which case the field excitation is the
zero-point energy. As an aside, Milne’s model of the universe is accepted as valid for an
empty universe [32]; is a universe that contains zero-point fluctuations empty, or do zero-point
fluctuations lead to a gravitational potential? These questions have vexed modern physics,
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and led Pauli to reject the notion of zero-point energy, at least in the case of the free-space
quantized electromagnetic field [33, 34]; the energy density due to the zero-point excitations
of the eletromagnetic field exceeds 1060 g cm−3, depending on the cutoff, as discussed in [35].
This zero-point energy density has to be incorporated into general relativity, where it acts in
effect as a cosmological constant as introduced by Einstein to produce a static solutions of his
field equations. Astronomical data indicate that the cosmological constant is many orders of
magnitude smaller than implied by the enormous pressure due to zero-point excitations [36],
and this difficulty remains unresolved.

The source of the Casimir force, and zero-point field excitations, is eloquently stated by
Lifshitz [12]:

We can however approach this problem in purely macroscopic fashion . . . From this
point of view, the interaction of the objects is regarded as occurring through the
medium of the fluctuating electromagnetic field which is always present in the interior
of any absorbing medium, and also extends beyond its boundaries—partially in the
form of travelling waves radiated by the body, partially in the form of standing waves
which are damped exponentially as we move away from the surface of the body. It
must be emphasized that this field does not vanish even at absolute zero, at which
point it is associated with the zero-point vibrations of the radiation field.

Perhaps it should be added that the fluctuating field could be associated with the zero-point
motion of electrons within the body. Under the circumstances, the term ‘molecular’ in the title
of [12] might have been better left out. We can guess that this work, the title in particular, was
directed towards experimental measurements between material bodies which were expected
to determine the molecular van der Waals potential, as described above. As Lifshitz states,
‘In the limiting case of rarefied media, the method must of course lead to the results as are
obtained by considering the interactions of individual atoms’, the point being that the attractive
(Casimir) force between extended dense bodies tells us little with regard to the (retarded) van
der Waals interaction between individual atoms and provides no direct proof of the existence
of a zero-point vacuum field.

The Casimir force can be thought of as an emergent collective phenomenon; all
calculations in fact leave out details of field quantization and its interaction with matter, and
calculate the electromagnetic field from its bulk response to matter which always includes
some dissipation. This dissipation ensures that the fields are coupled to a thermal bath, which,
even at absolute zero, still has energy associated with the zero point.

In concluding this introductory section, we see that the source of the zero-point excitation
of the electromagnetic field is irrelevant in Casimir’s calculation. There are physical
phenomena that truly require a quantization of the electromagnetic field for their explanation;
the Casimir force is not among these phenomena, because the predictions based on the different
points of view are identical.

3. Calculational techniques

3.1. Van Kampen et al’s technique

The idea that a sum can be converted into a complex contour integral is described in [37]
(p 413), and has broad applications in all branches of physics. In the case of the Casimir
force, the techniques were first used in [38]. A brief outline of the technique is presented here
(see [5], chapter 7 for details). (Green’s function techniques, described in [16], section 81,
will not be reviewed here.)
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The electromagnetic wave propagation vectors in, and perpendicular to, the surfaces
(vacuum, plates) shown in figure 2 are

K2
i = k2 − εi(ω)

ω2

c2
, (13)

where k is a real number, and i = 0, 1, with 0 (ε0(ω) = 1) representing the space between
the plates and 1 representing the plates, with the requirement Re(Ki) � 0. The possibility of
a complex ε1 must be allowed for, in which case Ki can be complex. In section 3.3, the use
of the technique in the case of absorption (complex ε) is justified. The real number k is the
Fourier variable for describing fluctuations that vary as a function of position in the direction
parallel to the plate surfaces. It should be noted that k and ω are independent variables, and
only when ω/k � c can we think of the waves as propagating; otherwise they are evanescent
or ‘above the light cone’.

There are two type of solutions to the wave equation, one with the electric vector parallel
(TE or H waveguide modes) to the surfaces (with arbitrary orientation chosen as the y axis,
in which case the x dependence of the fields is eikx), ey(z), and one with the electric vector
perpendicular (T M or E waveguide modes) to the surfaces (taken as the z axis), ez(z). The
wave equation in the z direction is

d

dz
ey,z(z) − K2

i ey,z(z) = 0 (14)

and the boundary condition for ez is that dez/dz and εez be continuous, while for ey it is
that dey/dz and ey be continuous. Ignoring unphysical exponentially growing solutions, the
solutions are

ey,z(z) = AeK1z z < 0
= BeK0z + Ce−K0z 0 � z � d

= De−K1z z > d,

(15)

which lead to two sets of linear equations relating A, B, C and D for each of the two cases. The
condition for nontrivial solutions of these equations is that the determinant of the coefficient
matrix be zero, yielding the following two expressions. For TM modes,

(K1 + ε1K0)
2

(K1 − ε1K0)2
e2K0d − 1 = 0 = fz(k, ω, d), (16)

while for TE modes,

(K0 + K1)
2

(K0 − K1)2
e2K0d − 1 = 0 = fy(k, ω, d). (17)

The zeros, ωny,nz(k, d), of fy,z determine the allowed mode eigenfrequencies.
The zero-point energy associated with the plates is determined by assigning an energy

h̄ω/2 to each mode,

E(d) =
∑
n,	k

[
h̄ωny(k, d)

2
+

h̄ωnz(k, d)

2

]
(18)

(in general, the eigenfrequencies are complex, but the imaginary parts cancel as discussed in
section 3.2). The sum over k, in the continuum limit, becomes an integral,

∑
	k

→
(

L

2π

)2 ∫
2πk dk, (19)
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where L is the transverse dimension of the plate in the x, y directions. As described in [37],
the theory of complex functions can be employed to evaluate the sum over eigenfrequencies;
specifically, according to the argument theorem [39, 40],

1

2πi

∮
C

f ′(z)
f (z)

dz = N − P, (20)

where C is a closed path in the complex plane, N and P are the numbers of zeros and
poles within C, respectively, and the path is counterclockwise. The argument theorem can
be modified to give the sum of the zeros and poles:

1

2πi

∮
C

z
f ′(z)
f (z)

dz =
[∑

zi

]
f (zi )=0

−
[∑

zi

]
f (zi )=∞

. (21)

Furthermore, f ′(z)/f (z) = d(log f (z))/dz. The eigenfrequencies of physical interest lie in
the right half plane; integrating along the imaginary axis from ∞ to −∞ and closing the path
with a semi-circle at infinity around the right half plane (see [5] for details) and integrating by
parts gives

E(d) = h̄L2

8π2

∫ ∞

0
k dk

∫ ∞

−∞
dξ [log gy(ξ, k, d) + log gz(ξ, k, d)] (22)

with ω = iξ , and ξ is real, gy,z(ξ, k, d) = fx,y(iξ, k, d), and

Ki = k2 +
εi(iξ)ξ 2

c2
. (23)

Finally, the poles of equations (16) and (17) do not depend on d because it only enters in
the multiplicative exponential; therefore, equation (22) gives the zero-point energy up to an
additive constant, while the force per unit area is given by

F(d) = − ∂

∂d
E(d) = − h̄

4π2

∫ ∞

0
k dk

∫ ∞

0
dξK0

[
1

gy(ξ, k, d)
+

1

gz(ξ, k, d)

]
, (24)

where (possibly) non-physical d-independent terms are omitted.
The Lifshitz result is obtained if the substitutions of new variables p and s are made,

with ε0 = 1:

k2 = ξ 2

c2
(p2 − 1) (25)

in which case K2
0 = k2 + ξ 2/c2 or

K0 = ξ

c
p, (26)

K1 = k2 + ε1
ξ 2

c2
= ξ 2

c2
[p2 − 1 + ε1] ≡ ξ 2

c2
s2

1 (27)

and equation (24) becomes

F(d) = − h̄2

2πc3

∫ ∞

1
dpp2

∫ ∞

0
dξξ 3

[
1

gy(s, p, d)
+

1

gz(s, p, d)

]
. (28)

In the case of perfect conductors,

gx(s, p, d) = gy(s, p, d) = e2ξpd − 1 (29)

and the integrals can be easily done by use of the substitution y = 2ξpd/c,

F(d) = − h̄

2π2c3d4

∫ ∞

1
dpp−2

∫ ∞

0

dy y3

ey − 1
= − π2h̄c

240d4
, (30)

which is Casimir’s result.
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3.2. Extensions of the technique

As discussed by Milonni [5], the contour integration technique used to sum the eigenfrequencies
appears to be technically correct only if the eigenfrequencies lie on the positive real axis. There
has been much commentary on the extension of this technique to absorptive materials (i.e. com-
plex permittivity), in which case the eigenfrequencies are complex. Barash and Ginzburg [41]
introduced the idea of an auxiliary system to account for the complex permittivity, with the fun-
damental eigenfrequencies real. Further commentary is provided by Tomas [42] and Raabe et al
[43], who assert that electromagnetic modes in the presence of absorption cannot be defined,
and calculate the force without reference to the fundamental system modes. Lifshitz’s calcula-
tional technique and Green’s function techniques ([16], section 81) circumvent the problem of
defining modes in the presence of absorption, and these techniques are generalized in [42,43].

However, the contour integration method gives the correct answer quite simply, and agrees
with all other calculational techniques; e.g. the mathematics does not know about the auxiliary
system as introduced by Barash and Gizburg. A non-rigorous explanation for why the technique
works in the case of absorption can be developed from elementary considerations as follows.

First, the Van Kampen technique adds up the eigenvalues of a linear set of differential
equations that are subjected to homogeneous boundary conditions; it is well-known that the
eigensolutions are orthogonal (the Sturm–Liouville problem, [37], pp 719–29) and form a
complete set of functions. Therefore the electromagnetic field within, and in the gap between
the plates, can be described completely by these solutions, in the case of isotropic materials that
have a linear and causal electromagnetic response. It is known experimentally (particularly
in electronics and laser physics) that so long as the system is linear, there is no cross-
coupling between non-degenerate modes, other than incoherently through the thermal bath.
Dissipation to the thermal bath is a non-linear process (Joule heating), and the probability of
transferring energy from a specific driven mode to another specific mode is vanishingly small
by this process. All of this is to say that if a specific frequency field is supplied to a linear
electromagnetic resonator, the steady-state response has no frequencies other than the drive
frequency. This is not the case for a non-linear system. Experimentally, even in the case of
dissipation, modes are well-defined for a linear system.

Next, for a generalized permittivity [15], ε(−ω∗) = ε∗(ω). Therefore, the
eigenfrequencies for the general boundary problem case occur in pairs, ω = ±ω′ + iω′′.
Taking the case where Re(Ki) are either all positive or all negative which follows from
continuation, as ω → ∞, all the Ki become equal because εi(ω) → 1. In the case where
Re(Ki) > 0, representing an exponentially damped surface wave, the eigenfrequencies lie in
the lower half plane; therefore, e−iωt is damped exponentially in time. For Re(Ki) < 0, the
eigenfrequencies lie in the upper half plane and represent solutions growing exponentially in
time and space. Clearly, the contour integration method as described above should not work
without justification regarding branch cuts, etc.

The way around this problem is that instead of considering the eigenfrequencies,
one can consider the corresponding eigenwavenumbers, Ki , and K0 in particular. The
eigenwavenumbers occur in complex conjugate pairs, K0 = K ′

0 ± iK ′′
0 (as can be seen from

equation (13) and the properties of ε(ω) in the complex plane), and by definition the Ki

are in the right half plane for the exponentially damped solutions. Furthermore, writing the
determinant function in terms of K0, and using the fact that K0 dK0 = −ω d ω/c2, leads to

−c2
∮

C

K0
f ′(ω(K0))

f (ω(K0)
dK0 =

∮
C

ω(K0)
f ′(ω(K0))

f (ω(K0))
dK0 (31)

and dK0 can be replaced by dω because the path is arbitrary in the complex plane (note that
in the case of no absorption, the eigenvalues for K0 lie on the imaginary axis, while those for
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K′

K″

Figure 3. Motion of poles as a function of d.

ω lie on the real axis, and the contour must be adjusted accordingly). Because the eigenvalues
for K0 occur in conjugate pairs, the left-hand side of equation (31) is real; therefore, the sum in
equation (18) is real, as can be seen from equation (21) when the integral is taken along the imag-
inary ω axis. As the plate separation, d , is made smaller, the poles move as shown in figure 3.

This analysis can also be applied to calculation of the Casimir force when the surface
impedance is used to characterize the material bodies. The surface impedance has essentially
the same character in the complex plane as the permittivity, and represents a generalized
susceptibility.

In the case of a non-local susceptibility due to surface plasmons or non-local electron
correlations (which occur when the electron mean free path exceeds the electromagnetic field
penetration length in a conductor), specialized techniques are required for determining the
noise current operator [44]. Calculations of the Casimir force in these situations have only
recently received serious attention [45].

3.3. Applications to other geometries

Casimir attempted to derive the fine-structure constant by constructing an electron model based
on the assumption that an electron is a sphere of uniform charge density, with total charge equal
to e, the electron charge. The radius of the sphere can be determined by a balance between
the Casimir force (assumed attractive) that would tend to hold the electron together and the
Coulomb repulsion that would tend to make the electron expand [46]. Further analysis by
Boyer invalidates this model.

Motivated by Casimir’s model, Boyer was the first to consider the Casimir force for a
sphere and found a remarkable result: the vacuum stress outside the sphere tends to pull the
sphere apart [47]. Apparently, there are greater number of modes on the sphere surface than
in free space, and as the sphere diameter increases, the rate at which new modes appear on the
surface is greater than the rate at which free-space modes disappear. In free space the modes
are limited to those with a real propagation vector, while on the sphere surface, evanescent
waves can exist [48]; these are exponentially damped waves, and the implication of the Boyer
result is that these modes outnumber the free-space modes. There appears to be no a priori
way of predicting the stress on a specific geometrical object. The most complete overview of
this problem is given in [3].

It is unclear whether the two hemispheres that result if a sphere is cut in half would repel
each other. Boyer’s calculation was for the field stress outside a sphere. A sphere that is cut
in half represents a different problem.
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So far, all experiments done to address geometrical effects have been for theoretically
trivial configurations. The effects can be fully understood from geometrical averaging,
and a full electromagnetic mode calculation has not yet been required for interpreting the
experimental results.

As an aside, the force between a dielectric and a magnetically permeable plate is repulsive
[49]; a physical picture of this effect is given in [50]. The van der Waals-like interaction
between magnetically permeable particles is also repulsive and Kleppner [51] gives a simple
explanation of this effect.

The repulsive character in the case of magnetic permeability and the possibility of
a repulsive Casimir force has been discussed recently because of its potential utility in
nanoengineered systems [52]. Unfortunately, there are no materials with significant magnetic
response at optical frequencies [53, 54].

4. Corrections

In its essential form, the Casimir force appears as beautifully simple, whereas in reality,
conductors are imperfect. In fact, in his original article, Casimir truncated the divergent
integral, having recognized that any realistic mirrors would not be effective for wavelengths
in the ultraviolet or shorter range. Assuming a simple form for the conductivity, e.g. a free-
electron plasma model, corrections for the finite conductivity can be obtained in a relatively
simple form [55,56]. However one must bear in mind that such models are only approximate.

Another source of correction is the surface roughness. In principle, one should solve
the wave equation with rough boundaries to determine the effect of roughness, but in some
situations a geometrical averaging can be used to approximate the correction; this has been the
subject of a number of papers (section 4.5). One should be aware that the geometrical averaging
has been done only for the Casimir force (1/r4), while the finite conductivity correction has
been expanded in additional multiplicative terms in 1/rn, and each of these terms has an average
over the surface roughness different from that for the Casimir force; the simplistic theoretical
analysis that has been done so far is inadequate for interpreting experimental results to high
precision, although this has been attempted [57]. Under the circumstances, testing the theory
of the Casimir force to much better than 10% seems a daunting task.

4.1. Imperfect conductivity

Equation (1) must break down when the plate separation is so small that the mode frequencies
being affected when d is varied are above the material resonance or plasma frequencies. In
the case of a simple metal, the real part of the dielectric constant can be approximated by

ε′(ω) = 1 − ω2
p

ω2
, (32)

where ωp is the plasma frequency and is proportional to the effective free-electron density in
the metal. It is convenient to introduce the plasma wavelength, λp = 2πc/ωp. Corrections to
equation (1), expanded in terms of λp/d , have been calculated to first order by Hargraves [58]
and by Schwinger et al [55] and to second order by Bezerra et al [59] For flat plates, the
corrected force can be written in terms of equation (1) with a multiplicative factor,

F ′(d) = F(d)

[
1 − 8

3π

λp

d
+

120

4π2

(
λp

d

)2
]

. (33)
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This equation is only valid for λp/d � 1; unfortunately, the Casimir force is large enough
to be measured accurately experimentally only in the range λp/d ≈ 1 or larger. We are also
faced with the problem that equation (32) is only approximate.

It is, however, possible to determine very accurately the attractive force as a function of the
plate separation by numerical calculation if its complex permittivity as a function of frequency
is known:

ε(ω) = ε′(ω) + iε′′(ω), (34)

where ε′ and ε′′ are real. With this information, the permittivity along the imaginary axis can
then be determined using the Kramers–Kronig relation,

ε(iξ) = 2

π

∫ ∞

0

xε′′(x)

x2 + ξ 2
dx + 1. (35)

This can be used in the Lifshitz expression for the attractive force [12],

F ′(d) = h̄

2π2c3

∫ ∞

0

∫ ∞

1
p2ξ 3

( [
[s + p]2

[s − p]2
e2pξd/c − 1

]−1

+

[
[s + ε(iξ)p]2

[s − ε(iξp)]2
e2pξd/c − 1

]−1 )
dp dξ, (36)

where s =
√

ε(ix/p) − 1 + p2. The numerical calculations for the attractive force between
Au, Al and Cu plates have been published [60], and significant deviations from equation (33)
were found. In particular, for Al with d ≈ 100 nm, equations (33) and (36) differ by about
5%; one should note that including the third order correction to equation (33) worsens the
deviation. However, these calculations should be considered in light of the notorious variation
of bulk and surface properties of materials due to preparation technique, purity, etc [61, 62].
Numerical errors in [60] are corrected in [63] and [64].

4.2. Surface roughness

From the earliest experiments, it was realized that surface roughness would lead to an increase
in the apparent Casimir force and therefore cause systematic errors in measurements aimed
at verifying equation (1). Such effects were observed by van Blokland and Overbeek [61];
roughness has been discussed theoretically by van Bree et al [65] and more recently in [66].

For high-quality optically polished surfaces, the rms amplitude of the roughness A, is
usually of the order of 30 nm or less. For a 1/d4 attractive force, the correction to equation (1)
can be written as

F ′(d) ≈ F(d)

[
1 + 4

(
A

d

)2
]

. (37)

The correction for a torsion balance experiment, at the point of closest approach, is about 1%,
while for an atomic force microscopy (AFM) experiment, it is about 30%. These experiments
are discussed in section 6.

The roughness correction was derived in the context of a 1/d4 force law (this can be
easily modified for the spherical plate 1/d3 case). However, the finite conductivity correction,
particularly as given by equation (33), effectively has terms containing 1/d5 and 1/d6. In
principle, the roughness correction should be done for each power law separately, or the
average force determined from the accurate calculation, equation (36). One should also bear
in mind that the simple geometrical averaging procedure is not exactly correct; a complete
treatment would involve solving the appropriate electromagnetic rough boundary problem.
Furthermore, the geometrical averaging is correct so long as the period of the roughness is
either much larger or much smaller than the separation between the plates.
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Figure 4. Simple geometry for determining the effect of a thin film on a perfectly conducting plate.

4.3. Effect of thin films on the plate surfaces

Either intentionally (Au evaporated onto an Al or Cu coated substrate) or accidentally
(formation of oxide layers), every Casimir force measurement has made use of mono- or
multilayer coated plates. The calculation of the force for a general film configuration has been
given by Spruch and Zhou [67].

A simple geometry that illustrates the effect of a thin material film is shown in figure 4;
one of two identical perfectly conducting flat plates is coated with a thin layer (thickness a)
of a real substance (Au, for example), and the separation between the perfectly conducting
surfaces is d + a. This simplified problem will allow determination of the qualitative effect of
a thin film.

The techniques outlined in section 2.1 can be applied directly to this case. However, in
this case, there are some extra boundary conditions.

In general, there are now three wavevectors,

K2
i = k2 − ε(ω)

ω2

c2
, (38)

where k is a real number and i = 0, 1, 2, with 0 (ε0(ω) = 1) representing the space between
the plates and 2 (ε2(ω) = ∞) the perfect conductor, with the requirement that Re(Ki) � 0,
and ε1 can be complex.

As before, there are two type of solution to the wave equation, one with the electric vector
parallel to the surfaces (with arbitrary orientation, chosen here as the y axis), ey(z), and one
with the electric vector perpendicular to the surfaces (along the z axis), ez(z). The wave
equation is

d

dz
ey,z(z) − K2

i ey,z(z) = 0 (39)

and the boundary condition for ez is that dez/dz and εez be continuous, while for ey it is that
dey/dz and ey be continuous (at the conducting surfaces, ey = 0 and dez/dz = 0). Ignoring
unphysical exponentially growing solutions, the solutions are

ey,z(z) = A(eK0z ∓ e−K0z) 0 � z � d − a,

= BeK1z + Ce−K1z d − a � z � d,

dez

dz
= 0 z = d,

ey = 0 z = d, (40)
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Figure 5. The numercially calculated effect of a 35 nm thick Au film on a perfectly conducting
surface. Lower curve, no coating; middle curve, Au film; upper curve, perfectly conducting film.
The Au film effect is of the order of 50% of the perfectly conducting film effect in the 100–200 nm
range.

where the ∓ sets ey = 0 or dez/dz = 0 at the conducting boundary located at z = 0. Thus,
there are two sets of linear equations involving A, B and C for the two cases. The condition
for non-trivial solutions of these equations is that the determinant of the coefficient matrix be
zero, yielding the following two expressions:

fy(ω, k, d) = 0 = [(e2K1a + 1)K1 + (e2K1a − 1)K0]

[(e2K1a + 1)K1 − (e2K1a − 1)K0]
e2K0d − 1, (41)

fz(ω, k, d) = 0 = [(e2K1a − 1)K1 + ε1(ω)(e2K1a + 1)K0]

[(1 − e2K1a)K1 + ε1(ω)(e2K1a + 1)K0]
e2K0d − 1. (42)

F(d) for an Au film 35 nm thick is shown in figure 5; ε1(iξ) was determined from tabulated
optical constants as described in [60].

5. Finite temperature correction

The Casimir force for finite temperatures has also received much attention. In the high-
temperature limit, equation (4) does not contain h̄. In this limit the Casimir force is analogous
to the Rayleigh–Jeans black-body spectrum. This also can be seen from the following argu-
ment. For a photon gas, the radiation energy, E, is simply related to the free energy, F , by
E = −3F . In the long-wavelength limit, the spectral energy in a volume, V , is given by (see
section 63 of [24])

dEω = V kT

π2c3
ω2 dω, (43)

which is the Rayleigh–Jeans formula. This formula is an apt description of the free energy spec-
tral density that generates the pressure in the high-temperature limit, assuming dFω = − 1

3 dEω.
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The pressure is related to the free energy by

P = −
(

∂F

∂V

)
T

=
[
−d

∂F

∂d
− F

]
V −1, (44)

where V = dA, d is the plate separation and A is the plate area. The net pressure on a plate
is given by the difference in the free energy of the plates as compared with that outside:

Fout − Fin = −1

3

∫ ωmin

0
dFω = V kT

9π2c3
ω3

min, (45)

where ωmin is the minimum effective frequency (longest wavelength) that satisfies the boundary
conditions. By dimensional arguments,

ωmin = αcπ

d
, (46)

where α is a numerical constant of order unity. The pressure is therefore

|P | = 2πα3

9

T

d3
. (47)

The 1/d3 dependence is also found in more sophisticated calculations based on the Lifshitz
formalism, and comparison with those results determines α ≈ 0.6. The above simple
discussion shows that the long-range (or high-temperature) correction to the Casimir force can
be fully understood by analogy with the Rayleigh–Jeans limit for the black-body spectrum.
Schwinger et al [55] have some comments on the original Lifshitz calculation of the temperature
correction and its validity. Compelling calculations of the finite-temperature correction have
been given (e.g. [68]).

5.1. Contribution of the TE electromagnetic mode

A recent paper [69], in which simultaneous consideration of the thermal and finite conductivity
corrections to the Casimir force between metal plates leads to a significant deviation from
experimental results [70, 71] and previous theoretical work, has attracted much interest. The
principal conclusion in [69] leading to this discrepancy is that the TE electromagnetic mode (E
parallel to the surface) does not contribute to the force at finite temperature. Arguments against
the analysis given in [69] have been numerous [72–75] but not universally accepted [76, 77].

The assertion in [69] is that at a finite temperature the mode excitation function goes from

1

2
→ 1

2
coth

h̄ω

2kT
, (48)

and this function has poles at ih̄ξ/2kt = nπ and the integral over ξ in equation (22) becomes
a sum over the residues of the integrand. A dominant contribution to this sum comes from the
n = 0 term, so the limiting forms of gy and gx as ω → 0 are required. In particular, as ω → 0,
for good conductors ε ∝ i/ω, and by equation (13) K0 ≈ k. Therefore gy diverges as can be
seen from equation (17). Since the contribution to the force is 1/gy , it has no contribution for
ω → 0.

A careful numerical analysis of the problem shows that the results presented in [69] are
mathematically correct. An aspect of the problem that has not been considered in detail is the
appropriateness of a dielectric model of the metallic plates at low frequencies, which, as will
be shown here, are most relevant for the thermal correction. The purpose of this discussion is
to expand on previous work [78] and apply more realistic boundary conditions to this problem,
and to show that the experimental results [70, 71] can be fully explained by this application.

The analysis in [79] employs the use of the surface impedance of a metal surface which
relates E‖ = ζ(ω)n̂ × H‖. As discussed in [15], section 67, ζ(ω) when regarded as a function
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of the complex variable ω has many properties analogous to ε(ω). As will be shown below,
the values of ω that contribute to the thermal correction described in [69] are in a region where
the dielectric boundary conditions are not applicable. It is no longer possible to describe the
Casimir force as the integral of an analytic function because one must switch between boundary
conditions in different regions of the integral. On the other hand, working with ζ(ω) allows
the force to be written as an single analytic function on the complex ω plane for all ω.

5.2. Spectrum of the TE mode thermal correction of the Casimir force

Following Ford [80], the spectrum of the Casimir force is given by equations (2.3) and (2.4)
of Lifshitz’s seminal paper [12]. Note that

1

2
coth

h̄ω

2kT
= 1

2
+

1

exp(h̄ω/kT ) − 1
= 1

2
+ g(ω) (49)

and only the second term on the right-hand side is included in the determination of the spectrum
of the thermal correction. From equation (2.4) of [12], the spectrum of the TE mode excitation
between parallel plates can be described by (see also section 3.1 of this report)[

h̄

π2c3

]
Fω =

[
h̄

π2c3

]
ω3g(ω) Re

∫
C

p2 dp

[
(s + p)2

(s − p)2
e−2ipωd/c − 1

]−1

, (50)

s =
√

ε(ω) − 1 + p2, (51)

where d is the plate separation, and it has been assumed that the plates are made of the same
material with vacuum between them. The integration path, C, can be separated into C1 for
p = 1 to 0, which describes the effect of plane waves, and C2 with pure imaginary values
p = i0 to i∞ for exponentially damped (evanescent) waves.

In anticipation that the effect is a low-frequency phenomenon, the parameters for Au
in [69] for Im ε = ε′′ together with the Kramers–Kronig relations can be used to determine
Re ε = ε′. For frequencies ω < 1014 s−1, to good approximation,

ε′ = −1.48 × 104

1 + (ω/ω0)2
, ε′′ = 1.8 × 1018

ω(1 + (ω/ω0)2)
(52)

with ω0 = 3.3 × 1013 s−1.
In [69], a net deviation from the zero-temperature value of the Casimir force is predicted to

be about 25% for a plate separation of 1 µm at 300 K. The experimental results reported in [70]
had their greatest sensitivity around 1 µm, and disagree significantly with the results in [69].
As a comparison, a numerical integration of equation (50) for d = 1 µm and T = 300 K,
using equation (52) for the permittivity, can be performed. The results are shown in figure 6,
where the results from the two integration paths are separated. In figure 6(a), it can be seen
that there is no significant deviation from the perfectly conducting case. On the other hand,
the contribution from evanescent waves, shown in figure 6(b), is large and the integrated value
is in good agreement with the result given in [69].

It can be seen immediately that the main contributions of the TE-mode finite conductivity
correction are around ω = 1010–1013 s−1. This behaviour is due to an approximately quadratic
increase with ω of the C2 integral and a suppression beginning at ω = kT /h̄ = 4 × 1013 s−1

because of the g(ω) factor. This is a low-frequency range, and certain assumptions in [69]
and in the Lifshitz calculation, among others, can be questioned with regard to theoretical
predictions relevant to the experimental arrangement in [70].



The Casimir force 221

10
0

10
5

10
10

10
15

–5

0

5

10

15
x 10

39

10
0

10
5

10
10

10
15

 

 

 

 

x 10
44

ω [s–1]

F
ω
 [s

–
3 ]

(a)

(b)

b 

F
ω
 [s

–
3 ]

ω [s–1]

 –10

–8

–6

–4

–2

0

Figure 6. The net finite-temperature contribution to the Casimir force is determined by
F = (h̄/πc3)

∫ ∞
0 Fω dω and is attractive when F > 0. (a) The two curves represent the C1 path

for perfectly conducting plates (- - - -) and for plates with the permittivity given by equation (52)
(——). The net force force for the latter is 0.95 times the perfectly conducting case. (b) For a
perfect conductor, the C2 integral is zero. The net contribution from the C2 path is −169 times
the perfectly conducting contribution from the C1 path, and its addition to the TE mode zero-point
contribution reduces the net TE mode force to nearly zero, which is the result obtained in [69].
All are for d = 1 µm, T = 300 K.

5.3. Low-frequency limit and field behaviour in metallic materials

When the depth of penetration of the electromagnetic field into a metal

δ = c√
2πµσω

, (53)

where σ is the conductivity and µ is the permeability (for Au and Cu, σ ≈ 3 × 1017 s−1,
µ = 1), becomes of the same order as the mean free path of the conduction electrons, it is no
longer possible to describe the field in terms of a dielectric permeability [23,81] because there
are non-local correlations in the material and it is not possible to describe the propagation of
fields in the material using a simple wavevector derived from a simple dielectric response. This
occurs for optical frequencies below ω ≈ 5 × 1013 s−1 for metals such as Au and Cu, where
the mean free path, at 300 K, is about 3×10−6 cm [82] (p 259). At frequencies above 1014 s−1

the permeability description again becomes valid because on absorbing a photon, a conduction
electron acquires a large kinetic energy and has a shortened mean free path. However, in
the interaction of a field with a material surface, E and H can be related linearly through the
surface impedance (which relates the electric field at the surface to a surface current and hence
magnetic field); this approach has been used in calculation of the Casimir force [79]. Another
approach is to perform a microscopic calculation of the noise current as described in [44] and
use that with the Lifshitz technique.
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It is tempting to interpret the form of the TM and TE modes as described by equations (17)
and (18) in terms of reflection coefficients. However, on forming characteristic functions along
the lines of equations (16) and (17), using the boundary condition that E‖ = ζ n̂×H‖, where ζ is
the surface impedance and n̂ is the surface normal (section 67 of [15]), the perfectly conducting
characteristic function results trivially when E and H are related through the surface impedance
and the waveguide equations (equations (71.4) of [15]). This treatment is not sufficient for
specifying the evanescent surface modes at the material surface, and the method outlined in [79]
must be employed.

A correction due to correlated electron motion also arises from the the plasmon interaction
with the surface which becomes significant near the plasma frequency of the metal. This
correction has been estimated as nearly 10% [45] for sub-micrometre plate separations.

The proper boundary conditions for a conducting plane have been discussed by Boyer [83].
He points out that when (using here the notation of [69]) ω � η2ρ/4π , where ρ is the resistivity
and η is the dissipation, the usual dielectric boundary conditions are not applicable. For Au,
using the parameters in [69], this limit is met for ω � 4 × 1014 s−1. This corresponds to an
optical wavelength of 5 µm, which implies that for plate separations significantly larger than
this, and of course for ω → 0, the plates must be treated as good conductors.

The boundary conditions for a conducting surface are discussed in [84] (section 8.1). At
low frequencies (e.g. where the displacement current can be neglected), a tangential electric
field at the surface of a conductor will induce a current j‖ = σE‖, where σ is the conductivity.
The presence of the surface current leads to a discontinuity in the normal derivative of H‖, and
hence a discontinuity in the normal derivative of E‖, at the boundary of a conducting surface.
These boundary conditions are quite different from the dielectric case where the fields and
their derivatives are assumed continuous.

5.4. Electromagnetic modes between metallic plates

Of interest are the modes between two conducting plates separated by a distance a. In the limit
where the plates are thin films of thickness >δ, the skin depth, it can be assumed that the plates
are infinitely thick and the problem is considerably simplified. This is well-satisfied for the
conditions of the experiment [70] when ω > 1011 s−1, in which case δ < 0.7 µm compared
with the film thickness of 1 µm. Essentially all of the TE mode thermal correction comes in
the 1011 and 1013 s−1 range as shown in figure 6.

Taking the ẑ axis as perpendicular to the plates, and the mode propagation direction
along x̂, for the case of TE modes (also referred to as H or magnetic modes), Ex = 0. The
plates surfaces are located at z = 0 and z = d. For a perfect conductor, ∂Hz/∂z = 0 at the
conducting surfaces. A finite conductivity makes this derivative non-zero, and can be estimated
from the small electric field Ey that exists at the surface of the plate (see [84], section 8.1 and
equation (8.6)),

	E‖ = ŷEy =
√

ω

8πσ
(1 − i)n̂ × 	H‖, (54)

where 	H‖ = x̂Hx and it is assumed that the displacement current in the metal plate can be
neglected (σ � ω) and that the inverse of the mode wavenumber is less than δ.

This approximation is good so long as the effects of the transverse spatial variation are
small compared with the damping length in the plate. Specifically, if we impose a field
distribution along the surface as eikx , this distribution propagates diffusively into the plate.
The solutions to the diffusion equation show that the disturbance propagates into the plate as
1/δ + ik. From numerical calculations, the dominant contribution to the Casimir force comes
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from k < 1/4d , roughly independent of frequency, with the contribution from higher k falling
off exponentially. So when δ < 4d this approximation is extremely good and is satisfied for
the experimental situation in [70] for the frequencies of interest for the thermal correction.
(For low frequencies, K0 ≈ k.)

Ey and Hx are related through Maxwell’s equation, 	∇ × 	H = ∂ 	E/c∂t . Assuming a time
dependence of e−iωt , and vacuum between the plates,

∂Hx

∂z
= ± iω

c
Ey, (55)

where ± indicates the sign of n̂ at z = 0 and z = a, respectively. The boundary conditions at
the surfaces are thus

∂

∂z
Hz = ±i

√
ω

8πσ

(ω

c

)
(1 − i)Hz ≡ ±αHz. (56)

Solutions of the form H‖(z) = A eKz +B e−Kz, where K2 = k2 −ω2/c2 and k is the transverse
wavenumber, can be constructed for the space between the conducting plates. The eigenvalues,
K , can be determined by the requirement that equation (55) be satisfied at z = 0 and z = a.
With the usual substitution ω = iξ , the eigenvalues, K , are then given by (see [12], section 7.2)

gy(ξ, k, d)(ξ) ≡ (α + K)2

(α − K)2
e2Kd − 1 = 0 (57)

and the force can be calculated by the techniques outlined in section 3.1.
This result can be recast in the notation of the Lifshitz formalism, and the spectrum of the

thermal correction can be calculated as before. Noting that K = iωp/c,

Fω = ω3g(ω)

∫
C

p2dp

[
(α + iωp/c)2

(α − iωp/c)2
e−2iωpd/c − 1

]−1

. (58)

Results of a numerical integration are shown in figure 7, where it can be seen by comparison with
figure 6 that the metallic plate boundary condition does not show a significant contribution from
the C2 integral of the TE-mode thermal correction and is therefore similar to that for the ‘perfect
conductor’ boundary condition. This reconciles the discrepancy between the prediction in [69]
and the experimental results reported in [70].

The problem of calculating the TE mode contribution to the Casimir force has been treated
previously with the ‘Schwinger prescription’ [55] of setting the dielectric constant to infinity
before setting ω = 0. This prescription has become controversial [3], a term that can be used
to describe the entire history of the theory of the temperature correction. However, there is no
doubt that the issues brought up in [69] are important.

The purpose of the calculation presented here is to take a different approach and to study
the low-frequency behaviour of the correction in order to understand its character, and to show
that the finite temperature correction in [69] is a low-frequency phenomenon. The frequency
is sufficiently low for treating the plates as bulk dielectrics to be not valid. By use of a more
realistic description of the field interaction with the plates, it was shown that the modes between
metallic plates of finite conductivity produce a finite temperature correction in good agreement
with the perfectly conducting case. The principal difference between this result and the previous
work is that the possibility of the derivatives of the fields at the conducting boundary being
discontinuous is allowed. This possibility exists because the fields produce currents in the
conducting plates that are discontinuous across the boundary between the vacuum and the
conductor. Although it is tempting to model the finite conductivity as a modification of the
dielectric permittivity, such a model fails when the mean free path of the conduction electrons
exceeds the penetration depth of the electromagnetic field, and thus fails for frequencies of
interest for the thermal correction to the TE electromagnetic mode.
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Figure 7. Numerical results for Fω using the finite conductivity boundary conditions. The
integrated force for the C2 path contribution is 1.47 times greater than the C1 integration, and
the total net force for both paths is 1.75 times greater than the perfectly conducting case. Treatment
of the plates as conducting metals fails above ω = 1014 s−1. All are for d = 1 µm, T = 300 K.

As shown here, the conducting boundary conditions that are applicable for frequencies
where the TE mode thermal correction has its significant contribution lead to a net increase in
the TE mode force, and the correction is of the same magnitude as the perfectly conducting
case. This result is in agreement with the experimental results reported in [70, 71]. However,
additional and improved experiments with large plate separations (greater than 2 µm) with
both conducting and dielectric plates would provide the definitive test. A particularly
tempting dielectric would be diamond, which offers both theoretical and experimental benefits.
A comparison with lightly doped germanium plates, where δ (the skin depth) is large, would
also provide a test of the theory presented here and would not suffer from spurious effects due
to electric charge accumulation.

6. Experiments

6.1. Overview

The theoretical work on the Casimir force far outweighs experimental work: perhaps a few
dozen experiments have been performed (with the exception of observations of Casimir effects
in colloid chemistry which are beyond the scope of this review) compared with the many
hundreds of theoretical papers on the subject. This curious situation is due both to the difficulty
of the experiments and to the fact that nobody expects a major failure of the basic theory.

The Sparnaay experiment [85] of 1958 is repeatedly quoted as verification of the Casimir
force (equation (1)) and appears to be the first to use metal plates; the accuracy of this
measurement was such that the exponent of d in equation (1) could be determined to ±1.
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The experimental situation as of 1989 has been reviewed by Sparnaay in the volume
prepared in honour of Dr Casimir’s 80th birthday [6], and the situation as of 2000 has been
reviewed in [7], prepared in honor of Dr Casimir’s 90th birthday. Two experiments were
performed in the late 1990s, both with significantly better accuracy than had been previously
obtained. These two experiments were based on a torsion pendulum balance [70] and on
AFM [57]. The work reported in [70] showed that it was possible to obtain high-accuracy
results by using modern experimental techniques, and this work started a sort of renaissance
in Casimir measurements.

All recent experiments employed techniques that were developed in particular by
van Blokland and Overbeek [61] in the measurement of the attractive forces between metallic
films. Measurements between metallic films pose difficult problems compared with dielectric
films, for which optical techniques can be used for alignment and distance measurements.
In the case of metallic films, the distance is determined by measurement of the capacitance
between the plates. Alignment is simplified by making one plate convex, in which case the
geometry is fully determined by the radius of curvature, R, at the point of closest approach,
and the distance between the plates, d , at that point. This technique was first put forward by
Derjaguin [14] and has found broader application as the proximity force theorem [86], which
can be understood as follows. Near the point of closest approach, the distance between the
plates can be written as

d(r) = d +
1

2R
r2, (59)

where r is the distance from the point of closest approach in the plane tangent to the surfaces
at the point of closest approach. The net force is given by the integral of the force per unit area,

F(d) = 2π

∫ ∞

0
F

(
d +

r2

2R

)
rdr = 2π

∫ ∞

d

F (u)R du = 2πRE(d), (60)

where E(d) is the energy per unit area. There is some evidence that this relationship is exact
for the Casimir force [35].

For the plane-sphere geometry, equation (1) becomes

F(d) = 2πRE(d) = 2π
π2

240

1

3

h̄cR

d3
, (61)

where R is the radius of curvature and E(d) is the energy per unit area that leads to the force
in equation (1). It should be noted that the plate area does not enter into equation (2), but will
when the separation is sufficiently large. Most recent experiments employed one convex plate
and one flat plate.

Essentially all of the early experiments (before 1980) relied on the use of cantilever
balances, and generally produced data such that the 1/dn force law could be determined to
roughly 50% accuracy (in n), and the change in the nature of the attractive force for very
short distances (e.g. where the ultraviolet cutoff in the electric response of the plate material
becomes important) could be observed.

The improvements gained in recent experiments are due to the elimination of mechanical
hysteresis in the balance, the use of modern piezoelectric transducers to automatically control
the plate positions very accurately and the use of computers for automated data collection.

The most recent experiment employed the use of AFM techniques [57]. The force
sensitivity of these techniques is not as great as for the torsion pendulum, but the system is more
readily and reproducibly controlled. However, the reduced sensitivity limits the maximum
measurement separation to small distances where a number of corrections become very large,
as has been discussed. It appears that with proper theoretical analysis, the Casimir force law
can be tested to a precision better than 1% using this technique.
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6.2. Torsion pendulum experiment

In [70], hysteresis was eliminated by using a torsion pendulum. An accuracy better than
10% was achieved, which was much better than expected, but was limited by calibration
uncertainties and lack of knowledge of the metallic film properties.

Since the time of Cavendish’s measurement (late 18th century) of the gravitational
constant, G [20], which in some ways marks the beginning of modern experimental physics,
it has been appreciated that the torsion pendulum is one of the most sensitive devices known.
A modern version of Cavendish’s experiment was developed by Crandall and associates of
Reed College [87] which inspired the design used in [70]. However, to obtain greater accuracy
and repeatability for the Casimir force measurement, the magnetic feedback used in [87]
was replaced by an electrostatic system. The design is different from the horizontal torsion
balance used by van Silfhout [88] particularly because the angular force constant, α, and the
damping constant are at least two orders of magnitude smaller for the hanging pendulum. For
short times (a few seconds of averaging) the principal noise source was thermal fluctuations
(e.g. Brownian motion); in this time limit, the signal to noise scales as the square-root of the
mechanical dissipation constant of the pendulum [89]. For longer averaging times, vibration
and tilt of the apparatus were the dominant noise sources.

The torsion pendulum experiment was rather unwieldy in that the torsion pendulum was
over 60 cm in length, and was therefore prone to such subtle effects as the weight of the
experimenter distorting a concrete floor, resulting in a slight tilting of the apparatus and thereby
spoiling the careful alignment. These sorts of effects were eventually controlled, but achieving
better than 5% accuracy with this technique would seem difficult.

In hindsight, it is remarkable that the torsion balance experiment, which was intended as
a demonstration, worked as well as it did. The improvement over previous measurements is
due to a number of factors, including the high sensitivity of the hanging torsion pendulum
and its lack of mechanical hysteresis, larger measurement distances so that vibration and
mechanical instabilities were less important, improved piezoelectric transducers and automated
data collection so that large amounts of data could be analysed and averaged.

Much improvement over the present accuracy obtained by this technique is unlikely. The
apparatus was rather unwieldy with its enormous vacuum can and its susceptibility to tilt.
The length of the torsion fibre might be significantly shortened, reducing both the intrinsic
sensitivity (bad) and the sensitivity to external perturbations (good); however, we must bear
in mind that a factor of 10 improvement in sensitivity only extends the measurement distance
by a factor of about 2. At present, a high-sensitivity torsion pendulum is being designed at
Los Alamos, with the intent of addressing the finite temperature corrections. The theory can
be vigorously tested by measurements between dielectric plates (diamond), semiconducting
plates (n-doped Ge with 40 � cm resistivity) and gold-coated copper [89].

6.3. AFM experiments and MEMs

In his 1989 review [6], Sparnaay discusses the possibility of using AFM to measure the Casimir
force; AFM had just been invented at that time [90]. It was not until late 1998 that results from
an AFM Casimir experiment were reported by Mohideen and Roy [57].

In this experiment, an Au/Pd+Al coated, 0.3 mm polystyrene sphere is attached to an AFM
cantilever. A similarly coated optically polished sapphire plate was attached to a piezoelectric
transducer and brought near the sphere. The attractive force was determined by reflecting a
laser beam from the cantilever tip; the displacement of the laser beam on a pair of photodiodes
produced a difference signal proportional to the cantilever bending angle.
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The sensitivity of the apparatus was such that the absolute force could be determined with
a fractional error of 1% at d = 100 nm, and about 100% at 900 nm.

The use of AFM to measure the Casimir force has been a real breakthrough; this is because
the AFM technique is very stable and reproducible. Unfortunately, it is limited to measurements
of short distances where there are significant theoretical uncertainties in the interpretation of
the data. For the first time testing equation (1) or its modification for real materials to better than
1% accuracy appears possible. As described in [57], it was anticipated that a factor of 1000
improvement in sensitivity appears possible, which would extend the separation where the
Casimir force can be measured to 1% accuracy to about 1 µm. At this distance, the theoretical
uncertainties associated with the corrections for real materials, as described previously, become
much less important. Progress towards improved accuaracy has been rapid [91].

The fundamental differences between AFMs and microelectromechanical machines
(MEMs) are not obvious. The practical difference is that MEMs tend to be fabricated entirely
on a substrate (e.g. silicon wafer). One of the first reports of an effect of the Casimir force in a
MEMs system is in [92], where, when a critical voltage was applied to the system, the cantilever
would irreversibly stick due to the Casimir force as discussed in [93]. MEMs techniques were
developed to a high level by Chan and collaborators at Bell Laboratories [94,95], who have set
the accuracy standard in the field by use of microelectromechanical torsion oscillators (MTOs)
where the Casimir force is detected and measured by its non-linear distance dependence which
causes a change in MTO resonant frequency, or by deflections of an oscillator through the
unbalancing of a capacitive bridge. A typical Q for an MTO is around 10 000.

In the experiments described in [71], the MTO frequency was about 700 Hz. The MTO
was used in both the dynamic (measurement of oscillator frequency) and static (deflection of
cantilever capacitively measured) modes. The sensitivity was around 1.4 pN Hz−1/2, with one
plate in the form of a ball with radius of curvature between 0.1 and 0.6 mm. This allowed
measuring the force with sufficient accuracy to test the finite temperature effect described
in [15] which is not supported by data. The results of these experiments were used to limit
the strength and magnitude of new Yukawa-type forces, as described in section 7.4. In [96]
the force between dissimilar metals was measured using similar techniques. In this instance,
there was difficulty in obtaining agreement at the per cent level with theory, and although
the deviation is in the same direction as the prediction in [15], the deviation is too small to
be attributed to that source alone. The authors conclude that the errors are due to imperfect
knowledge of the optical properties of the plates.

Using AFM and MEMs techniques, the force between flat plates has been measured
with 15% precision in the 0.5–3.0 µm range [97]. The area over which the Casmir force was
measured was 1.2 mm by 1.2 mm. One of the outstanding requirements in such a measurement
is the parallelism of the plates. Dust and dirt were removed from the surfaces by use of an in-
vacuum cleaning tool operated under inspection using a scanning electron microscope (SEM).
The SEM was also used to initially set the parallelism of the plates, with the final alignment
done by maximizing the capacitance between the plates at the minimum separation.

The most recently reported Casimir force measurement was between a gold-coated plate
and a sphere coated with a hydrogen-switchable mirror (HSM) using a MEMs techniques [98].
The HSMs are shiny metallic mirrors that become transparent on hydrogenation. The effect is
reversible. Unfortunately, despite the marked change in the reflective properties of the HSM,
no change in force was seen upon hydrogenation. This is partly due to the fact that the dielectric
properties of the mirror probably do not change much in the infrared region which corresponds
to the modes that contribute the most to the Casimir force. In addition, the HSM was covered
with a 100 Å layer of Pd. As described in section 4.3, even a thin metallic layer can dominate
the characteristics of the force.
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Figure 8. Picture of a radiating black hole. The energy taken away by a photon results in a slight
shrinkage of the black hole.

7. Applications

In his 1948 paper, Casimir made a truly startling discovery that zero-point fluctuations can lead
to physical effects on a macroscopic system. This idea has been applied to a great number of
fields, in particular quantum chromodynamics (see, e.g. [3]). Casimir’s calculational technique
has even found a maritime application in determination of the attractive force between two ships
in a rough sea owing to modification of the wave structure in the region between the ships [99].
In this section a few surprising applications, primarily with regard to electromagnetic effects,
will be discussed.

In the realm of nanotechnology, the forces between the components of a mechanical system
can be easily dominated by the Casimir force. It is unclear whether the Casimir force will
be, in general, a nuisance or a useful feature in the nanoengineering world. This is because
the force is very non-linear. One could imagine weakly coupling mechanical oscillators using
the Casimir force. At the time of writing this, the nanoengineering uses remain speculative.
The use of magnetic materials to produce a repulsive Casimir force, which would eliminate
stiction, is discussed in [52], but it is unclear whether a material with a sufficient magnetic
response at optical frequencies can be identified [53, 54].

7.1. Hawking radiation and the dynamical Casimir effect

The idea put forward by Hawking that black holes can ‘evaporate’ [100, 101] led to the
more general notion that an accelerated frame appears bathed in a thermal field (the ‘Unruh
effect’ [102, 103]) with temperature

T = h̄a

2πkc
, (62)

where a is the acceleration, k is Boltzmann’s constant and c is the velocity of light. The
acceleration promotes zero-point fluctuations, observed from the accelerating frame, to thermal
fluctuations that follow a black-body spectrum.

Hawking’s idea is illustrated in figure 8; if the boundary of a black hole fluctuates, a photon
pair can be created. If one photon escapes, the black hole loses energy and shrinks slightly.
The inverse process is very unlikely.

The ‘Hawking Temperature’ of a black hole can be instantly calculated (in a non-rigorous
fashion) from equation (62). If we set a as the acceleration at the Schwarzshild radius of a
black hole,

rs = 2GM

c2
, a = GM

R2
0

= c4

4GM
⇒ T = h̄c3

8πk
, (63)

which is precisely Hawking’s result.
Based on the equivalence principle, it is tempting to assign a temperature to any object

at rest (relative to the source) in a gravitational field, e.g. an atom on the Earth’s surface, as a
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number of authors have asserted [104]. However, a finite temperature in this situation, which
would necessarily lead to the radiation of electromagnetic energy, would violate conservation
of energy. Black holes can radiate because the radius can shrink with the emission of a photon.

The first crucial point in the analysis of radiation of an at-rest object is that the gravitation
field couples equally to all forms of mass–energy. This is closely related to the classical
electromagnetism result that a particle undergoing hyperbolic motion (i.e. unconstrained
motion in a gravitational potential) does not radiate, as first suggested by Pauli. This is
regarded as one of the surprising results of modern physics, and Peierls [105] has a lucid
discussion of the relevant issues for the classical problem. For the quantum case, the answer
is simple: radiation from atoms is stimulated by the zero-point field, and in any local frame,
the atoms and local zero-point field are subject to the same acceleration. In the derivation of
equation (62) it is assumed that the acceleration is relative to a rest frame that contains the zero-
point fluctuations. So the second crucial point is that there is no relative acceleration between
the zero-point field and the atoms in a local frame, and hence no temperature differential.

Questions regarding Mach’s principle are also of interest. If we imagine an accelerated
observer in an otherwise empty universe, what temperature would we assign? The answer
is that in order to maintain a steady acceleration, matter or energy would have to be ejected
from the accelerated observer’s frame. This ejected material would not be subject to external
forces, and would thus provide an observable (eventually!) reference frame, and hence the
acceleration would be evident.

The Unruh effect is closely related to the dynamical Casimir effect, where photons are
generated when the plates of a Casimir experiment are accelerated. The possibility that
sonoluminescence is due to such a process, as first suggested by Schwinger [106], has received
much attention, but has largely been ruled out, in particular by Brevik et al [107]. A splendid
review of the dynamical Casimir effect in this context is provided in Milton’s book [3]. It has
now been essentially proven that sonoluminescence is due to high-speed jets formed due to,
for example, Rayleigh–Taylor instabilities when cavitation bubbles collapse [108–110].

Milonni provides one of the most lucid derivations of the Unruh effect ([5], section 2.10).
He shows that the electromagnetic field correlation function of a zero-point field as observed by
an observer undergoing proper acceleration is the same as a black-body field with temperature
given by equation (62). One interesting result is that the zero-point field correlation function
between inertial frames in relative motion is

〈φ(	y, t), φ(	y + 	x, t + τ)〉 = h̄c

π

1

x2 − c2τ 2
(64)

and is an invariant. This is directly applicable to the radiation and Mach’s principle questions
previously discussed.

7.1.1. Simple model of Unruh effect. In order to obtain an elementary understanding of
the origin of the Unruh effect, we can consider a simplified system to analyse the effects of
relative acceleration. Shown in figure 9 are two frames, one containing a single harmonic
oscillator accelerated relative to a frame containing many distinct-frequency but weakly-
coupled oscillators at T = 0. If a single phonon of frequency ω is transferred (by an unspecified
process) from the accelerated frame to a resonant oscillator in the rest frame, in a time 1/γ

(assume 〈n〉, harmonic oscillator quantum number, is small for both oscillators), it will be
transferred back after an additional time 1/γ . Now during this time, the accelerating frame
undergoes a time dilation relative to the non-accelerated frame given by

dt

dτ
=

(
1 +

(aτ

c

)2
)1/2

≈ 1 +
1

2

(
aτ

cγ

)2

, (65)
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Figure 9. Simple model to show the effects of relative acceleration.

and so during this time, the resonance frequency of the oscillator in the accelerating frame
changes by

δω = dτ

dt
ω − ω = −ω

2

(
aτ

cγ

)2

. (66)

Assuming the harmonic oscillators in the rest frame are very broad, the probability of emitting
a phonon at ω − δω is essentially the same as that for ω. Taking into account the fact that a
phonon can be lost to the ‘bath’ in the rest frame, the apparent rate of energy flow from the
accelerating frame to the rest frame is

γ

(
γ

γ ∗ + γ

)
h̄ω

2

(
a

cγ

)2

= 1

1/Q + 1/Q∗
(a

c

)2
= Ė = γ kT , (67)

where Q = ω/γ , Q∗ = ω/γ ∗. Thus the accelerated frame appears to be at a finite temperature,
which, in this case, is proportional to a2 and depends on the phonon exchange rate. We have not
assumed that there is a zero-point motion, but only that the harmonic oscillators are quantized.

Thus, given that harmonic systems in an accelerated frame appear to be at a finite
temperature, the existence of the Unruh effect is not surprising. However its specific calculation
is nontrivial.

7.2. Marconi’s coherer

The first detector for radiated electromagnetic waves was the ‘coherer’ invented by David
Edward Hughes (1830–1900), who was first to demonstrate the transmission of electromagnetic
waves, seven years before Hertz’s experiments [111]. Hughes was able to detect signals from
a spark transmitter at a distance of 500 yards, using a microphone contact (later referred to as a
‘coherer’). He correctly claimed that the signals were transmitted by electric waves in the air.
Hughes did not publish his work until much later because after demonstrating the effect, the
leading observers were not convinced that the effects were not due to ordinary electromagnetic
induction. (Joseph Henry observed effects that were likely due to electric waves as early
as 1842.)

Hughes’ coherer as a detector was further developed by Branley, Lodge, Popov and into
its highest engineering form by Marconi, as shown in figure 10. It is in fact easy to demonstrate
the coherer effect. If two wire leads are inserted into opposite sides of a small cup of metal
filings, the effective resistance suddenly drops, by as much as a factor of 100, when a critical
voltage is applied across the leads. The applied voltage can be of either alternating or direct
current, and for leads placed a few millimetres apart with filing sizes of the order, 0.1 mm,



The Casimir force 231

Glass Tube

Conducting Electrodes

Loose Metal

    Filings

Figure 10. Schematic of the coherer detector as developed by Marconi.
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Figure 11. Simple model of the metallic particles in a coherer.

the critical voltage is about 3 V. The coherer is an effective but not sensitive detector of radio
signals and was superseded by more effective detectors in the early 20th century.

It has been generally assumed that the coherer action is due to the metal filings ‘welding’
together in the presence of infinitesimal sparks that occur between the filings when a voltage
is applied. However, a more likely explanation is that the filings, which are loosely packed,
coated with oxide and probably dirty, are initially separated enough that current flow occurs
as a percolation process. When a voltage is applied, the particles attract mutually, pulling the
particles together. When the separation is small enough, the Casimir force takes over and
the filings stick together, creating a semi-permanent low-resistance path through the filings
that persists even when the voltage is removed. Shaking or vibrating the coherer restores the
coherer to the high-resistance state.

The foregoing picture can be developed into a model, schematically shown in figure 11.
Two metal spheres of radius R, separated by a distance d, with voltage V applied between
them, will be mutually attracted. A restoring force in this picture is due to gravity, the two
spheres being supported as pendulums hanging from conducting strings of effective length L.

The force between the spheres is easy to calculate from the proximity force theorem and
the energy between parallel capacitor plates of area A,

F(d) = 2πR
E(d)

A
= πε0

d
V 2. (68)

The spheres will pull together when the derivative of the electric force exceeds the derivative of
the restoring force, mgδd/L, where m = 4ρπR3/3 is the mass of the spheres, ρ is the density
of the filings and δd is the deviation from the initial separation. From the second derivative,

πε0R

(d − δdc)2
V 2

c = mg

L
, (69)

where Vc is the critical voltage where the derivative are equal. δdc is also determined by
πε0R

(d − δdc)
V 2

c = mgδdc

L
(70)
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and, surprisingly, the ratio of these two equations determines δdc = d/2. Therefore,

V 2
c = gρd2R2

3ε0L
. (71)

Taking R = 0.1 mm, L = 0.1 mm (pendulum length the same size as a filing radius),
d = 0.01 mm determined for Cu (ρ = 9 g cm−3) implies Vc ≈ 7 V which is in reasonable
agreement with experiment. Exceeding the critical voltage causes the filings to pull together,
and they then cohere due to the Casimir force. This is a situation similar to the effect
observed in a MEMs experiment where the cantilever became stuck when a critical voltage
was exceeded [92], as described in section 6. It is therefore fair to say that the coherer was the
first engineered MEMs system.

For Marconi’s first transatlantic transmission, a power of P = 105 W was generated on
the Cornwall coast at Poldhu. Messages were received at a distance of R = 3.5 × 106 m, in
Newfoundland. The energy flux, through the Poynting vector and the characteristic impedance
of free space, Z0 = 377 �, can be used to estimate the electric field at that distance, assuming
the power flux falls off as the distance squared:

P

4πR2
= E2

2Z0
→ E ≈ 10−3 V m−1 (72)

and so with a modest antenna system, the detector might have a 0.01 V signal, neglecting
atmospheric absorption which can be significant at the wavelength Marconi used. This voltage
is significantly below what one could reasonably expect a coherer to detect, even if it is biased
to near the critical voltage. In fact Marconi’s first transatlantic signals were detected with
a ‘mercury coherer’ (now known to be effectively a pn junction) developed by the Indian
scientist Sir J C Bose. (In the early days of radio, all detectors were referred to as coherers.)
This detector would have had sufficient sensitivity to detect a 0.01 V signal. Sadly, Bose was
rarely credited for his contributions to the development of modern radio communications. The
output of the mercury coherer could not drive Marconi’s pen recorder, and so the record of
the reception of the first transatlantic transmission (of the letter S by Morse code) exists as a
handwritten entry in Marconi’s notebook.

7.3. Heating by evanescent waves

The presence of evanescent or non-propagating electromagnetic fields at the surface of bulk
materials can lead to observable effects. For example, if two surfaces at different temperatures
are close together, the heat flow due to evanescent waves can exceed the heat flow due to
propagating black-body radiation [112].

The existence of a fluctuating field outside of a dielectric has been directly observed in
studies of the inelastic scattering of low-energy electrons [113]. Heat flow between a heater and
a thermophotovoltaic cell placed in submicrometre proximity has been observed in a MEMs
system [114].

The material fluctuation considered for the Casimir force (equation (12)) is also the source
term for calculating magnetic noise external to material bodies, in particular conductors.
This sort of noise is important in biomagnetic measurements [115] and fundamental physics
measurements [116] (note missing factor of µ in the vector potential in [116], making the noise
from conducting magnetic materials similar to ordinary conductors).

7.3.1. Ion trap quantum computing. Quantum computing using multiple trapped ions that
form entangled states though the vibrational quantum states in a Paul radiofrequency trap has
been of broad interest. The issues of decoherence due to interactions with the Johnson noise
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field external to conductors is discussed in [117], where it is shown that these effects are
too small to be of concern because of the narrow effective bandwidth of the mechanical ion
oscillator. Henkel and Wilkens [118] consider the problem of an ion very close to a 300 K
surface and find that the heating rate can be extremely large when the separation is of the order
of a few micronmetres or less, due to interactions with the evanescent fields. Because there is a
large gradient in the surface fields, they couple more efficiently to charged particles compared
with the case discussed in [117] where the field is essentially homogeneous across the trap,
but fluctuating in time.

7.4. Tests for new forces in the sub-millimetre range

Deviations from Newton’s law of universal gravitation have always been of interest but have
received considerable attention over the last three decades. This attention is due to new
theoretical predictions and to reports of experimental anomalies. For example, in the context
of string theory, extra compactified dimensions lead to a modification of Newton’s law, and
in some models the characteristic length scale is at the micrometre level. A recent review
by Fischbach and Talmadge [119] indicates that there are no anomalous forces with strength
comparable to gravity over the 1–1017 cm range.

Agreement between experimental measurements of the Casimir force and theoretical
predictions can be used to set limits on possible anomalous interactions [120, 121]. Although
these limits correspond to forces many times that of gravity, these are nonetheless the best
constraints for short-range forces. These types of experiments provide strong motivation for
an improved theoretical understanding of the Casimir force. The current best experimental
limits, obtained with a MEMs device, are reported in [71].

7.5. Dispersion forces: wetting of surfaces

The question of the wetting of surfaces can be thought of as a generalization of the Casimir force
when one of the plates is a liquid. In 1941, Schiff [122] suggested that the formation of films
of superfluid helium on the walls of containers is due to the van der Waals attraction between
the substrate and the helium atoms. Lifshitz’s theory [12] was cast into a more general form by
Dzyaloshinskii, Lifshitz and Pitaevskii (DLP) [123] to include interactions between a substrate
and a thin liquid film. Measurements of the thickness of liquid helium films are in good agree-
ment with the generalized theory [124]. More recent studies have shown that liquid helium will
not wet a caesium film [125] and this has been experimentally demonstrated [126]. This discov-
ery has a practical application as an important technique in low-temperature physics because
an evaporated Cs ring interrupts superfluid film flow and eliminates the associated heat load.

In a series of remarkable experiments, it was demonstrated that liquid water does not wet
the surface of ice [127,128], and this is explained by the DLP theory with the known dielectric
responses of ice and water [129].

The DLP theory has also been applied to the wetting of water on indium-tin-oxide films
on windshields [130] and is but one of the far-reaching applications of the Casimir force.

8. Conclusion

The Casimir force remains one of the most amazing predictions in the history of physics.
Nearly 50 years after its prediction, it has finally become possible to measure the force with
per cent-level accuracy, and theory is now lagging experiment.
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The source of zero-point fluctuations has been debated, but the general consensus is there
are different, yet equivalent, ways of interpreting the same phenomenon [5]. The idea that
boundaries can affect the zero-point fluctuations of a system has had widespread application.

In the last few years, several experiments have been performed to quantify the character of
the Casimir force between solid bodies and have shown a new level of accuracy; in particular, the
AFM technique offers great promise for testing equation (1) and its modifications for the case
of real materials to better than 1% precision. If the sensitivity of the AFM and MEMs-based
experiments can be increased substantially, the measurement region can be extended to larger
separations where the theoretical uncertainties discussed in this report are substantially reduced.
Perhaps even the effect of finite temperature [68] will be measurable in the not-too-distant
future, and the veracity of [69] can be tested by repeating the measurements with dielectrics
(diamond), semiconductors (lightly doped germanium) and other metals. As discussed in
section 5, these materials should all exhibit thermal corrections of different character. At
present, this is the outstanding problem in the theory of the Casimir force.
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[46] Casimir H B G 1978 Rev. Roumaine Physique 23 723–6
[47] Boyer T H 1968 Phys. Rev. 174 1764–76
[48] Carniglia C K and Mandel L 1971 Phys. Rev. D 3 280–96
[49] Belinfante F J 1987 Am. J. Phys. 55 134–8
[50] Schaden M and Spruch L 1998 Phys. Rev. A 58 935–53
[51] Kleppner D 1990 Phys. Today 43 9–11
[52] Kenneth O, Klich I, Mann A and Revzen M 2002 Phys. Rev. Lett. 89 033001
[53] Iannuzzi D and Capasso F 2003 Phys. Rev. Lett. 91 029101
[54] Kenneth O, Klich I, Mann A and Revzen M 2003 Phys. Rev. Lett. 91 029102
[55] Schwinger J, DeRaad L L Jr and Milton K A 1978 Ann. Phys. (New York) 115 1
[56] Hargreaves C M 1965 Proc. Kon. Ned. Akad. Wetensh. 68 B 231–6
[57] Mohideen U and Roy A 1998 Phys. Rev. Lett. 81 4549
[58] Hargreaves C M 1965 Proc. Kon. Ned. Akad. Wetenshap. Ser. B 68 231
[59] Bezerra V B, Klimchitskaya G L and Romero C 1997 Mod. Phys. Lett. A 12 2613
[60] Lamoreaux S K 1999 Phys. Rev. A 59 R3149
[61] van Blokland P H G M and Overbeek J T G 1978 J. Chem. Soc. Faraday Trans. 74 2637
[62] Jenkins F A and White H E 1957 Principles of Optics (New York: McGraw-Hill) p 523
[63] Bostrom M and Sernelius B E 2000 Phys. Rev. A 61 046101–3
[64] Lambrecht A, Reynaud S (Comment) and Lamoreaux S K (Reply) 2000 Phys. Rev. Lett. 84

5672–3
[65] van Bree J L M J, Poulis J A, Verhaar B J and Schram K 1974 Physica 78 187
[66] Bordag M, Klimchitskaya G L and Mostepanenko V M 1995 Phys. Lett. A 200 95
[67] Zhou F and Spruch L 1995 Phys. Rev. A 52 297
[68] Brown L S and Maclay G J 1969 Phys. Rev. 184 1272–9
[69] Bostrom M and Sernelius Bo E 2000 Phys. Rev. Lett. 84 4757
[70] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5

Lamoreaux S K 1998 Phys. Rev. Lett. 81 4549
[71] Decca R S et al 2003 Phys. Rev. D 68 116003
[72] Lamoreaux S K 2001 Phys. Rev. Lett. 87 139101
[73] Bordag M et al 2000 Phys. Rev. Lett. 85 503
[74] Klimchitskaya G L 2002 Int. J. Mod. Phys. A 17 751
[75] Genet C, Lambrecht A and Reynaud S 2002 Int. J. Mod. Phys. A 17 761
[76] Sernelius Bo E and Bostrom M 2001 Phys. Rev. Lett. 87 259101

Brevik I, Aarseth J B and Hoye J S 2002 Phys. Rev. E 66 026119
[77] Hoye J S, Brevik I, Aarseth J B and Milton K A 2003 Phys. Rev. E 67 056116
[78] Torgerson J R and Lamoreaux S K Preprint quant-ph/0309153

Torgerson J R and Lamoreaux S K 2004 Phys. Rev. E at press
[79] Geyer B, Klimchitskaya G L and Mostepanenko V M 2003 Phys. Rev. A 67 062102
[80] Ford L H 1993 Phys. Rev. A 48 2962
[81] London H 1940 Proc. R. Soc. A 176 522



236 S K Lamoreaux

[82] Kittel C H 1971 Solid State Physics (New York: Wiley)
[83] Boyer T H 1974 Phys. Rev. A 9 68
[84] Jackson J D 1975 Classical Electrodynamics 2nd edn (New York: Wiley)
[85] Sparnaay M J 1958 Physica 24 751–64
[86] Blocki J, Randrup J, Swiatecki W J and Tsang C F 1977 Ann. Phys. 105 427
[87] Crandall R E 1983 Am. J. Phys. 51 367
[88] van Silfhout A 1966 Proc. Kon. Ned. Acad. Wetensch. Ser. B 69 501
[89] Lamoreaux S K and Buttler W T 2004 Preprint quant-ph/0408027
[90] Binnig G, Quate C F and Gerber Ch 1986 Phys. Rev. Lett. 56 930
[91] Chen F, Harris B W, Roy A and Mohideen U 2002 Int. J. Mod. Phys. A 17 711–21
[92] Buks E and Roukes M L 2001 Europhys. Lett. 54 220–6
[93] Serry F M, Walliser A D and Maclay G J 1998 J. Appl. Phys. 84 2501–6
[94] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Science 291 1941–4
[95] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Phys. Rev. Lett. 87 211801
[96] Decca R S et al 2003 Phys. Rev. Lett. 91 050402
[97] Bressi G et al 2002 Phys. Rev. Lett. 88 041804
[98] Iannuzzi D, Lisanti M and Capasso F 2004 Proc. Natl Acad. Sci. 101 4019–23
[99] Boersma S L 1996 Am. J. Phys. 64 539–41

[100] Hawking S W 1975 Commun. Math. Phys. 43 199–220
[101] Hawking S W 1977 Sci. Am. 236 34–40
[102] Unruh W G 1976 Phys. Rev. D 14 870–92
[103] Davies P C W 1975 J. Phys. A 8 609
[104] Boyer T H 1985 Sci. Am. Aug. 1985 75–8
[105] Rudolf Peierls 1979 Surprises in Theoretical Physics (Princeton, NJ: Princeton University Press)
[106] Schwinger J 1994 Proc. Natl Acad. Sci. USA 91 6473–5
[107] Brevik V, Marachevsky V N and Milton A K 1999 Phys. Rev. Lett. 82 3948
[108] Bourne N K and Field J E 1999 Phil. Trans. A 357 295
[109] Chakravarty A and Walton A J 2000 J. Luminescence 92 27
[110] Xu N, Wang L and Hu X 1999 Phys. Rev. Lett. 83 2441
[111] Sir Edmund Whittaker 1960 A History of the Aether and Electricity vol 1 (New York: Harper Torchbook)
[112] Loomis J J and Maris H J 1994 Phys. Rev. B 50 18517–24
[113] Ibach H and Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York: Academic)

Chapter 3
[114] DiMatteo R S et al 2001 Appl. Phys. Lett. 79 1894–5
[115] Varpula T and Poutanen T 1984 J. Appl. Phys. 55 4015–21
[116] Lamoreaux S K 1999 Phys. Rev. A 60 1717–20
[117] Lamoreaux S K 1997 Phys. Rev. A 56 4970–5
[118] Henkel C and Wilkens M 1999 Europhys. Lett. 47 414–20
[119] Fischbach E and Talmadge C 1996 Proc. XXXI Recontres de Moriond (Les Arcs, 20–27 January 1996)

ed R Ansari et al (Gif-Sur-Yvette: Editions Frontieres) p 443
[120] Long J C, Chan H W and Price J C 1998 Nucl. Phys. B 539 23–34
[121] Bordag M, Gillies G T and Mostepanenko V M 1997 Phys. Rev. D 56 R6–R10

Bordag M, Gillies G T and Mostepanenko V M 1998 Phys. Rev. D 57 2024
[122] Schiff L 1941 Phys. Rev. 59 839
[123] Dzyaloshinskii I E, Lifshitz E M and Pitaevskii L P 1961 Adv. Phys. 10 165
[124] Sabinsky E S and Anderson C H 1973 Phys. Rev. A 7 790
[125] Cheng E, Cole M W, Saam W F and Treiner J 1991 Phys. Rev. Lett. 67 1007–10
[126] Nacher P J and DupontRoc J 1991 Phys. Rev. Lett. 67 2966–9
[127] Elbaum M 1991 Phys. Rev. Lett. 67 2982–5
[128] Elbaum M, Lipson S G and Dash J G 1993 J. Cryst. Growth 129 491–505
[129] Elbaum M and Schick M 1991 Phys. Rev. Lett. 66 1713–16
[130] Bostrum M and Sernelius Bo E 1999 Appl. Surf. Sci. 142 375–80


