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Chapter 1

Introduction

1.1 Why QFT?

As a new student of the subject you may ask Why study Quantum Field Theory
(QFT)? Or why do we need QFT? There are many reasons, and I will explain some.

Pair Creation. For starters, particle quantum mechanics (QM) does not account
for pair creation. In collisions of electrons with su�ciently large energies it is
occasionally observed that out of the collision an electron and a positron are created
(in addition to the originating electrons): e�e� ! e�e�e+e�. Su�ciently large
energies means kinetic energies larger than the rest mass of the e�e+ pair, namely
2mec2. Not only does single particle QM not account for this but in this case the
colliding electrons must be relativistic. So we need a relativistic QM that accounts
for particle creation.

But what if we are atomic physicists, and only care about much smaller ener-
gies? If we care about high precision, and atomic physicists do, then the fact that
pair creation is possible in principle cannot be ignored. Consider the perturbation
theory calculation of corrections to the n-th energy level, En, of some atomic state
in QM:

�En = hn|H 0|ni+
X

k 6=n

hn|H 0|kihk|H 0|ni
En � Ek

+ · · ·

The second order term involves all states, regardless of their energy. Hence states
involving e+e� states give corrections of order

�E

E
⇠ atomic energy spacing

mec2
.

This is, a priori, as important as the relativistic corrections from kinematics,
H =

p
(mec2)2 + (pc)2 = mec2 +

1

2

p2/me � 1

8

p4/m3

ec
2 + · · · . The first relativis-
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tic correction is H 0 = �1

4

(p/mec)2(p2/2me) so the fractional correction �E/E ⇠
(p/mec)2 ⇠ (p2/2me)/(mec2), just as in pair creation. We are lucky that for the
Hydrogen atom the pair creation correction happens to be small. But in general
we have no right to neglect it.

Instability of relativistic QM. Let’s insist in single particle QM and explore
some consequences. Since H =

p
(mec2)2 + (pc)2 does not give us a proper dif-

ferential Schrödinger equation, let’s try a wave equation using the square of the
energy, E2 = (mc2)2 + (pc)2, and replacing, as usual, E ! i~@/@t and ~p ! �i~r.
This leads to the Klein-Gordon wave equation,


1

c2
@2

@t2
�r2 +

µ2

c2

�
�(~x, t) = 0

where µ = mc2/~. Since this is a free particle we look for plane wave solutions,

f+(~x, t) = a+k e
�i!

k

t+i~k·~x and f�(~x, t) = a�k e
i!

k

t�i~k·~x,

where a± are constants (independent of ~x and t) and

!k =

q
c2~k2 + µ2.

The interpretation of f+ is clear: using E ! i~@/@t and ~p ! �i~r we see
that it has energy E = ~!k and momentum ~p = ~k and these are related by
E =

p
(mec2)2 + (pc)2. However, we now also have solutions, f� with energy

E = �~!k (and momentum ~p = �~k). These have negative energy. For the free
particle this is not a problem since we can start with a particle of some energy,
positive or negative, and it will stay at that energy. But as soon as we introduce
interactions, say by making the particle charged and giving it minimal coupling to
the electromagnetic field, the particle can radiate into a lower energy state, but
there is no minimum energy. There is a catastrophic instability.

Dirac proposed an ingenious solution to this catastrophe. Suppose the particle
is a fermion, say, an electron. Then start the system from a state in which all
the negative energy states are occupied. We call this the “Dirac sea.” Since no
two fermions can occupy a state with the same quantum numbers, we cannot have
an electron with positive energy radiate to become a negative energy state (that
state is occupied). However, an energetic photon can interact with an electron
with E < �mec2 and bump it to a state with E > mec2. What results is a state
with a positive energy electron and a hole in the “Dirac sea.” The hole signifies
the absence of negative energy and negative charge, so it behaves as a particle with
positive energy and positive charge. That is, as the anti-particle of the electron,
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the positron. So we conclude we cannot have a single particle QM, we are forced
to consider pair creation.

A note in passing: as we will discuss later, relativistic fermions are described
by the Dirac equation. But a solution of the Dirac equation necessarily solves
the Klein-Gordon equation, so the discussion above is in fact appropriate to the
fermionic case.

Klein’s Paradox. There is another way to see the need to include anti-particles
in the solution to the Klein-Gordon equation. As we stated, only if we include
interactions will we see a problem. But our description of interactions with an
electromagnetic field was heuristic. We can make it more precise by introducing
instead a potential. The simplest case, considered by Klein, is that of a particle
in one spatial dimension with a step potential, V (x) = V

0

✓(x). Here ✓(x) is the
Heavyside step-function

✓(x) =

(
1 x > 0

0 x < 0

and V
0

> 0 is a constant with units of energy. We look for solutions with a plane
wave incident from the left (x < 0 with p = ~k > 0):

 L(x, t) = e�i!t+ik
L

x +Re�i!t�ik
L

x

 R(x, t) = Te�i!t+ik
R

x

These solve the Klein-Gordon equation with the shifted energy provided

ckL =
p
!2 � µ2 and ckR =

p
(! � !

0

)2 � µ2

where !
0

= V
0

/~. We now determine the transmission (T ) and reflection (T )

coe�cients matching the solutions at x = 0; using  L(t, 0) =  R(t, 0) and
@ 

L

(t,0)
@t =

@ 
R

(t,0)
@t we get

T =
2kL

kL + kR
and R =

kL � kR
kL + kR

.

Formally the solution looks just like in the non-relativistic (NR) case. Indeed, for
! > µ + !

0

both wave-vectors kL and kR are real, and so are both transmission
coe�cients and we have a transmitted and a reflected wave. Similarly if !

0

� µ <
! < !

0

+µ then kR has a nonzero imaginary part and we have total reflection (the
would be transmitted wave is exponentially damped).

But for V
0

> 2mc2, which corresponds to an energy large enough that pair
creation is energetically allowed, there is an unusual solution. If µ < ! < !

0

� µ,
which means ! � µ > 0 and ! � µ < !

0

� 2µ, we obtain both kL and kR are real,
and so are both T and R. There is a non-zero probability that the particle, which
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has less energy than the height of the barrier (E �mc2 � V
0

< 0), is transmitted.
This weird situation, called “Klein’s paradox,” can be understood in terms of pair
creation. A complete treatment of the problem requires (as far as I know) a fully
quantum field theoretic treatment, so for that we will have to wait until later in
this course. But the result can be easily described: the incident particle is fully
reflected, but is accompanied by particle-antiparticle pairs.

Bohr’s Box. Above we talked about “localizing” a particle. Let’s make this a bit
more precise (not much, though). Suppose that in order to localize a free particle
we put it in a large box. We don;t know where the particle is other than that it
is inside the box. If choose the box large enough, of sides Lx,y,z � �C , then the
uncertainly in its momentum can be small, �px,y,z & ~/Lx,y,z. Then the kinetic

energy can be small, E = ~p2

2m ⇠ ~2
2m(L�2

x + L�2

y + L�2

z ). Now suppose one side of
the box, parallel to the yz plane, is movable (the box is a cylinder, the movable
box is a piston). So we can attempt to localize the particle along the x axis by
compressing it, that is, by decreasing Lx. Once Lx ⇠ �C the uncertainty in the
energy of the particle is �E ⇠ mc2. Now o localize the particle we have introduced
interaction, those of the particle with the walls of the box that keeps it contained.
But as we have seen when the energy available exceeds 2mc2 interactions require a
non-vanishing probability for pair creation. We conclude that as we try to localize
the particle to within a Compton wavelength, �C = ~/mc, we get instead a state
which is a combination of the particle plus a particle-antiparticle pair. Or perhaps
two pairs, or three pairs, or . . . . In trying to localize a particle not only we have
lost certainty on its energy, as is always the case in QM, but we have also lost
certainty on the number of particles we are trying to localize!

This gives us some physical insight into Klein’s paradox. The potential step
localizes the particle over distances smaller than a Compton wavelength. The
uncertainty principle then requires that the energy be uncertain by more than the
energy required for pair production. It can be shown that if the step potential is
replaced by a smooth potential that varies slowly between 0 and V

0

over distances
d larger than �C then transmission is exponentially damped, but as d is made
smaller than �C Klein’s paradox re-emerges (Sauter).

Democracy. It is well known that elementary particles are indistinguishable:
every electron in the world has the same mass, charge and magnetic moment. In
NRQM we account for this in an ad-hoc fashion. We write

H =
X

i

~p2i
2me

+
e

mec
~A(~xi) · ~pi + ~B(~xi) · ~µi where ~µi =

ge~
2mec

~�i,
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but we have put in by hand that the mass me, the charge e and the gyromagnetic
ratio g are the same for all electrons. Where does this democratic choice come
from?

Moreover, photons, which are quanta of the electromagnetic field, are intro-
duced by second quantizing the field. But electrons are treated di↵erently. Un-
democratic! If instead we insist that all particles are quanta of field excitations not
only we will have a more democratic (aesthetically pleasing?) setup but we will
have an explanation for indistinguishability, since all corpuscular excitations of a
field carry the same quantum numbers automatically.

Indistinguishability is fundamentally importance in Pauli’s exclusion principle.
If several electrons had slightly di↵erent masses or slightly di↵erent charges from
each other, then they could be distinguished and they could occupy the same atomic
orbital (which in fact would not be the same, but slightly di↵erent). More generally,
indistinguishability is at the heart of “statistics” in QM. But the choice of Bose-
Einstein vs Fermi-Dirac statistics is a recipe in particle QM, it has to be put in by
hand. Since QFT will give us indistinguishability automatically, one may wonder
if it also has something to say about Bose-Einstein vs Fermi -Dirac statistics. In
fact it does. We will see that consistent quantization of a field describing spin-0
corpuscles requires them to obey Bose-Einstein statistics, while quantization of
fields that give spin-1/2 particles results in Fermi-Dirac statistics.

Causality. In relativistic kinematics faster than light signal propagation leads
to paradoxes. The paradoxes come about because faster than light travel violates
our normal notion of causality. A spaceship (it’s always a spaceship) moving faster
than light from event A to event B is observed in other frames as moving from
B to A. You never had to worry about this in NRQM because you never had to
worry about it in NR classical mechanics. But you do worry about it in relativistic
mechanics so you must be concerned that related problems arise in relativistic QM.

In particle QM we can define an operator ~̂x and we can use eigenstates of this
operator, ~̂x|~xi = ~x|~xi to describe the particle. For now I will use a hat to denote
operators on the Hilbert space, but I will soon drop this. The operator is conjugate
to the momentum operator, ~̂p, in the sense that i[x̂j , p̂k] = �jk, and this gives rise
to a relation between their eigenstates,

h~p |~xi = 1

(2⇡~)3/2
e�i~p·~x/~.

A state | i at t = 0 evolves into e�i ˆHt/~| i a time t later. We can ask what does the
state of a particle localized at the origin at t = 0 evolve into a time t later. Now, in
NRQM we know the answer: the particle spreads out. Whether it spreads out faster
than light or not is not an issue so we don’t ask the question. But in relativistic QM
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it matters, so we address this. Note however that for consistency we must use a

relativistic Hamiltonian. For a free particle we can use Ĥ =
q

(~̂pc)2 + (mc2)2 since
its action on states is unambiguously given by its action on momentum eigenstates,
Ĥ|~pi =

p
(~pc)2 + (mc2)2|~pi. The probability amplitude of finding the particle at

~x at time t (given that it started as a localized state at the origin at time t = 0) is

h~x|e�i ˆHt/~|~x = 0i =
Z
d3p h~x|~pih~p |e�i ˆHt/~|~x = 0i (complete set of states)

=

Z
d3p

1

(2⇡~)3 e
i~p·~x/~e�iE

p

t/~ (where Ep =
p
(pc)2 + (mc2)2)

=

Z 1

0

p2dp

(2⇡~)3

Z
1

�1

dcos ✓

Z
2⇡

0

d� eipr cos ✓/~e�iE
p

t/~ (p = |~p|; r = |~x|)

= � i

(2⇡~)2r

Z 1

�1
p dp eirp/~e�iE

p

t/~ (1.1)

This is not an easy integral to compute. But we can easily show that it does not
vanish for r > ct > 0. This means that there is a non-vanishing probability of
finding the particle at places that require it propagated faster than light to get
there in the allotted time. This is a violation of causality.

�imc

+imc

Figure 1.1: Contour integral for evaluating (1.1).
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Before discussing this any further let’s establish the claim that the integral does
not vanish for r/t > c. The integral is di�cult to evaluate because it is oscillatory.
However, we can use complex analysis to relate the integral to one performed over
purely imaginary momentum, turning the oscillating factor into an exponential
convergence factor. So consider the analytic structure of the integrand. Only the
square root defining the energy is non-analytic, with a couple of branch points at
p = ±imc. Choose the branch cut to extend from +imc to +i1 and from �imc
to �i1 along the imaginary axis; see Fig. 1.1. The integral over the contour C
vanishes (there are no poles of the integrand), and for r > ct the integral over the
semicircle of radius R vanishes exponentially fast as R ! 1. Then the integral we
want is related to the one on both sides of the positive imaginary axis branch cut,

h~x|e�i ˆHt/~|~x = 0i = i

(2⇡~)2r

Z 1

mc
p dp e�rp/~

⇣
e
p

p2�(mc)2ct/~ � e�
p

p2�(mc)2ct/~
⌘
.

(1.2)
The integrand is everywhere positive. It decreases exponentially fast as r increases
for fixed t, so the violation to causality is small. But any violation to causality is
problematic.

1.2 Units and Conventions

You surely noticed the proliferation of c and ~ in the equations above. The play no
role, other than to keep units consistent throughout. So for the remainder of the
course we will adopt units in which c = 1 and ~ = 1. You are probably familiar
with c = 1 already: you can measure distance in light-seconds and then x/t has
no units. But now, in addition energy momentum and mass and measured in the
same units (after all E2 = (pc)2 + (mc2)2). We denote units by square brackets,
the units of X are [X]; we have [E] = [p] = [m], and [x] = [t].

The choice ~ = 1 may be less familiar. Form the uncertainty condition, �p�x �
~, so [p] = [x�1]. This together with the above (from c = 1) means that everything
can be measured in units of energy, [E] = [p] = [m] = [x�1] = [t�1]. In particle
physics it is customary to use GeV as the common unit. That’s because many
elementary particles have masses of the order or a GeV:

particle symbol mass(GeV)

proton mp 0.938
neutron mn 0.940
electron me 5.11⇥ 10�4

W -boson MW 80.4
Z-boson MZ 91.2

higgs boson Mh 126
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To convert units, use ~ = 6.582 ⇥ 10�25 GeV·sec, and often conveniently ~c =
0.1973 GeV·fm, where fm is a Fermi, or femtometer, 1 fm = 10�15 m, a typical
distance scale in nuclear physics.

In these units the fine structure constant, ↵ = e2/4⇡~c is a pure number,

↵ =
e2

4⇡
⇡ 1

137
.

Since we will study relativistic systems it is useful toset up conventions for our
notation. We use the “mostly-minus” metric, ⌘µ⌫ = diag(+,�,�,�). That is, the
invariant interval is ds2 = ⌘µ⌫dxµdx⌫ . The Einstein convention, an implicit sum
over repeated indices unless otherwise stated, is adopted. Four-vectors have upper
indices, a = (a0, a1, a2, a3), and the dot product is

a · b = ⌘µ⌫a
µb⌫ = a0b0 � a1b1 � a2b2 � a3b3 = a0b0 � ~a ·~b = a0b0 � aibi

We use latin indices for the spatial component of the 4-vectors, and use again the
Einstein convention for repeated latin indices, ~a ·~b = aibi. Indices that run from
0 to 3 are denoted by greek letters. We also use a2 = a · a and |~a |2 = ~a2 = ~a · ~a .
Sometimes we even use a2 = ~a · ~a , even when there is a 4-vector aµ; this is
confusing, and should be avoided, but when it is used it is always clear from the
context whether a2 is the square of the 4-vector or the 3-vector.

The inverse metric is denoted by ⌘µ⌫ ,

⌘µ⌫⌘⌫� = �µ�

where �µ⌫ is a Kronecker-delta, equal to unity when the indices are equal, otherwise
zero. Numerically in Cartesian coordinates ⌘µ⌫ is the same matrix as the met-
ric ⌘µ⌫ , ⌘µ⌫ = diag(+,�,�,�), but it is convenient to di↵erentiate among them
because they need not be the same in other coordinate systems. We can use the
metric and inverse metric to define lower index vectors (I will not use the names
“covariant” and “contravariant”) and to convert among them:

aµ = ⌘µ⌫a
⌫ , aµ = ⌘µ⌫a⌫ .

Then the dot product can be expressed as

a · b = ⌘µ⌫a
µb⌫ = aµbµ = aµb

µ.

Generalized Einstein convention: any type of repeated index is understood as
summed, unless explicitly stated. For example, if we have a set of quantities �a

with a = 1, . . . , N , then �a�a stands for
PN

a=1

�a�a.
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1.3 Lorentz Transformations

Lorentz transformations map vectors into vectors

aµ ! ⇤µ
⌫a
⌫

preserving the dot product,

a · b ! (⇤a) · (⇤b) = a · b

Since this must hold for any vectors a and b, we must have

⇤�µ⇤
�
⌫⌘�� = ⌘µ⌫ (1.3)

Multiplying by the inverse metric, ⌘⌫⇢

⇤�µ⇤
�
⌫⌘��⌘

⌫⇢ = �⇢µ

we see that
⇤�

⇢ ⌘ ⇤�⌫⌘��⌘
⌫⇢

is the inverse of ⇤�⇢, (⇤�1)⇢� = ⇤�⇢. Eq. (1.3) can be written in matrix notation
as

⇤T ⌘⇤ = ⌘ (1.4)

where the superscript “T” stands for “transpose,”

(⇤T )µ
� = ⇤�µ.

Lorentz transformations form a group with multiplication given by composi-
tion of transformations (which is just matrix multiplication, ⇤

1

⇤
2

): there is an
identity transformation (the unit matrix), an inverse to every transformation (in-
troduced above) and the product of any two transformations is again a transfor-
mation. The Lorentz group is denoted O(1, 3). Taking the determinant of (1.4),
and using det(AB) = det(A) det(B) and det(AT ) = det(A) we have det2(⇤) = 1,
and since ⇤ is real, det(⇤) = +1 or �1. The product of two Lorentz transfor-
mations with det(⇤) = +1 is again a Lorentz transformation with det(⇤) = +1,
so the set of transformations with det(⇤) = +1 form a subgroup, the group of
Special (or Proper) Lorentz Transformations, SO(1, 3). Among the det(⇤) = �1
transformations is the parity transformation, that is, reflection aboutt he origin,
⇤ = diag(+1,�1,�1,�1).

Taking µ = ⌫ = 0 in (1.3) we have

(⇤0

0

)2 = 1 +
3X

i=1

(⇤i
0

)2 > 1
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So any Lorentz transformation has either ⇤0

0

� 1 or ⇤0

0

 1. The set of trans-
formations with ⇤0

0

� 1 are continuously connected, and so are the ones with
⇤0

0

 1, but no continuous transformation can take one type to the other. Among
those with ⇤0

0

� 1 is the identity transformation; among those with ⇤0

0

 1 is
time reversal, ⇤ = diag(�1,+1,+1,+1). We will have much more to say about
parity and time reversal later in this course. Transformations with ⇤0

0

� 1 are
called orthochronous and they form a subgroup denoted by O+(1, 3), The subgroup
of proper, orthochronous transformations, sometimes called the restricted Lorentz
group, SO+(1, 3).

Examples of Lorentz transformations: boosts along the x-axis

⇤ =

0

BB@

cosh ✓ sinh ✓ 0 0
sinh ✓ cosh ✓ 0 0
0 0 1 0
0 0 0 1

1

CCA (1.5)

and rotations

⇤ =

✓
1 0
0 R

◆

where R is a 3⇥ 3 matrix satisfying RTR = 1. Rotations form a group, the group
of 3 ⇥ 3 orthogonal matrices, O(3). Note that det2(R) = 1, so the matrices with
det(R) = +1 form a subgroup, the group of Special Orthogonal transformations,
SO(3).

1.3.1 More conventions

We will use a common shorthand notation for derivatives:

@µ� =
@�

@xµ

Note that the lower index on @µ goes with the upper index in the “denominator”

in @�
@xµ

. We can see that this works correctly by taking

@

@xµ
(x⌫a⌫) = aµ,

an lower index vector. Of course, the justification is how the derivative transforms
under a Lorentz transformation. If (x0)µ = ⇤µ

⌫x⌫ then

@

@x0µ
=
@x�

@x0µ
@

@(x)�
=

@

@x0µ

⇣
(⇤�1)�⌫(x

0)⌫
⌘ @

@(x)�
= (⇤�1)�µ

@

@(x)�
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as it should: @0µ = (⇤�1)�µ@�. Sometimes we use also @µ = ⌘µ⌫@⌫ . For integrals
we use standard notation,

Z
dt dx dy dz =

Z
dx0 dx1 dx2 dx3 =

Z
d4x =

Z
dt

Z
d3x.

This is a Lorentz invariant (because the Jacobian, | det(⇤)| = 1):
Z

d4x0 =

Z
d4x.

1.4 Relativistic Invariance

What does it mean to have a relativistic formulation of QM? A QM system is
completely defined by its states (the Hilbert space H) and the action of the Hamil-
tonian Ĥ on them. Consider again a free particle. Since H = E is in a 4-vector
with ~p we define a QM system by

~̂p|~pi = ~p |~pi, Ĥ|~pi =
p
~p2 +m2|~pi.

What do we mean by this being relativistic? That is, how is this invariant under
Lorentz transformations?

To answer this it is convenient to first review rotational invariance, which we
are more familiar with. In QM for each rotation R there is an operator on H, Û(R)
such that

Û(R)|~pi = |R~pi
I will stop putting “hats” on operators when it is clear we are speaking of operators.
So from here on U(R) stands for Û(R), etc. Note that

U(R)~̂p |~p i = ~p U(R)|~pi = ~p |R~pi
) U(R)~̂pU(R)�1|R~p i = R�1(R~p |R~p i) = R�1~̂p |R~p i

) U(R)~̂pU(R)�1 = R�1~̂p (1.6)

We would like U to be unitary, so that probability of finding a state is the same
as that of finding the rotated state (that, and [U,H] = 0, is what we mean by a
symmetry). We should be able to prove that U †U = UU † = 1. Let’s assume the
states |R~p i are normalized by

h~p 0|~pi = �(3)(~p 0 � ~p).

Then to show UU † = 1 we use a neat trick:

U(R)U †(R) = U(R)

Z
d3p |~pih~p |U(R)† =

Z
d3p |R~pihR~p | =

Z
d3p0 |~p 0ih~p 0| = 1,
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where we have used ~p 0 = R~p and d3p = d3p0. The latter is non-trivial. It reflects
the (clever) choice of normalization of states, which leads to a rotational invariant
measure.

You can see things go wrong if one defines the normalization of states di↵erently.
Say |~p i

B
= (1+ |~a · ~p |)|~p i where ~a is a fixed vector (and the subscript “B” stands

for “Bad”). Then

B
h~p 0|~pi

B
= (1 + |~a · ~p |)2�(3)(~p 0 � ~p) ) 1 =

Z
d3p

|R~pi
BB

hR~p |
(1 + |~a · ~p |)2 .

The point is that there is a choice of states for which we can show easily UU † = 1.
It is true that UU † = 1 even for the bad choice of states, it is just more di�cult to
prove.

We still have to show that U commutes with H, but this is simple:

U(R)H|~p i =
p
~p2 +m2|~p i ) U(R)HU(R)�1|R~p i =

p
(R~p)2 +m2|R~p i

) U(R)HU(R)�1 = H.

where we used (R~p)2 = ~p2 in the second step.
Now consider Lorentz Invariance: p ! ⇤p with ⇤ 2 O(1, 3). Actually, for now

p

E

⇤

Figure 1.2: The hyperboloid E2 � ~p2 =
m2; upper(lower) branch has E > 0(< 0).

we will restrict attention to transfor-
mations ⇤ 2 SO(1, 3) with ⇤0

0

� 1.
That’s because time reversal and spa-
tial inversion (parity) present their own
subtleties about which we will have
much to say later in the course. As be-
fore we have U(⇤)|E, ~p i = |⇤(E, ~p )i.
Note, first, that there is no need to
specify E in addition to ~p ; we are be-
ing explicit to understand how ⇤ acts
on states. In fact, since E2 � ~p2 = m2,
E and ~p fall on a hyperboloid. The ac-
tion of ⇤ on (E, ~p) just moves points
around in the hyperboloid. In order to
show UU † = 1 we try the same trick:

U(⇤)U †(⇤) = U(⇤)

Z
d3p |E, ~pihE, ~p | U(⇤)† =

Z
d3p |⇤(E, ~p)ih⇤(E, ~p)|.

But now we hit a snag: if (E0, ~p 0) = ⇤(E, ~p), then d3p0 6= d3p. This is easily
seen by considering boosts along the x direction, Eq. (1.5). But our experience
from the discussion above suggests we find a better basis of states, one chosen
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so that the measure of integration is Lorentz invariant. In fact, we can engineer
back the normalization of states from requiring a invariant measure. Start from the
observation that the 4-dimensional measure is invariant, d4p0 = d4p. Now pick from
this the upper hyperboloid in Fig. 1.2 in a manner that explicitly preserves Lorentz
invariance. This can be done using a delta function, �(p2�m2) = �((p0)2�~p2�m2)
and a step function ✓(p0) to select the upper solution of the �-function constraint.
Note that ✓(p0) is invariant under transformations with ⇤0

0

� 1. So we take our
measure to be

d4p �(p2 �m2)✓(p0) = d4p �((p0)2 � E2

~p )✓(p
0) (where E~p ⌘

p
~p2 +m2)

= d3p dp0
1

2E~p
�(p0 � E~p )

=
d3p

2E~p

For later convenience we introduce a constant factor and compact notation,

(dp) =
d3p

(2⇡)32E~p
.

The corresponding (relativistic) normalization of states is

h~p 0|~pi = (2⇡)32E~p �
(3)(~p 0 � ~p) (1.7)

Now we have,

U(⇤)U †(⇤) = U(⇤)

Z
(dp) |~pih~p | U(⇤)† =

Z
(dp) |⇤(E, ~p )ih⇤(E, ~p)|

=

Z
(dp) |(E0, ~p 0)ih(E0, ~p 0)| =

Z
(dp0) |~p 0ih~p 0| = 1.

From Eq. (1.7) one can easily show U †U = 1. Also,

U(⇤)(H, ~̂p )U(⇤)�1 = ⇤�1(H, ~̂p )

which is what we mean by relativistic co-variance.


