
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #1 : PROBABILITY

(0) Study the eight worked example problems linked on the HOMEWORK web page.

(1) A six-sided die is loaded in such a way that it is twice as likely to yield an even number
than an odd number when thrown.

(a) Find the distribution {pn} consistent with maximum entropy.

(b) Assuming the maximum entropy distribution, what is the probability that three con-
secutive rolls of this die will total up to seven?

(2) Show that the Poisson distribution Pν(n) = 1

n!
νn e−ν for the discrete variable n ∈ Z≥0

tends to a Gaussian in the limit ν → ∞.

(3) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
·

1

x2 + γ2
.

Consider the sum X =
∑N

i=1
xi , where each xi is independently distributed according to

P (xi).

(a) Find the distribution PN (X). Does it satisfy the central limit theorem? Why or why
not?

(b) Find the probability ΠN (Y ) that |XN | < Y , where Y > 0 is arbitrary.

(4) Frequentist and Bayesian statistics can sometimes lead to different conclusions. You
have a coin of unknown origin. You assume that flipping the coin is a Bernoulli process, i.e.

the flips are independent and each flip has a probability p to end up heads and probability
1 − p to end up tails.

(a) You perform 14 flips of the coin and you observe the sequence {HHTHTHHHTTHHHH}.
As a frequentist, what is your estimate of p?

(b) What is your frequentist estimate for the probability that the next two flips will each
end up heads? Would you bet on this event?

(c) Now suppose you are a Bayesian. You view p as having its own distribution. The
likelihood f(data|p) is still given by the Bernoulli distribution with the parameter p.
For the prior π(p), assume a Beta distribution,

π(p|α, β) =
Γ(α + β)

Γ(α) Γ(β)
pα−1 (1 − p)β−1 .

where α and β are hyperparameters. Compute the posterior distribution π(p|data, α, β).
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(d) What is the posterior predictive probability f(HH|data, α, β)?

(e) Since a priori we don’t know anything about the coin, it seems sensible to choose
α = β = 1 initially, corresponding to a flat prior for p. What is the numerical value
of the probability to get two heads in a row? Would you bet on it?

(5) Consider the family of distributions

f(k|λ) =

N∏

j=1

λk
j e−λ

kj !
,

corresponding to a set of N independent discrete events characterized by a Poisson process
with Poisson parameter λ. Show that

π(λ|α, β) =
αβ

Γ(β)
λβ−1 e−αλ ,

is a family of priors, each normalized on λ ∈ [0,∞), which is conjugate to the likelihood
distributions f(k|λ).
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