Lecture Notes on Classical Mechanics (A Work in Progress)

Daniel Arovas
Department of Physics
University of California, San Diego

January 13, 2022

Contents

Contents i
List of Figures xv
List of Tables xxiv
0.1 Preface xxvi
0 Reference Materials 1
0.1 Lagrangian Mechanics (mostly) 1
0.2 Hamiltonian Mechanics (mostly) 1
0.3 Mathematics 2
1 Elementary Mechanics 3
1.1 Introduction and Review 3
1.1.1 Newton's laws of motion 3
1.1.2 Aside : inertial vs. gravitational mass 5
1.2 Examples of Motion in One Dimension 6
1.2.1 Uniform force 6
1.2.2 Uniform force with linear frictional damping 7
1.2.3 Uniform force with quadratic frictional damping 8
1.2.4 Crossed electric and magnetic fields 9
1.2.5 Pause for Reflection 10
1.3 Work-Energy Theorem 10
1.4 Conservative and Nonconservative Forces 11
1.4.1 Example : integrating $\boldsymbol{F}=-\boldsymbol{\nabla} U$ 13
1.4.2 Conservative Fofrces in many-particle systems 14
1.4.3 Linear and angular momentum 15
1.5 Scaling of Solutions for Homogeneous Potentials 17
1.5.1 Euler's theorem for homogeneous functions 17
1.5.2 Scaled equations of motion 17
1.6 Description as a Dynamical System 19
1.6.1 Example : harmonic oscillator 20
1.6.2 One-dimensional mechanics as a dynamical system 20
1.6.3 Sketching phase curves 21
1.6.4 Fixed points and their vicinity 22
1.6.5 Linearized dynamics in the vicinity of a fixed point 23
1.7 Appendix: Examples of Conservative One-Dimensional Systems 24
1.7.1 Harmonic oscillator 24
1.7.2 Pendulum 26
1.7.3 Other potentials 27
1.8 Appendix: Curvilinear Orthogonal Coordinates 31
1.8.1 Example : spherical coordinates 32
1.8.2 Vector calculus : grad, div, curl 32
2 Linear Oscillations 37
2.1 Harmonic Motion 37
2.2 Damped Harmonic Oscillator 37
2.2.1 Classes of damped harmonic motion 38
2.2.2 Remarks on the case of critical damping 40
2.2.3 Phase portraits for the damped harmonic oscillator 41
2.3 Damped Harmonic Oscillator with Forcing 42
2.3.1 Resonant forcing 45
2.3.2 $\quad R$ - L - C circuits 46
2.3.3 Examples 47
2.4 General Solution by Green's Function Method 50
2.5 General Linear Autonomous Inhomogeneous ODEs 51
2.6 Kramers-Krönig Relations (advanced material) 55
3 Lagrangian Mechanics 57
3.1 Snell's Law 57
3.2 Functions and Functionals 58
3.2.1 Functional Taylor series 62
3.3 Examples from the Calculus of Variations 62
3.3.1 Example 1 : minimal surface of revolution 62
3.3.2 Example 2 : geodesic on a surface of revolution 64
3.3.3 Example 3 : brachistochrone 65
3.3.4 Ocean waves 66
3.4 More on Functionals 68
3.5 Generalized Coordinates 74
3.6 Hamilton's Principle 75
3.6.1 Invariance of the equations of motion 75
3.6.2 Remarks on the order of the equations of motion 75
3.6.3 Lagrangian for a free particle 76
3.7 Conserved Quantities 77
3.7.1 Momentum conservation 77
3.7.2 Energy conservation 78
3.8 Choosing Generalized Coordinates 79
3.9 How to Solve Mechanics Problems 79
3.10 Examples 80
3.10.1 One-dimensional motion 80
3.10.2 Central force in two dimensions 80
3.10.3 A sliding point mass on a sliding wedge 81
3.10.4 A pendulum attached to a mass on a spring 82
3.10.5 The double pendulum 84
3.10.6 The thingy 87
3.11 The Virial Theorem 88
3.12 Noether's Theorem 89
3.12.1 Continuous Symmetry Implies Conserved Charges 89
3.12.2 Examples of one-parameter families of transformations 90
3.12.3 Conservation of linear and angular momentum 92
3.12.4 Invariance of $L \mathrm{vs}$. Invariance of S 92
3.13 The Hamiltonian 94
3.13.1 From Lagrangian to Hamiltonian 94
3.13.2 Is $H=T+U$? 95
3.13.3 Example: A bead on a rotating hoop 96
3.13.4 Charged particle in a magnetic field 98
3.14 Motion in Rapidly Oscillating Fields 100
3.14.1 Slow and fast dynamics 100
3.14.2 Example : pendulum with oscillating support 101
3.15 Field Theory: Systems with Several Independent Variables 103
3.15.1 Equations of motion and Noether's theorem 103
3.15.2 Gross-Pitaevskii model 106
3.16 Constraints 107
3.16.1 Introduction 107
3.16.2 Constrained extremization of functions: Lagrange multipliers 108
3.16.3 Constraints and variational calculus 110
3.16.4 Extremization of functionals : integral constraints 110
3.16.5 Extremization of functionals : holonomic constraints 111
3.16.6 Examples of functional extremization with constraints 112
3.16.7 Constraints in Lagrangian mechanics 113
3.16.8 Constraints and conservation laws 115
3.17 Worked Examples 116
3.17.1 One cylinder rolling off another 116
3.17.2 Frictionless motion along a curve 118
3.17.3 Disk rolling down an inclined plane 121
3.17.4 Pendulum with nonrigid support 122
3.17.5 Falling ladder 124
3.17.6 Point mass inside rolling hoop 127
3.18 Appendix: Legendre Transformations 131
4 Central Forces and Orbital Mechanics 135
4.1 Reduction to a one-body problem 135
4.1.1 Center-of-mass (CM) and relative coordinates 135
4.1.2 Solution to the CM problem 136
4.1.3 Solution to the relative coordinate problem 136
4.2 Almost Circular Orbits 138
4.3 Precession in a Soluble Model 140
4.4 The Kepler Problem: $U(r)=-k r^{-1}$ 142
4.4.1 Geometric shape of orbits 142
4.4.2 Laplace-Runge-Lenz vector 142
4.4.3 Kepler orbits are conic sections 143
4.4.4 Period of bound Kepler orbits 146
4.4.5 Escape velocity 147
4.4.6 Satellites and spacecraft 147
4.4.7 Two examples of orbital mechanics 148
4.5 Mission to Neptune 150
4.5.1 Earth to Jupiter (Phase I) 154
4.5.2 Encounter with Jupiter (Phase II) 154
4.5.3 Jupiter to Neptune (Phase III) 156
4.6 Restricted Three-Body Problem 157
5 Linearized Dynamics of Coupled Oscillations 165
5.1 Euler-Lagrange Equations of Motion 165
5.2 Expansion about Static Equilibrium 166
5.3 Method of Small Oscillations 166
5.3.1 Finding the modal matrix 168
5.3.2 Summary of the method 170
5.4 Example: Masses and Springs 171
5.5 Example: Double Pendulum 173
5.6 Zero Modes 174
5.6.1 Noether's theorem and zero modes 174
5.6.2 Examples of zero modes 174
5.7 Chain of Mass Points 177
5.7.1 Lagrangian and equations of motion 177
5.7.2 Continuum limit 179
5.8 General Formulation of Small Oscillations 180
5.9 Additional Examples 184
5.9.1 Right Triatomic Molecule 184
5.9.2 Triple Pendulum 186
5.9.3 Equilateral Linear Triatomic Molecule 189
5.10 Aside: Christoffel Symbols 193
6 Elastic Collisions 195
6.1 Center of Mass Frame 195
6.2 Central Force Scattering 199
6.2.1 Hard sphere scattering 201
6.2.2 Rutherford scattering 201
6.2.3 Transformation to laboratory coordinates 202
7 Noninertial Reference Frames 205
7.1 Accelerated Coordinate Systems 205
7.1.1 Translations 207
7.1.2 Motion on the surface of the earth 207
7.2 Spherical Polar Coordinates 209
7.3 Centrifugal Force 209
7.3.1 Rotating cylinder of fluid 210
7.4 The Coriolis Force 211
7.4.1 Projectile motion 211
7.4.2 Foucault's pendulum 214
8 Rigid Body Motion and Rotational Dynamics 217
8.1 Rigid Bodies 217
8.1.1 Examples of rigid bodies 217
8.2 The Inertia Tensor 218
8.2.1 Coordinate transformations 219
8.2.2 The case of no fixed point 220
8.3 Parallel Axis Theorem 220
8.3.1 Example 221
8.3.2 General planar mass distribution 223
8.4 Principal Axes of Inertia 223
8.5 Euler's Equations 225
8.5.1 Derivation of Euler's equations 225
8.5.2 Precession of torque-free symmetric tops 226
8.5.3 Asymmetric tops 227
8.5.4 Example: The giant asteroid 228
8.6 Euler's Angles 229
8.6.1 Definition of the Euler angles 229
8.6.2 Precession, nutation, and axial rotation 232
8.6.3 Torque-free symmetric top 232
8.6.4 Symmetric top with one point fixed 234
8.7 Rolling and Skidding Motion of Real Tops 236
8.7.1 Rolling tops 236
8.7.2 Skidding tops 238
8.7.3 Tippie-top 239
9 Continuum Mechanics 241
9.1 Continuum Mechanics of the String 241
9.1.1 Lagrangian formulation 241
9.1.2 d'Alembert's Solution to the Wave Equation 243
9.1.3 Energy density and energy current 244
9.1.4 Reflection at an interface 247
9.1.5 Mass point on a string 248
9.1.6 Interface between strings of different mass density 251
9.1.7 Finite Strings : Bernoulli's Solution 253
9.2 Sturm-Liouville Theory 255
9.2.1 Mathematical formalism 255
9.2.2 Variational method 256
9.3 Continua in Higher Dimensions 259
9.3.1 General formalism 259
9.3.2 Membranes 260
9.3.3 Helmholtz equation 261
9.3.4 Rectangles 262
9.3.5 Circles 262
9.3.6 Sound in fluids 263
9.4 Dispersion 265
9.4.1 Helmholtz versus Klein-Gordon equations 265
9.4.2 Schrödinger's equation 266
9.5 General Field Theoretic Formulation 268
9.5.1 Euler-Lagrange equations for classical field theories 268
9.5.2 Conserved currents in field theory 269
9.5.3 Gross-Pitaevskii model 270
9.6 Appendix : Three Strings 272
9.7 Appendix : Green's Functions for Strings 274
9.7.1 Inhomogeneous Sturm-Liouville problem 274
9.7.2 Perturbation theory 277
9.7.3 Perturbation theory for eigenvalues and eigenfunctions 278
10 Special Relativity 281
10.1 Introduction 281
10.1.1 Michelson-Morley experiment 281
10.1.2 Einsteinian and Galilean relativity 284
10.2 Intervals 286
10.2.1 Proper time 287
10.2.2 Irreverent problem from Spring 2002 final exam 288
10.3 Four-Vectors and Lorentz Transformations 289
10.3.1 Covariance and contravariance 293
10.3.2 What to do if you hate raised and lowered indices 294
10.3.3 Comparing frames 295
10.3.4 Example I 295
10.3.5 Example II 296
10.3.6 Deformation of a rectangular plate 296
10.3.7 Transformation of velocities 297
10.3.8 Four-velocity and four-acceleration 299
10.4 Three Kinds of Relativistic Rockets 299
10.4.1 Constant acceleration model 299
10.4.2 Constant force with decreasing mass 300
10.4.3 Constant ejecta velocity 301
10.5 Relativistic Mechanics 303
10.5.1 Relativistic harmonic oscillator 304
10.5.2 Energy-momentum 4-vector 305
10.5.3 4-momentum for massless particles 306
10.6 Relativistic Doppler Effect 306
10.6.1 Romantic example 307
10.7 Relativistic Kinematics of Particle Collisions 309
10.7.1 Spontaneous particle decay into two products 310
10.7.2 Miscellaneous examples of particle decays 312
10.7.3 Threshold particle production with a stationary target 312
10.7.4 Transformation between frames 313
10.7.5 Compton scattering 314
10.8 Covariant Electrodynamics 316
10.8.1 Lorentz force law 318
10.8.2 Gauge invariance 319
10.8.3 Transformations of fields 319
10.8.4 Invariance versus covariance 321
10.9 Appendix I : The Pole, the Barn, and Rashoman 323
10.10 Appendix II : Photographing a Moving Pole 325
11 Dynamical Systems 327
11.1 Introduction 327
11.1.1 Phase space and phase curves 327
11.1.2 Vector fields 327
11.1.3 Autonomous vs. non-autonomous ODEs 328
11.1.4 Existence / uniqueness / extension theorems 329
11.1.5 Linear differential equations 329
11.1.6 Lyapunov functions 330
$11.2 N=1$ Systems 330
11.2.1 Classification of fixed points $(N=1)$ 331
11.2.2 Logistic equation 332
11.2.3 Recommended exercises 333
11.2.4 Nongeneric cases with singular $f(u)$ 333
11.2.5 Non-autonomous ODEs 334
11.3 Flows on the Circle 335
11.3.1 Nonuniform oscillator 335
11.4 Appendix I : Evolution of Phase Space Volumes 337
11.5 Appendix II : Lyapunov Characteristic Exponents 338
12 Bifurcations 341
12.1 Types of Bifurcations 341
12.1.1 Saddle-node bifurcation 341
12.1.2 Transcritical bifurcation 342
12.1.3 Pitchfork bifurcation 344
12.1.4 Imperfect bifurcation 345
12.2 Examples 347
12.2.1 Population dynamics 347
12.2.2 The Bletch 350
12.3 Landau Theory of Phase Transitions 353
12.3.1 Landau coefficients from mean field theory 354
12.3.2 Magnetization dynamics 355
12.3.3 Cubic terms in Landau theory : first order transitions 358
12.3.4 Magnetization dynamics 360
12.3.5 Sixth order Landau theory : tricritical point 363
12.3.6 Hysteresis for the sextic potential 364
13 Two-Dimensional Phase Flows 367
13.1 Harmonic Oscillator and Pendulum 367
13.1.1 Simple harmonic oscillator 367
13.1.2 Pendulum 369
13.2 General $N=2$ Systems 369
13.2.1 The damped driven pendulum 370
13.2.2 Classification of $N=2$ fixed points 373
13.2.3 The fixed point zoo 374
13.2.4 Limit cycles 375
13.2.5 Andronov-Hopf bifurcation 377
13.2.6 Fixed points for $N=3$ systems 378
13.3 Population Biology : Lotka-Volterra Models 379
13.3.1 Rabbits and foxes 379
13.3.2 Rabbits and sheep 381
13.4 Poincaré-Bendixson Theorem 383
13.5 Index Theory 384
13.5.1 Gauss-Bonnet Theorem 388
13.5.2 Singularities and topology 389
13.6 Appendix : Example Problem 391
14 Nonlinear Oscillators 395
14.1 Weakly Perturbed Linear Oscillators 395
14.1.1 Naïve Perturbation theory and its failure 395
14.1.2 Poincaré-Lindstedt method 397
14.2 Multiple Time Scale Method 399
14.2.1 Duffing oscillator 401
14.2.2 Van der Pol oscillator 402
14.3 Forced Nonlinear Oscillations 403
14.3.1 Forced Duffing oscillator 405
14.3.2 Forced van der Pol oscillator 407
14.4 Synchronization 411
14.5 Relaxation Oscillations 416
14.5.1 Example problem 419
14.5.2 Multiple limit cycles 420
14.5.3 Example problem 421
14.6 Appendix I : Multiple Time Scale Analysis to $\mathcal{O}\left(\epsilon^{2}\right)$ 423
14.7 Appendix II : MSA and Poincaré-Lindstedt Methods 425
14.7.1 Problem using multiple time scale analysis 425
14.7.2 Solution using Poincaré-Lindstedt method 429
14.8 Appendix III : Modified van der Pol Oscillator 431
15 Hamiltonian Mechanics 437
15.1 References 437
15.2 The Hamiltonian 438
15.2.1 Modified Hamilton's principle 439
15.2.2 Phase flow is incompressible 440
15.2.3 Poincaré recurrence theorem 440
15.2.4 Poisson brackets 442
15.3 Canonical Transformations 443
15.3.1 Point transformations in Lagrangian mechanics 443
15.3.2 Canonical transformations in Hamiltonian mechanics 444
15.3.3 Hamiltonian evolution 445
15.3.4 Symplectic structure 445
15.3.5 Generating functions for canonical transformations 446
15.4 Hamilton-Jacobi Theory 449
15.4.1 The action as a function of coordinates and time 449
15.4.2 The Hamilton-Jacobi equation 451
15.4.3 Time-independent Hamiltonians 452
15.4.4 Example: one-dimensional motion 452
15.4.5 Separation of variables 453
15.5 Action-Angle Variables 455
15.5.1 Circular Phase Orbits: Librations and Rotations 455
15.5.2 Action-Angle Variables 457
15.5.3 Canonical Transformation to Action-Angle Variables 457
15.5.4 Example : Harmonic Oscillator 458
15.5.5 Example : Particle in a Box 459
15.6 Integrability and Motion on Invariant Tori 462
15.6.1 Librations and rotations 462
15.6.2 Liouville-Arnol'd theorem 462
15.7 Adiabatic Invariants 463
15.7.1 Slow perturbations 463
15.7.2 Example: mechanical mirror 465
15.7.3 Example: magnetic mirror 465
15.7.4 Resonances 467
15.8 Canonical Perturbation Theory 467
15.8.1 Canonical transformations and perturbation theory 467
15.8.2 Canonical perturbation theory for $n=1$ systems 469
15.8.3 Example : quartic oscillator 472
15.8.4 $n>1$ systems : degeneracies and resonances 474
15.8.5 Nonlinear oscillator with two degrees of freedom 474
15.8.6 Periodic time-dependent perturbations 475
15.8.7 Particle-wave Interaction 476
15.9 Removal of Resonances in Perturbation Theory 479
15.9.1 The case of $n=\frac{3}{2}$ degrees of freedom 480
15.9.2 $n=2$ systems 481
15.9.3 Secondary resonances 485
15.10 Whither Integrability? 487
15.11 Appendix : Examples 488
15.11.1 Hamilton-Jacobi theory for point charge plus electric field 488
15.11.2 Hamilton-Jacobi theory for charged particle in a magnetic field 490
15.11.3 Action-angle variables for the Kepler problem 492
15.11.4 Action-angle variables for charged particle in a magnetic field 493
15.11.5 Canonical perturbation theory for the cubic oscillator 494
16 Maps, Strange Attractors, and Chaos 499
16.1 Motion on Resonant Tori 499
16.1.1 The twist map 499
16.1.2 The perturbed twist map 500
16.2 From Time-Dependent Hamiltonian Systems to Maps 501
16.2.1 Parametric Oscillator 501
16.2.2 Kicked dynamics 504
16.3 Local Stability and Lyapunov Exponents 507
16.3.1 The fate of nearly separated initial conditions under iteration 507
16.3.2 Kolmogorov-Sinai entropy 508
16.4 The Poincaré-Birkhoff Theorem 510
16.5 One-dimensional Maps 512
16.5.1 Lyapunov Exponents 515
16.5.2 Chaos in the logistic map 515
16.5.3 Intermittency 516
16.6 Attractors 517
16.7 The Lorenz Model 517
16.7.1 Fixed point analysis 519
16.7.2 Poincaré section 521
16.7.3 Rössler System 522

List of Figures

1.1 Two paths joining points A and B 11
1.2 A potential $U(x)$ and the corresponding phase portraits (with separatrices in red) 22
1.3 Phase curves in the vicinity of centers and saddles 24
1.4 Phase curves for the harmonic oscillator. 25
1.5 Phase curves for the simple pendulum 27
1.6 Phase curves for the Kepler effective potential $U(x)=-x^{-1}+\frac{1}{2} x^{-2}$ 28
1.7 Phase curves for the potential $U(x)=-\operatorname{sech}^{2}(x)$ 29
1.8 Phase curves for the potential $U(x)=\cos (x)+\frac{1}{2} x$ 30
1.9 Volume element Ω for computing divergences 32
2.1 Three classifications of damped harmonic motion 40
2.2 Phase curves for the damped harmonic oscillator 42
2.3 Amplitude and phase shift versus oscillator frequency 43
2.4 An R-L-C circuit which behaves as a damped harmonic oscillator 46
2.5 A driven $L-C-R$ circuit, with $V(t)=V_{0} \cos (\omega t)$ 48
2.6 The equivalent mechanical circuit for fig, 2.5 49
2.7 Response of an underdamped oscillator to a pulse force 51
3.1 The shortest distance between two points 58
3.2 Extremal path consisting of three line segments 59
3.3 A path $y(x)$ and its variation $y(x)+\delta y(x)$ 60
3.4 Minimal surface solution, with $y(x)=b \cosh (x / b)$ and $y\left(x_{0}\right)=y_{0}$ 63
3.5 Shallow water wave propagation 67
3.6 A functional as a continuum limit of a multivariable function 69
3.7 A wedge sliding along a horizontal surface 82
3.8 The spring-pendulum system 83
3.9 The double pendulum 85
3.10 The thingy 88
3.11 A bead of mass m on a rotating hoop of radius a 97
3.12 An effective potential and its corresponding phase curves 98
3.13 Dimensionless potential for pendulum with oscillating support 102
3.14 A cylinder of radius a rolls along a half-cylinder of radius R 108
3.15 Frictionless motion under gravity along a curved surface 119
3.16 Finding the local radius of curvature 120
3.17 A hoop rolling down an inclined plane lying on a frictionless surface 121
3.18 A ladder sliding down a wall and across a floor 124
3.19 Plot of time to fall for the slipping ladder 126
3.20 A point mass m inside a hoop of mass M 128
3.21 The Legendre transformation 132
4.1 Center-of-mass (\boldsymbol{R}) and relative (r) coordinates 136
4.2 Stable and unstable circular orbits 139
4.3 Precession in a soluble model 141
4.4 The effective potential for the Kepler problem, and associated phase curves 142
4.5 Keplerian orbits are conic sections 144
4.6 The Keplerian ellipse, with the force center at the left focus 145
4.7 The Keplerian hyperbolae, with the force center at the left focus 146
4.8 A radial impulse applied at perigee of an elliptical orbit 148
4.9 Mission: trash removal 149
4.10 The unforgivably dorky Pioneer 10 and Pioneer 11 plaque 151
4.11 Mission to Neptune 153
4.12 Total time for Earth-Neptune mission as a function of dimensionless velocity 156
4.13 The Lagrange points for the earth-sun system 158
4.14 Graphical solution for the Lagrange points L1, L2, and L3 160
4.15 David T. Wilkinson (1935-2002) 162
5.1 A system of masses and springs 171
5.2 The double pendulum (again) 173
5.3 Coupled oscillations of three masses on a frictionless hoop 175
5.4 Normal modes of the 45° right triangle 186
5.5 The triple pendulum 187
5.6 An equilateral triangle of identical mass points and springs 189
5.7 Zero modes of the mass-spring triangle 190
5.8 Finite oscillation frequency modes of the mass-spring triangle 191
5.9 John Henry, statue by Charles O. Cooper (1972) 192
6.1 Hard sphere scattering 196
6.2 Scattering of two particles of masses m_{1} and m_{2} 197
6.3 Scattering when particle 2 is initially at rest 198
6.4 Identical mass scattering when one mass is initially at rest 198
6.5 Repulsive and attractive scattering in the lab and CM frames 199
6.6 Scattering in the CM frame 200
6.7 Geometry of hard sphere scattering 201
7.1 Reference frames related by both translation and rotation 206
7.2 The locally orthonormal triad $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\phi}\}$ 208
7.3 A rotating cylinder of fluid 210
7.4 Foucault's pendulum 216
8.1 A wheel rolling to the right without slipping 218
8.2 Precession of a spinning bicycle wheel 219
8.3 Application of the parallel axis theorem 221
8.4 A planar mass distribution in the shape of a triangle 223
8.5 Wobbling of a torque-free symmetric top 226
8.6 A general rotation, defined in terms of the Euler angles $\{\phi, \theta, \psi\}$ 230
8.7 Roll, pitch, yaw, and gimbals. 231
8.8 The dreidl : a symmetric top 233
8.9 The effective potential of eq. 8.85 234
8.10 Precession and nutation of the symmetry axis of a symmetric top 236
8.11 A top with a peg end 237
8.12 Circular rolling motion of the peg top 238
8.13 The tippie-top 239
9.1 A string is described by the vertical displacement field $y(x, t)$ 242
9.2 Reflection of a pulse at an interface at $x=0$, with $y(0, t)=0$ 247
9.3 Reflection of a pulse at an interface at $x=0$, with $y^{\prime}(0, t)=0$ 248
9.4 Reflection and transmission at an impurity 249
9.5 Reflection and transmission of a square wave pulse by a point mass 251
9.6 A string formed from two semi-infinite regions of different densities 252
9.7 Evolution of a string with fixed ends starting from an isosceles triangle shape 254
9.8 One-parameter variational solution for a string with a point mass m at $x=\frac{1}{2} L$ 258
9.9 Wavepacket spreading for $k_{0} \ell_{0}=2$ with $t / \tau=0,2,4,6$, and 8 267
9.10 Three identical strings arranged symmetrically in a plane, attached to a common end 272
9.11 Diagrammatic representation of the perturbation expansion in eqn. 9.247 277
10.1 The Michelson-Morley experiment 283
10.2 Experiment to test source velocity dependence of c 284
10.3 Two reference frames 285
10.4 A $(1+1)$-dimensional light cone 287
10.5 A rectangular plate moving at velocity $\boldsymbol{V}=V \hat{\boldsymbol{x}}$ 297
10.6 Relativistic deformation of the rectangular plate 298
10.7 Alice's big adventure 308
10.8 Spontaneous decay of a single reactant into two products 311
10.9 A two-particle initial state and an N^{\prime}-particle final state 313
10.10Compton scattering of a photon and an electron 315
10.11Homer celebrates the manifest gauge invariance of classical electromagnetic theory 320
10.12The pole and the barn 323
10.13Relativity and photography 325
11.1 An example of a phase curve 328
11.2 Phase flow for an $N=1$ system 331
11.3 Flow diagram for the logistic equation 332
$11.4 f(u)=A\left|u-u^{*}\right|^{\alpha}$, for $\alpha>1$ and $\alpha<1$ 334
11.5 Solutions to $\dot{\epsilon}=\mp A \epsilon^{\alpha}$ 334
11.6 Flow for the nonuniform oscillator $\dot{\theta}=\omega-\sin \theta$ 336
12.1 Evolution of $F(x, \alpha)$ as a function of the control parameter α 342
12.2 Flow diagrams for $\dot{u}=r+u^{2}$ and $\dot{u}=r u-u^{2}$ 343
12.3 Extended phase space flow for the saddle-node and transcritical bifurcations 343
12.4 Supercritical and subcritical pitchfork bifurcations 344
12.5 Extended phase space flow for supercritical and subcritical pitchfork bifurcations 345
12.6 Scaled free energy and phase diagram 346
12.7 Imperfect pitchfork bifurcation 347
12.8 Phase flow for the constantly harvested population 348
12.9 Plot of $h(n)=n /\left(n^{2}+1\right)$ 349
12.10Phase diagram for the equation $\dot{n}=\gamma(1-n / c) n-n^{2} /\left(n^{2}+1\right)$ 350
12.11Phase flow for the scaled bletch population, $\dot{n}=n^{2}-n^{3}$ 351
12.12Phase flow for the harvested bletch population, $\dot{n}=-\nu n+n^{2}-n^{3}$ 352
12.13Scaled bletch harvest r versus scaled harvesting rate ν 352
12.14Phase diagram for the quartic mean field theory $f=f_{0}+\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}-h m$ 355
12.15Mean field free energy $f(m)$ at $h=0.1$ 356
12.16Dissipative magnetization dynamics $\dot{m}=-f^{\prime}(m)$ 357
12.17Hysteretic dynamics 358
12.18Behavior of the quartic free energy $f(m)=\frac{1}{2} a m^{2}-\frac{1}{3} y m^{3}+\frac{1}{4} b m^{4}$ 360
12.19Fixed points for $\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{3} u^{3}+\frac{1}{4} u^{4}$ 361
12.20Behavior of the sextic free energy $f(m)=\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}+\frac{1}{6} \mathrm{~cm}^{6}$ 362
12.21Free energy $\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{4} u^{4}+\frac{1}{6} u^{6}$ 364
12.22Fixed points $\varphi^{\prime}\left(u^{*}\right)=0$ for the sextic potential 366
13.1 Phase curves for the harmonic oscillator 368
13.2 Phase curves for the simple pendulum 370
13.3 The resistively and capacitively shunted Josephson junction 371
13.4 Phase flows for the equation $\ddot{\phi}+\gamma^{-1} \dot{\phi}+\sin \phi=j$ 372
13.5 Complete classification of fixed points for the $N=2$ system 374
13.6 Fixed point zoo for $N=2$ systems 375
13.7 Phase portrait for an $N=2$ flow 376
13.8 Stable, unstable, and half-stable limit cycles 376
13.9 Limit cycle of the Van der Pol oscillator for $\mu \gg 1$ 377
13.10The Hopf bifurcation 378
13.11 Rabbits vs. foxes 381
13.12Two possible phase flows for the rabbits vs. sheep 382
13.13Two singularities with index +1 383
13.14Two singularities with index -1 385
13.15Singularities with net index +2 386
13.16A vector field with index -2 387
13.17Two smooth vector fields on the sphere \mathbb{S}^{2} 388
13.18Smooth vector fields on the torus 389
13.19Composition of two circles 390
13.20Sketch of phase flow for $\dot{x}=\frac{1}{2} x+x y-2 x^{3}, \dot{y}=\frac{5}{2} y+x y-y^{2}$ 392
14.1 Phase diagram for the forced Duffing oscillator 405
14.2 Amplitude A versus detuning ν for the forced Duffing oscillator I 406
14.3 Amplitude versus detuning for the forced Duffing oscillator II 407
14.4 Amplitude versus detuning for the forced van der Pol oscillator 408
14.5 Phase diagram for the weakly forced van der Pol oscillator 409
14.6 Forced van der Pol system 410
14.7 Isochrones of the complex amplitude equation 413
14.8 Graphical analysis of the equation $\dot{\psi}=-\nu+\varepsilon G(\psi)$ 415
14.9 Relaxation oscillations in the Liènard plane 417
14.10 A sketch of the limit cycle for the relaxation oscillation 418
14.11 Limit cycle for large μ relaxation oscillations 419
14.12Relaxation oscillations for $\ddot{x}+\mu(|x|-1) \dot{x}+x=0$ 420
14.13Liénard plots for systems with one and two relaxation oscillations 421
14.14Three instances of $\Phi(x)$. 422
14.15Phase flows in the Liénard plane for systems in fig. 14.14 423
14.16Phase flow and nullclines for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ 432
14.17Vector field and phase curves for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ 433
14.18Solution to the oscillator equation $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ 434
14.19Vector field and phase curves for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ 435
14.20Solution to the oscillator equation $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ 436
15.1 The paths $\boldsymbol{\eta}(\tau)$ and $\tilde{\boldsymbol{\eta}}(\tau)$ 450
15.2 Phase curves for the simple pendulum 456
15.3 The librations \mathcal{C}_{z} and \mathcal{C}_{x} 460
15.4 A mechanical mirror 465
15.5 B field lines in a magnetic bottle 466
15.6 Action-angle variables for the harmonic oscillator 473
15.7 Particle-wave interaction 479
15.8 Librations, separatrices, and rotations 482
15.9 Motion in the vicinity of a resonance 484
15.10Motion in the vicinity of a secondary resonance 487
16.1 Motion of an $n=2$ system on an invariant torus 500
16.2 Phase diagram for the parametric oscillator in the (θ, ϵ) plane 503
16.3 The standard map 505
16.4 The kicked Harper map 506
16.5 The baker's transformation 509
16.6 The action of the iterated map \hat{T}_{0}^{s} 510
16.7 Self-similar structures in the iterated twist map 511
16.8 Homoclinic tangle 512
16.9 Cobweb diagram showing iterations of the logistic map 513
16.10Iterates of the logistic map $f(x)=r x(1-x)$ 514
16.11Lyapunov exponent (in red) for the logistic map 515
16.12Iterates of the sine map $f(x)=r \sin (\pi x)$ 517
16.13Intermittency in the logistic map 518
16.14Evolution of the Lorenz equations 519
16.15The Lorenz attractor 520
16.16 $X(t)$ for the Lorenz equations with different initial conditions 521
16.17Maxima of Z for the Lorenz attractor 522
16.18Period doubling bifurcations of the Rössler attractor I 523
16.19Period doubling bifurcations of the Rössler attractor II 523

List of Tables

0.1 Preface

These lecture notes are based on material presented in both graduate and undergraduate mechanics classes which I have taught on several occasions during the past 30 years at UCSD (Physics 110A-B and Physics 200A-B).

The level of these notes is appropriate for an advanced undergraduate or a first year graduate course in classical mechanics. In some instances, I've tried to collect the discussion of more advanced material into separate sections, but in many cases this proves inconvenient, and so the level of the presentation fluctuates.

My presentation and choice of topics has been influenced by many books as well as by my own professors. I've reiterated extended some discussions from other texts, such as Barger and Olsson's treatment of the gravitational swing-by effect, and their discussion of rolling and skidding tops. The figures were, with very few exceptions, painstakingly made using Keynote and/or SM.

My only request, to those who would use these notes: please contact me if you find errors or typos, or if you have suggestions for additional material. My email address is darovas@ucsd.edu. I plan to update and extend these notes as my time and inclination permit.

Chapter 0

Reference Materials

Here I list several resources, arranged by topic. My personal favorites are marked with a diamond (\diamond).

0.1 Lagrangian Mechanics (mostly)

\diamond L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Butterworth-Heinemann, 1976)
\diamond A. L. Fetter and J. D. Walecka, Nonlinear Mechanics (Dover, 2006)

- O. D. Johns, Analytical Mechanics for Relativity and Quantum Mechanics (Oxford, 2005)
- D. T. Greenwood, Classical Mechanics (Dover, 1997)
- H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison-Wesley, 2001)
- V. Barger and M. Olsson, Classical Mechanics : A Modern Perspective (McGraw-Hill, 1994)

0.2 Hamiltonian Mechanics (mostly)

\diamond J. V. José and E. J. Saletan, Mathematical Methods of Classical Mechanics (Springer, 1997)
\diamond W. Dittrich and M. Reuter, Classical and Quantum Dynamics (Springer, 2001)

- V. I. Arnold Introduction to Dynamics (Cambridge, 1982)
- V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, 2006)
- I. Percival and D. Richards, Introduction to Dynamics (Cambridge, 1982)

0.3 Mathematics

\diamond I. M. Gelfand and S. V. Fomin, Calculus of Variations (Dover, 1991)
\diamond V. I. Arnold, Ordinary Differential Equations (MIT Press, 1973)

- V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1988)
- R. Weinstock, Calculus of Variations (Dover, 1974)

Chapter 1

Elementary Mechanics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a system means that we know the coordinates of all its constituent particles as functions of time. For a single point particle moving in three-dimensional space, this means we want to know its position vector $\boldsymbol{r}(t)$ as a function of time. If there are many particles, the motion is described by a set of functions $\boldsymbol{r}_{i}(t)$, where i labels which particle we are talking about. So generally speaking, solving for the motion means being able to predict where a particle will be at any given instant of time. Of course, knowing the function $\boldsymbol{r}_{i}(t)$ means we can take its derivative and obtain the velocity $\boldsymbol{v}_{i}(t)=d \boldsymbol{r}_{i} / d t$ at any time as well.
The complete motion for a system is not given to us outright, but rather is encoded in a set of differential equations, called the equations of motion. An example of an equation of motion is

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-m g \tag{1.1}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
x(t)=x_{0}+v_{0} t-\frac{1}{2} g t^{2} \tag{1.2}
\end{equation*}
$$

where x_{0} and v_{0} are constants corresponding to the initial boundary conditions on the position and velocity: $x(0)=x_{0}, v(0)=v_{0}$. This particular solution describes the vertical motion of a particle of mass m moving near the earth's surface.

In this class, we shall discuss a general framework by which the equations of motion may be obtained, and methods for solving them. That "general framework" is Lagrangian Dynamics, which itself is really nothing more than an elegant restatement of Isaac Newton's Laws of Motion.

1.1.1 Newton's laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their natural state. Thus, a rock falls because rocks belong on the earth, and flames rise because fire belongs in the heavens.

To paraphrase Wolfgang Pauli, such notions are so vague as to be "not even wrong." It was only with the publication of Newton's Principia in 1687 that a theory of motion which had detailed predictive power was developed.

Newton's three Laws of Motion may be stated as follows:
I. A body remains in uniform motion unless acted on by a force.
II. Force equals rate of change of momentum: $\boldsymbol{F}=d \boldsymbol{p} / d t$.
III. Any two bodies exert equal and opposite forces on each other.

Newton's First Law states that a particle will move in a straight line at constant (possibly zero) velocity if it is subjected to no forces. Now this cannot be true in general, for suppose we encounter such a "free" particle and that indeed it is in uniform motion, so that $\boldsymbol{r}(t)=\boldsymbol{r}_{0}+\boldsymbol{v}_{0} t$. Now $\boldsymbol{r}(t)$ is measured in some coordinate system, and if instead we choose to measure $\boldsymbol{r}(t)$ in a different coordinate system whose origin \boldsymbol{R} moves according to the function $\boldsymbol{R}(t)$, then in this new "frame of reference" the position of our particle will be

$$
\begin{align*}
\boldsymbol{r}^{\prime}(t) & =\boldsymbol{r}(t)-\boldsymbol{R}(t) \\
& =\boldsymbol{r}_{0}+\boldsymbol{v}_{0} t-\boldsymbol{R}(t) . \tag{1.3}
\end{align*}
$$

If the acceleration $d^{2} \boldsymbol{R} / d t^{2}$ is nonzero, then merely by shifting our frame of reference we have apparently falsified Newton's First Law - a free particle does not move in uniform rectilinear motion when viewed from an accelerating frame of reference. Thus, together with Newton's Laws comes an assumption about the existence of frames of reference - called inertial frames - in which Newton's Laws hold. A transformation from one frame \mathcal{K} to another frame \mathcal{K}^{\prime} which moves at constant velocity \boldsymbol{V} relative to \mathcal{K} is called a Galilean transformation. The equations of motion of classical mechanics are invariant (do not change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with this, we will try to build some intuition by solving mechanics problems assuming we are in an inertial frame. The earth's surface, where most physics experiments are done, is not an inertial frame, due to the centripetal accelerations associated with the earth's rotation about its own axis and its orbit around the sun. In this case, not only is our coordinate system's origin - somewhere in a laboratory on the surface of the earth - accelerating, but the coordinate axes themselves are rotating with respect to an inertial frame. The rotation of the earth leads to fictitious "forces" such as the Coriolis force, which have large-scale consequences. For example, hurricanes, when viewed from above, rotate counterclockwise in the northern hemisphere and clockwise in the southern hemisphere. Later on in the course we will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton's "quantity of motion" is the momentum \boldsymbol{p}, defined as the product $\boldsymbol{p}=m \boldsymbol{v}$ of a particle's mass m (how much stuff there is) and its velocity (how fast it is moving). In order to convert the Second Law into a meaningful equation, we must know how the force \boldsymbol{F} depends on the coordinates (or possibly
velocities) themselves. This is known as a force law. Examples of force laws include:

$$
\begin{aligned}
\text { Constant force: } & \boldsymbol{F}=-m \boldsymbol{g} \\
\text { Hooke's Law: } & F=-k x \\
\text { Gravitation: } & \boldsymbol{F}=-G M m \hat{\boldsymbol{r}} / r^{2} \\
\text { Lorentz force: } & \boldsymbol{F}=q \boldsymbol{E}+q \frac{\boldsymbol{v}}{c} \times \boldsymbol{B} \\
\text { Fluid friction }(v \text { small): } & \boldsymbol{F}=-b \boldsymbol{v} .
\end{aligned}
$$

Note that for an object whose mass does not change we can write the Second Law in the familiar form $\boldsymbol{F}=m \boldsymbol{a}$, where $\boldsymbol{a}=d \boldsymbol{v} / d t=d^{2} \boldsymbol{r} / d t^{2}$ is the acceleration. Most of our initial efforts will lie in using Newton's Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will discuss in great detail later on. Newtonian gravity - the force which makes the planets orbit the sun - is a central force. One consequence of the Third Law is that in free space two isolated particles will accelerate in such a way that $\boldsymbol{F}_{1}=-\boldsymbol{F}_{2}$ and hence the accelerations are parallel to each other, with

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}=-\frac{m_{2}}{m_{1}} \tag{1.4}
\end{equation*}
$$

where the minus sign is used here to emphasize that the accelerations are in opposite directions. We can also conclude that the total momentum $\boldsymbol{P}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}$ is a constant, a result known as the conservation of momentum.

1.1.2 Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force law, which says that the force $\boldsymbol{F}_{i j}$ exerted by a particle i by another particle j is

$$
\begin{equation*}
\boldsymbol{F}_{i j}=-G m_{i} m_{j} \frac{\boldsymbol{r}_{i}-\boldsymbol{r}_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|^{3}}, \tag{1.5}
\end{equation*}
$$

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the value

$$
\begin{equation*}
G=(6.6726 \pm 0.0008) \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \tag{1.6}
\end{equation*}
$$

Notice Newton's Third Law in action: $\boldsymbol{F}_{i j}+\boldsymbol{F}_{j i}=0$. Now a very important and special feature of this "inverse square law" force is that a spherically symmetric mass distribution has the same force on an external body as it would if all its mass were concentrated at its center. Thus, for a particle of mass m near the surface of the earth, we can take $m_{i}=m$ and $m_{j}=M_{\mathrm{e}}$, with $\boldsymbol{r}_{i}-\boldsymbol{r}_{j} \simeq R_{\mathrm{e}} \hat{\boldsymbol{r}}$ and obtain

$$
\begin{equation*}
\boldsymbol{F}=-m g \hat{\boldsymbol{r}} \equiv-m \boldsymbol{g} \tag{1.7}
\end{equation*}
$$

where $\hat{\boldsymbol{r}}$ is a radial unit vector pointing from the earth's center and $g=G M_{\mathrm{e}} / R_{\mathrm{e}}^{2} \simeq 9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity at the earth's surface. Newton's Second Law now says that $\boldsymbol{a}=-\boldsymbol{g}$, i.e. objects accelerate as they fall to earth. However, it is not a priori clear why the inertial mass which enters into the definition of momentum should be the same as the gravitational mass which enters into the force law. Suppose, for instance, that the gravitational mass took a different value, m^{\prime}. In this case, Newton's Second Law would predict

$$
\begin{equation*}
\boldsymbol{a}=-\frac{m^{\prime}}{m} \boldsymbol{g} \tag{1.8}
\end{equation*}
$$

and unless the ratio m^{\prime} / m were the same number for all objects, then bodies would fall with different accelerations. The experimental fact that bodies in a vacuum fall to earth at the same rate demonstrates the equivalence of inertial and gravitational mass, i.e. $m^{\prime}=m$.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we consider some physically relevant examples of one-dimensional motion.

1.2.1 Uniform force

With $F=-m g$, appropriate for a particle falling under the influence of a uniform gravitational field, we have $m d^{2} x / d t^{2}=-m g$, or $\ddot{x}=-g$. Notation:

$$
\begin{equation*}
\dot{x} \equiv \frac{d x}{d t} \quad, \quad \ddot{x} \equiv \frac{d^{2} x}{d t^{2}} \quad, \quad \dot{\ddot{x}}=\frac{d^{7} x}{d t^{7}} \quad, \quad \text { etc. } \tag{1.9}
\end{equation*}
$$

With $v=\dot{x}$, we solve $d v / d t=-g$:

$$
\begin{align*}
\int_{v(0)}^{v(t)} d v & =\int_{0}^{t} d s(-g) \tag{1.10}\\
v(t)-v(0) & =-g t .
\end{align*}
$$

Note that there is a constant of integration, $v(0)$, which enters our solution.
We are now in position to solve $d x / d t=v$:

$$
\begin{align*}
\int_{x(0)}^{x(t)} d x & =\int_{0}^{t} d s v(s) \\
x(t) & =x(0)+\int_{0}^{t} d s[v(0)-g s] \tag{1.11}\\
& =x(0)+v(0) t-\frac{1}{2} g t^{2} .
\end{align*}
$$

Note that a second constant of integration, $x(0)$, has appeared.

1.2.2 Uniform force with linear frictional damping

In this case,

$$
\begin{equation*}
m \frac{d v}{d t}=-m g-\gamma v \tag{1.12}
\end{equation*}
$$

which may be rewritten

$$
\begin{align*}
\frac{d v}{v+m g / \gamma} & =-\frac{\gamma}{m} d t \tag{1.13}\\
d \ln (v+m g / \gamma) & =-(\gamma / m) d t
\end{align*}
$$

Integrating then gives

$$
\begin{align*}
\ln \left(\frac{v(t)+m g / \gamma}{v(0)+m g / \gamma}\right) & =-\gamma t / m \\
v(t) & =-\frac{m g}{\gamma}+\left(v(0)+\frac{m g}{\gamma}\right) e^{-\gamma t / m} \tag{1.14}
\end{align*}
$$

Note that the solution to the first order ODE $m \dot{v}=-m g-\gamma v$ entails one constant of integration, $v(0)$.
One can further integrate to obtain the motion

$$
\begin{equation*}
x(t)=x(0)+\frac{m}{\gamma}\left(v(0)+\frac{m g}{\gamma}\right)\left(1-e^{-\gamma t / m}\right)-\frac{m g}{\gamma} t . \tag{1.15}
\end{equation*}
$$

The solution to the second order ODE $m \ddot{x}=-m g-\gamma \dot{x}$ thus entails two constants of integration: $v(0)$ and $x(0)$. Notice that as t goes to infinity the velocity tends towards the asymptotic value $v=-v_{\infty}$, where $v_{\infty}=m g / \gamma$. This is known as the terminal velocity. Indeed, solving the equation $\dot{v}=0$ gives $v=-v_{\infty}$. The initial velocity is effectively "forgotten" on a time scale $\tau \equiv m / \gamma$.

Electrons moving in solids under the influence of an electric field also achieve a terminal velocity. In this case the force is not $F=-m g$ but rather $F=-e E$, where $-e$ is the electron charge $(e>0)$ and E is the electric field. The terminal velocity is then obtained from

$$
\begin{equation*}
v_{\infty}=e E / \gamma=e \tau E / m \tag{1.16}
\end{equation*}
$$

The current density is a product:

$$
\text { current density }=(\text { number density }) \times(\text { charge }) \times(\text { velocity }),
$$

thus

$$
\begin{equation*}
j=n \cdot(-e) \cdot\left(-v_{\infty}\right)=\frac{n e^{2} \tau}{m} E \tag{1.17}
\end{equation*}
$$

The ratio j / E is called the conductivity of the metal, σ. According to our theory, $\sigma=n e^{2} \tau / m$. This is one of the most famous equations of solid state physics! The dissipation is caused by electrons scattering off impurities and lattice vibrations ("phonons"). In high purity copper at low temperatures ($T \lesssim 4 \mathrm{~K}$), the scattering time τ is about a nanosecond ($\tau \approx 10^{-9} \mathrm{~s}$).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity. The frictional force is then $F_{\mathrm{f}}=-c v^{2} \operatorname{sgn}(v)$, where $\operatorname{sgn}(v)$ is the sign of $v: \operatorname{sgn}(v)=+1$ if $v>0$ and $\operatorname{sgn}(v)=-1$ if $v<0$. (Note one can also write $\operatorname{sgn}(v)=v /|v|$ where $|v|$ is the absolute value.) Why all this trouble with $\operatorname{sgn}(v)$? Because it is important that the frictional force dissipate energy, and therefore that F_{f} be oppositely directed with respect to the velocity v. We will assume that $v<0$ always, hence $F_{\mathrm{f}}=+c v^{2}$.

Notice that there is a terminal velocity, since setting $\dot{v}=-g+(c / m) v^{2}=0$ gives $v= \pm v_{\infty}$, where $v_{\infty}=\sqrt{m g / c}$. One can write the equation of motion as

$$
\begin{equation*}
\frac{d v}{d t}=\frac{g}{v_{\infty}^{2}}\left(v^{2}-v_{\infty}^{2}\right) \tag{1.18}
\end{equation*}
$$

and using

$$
\begin{equation*}
\frac{1}{v^{2}-v_{\infty}^{2}}=\frac{1}{2 v_{\infty}}\left[\frac{1}{v-v_{\infty}}-\frac{1}{v+v_{\infty}}\right] \tag{1.19}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\frac{d v}{v^{2}-v_{\infty}^{2}} & =\frac{1}{2 v_{\infty}} \frac{d v}{v-v_{\infty}}-\frac{1}{2 v_{\infty}} \frac{d v}{v+v_{\infty}} \\
& =\frac{1}{2 v_{\infty}} d \ln \left(\frac{v_{\infty}-v}{v_{\infty}+v}\right)=\frac{g}{v_{\infty}^{2}} d t . \tag{1.20}
\end{align*}
$$

Assuming $v(0)=0$, we integrate to obtain

$$
\begin{equation*}
\frac{1}{2 v_{\infty}} \ln \left(\frac{v_{\infty}-v(t)}{v_{\infty}+v(t)}\right)=\frac{g t}{v_{\infty}^{2}} \tag{1.21}
\end{equation*}
$$

which may be massaged to give the final result

$$
\begin{equation*}
v(t)=-v_{\infty} \tanh \left(g t / v_{\infty}\right) \tag{1.22}
\end{equation*}
$$

Recall that the hyperbolic tangent function $\tanh (x)$ is given by

$$
\begin{equation*}
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} . \tag{1.23}
\end{equation*}
$$

Again, as $t \rightarrow \infty$ one has $v(t) \rightarrow-v_{\infty}$, i.e. $v(\infty)=-v_{\infty}$.
Advanced Digression: To gain an understanding of the constant c, consider a flat surface of area S moving through a fluid at velocity $v(v>0)$. During a time Δt, all the fluid molecules inside the volume $\Delta V=S \cdot v \Delta t$ will have executed an elastic collision with the moving surface. Since the surface is assumed to be much more massive than each fluid molecule, the center of mass frame for the surfacemolecule collision is essentially the frame of the surface itself. If a molecule moves with velocity u is the laboratory frame, it moves with velocity $u-v$ in the center of mass (CM) frame, and since the collision is elastic, its final CM frame velocity is reversed, to $v-u$. Thus, in the laboratory frame the molecule's velocity has become $2 v-u$ and it has suffered a change in velocity of $\Delta u=2(v-u)$. The total momentum
change is obtained by multiplying Δu by the total mass $M=\varrho \Delta V$, where ϱ is the mass density of the fluid. But then the total momentum imparted to the fluid is

$$
\begin{equation*}
\Delta P=2(v-u) \cdot \varrho S v \Delta t \tag{1.24}
\end{equation*}
$$

and the force on the fluid is

$$
\begin{equation*}
F=\frac{\Delta P}{\Delta t}=2 S \varrho v(v-u) . \tag{1.25}
\end{equation*}
$$

Now it is appropriate to average this expression over the microscopic distribution of molecular velocities u, and since on average $\langle u\rangle=0$, we obtain the result $\langle F\rangle=2 S \varrho v^{2}$, where $\langle\cdots\rangle$ denotes a microscopic average over the molecular velocities in the fluid. (There is a subtlety here concerning the effect of fluid molecules striking the surface from either side - you should satisfy yourself that this derivation is sensible!) Newton's Third Law then states that the frictional force imparted to the moving surface by the fluid is $F_{\mathrm{f}}=-\langle F\rangle=-c v^{2}$, where $c=2 S \varrho$. In fact, our derivation is too crude to properly obtain the numerical prefactors, and it is better to write $c=\mu \varrho S$, where μ is a dimensionless constant which depends on the shape of the moving object.

1.2.4 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge q moving in mutually perpendicular \boldsymbol{E} and \boldsymbol{B} fields. We'll throw in gravity for good measure. We take $\boldsymbol{E}=E \hat{\boldsymbol{x}}, \boldsymbol{B}=B \hat{\boldsymbol{z}}$, and $\boldsymbol{g}=-g \hat{\boldsymbol{z}}$. The equation of motion is Newton's 2 nd Law again:

$$
\begin{equation*}
m \ddot{\boldsymbol{r}}=m \boldsymbol{g}+q \boldsymbol{E}+\frac{q}{c} \dot{\boldsymbol{r}} \times \boldsymbol{B} . \tag{1.26}
\end{equation*}
$$

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus the Lorentz force of a moving particle in an electromagnetic field. In component notation, we have

$$
\begin{align*}
m \ddot{x} & =q E+\frac{q B}{c} \dot{y} \\
m \ddot{y} & =-\frac{q B}{c} \dot{x} \tag{1.27}\\
m \ddot{z} & =-m g .
\end{align*}
$$

The equations for coordinates x and y are coupled, while that for z is independent and may be immediately solved to yield

$$
\begin{equation*}
z(t)=z(0)+\dot{z}(0) t-\frac{1}{2} g t^{2} . \tag{1.28}
\end{equation*}
$$

The remaining equations may be written in terms of the velocities $v_{x}=\dot{x}$ and $v_{y}=\dot{y}$:

$$
\begin{align*}
& \dot{v}_{x}=\omega_{\mathrm{c}}\left(v_{y}+u_{\mathrm{D}}\right) \tag{1.29}\\
& \dot{v}_{y}=-\omega_{\mathrm{c}} v_{x}
\end{align*}
$$

where $\omega_{\mathrm{c}}=q B / m c$ is the cyclotron frequency and $u_{\mathrm{D}}=c E / B$ is the drift speed for the particle. As we shall see, these are the equations for a harmonic oscillator. The solution is

$$
\begin{align*}
& v_{x}(t)=v_{x}(0) \cos \left(\omega_{\mathrm{c}} t\right)+\left(v_{y}(0)+u_{\mathrm{D}}\right) \sin \left(\omega_{\mathrm{c}} t\right) \tag{1.30}\\
& v_{y}(t)=-u_{\mathrm{D}}+\left(v_{y}(0)+u_{\mathrm{D}}\right) \cos \left(\omega_{\mathrm{C}} t\right)-v_{x}(0) \sin \left(\omega_{\mathrm{c}} t\right) .
\end{align*}
$$

Integrating again, the full motion is given by:

$$
\begin{align*}
& x(t)=x(0)+A \sin \delta+A \sin \left(\omega_{\mathrm{c}} t-\delta\right) \tag{1.31}\\
& y(r)=y(0)-u_{\mathrm{D}} t-A \cos \delta+A \cos \left(\omega_{\mathrm{c}} t-\delta\right)
\end{align*}
$$

where

$$
\begin{equation*}
A=\frac{1}{\omega_{\mathrm{C}}} \sqrt{\dot{x}^{2}(0)+\left(\dot{y}(0)+u_{\mathrm{D}}\right)^{2}} \quad, \quad \delta=\tan ^{-1}\left(\frac{\dot{y}(0)+u_{\mathrm{D}}}{\dot{x}(0)}\right) . \tag{1.32}
\end{equation*}
$$

Thus, in the full solution of the motion there are six constants of integration:

$$
\begin{equation*}
x(0) \quad, y(0) \quad, z(0) \quad, A \quad, \delta \quad, \dot{z}(0) \tag{1.33}
\end{equation*}
$$

Of course instead of A and δ one may choose as constants of integration $\dot{x}(0)$ and $\dot{y}(0)$.

1.2.5 Pause for Reflection

In mechanical systems, for each coordinate, or "degree of freedom," there exists a corresponding second order ODE. The full solution of the motion of the system entails two constants of integration for each degree of freedom.

1.3 Work-Energy Theorem

Consider a system of many particles, with positions \boldsymbol{r}_{i} and velocities $\dot{\boldsymbol{r}}_{i}$. The kinetic energy of this system is

$$
\begin{equation*}
T=\sum_{i} T_{i}=\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2} \tag{1.34}
\end{equation*}
$$

Now let's consider how the kinetic energy of the system changes in time. Assuming each m_{i} is timeindependent, we have

$$
\begin{equation*}
\frac{d T_{i}}{d t}=m_{i} \dot{\boldsymbol{r}}_{i} \cdot \ddot{\boldsymbol{r}}_{i} \tag{1.35}
\end{equation*}
$$

Here, we've used the relation

$$
\begin{equation*}
\frac{d}{d t}\left(\boldsymbol{A}^{2}\right)=2 \boldsymbol{A} \cdot \frac{d \boldsymbol{A}}{d t} \tag{1.36}
\end{equation*}
$$

We now invoke Newton's 2nd Law, $m_{i} \ddot{\boldsymbol{r}}_{i}=\boldsymbol{F}_{i}$, to write eqn. 1.35 as $\dot{T}_{i}=\boldsymbol{F}_{i} \cdot \dot{\boldsymbol{r}}_{i}$. We integrate this equation from time t_{A} to t_{B} :

$$
\begin{equation*}
T_{i}^{(\mathrm{B})}-T_{i}^{(\mathrm{A})}=\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \frac{d T_{i}}{d t}=\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \boldsymbol{F}_{i} \cdot \dot{\boldsymbol{r}}_{i} \equiv \sum_{i} W_{i}^{(\mathrm{A} \rightarrow \mathrm{~B})} \tag{1.37}
\end{equation*}
$$

where $W_{i}^{(\mathrm{A} \rightarrow \mathrm{B})}$ is the total work done on particle i during its motion from state A to state B, Clearly the total kinetic energy is $T=\sum_{i} T_{i}$ and the total work done on all particles is $W^{(\mathrm{A} \rightarrow \mathrm{B})}=\sum_{i} W_{i}^{(\mathrm{A} \rightarrow \mathrm{B})}$. Eqn. 1.37 is known as the work-energy theorem. It says that In the evolution of a mechanical system, the change in total kinetic energy is equal to the total work done: $T^{(\mathrm{B})}-T^{(\mathrm{A})}=W^{(\mathrm{A} \rightarrow \mathrm{B})}$.

Figure 1.1: Two paths joining points A and B.

1.4 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy $T=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}$. The work done on the particle during its mechanical evolution is

$$
\begin{equation*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})}=\int_{t_{\mathrm{A}}}^{t_{\mathrm{B}}} d t \boldsymbol{F} \cdot \boldsymbol{v} \tag{1.38}
\end{equation*}
$$

where $\boldsymbol{v}=\dot{\boldsymbol{r}}$. This is the most general expression for the work done. If the force \boldsymbol{F} depends only on the particle's position \boldsymbol{r}, we may write $d \boldsymbol{r}=\boldsymbol{v} d t$, and then

$$
\begin{equation*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})}=\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r}) \tag{1.39}
\end{equation*}
$$

Consider now the force

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=K_{1} y \hat{\boldsymbol{x}}+K_{2} x \hat{\boldsymbol{y}} \tag{1.40}
\end{equation*}
$$

where $K_{1,2}$ are constants. Let's evaluate the work done along each of the two paths in Fig. 1.1:

$$
\begin{align*}
W^{(\mathrm{I})} & =K_{1} \int_{x_{\mathrm{A}}}^{x_{\mathrm{B}}} d x y_{\mathrm{A}}+K_{2} \int_{y_{\mathrm{A}}}^{y_{\mathrm{B}}} d y x_{\mathrm{B}}=K_{1} y_{\mathrm{A}}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+K_{2} x_{\mathrm{B}}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) \\
W^{(\mathrm{II})} & =K_{1} \int_{x_{\mathrm{A}}}^{x_{\mathrm{B}}} d x y_{\mathrm{B}}+K_{2} \int_{y_{\mathrm{A}}}^{y_{\mathrm{B}}} d y x_{\mathrm{A}}=K_{1} y_{\mathrm{B}}\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)+K_{2} x_{\mathrm{A}}\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) . \tag{1.41}
\end{align*}
$$

Note that in general $W^{(\mathrm{I})} \neq W^{(\mathrm{II})}$. Thus, if we start at point A , the kinetic energy at point B will depend on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

$$
\begin{equation*}
W^{(\mathrm{I})}-W^{(\mathrm{II})}=\left(K_{2}-K_{1}\right)\left(x_{\mathrm{B}}-x_{\mathrm{A}}\right)\left(y_{\mathrm{B}}-y_{\mathrm{A}}\right) . \tag{1.42}
\end{equation*}
$$

Thus, we see that if $K_{1}=K_{2}$, the work is the same for the two paths. In fact, if $K_{1}=K_{2}$, the work would be path-independent, and would depend only on the endpoints. This is true for any path, and not just piecewise linear paths of the type depicted in Fig. 1.1. The reason for this is Stokes' theorem:

$$
\begin{equation*}
\oint_{\partial \mathcal{C}} d \boldsymbol{\ell} \cdot \boldsymbol{F}=\int_{\mathcal{C}} d S \hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{F} . \tag{1.43}
\end{equation*}
$$

Here, \mathcal{C} is a connected region in three-dimensional space, $\partial \mathcal{C}$ is mathematical notation for the boundary of \mathcal{C}, which is a closed path ${ }^{1}, d S$ is the scalar differential area element, $\hat{\boldsymbol{n}}$ is the unit normal to that differential area element, and $\boldsymbol{\nabla} \times \boldsymbol{F}$ is the curl of \boldsymbol{F} :

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{F} & =\operatorname{det}\left(\begin{array}{ccc}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right) \tag{1.44}\\
& =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\boldsymbol{z}} .
\end{align*}
$$

For the force under consideration, $\boldsymbol{F}(\boldsymbol{r})=K_{1} y \hat{\boldsymbol{x}}+K_{2} x \hat{\boldsymbol{y}}$, the curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{F}=\left(K_{2}-K_{1}\right) \hat{\boldsymbol{z}}, \tag{1.45}
\end{equation*}
$$

which is a constant. The RHS of eqn. 1.43 is then simply proportional to the area enclosed by \mathcal{C}. When we compute the work difference in eqn. 1.42, we evaluate the integral $\oint_{\mathcal{C}} d \boldsymbol{\ell} \cdot \boldsymbol{F}$ along the path $\gamma_{\mathrm{II}}^{-1} \circ \gamma_{\mathrm{I}}$, which is to say path I followed by the inverse of path II. In this case, $\hat{\boldsymbol{n}}=\hat{\boldsymbol{z}}$ and the integral of $\hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{F}$ over the rectangle \mathcal{C} is given by the RHS of eqn. 1.42.

When $\boldsymbol{\nabla} \times \boldsymbol{F}=0$ everywhere in space, we can always write $\boldsymbol{F}=-\boldsymbol{\nabla} U$, where $U(\boldsymbol{r})$ is the potential energy. Such forces are called conservative forces because the total energy of the system, $E=T+U$, is then conserved during its motion. We can see this by evaluating the work done,

$$
\begin{equation*}
W^{(\mathrm{A} \rightarrow \mathrm{~B})}=\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \boldsymbol{F}(\boldsymbol{r})=-\int_{r_{\mathrm{A}}}^{r_{\mathrm{B}}} d \boldsymbol{r} \cdot \nabla U=U\left(\boldsymbol{r}_{\mathrm{A}}\right)-U\left(\boldsymbol{r}_{\mathrm{B}}\right) . \tag{1.46}
\end{equation*}
$$

The work-energy theorem then gives

$$
\begin{equation*}
T^{(\mathrm{B})}-T^{(\mathrm{A})}=U\left(\boldsymbol{r}_{\mathrm{A}}\right)-U\left(\boldsymbol{r}_{\mathrm{B}}\right), \tag{1.47}
\end{equation*}
$$

which says

$$
\begin{equation*}
E^{(\mathrm{B})}=T^{(\mathrm{B})}+U\left(\boldsymbol{r}_{\mathrm{B}}\right)=T^{(\mathrm{A})}+U\left(\boldsymbol{r}_{\mathrm{A}}\right)=E^{(\mathrm{A})} . \tag{1.48}
\end{equation*}
$$

Thus, the total energy $E=T+U$ is conserved.

[^0]
1.4.1 Example : integrating $\boldsymbol{F}=-\nabla U$

If $\boldsymbol{\nabla} \times \boldsymbol{F}=0$, we can compute $U(\boldsymbol{r})$ by integrating, viz.

$$
\begin{equation*}
U(\boldsymbol{r})=U(\mathbf{0})-\int_{\mathbf{0}}^{r} d \boldsymbol{r}^{\prime} \cdot \boldsymbol{F}\left(\boldsymbol{r}^{\prime}\right) \tag{1.49}
\end{equation*}
$$

The integral does not depend on the path chosen connecting $\mathbf{0}$ and \boldsymbol{r}. For example, we can take

$$
\begin{equation*}
U(x, y, z)=U(0,0,0)-\int_{(0,0,0)}^{(x, 0,0)} d x^{\prime} F_{x}\left(x^{\prime}, 0,0\right)-\int_{(x, 0,0)}^{(x, y, 0)} d y^{\prime} F_{y}\left(x, y^{\prime}, 0\right)-\int_{(z, y, 0)}^{(x, y, z)} d z^{\prime} F_{z}\left(x, y, z^{\prime}\right) \tag{1.50}
\end{equation*}
$$

The constant $U(0,0,0)$ is arbitrary and impossible to determine from \boldsymbol{F} alone.
As an example, consider the force

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=-k y \hat{\boldsymbol{x}}-k x \hat{\boldsymbol{y}}-4 b z^{3} \hat{\boldsymbol{z}}, \tag{1.51}
\end{equation*}
$$

where k and b are constants. We have

$$
\begin{align*}
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{x}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right)=0 \\
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{y}=\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right)=0 \tag{1.52}\\
& (\boldsymbol{\nabla} \times \boldsymbol{F})_{z}=\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right)=0
\end{align*}
$$

so $\boldsymbol{\nabla} \times \boldsymbol{F}=0$ and \boldsymbol{F} must be expressible as $\boldsymbol{F}=-\boldsymbol{\nabla} U$. Integrating using eqn. 1.50, we have

$$
\begin{align*}
U(x, y, z) & =U(0,0,0)+\int_{(0,0,0)}^{(x, 0,0)} d x^{\prime} k \cdot 0+\int_{(x, 0,0)}^{(x, y, 0)} d y^{\prime} k x y^{\prime}+\int_{(z, y, 0)}^{(x, y, z)} d z^{\prime} 4 b z^{\prime 3} \tag{1.53}\\
& =U(0,0,0)+k x y+b z^{4} .
\end{align*}
$$

Another approach is to integrate the partial differential equation $\nabla U=-\boldsymbol{F}$. This is in fact three equations, and we shall need all of them to obtain the correct answer. We start with the $\hat{\boldsymbol{x}}$-component,

$$
\begin{equation*}
\frac{\partial U}{\partial x}=k y \tag{1.54}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
U(x, y, z)=k x y+f(y, z) \tag{1.55}
\end{equation*}
$$

where $f(y, z)$ is at this point an arbitrary function of y and z. The important thing is that it has no x dependence, so $\partial f / \partial x=0$. Next, we have

$$
\begin{equation*}
\frac{\partial U}{\partial y}=k x \quad \Longrightarrow \quad U(x, y, z)=k x y+g(x, z) \tag{1.56}
\end{equation*}
$$

Finally, the z-component integrates to yield

$$
\begin{equation*}
\frac{\partial U}{\partial z}=4 b z^{3} \quad \Longrightarrow \quad U(x, y, z)=b z^{4}+h(x, y) \tag{1.57}
\end{equation*}
$$

We now equate the first two expressions:

$$
\begin{equation*}
k x y+f(y, z)=k x y+g(x, z) . \tag{1.58}
\end{equation*}
$$

Subtracting $k x y$ from each side, we obtain the equation $f(y, z)=g(x, z)$. Since the LHS is independent of x and the RHS is independent of y, we must have

$$
\begin{equation*}
f(y, z)=g(x, z)=q(z), \tag{1.59}
\end{equation*}
$$

where $q(z)$ is some unknown function of z. But now we invoke the final equation, to obtain

$$
\begin{equation*}
b z^{4}+h(x, y)=k x y+q(z) . \tag{1.60}
\end{equation*}
$$

The only possible solution is $h(x, y)=C+k x y$ and $q(z)=C+b z^{4}$, where C is a constant. Therefore,

$$
\begin{equation*}
U(x, y, z)=C+k x y+b z^{4} \tag{1.61}
\end{equation*}
$$

Note that it would be very wrong to integrate $\partial U / \partial x=k y$ and obtain $U(x, y, z)=k x y+C^{\prime}$, where C^{\prime} is a constant. As we've seen, the 'constant of integration' we obtain upon integrating this first order PDE is in fact a function of y and z. The fact that $f(y, z)$ carries no explicit x dependence means that $\partial f / \partial x=0$, so by construction $U=k x y+f(y, z)$ is a solution to the PDE $\partial U / \partial x=k y$, for any arbitrary function $f(y, z)$.

1.4.2 Conservative Fofrces in many-particle systems

$$
\begin{align*}
T & =\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2} \\
U & =\sum_{i} V\left(\boldsymbol{r}_{i}\right)+\sum_{i<j} v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) \tag{1.62}
\end{align*}
$$

Here, $V(\boldsymbol{r})$ is the external (or one-body) potential, and $v\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ is the interparticle potential, which we assume to be central, depending only on the distance between any pair of particles. The equations of motion are

$$
\begin{equation*}
m_{i} \ddot{\boldsymbol{r}}_{i}=\boldsymbol{F}_{i}^{(\mathrm{ext})}+\boldsymbol{F}_{i}^{(\mathrm{int})} \tag{1.63}
\end{equation*}
$$

with

$$
\begin{align*}
\boldsymbol{F}_{i}^{(\mathrm{ext})} & =-\frac{\partial V\left(\boldsymbol{r}_{i}\right)}{\partial \boldsymbol{r}_{i}} \\
\boldsymbol{F}_{i}^{(\text {int })} & =-\sum_{j} \frac{\partial v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)}{\boldsymbol{r}_{i}} \equiv \sum_{j} \boldsymbol{F}_{i j}^{(\text {int })} . \tag{1.64}
\end{align*}
$$

Here, $\boldsymbol{F}_{i j}^{(\text {int })}$ is the force exerted on particle i by particle j :

$$
\begin{equation*}
\boldsymbol{F}_{i j}^{(\text {int })}=-\frac{\partial v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)}{\partial \boldsymbol{r}_{i}}=-\frac{\boldsymbol{r}_{i}-\boldsymbol{r}_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|} v^{\prime}\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) . \tag{1.65}
\end{equation*}
$$

Note that $\boldsymbol{F}_{i j}^{(\text {int })}=-\boldsymbol{F}_{j i}^{(\text {int })}$, otherwise known as Newton's Third Law. It is convenient to abbreviate $\boldsymbol{r}_{i j} \equiv \boldsymbol{r}_{i}-\boldsymbol{r}_{j}$, in which case we may write the interparticle force as

$$
\begin{equation*}
\boldsymbol{F}_{i j}^{(\text {int })}=-\hat{\boldsymbol{r}}_{i j} v^{\prime}\left(r_{i j}\right) \tag{1.66}
\end{equation*}
$$

1.4.3 Linear and angular momentum

Consider now the total momentum of the system, $\boldsymbol{P}=\sum_{i} \boldsymbol{p}_{i}$. Its rate of change is

$$
\begin{equation*}
\frac{d \boldsymbol{P}}{d t}=\sum_{i} \dot{\boldsymbol{p}}_{i}=\sum_{i} \boldsymbol{F}_{i}^{(\mathrm{ext})}+\overbrace{\sum_{i \neq j} \boldsymbol{F}_{i j}^{(\text {int })}}^{\boldsymbol{F}_{i j}^{(\text {int })}+\boldsymbol{F}_{j i}^{(\mathrm{int})}}=0 . \tag{1.67}
\end{equation*}
$$

since the sum over all internal forces cancels as a result of Newton's Third Law. We write

$$
\begin{align*}
\boldsymbol{P} & =\sum_{i} m_{i} \dot{\boldsymbol{r}}_{i}=M \dot{\boldsymbol{R}} \\
M & =\sum_{i} m_{i} \quad \text { (total mass) } \tag{1.68}\\
\boldsymbol{R} & =\frac{\sum_{i} m_{i} \boldsymbol{r}_{i}}{\sum_{i} m_{i}} \quad \text { (center-of-mass) } .
\end{align*}
$$

Next, consider the total angular momentum,

$$
\begin{equation*}
\boldsymbol{L}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{p}_{i}=\sum_{i} m_{i} \boldsymbol{r}_{i} \times \dot{\boldsymbol{r}}_{i} \tag{1.69}
\end{equation*}
$$

The rate of change of \boldsymbol{L} is then

$$
\begin{align*}
\frac{d \boldsymbol{L}}{d t} & =\sum_{i}\left\{m_{i} \dot{\boldsymbol{r}}_{i} \times \dot{\boldsymbol{r}}_{i}+m_{i} \boldsymbol{r}_{i} \times \ddot{\boldsymbol{r}}_{i}\right\} \\
& =\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i}^{(\text {ext })}+\sum_{i \neq j} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i j}^{(\text {int })} \\
& =\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i}^{(\text {ext })}+\overbrace{\frac{1}{2} \sum_{i \neq j}\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \times \boldsymbol{F}_{i j}^{(\text {int })}}^{\boldsymbol{r}_{i j} \times \boldsymbol{F}_{i j}^{(\text {int })}=0} \tag{1.70}\\
& =\boldsymbol{N}_{\text {tot }}^{(\text {ext })}
\end{align*}
$$

Finally, it is useful to establish the result

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i} m_{i} \dot{\boldsymbol{r}}_{i}^{2}=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \sum_{i} m_{i}\left(\dot{\boldsymbol{r}}_{i}-\dot{\boldsymbol{R}}\right)^{2}, \tag{1.71}
\end{equation*}
$$

which says that the kinetic energy may be written as a sum of two terms, those being the kinetic energy of the center-of-mass motion, and the kinetic energy of the particles relative to the center-of-mass.

Recall the "work-energy theorem" for conservative systems,

$$
\begin{align*}
0 & =\int_{\text {initial }}^{\text {final }} d E=\int_{\text {initial }}^{\text {final }} d T+\int_{\text {initial }}^{\text {final }} d U \tag{1.72}\\
& =T^{(\mathrm{B})}-T^{(\mathrm{A})}-\sum_{i} \int d \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i},
\end{align*}
$$

which is to say

$$
\begin{equation*}
\Delta T=T^{(\mathrm{B})}-T^{(\mathrm{A})}=\sum_{i} \int d \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}=-\Delta U \tag{1.73}
\end{equation*}
$$

In other words, the total energy $E=T+U$ is conserved:

$$
\begin{equation*}
E=\sum_{i} \frac{1}{2} m_{i} \dot{\boldsymbol{r}}_{i}^{2}+\sum_{i} V\left(\boldsymbol{r}_{i}\right)+\sum_{i<j} v\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) \tag{1.74}
\end{equation*}
$$

Note that for continuous systems, we replace sums by integrals over a mass distribution, viz.

$$
\begin{equation*}
\sum_{i} m_{i} \phi\left(\boldsymbol{r}_{i}\right) \longrightarrow \int d^{3} r \rho(\boldsymbol{r}) \phi(\boldsymbol{r}) \tag{1.75}
\end{equation*}
$$

where $\rho(\boldsymbol{r})$ is the mass density, and $\phi(\boldsymbol{r})$ is any function.

1.5 Scaling of Solutions for Homogeneous Potentials

1.5.1 Euler's theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This means

$$
\begin{equation*}
U\left(\lambda \boldsymbol{r}_{1}, \ldots, \lambda \boldsymbol{r}_{N}\right)=\lambda^{k} U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \tag{1.76}
\end{equation*}
$$

Here, k is the degree of homogeneity of U. Familiar examples include gravity,

$$
\begin{equation*}
U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=-G \sum_{i<j} \frac{m_{i} m_{j}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|} \quad ; \quad k=-1 \tag{1.77}
\end{equation*}
$$

and the harmonic oscillator,

$$
\begin{equation*}
U\left(q_{1}, \ldots, q_{n}\right)=\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} V_{\sigma \sigma^{\prime}} q_{\sigma} q_{\sigma^{\prime}} \quad ; \quad k=+2 \tag{1.78}
\end{equation*}
$$

The sum of two homogeneous functions is itself homogeneous only if the component functions themselves are of the same degree of homogeneity. Homogeneous functions obey a special result known as Euler's Theorem, which we now prove. Suppose a multivariable function $H\left(x_{1}, \ldots, x_{n}\right)$ is homogeneous:

$$
\begin{equation*}
H\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{k} H\left(x_{1}, \ldots, x_{n}\right) \tag{1.79}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\frac{d}{d \lambda}\right|_{\lambda=1} H\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\sum_{i=1}^{n} x_{i} \frac{\partial H}{\partial x_{i}}=k H \tag{1.80}
\end{equation*}
$$

1.5.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

$$
\begin{equation*}
\boldsymbol{r}_{i}=\alpha \tilde{\boldsymbol{r}}_{i} \quad, \quad t=\beta \tilde{t} \tag{1.81}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d \boldsymbol{r}_{i}}{d t}=\frac{\alpha}{\beta} \frac{d \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}} \quad, \quad \frac{d^{2} \boldsymbol{r}_{i}}{d t^{2}}=\frac{\alpha}{\beta^{2}} \frac{d^{2} \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}^{2}} . \tag{1.82}
\end{equation*}
$$

The force \boldsymbol{F}_{i} is given by

$$
\begin{align*}
\boldsymbol{F}_{i} & =-\frac{\partial}{\partial \boldsymbol{r}_{i}} U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \\
& =-\frac{\partial}{\partial\left(\alpha \tilde{\boldsymbol{r}}_{i}\right)} \alpha^{k} U\left(\tilde{\boldsymbol{r}}_{1}, \ldots, \tilde{\boldsymbol{r}}_{N}\right)=\alpha^{k-1} \tilde{\boldsymbol{F}}_{i} \tag{1.83}
\end{align*}
$$

Thus, Newton's 2nd Law says

$$
\begin{equation*}
\frac{\alpha}{\beta^{2}} m_{i} \frac{d^{2} \tilde{\boldsymbol{r}}_{i}}{d \tilde{t}^{2}}=\alpha^{k-1} \tilde{\boldsymbol{F}}_{i} \tag{1.84}
\end{equation*}
$$

If we choose β such that
We now demand

$$
\begin{equation*}
\frac{\alpha}{\beta^{2}}=\alpha^{k-1} \quad \Rightarrow \quad \beta=\alpha^{1-\frac{1}{2} k} \tag{1.85}
\end{equation*}
$$

then the equation of motion is invariant under the rescaling transformation! This means that if $\boldsymbol{r}(t)$ is a solution to the equations of motion, then so is $\alpha \boldsymbol{r}\left(\alpha^{\frac{1}{2} k-1} t\right)$. This gives us an entire one-parameter family of solutions, for all real positive α.
If $\boldsymbol{r}(t)$ is periodic with period T, the $\boldsymbol{r}_{i}(t ; \alpha)$ is periodic with period $T^{\prime}=\alpha^{1-\frac{1}{2} k} T$. Thus,

$$
\begin{equation*}
\left(\frac{T^{\prime}}{T}\right)=\left(\frac{L^{\prime}}{L}\right)^{1-\frac{1}{2} k} \tag{1.86}
\end{equation*}
$$

Here, $\alpha=L^{\prime} / L$ is the ratio of length scales. Velocities, energies and angular momenta scale accordingly Thus

$$
\begin{equation*}
[v]=\frac{L}{T} \quad \Rightarrow \quad \frac{v^{\prime}}{v}=\frac{L^{\prime}}{L} / \frac{T^{\prime}}{T}=\alpha^{\frac{1}{2} k} \tag{1.87}
\end{equation*}
$$

and

$$
\begin{equation*}
[E]=\frac{M L^{2}}{T^{2}} \Rightarrow \frac{E^{\prime}}{E}=\left(\frac{L^{\prime}}{L}\right)^{2} /\left(\frac{T^{\prime}}{T}\right)^{2}=\alpha^{k} \tag{1.88}
\end{equation*}
$$

and

$$
\begin{equation*}
[\boldsymbol{L}]=\frac{M L^{2}}{T} \Rightarrow \frac{\left|\boldsymbol{L}^{\prime}\right|}{|\boldsymbol{L}|}=\left(\frac{L^{\prime}}{L}\right)^{2} / \frac{T^{\prime}}{T}=\alpha^{\left(1+\frac{1}{2} k\right)} . \tag{1.89}
\end{equation*}
$$

As examples, consider:
(i) Harmonic Oscillator: Here $k=2$ and therefore

$$
\begin{equation*}
q_{\sigma}(t) \longrightarrow q_{\sigma}(t ; \alpha)=\alpha q_{\sigma}(t) . \tag{1.90}
\end{equation*}
$$

Thus, rescaling lengths alone gives another solution.
(ii) Kepler Problem : This is gravity, for which $k=-1$. Thus,

$$
\begin{equation*}
\boldsymbol{r}(t) \longrightarrow \boldsymbol{r}(t ; \alpha)=\alpha \boldsymbol{r}\left(\alpha^{-3 / 2} t\right) \tag{1.91}
\end{equation*}
$$

Thus, $r^{3} \propto t^{2}$, i.e.

$$
\begin{equation*}
\left(\frac{L^{\prime}}{L}\right)^{2}=\left(\frac{T^{\prime}}{T}\right)^{2} \tag{1.92}
\end{equation*}
$$

also known as Kepler's Third Law.

1.6 Description as a Dynamical System

For one-dimensional mechanical systems, Newton's second law reads

$$
\begin{equation*}
m \ddot{x}=F(x) \tag{1.93}
\end{equation*}
$$

A system is conservative if the force is derivable from a potential: $F=-d U / d x$. The total energy,

$$
\begin{equation*}
E=T+U=\frac{1}{2} m \dot{x}^{2}+U(x) \tag{1.94}
\end{equation*}
$$

is then conserved. This may be verified explicitly:

$$
\begin{align*}
\frac{d E}{d t} & =\frac{d}{d t}\left[\frac{1}{2} m \dot{x}^{2}+U(x)\right] \tag{1.95}\\
& =\left[m \ddot{x}+U^{\prime}(x)\right] \dot{x}=0 .
\end{align*}
$$

Conservation of energy allows us to reduce the equation of motion from second order to first order:

$$
\begin{equation*}
\frac{d x}{d t}= \pm \sqrt{\frac{2}{m}(E-U(x))} \tag{1.96}
\end{equation*}
$$

Note that the constant E is a constant of integration. The \pm sign above depends on the direction of motion. Points $x(E)$ which satisfy

$$
\begin{equation*}
E=U(x) \quad \Rightarrow \quad x(E)=U^{-1}(E) \tag{1.97}
\end{equation*}
$$

where U^{-1} is the inverse function, are called turning points. When the total energy is E, the motion of the system is bounded by the turning points, and confined to the region(s) $U(x) \leq E$. We can integrate eqn. 1.96 to obtain

$$
\begin{equation*}
t(x)-t\left(x_{0}\right)= \pm \sqrt{\frac{m}{2}} \int_{x_{0}}^{x} \frac{d x^{\prime}}{\sqrt{E-U\left(x^{\prime}\right)}} \tag{1.98}
\end{equation*}
$$

This is to be inverted to obtain the function $x(t)$. Note that there are now two constants of integration, E and x_{0}. Since

$$
\begin{equation*}
E=E_{0}=\frac{1}{2} m v_{0}^{2}+U\left(x_{0}\right) \tag{1.99}
\end{equation*}
$$

we could also consider x_{0} and v_{0} as our constants of integration, writing E in terms of x_{0} and v_{0}. Thus, there are two independent constants of integration.

For motion confined between two turning points $x_{ \pm}(E)$, the period of the motion is given by

$$
\begin{equation*}
T(E)=\sqrt{2 m} \int_{x_{-}(E)}^{x_{+}(E)} \frac{d x^{\prime}}{\sqrt{E-U\left(x^{\prime}\right)}} \tag{1.100}
\end{equation*}
$$

1.6.1 Example : harmonic oscillator

In the case of the harmonic oscillator, we have $U(x)=\frac{1}{2} k x^{2}$, hence

$$
\begin{equation*}
\frac{d t}{d x}= \pm \sqrt{\frac{m}{2 E-k x^{2}}} \tag{1.101}
\end{equation*}
$$

The turning points are $x_{ \pm}(E)= \pm \sqrt{2 E / k}$, for $E \geq 0$. To solve for the motion, let us substitute

$$
\begin{equation*}
x=\sqrt{\frac{2 E}{k}} \sin \theta . \tag{1.102}
\end{equation*}
$$

We then find

$$
\begin{equation*}
d t=\sqrt{\frac{m}{k}} d \theta \tag{1.103}
\end{equation*}
$$

with solution

$$
\begin{equation*}
\theta(t)=\theta_{0}+\omega t \tag{1.104}
\end{equation*}
$$

where $\omega=\sqrt{k / m}$ is the harmonic oscillator frequency. Thus, the complete motion of the system is given by

$$
\begin{equation*}
x(t)=\sqrt{\frac{2 E}{k}} \sin \left(\omega t+\theta_{0}\right) . \tag{1.105}
\end{equation*}
$$

Note the two constants of integration, E and θ_{0}.

1.6.2 One-dimensional mechanics as a dynamical system

Rather than writing the equation of motion as a single second order ODE, we can instead write it as two coupled first order ODEs, viz.

$$
\begin{align*}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=\frac{1}{m} F(x) \tag{1.106}
\end{align*}
$$

This may be written in matrix-vector form, as

$$
\begin{equation*}
\frac{d}{d t}\binom{x}{v}=\binom{v}{\frac{1}{m} F(x)} \tag{1.107}
\end{equation*}
$$

This is an example of a dynamical system, described by the general form

$$
\begin{equation*}
\frac{d \boldsymbol{\varphi}}{d t}=\boldsymbol{V}(\boldsymbol{\varphi}) \tag{1.108}
\end{equation*}
$$

where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right)$ is an N-dimensional vector in phase space. For the model of eqn. 1.107, we evidently have $N=2$. The object $\boldsymbol{V}(\boldsymbol{\varphi})$ is called a vector field. It is itself a vector, existing at every point
in phase space, R^{N}. Each of the components of $\boldsymbol{V}(\varphi)$ is a function (in general) of all the components of φ :

$$
\begin{equation*}
V_{j}=V_{j}\left(\varphi_{1}, \ldots, \varphi_{N}\right) \quad(j=1, \ldots, N) \tag{1.109}
\end{equation*}
$$

Solutions to the equation $\dot{\varphi}=\boldsymbol{V}(\varphi)$ are called integral curves. Each such integral curve $\varphi(t)$ is uniquely determined by N constants of integration, which may be taken to be the initial value $\varphi(0)$. The collection of all integral curves is known as the phase portrait of the dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve for its motion, starting from arbitrary initial conditions. In general this is a difficult problem, which can only be treated numerically. But for conservative mechanical systems in $d=1$, it is a trivial matter! The reason is that energy conservation completely determines the phase portraits. The velocity becomes a unique double-valued function of position, $v(x)= \pm \sqrt{\frac{2}{m}(E-U(x))}$. The phase curves are thus curves of constant energy.

1.6.3 Sketching phase curves

To plot the phase curves,
(i) Sketch the potential $U(x)$.
(ii) Below this plot, sketch $v(x ; E)= \pm \sqrt{\frac{2}{m}(E-U(x))}$.
(iii) When E lies at a local extremum of $U(x)$, the system is at a fixed point.
(a) For E slightly above $E_{\min }$, the phase curves are ellipses.
(b) For E slightly below $E_{\max }$, the phase curves are (locally) hyperbolae.
(c) For $E=E_{\text {max }}$ the phase curve is called a separatrix.
(iv) When $E>U(\infty)$ or $E>U(-\infty)$, the motion is unbounded.
(v) Draw arrows along the phase curves: to the right for $v>0$ and left for $v<0$.

The period of the orbit $T(E)$ has a simple geometric interpretation. The area \mathcal{A} in phase space enclosed by a bounded phase curve is

$$
\begin{equation*}
\mathcal{A}(E)=\oint_{E} v d x=\sqrt{\frac{8}{m}} \int_{x_{-}(E)}^{x_{+}(E)} d x^{\prime} \sqrt{E-U\left(x^{\prime}\right)} . \tag{1.110}
\end{equation*}
$$

Thus, the period is proportional to the rate of change of $A(E)$ with E :

$$
\begin{equation*}
T=m \frac{\partial \mathcal{A}}{\partial E} \tag{1.111}
\end{equation*}
$$

Figure 1.2: A potential $U(x)$ and the corresponding phase portraits (with separatrices in red).

1.6.4 Fixed points and their vicinity

A fixed point $\left(x^{*}, v^{*}\right)$ of the dynamics satisfies $U^{\prime}\left(x^{*}\right)=0$ and $v^{*}=0$. Taylor's theorem then allows us to expand $U(x)$ in the vicinity of x^{*} :

$$
\begin{equation*}
U(x)=U\left(x^{*}\right)+U^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} U^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2}+\frac{1}{6} U^{\prime \prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{3}+\ldots . \tag{1.112}
\end{equation*}
$$

Since $U^{\prime}\left(x^{*}\right)=0$ the linear term in $\delta x=x-x^{*}$ vanishes. If δx is sufficiently small, we can ignore the cubic, quartic, and higher order terms, leaving us with

$$
\begin{equation*}
U(\delta x) \approx U_{0}+\frac{1}{2} k(\delta x)^{2} \tag{1.113}
\end{equation*}
$$

where $U_{0}=U\left(x^{*}\right)$ and $k=U^{\prime \prime}\left(x^{*}\right)>0$. The solutions to the motion in this potential are:

$$
\begin{align*}
& U^{\prime \prime}\left(x^{*}\right)>0: \delta x(t)=\delta x_{0} \cos (\omega t)+\frac{\delta v_{0}}{\omega} \sin (\omega t) \tag{1.114}\\
& U^{\prime \prime}\left(x^{*}\right)<0: \delta x(t)=\delta x_{0} \cosh (\gamma t)+\frac{\delta v_{0}}{\gamma} \sinh (\gamma t),
\end{align*}
$$

where $\omega=\sqrt{k / m}$ for $k>0$ and $\gamma=\sqrt{-k / m}$ for $k<0$. The energy is

$$
\begin{equation*}
E=U_{0}+\frac{1}{2} m\left(\delta v_{0}\right)^{2}+\frac{1}{2} k\left(\delta x_{0}\right)^{2} . \tag{1.115}
\end{equation*}
$$

For a separatrix, we have $E=U_{0}$ and $U^{\prime \prime}\left(x^{*}\right)<0$. From the equation for the energy, we obtain $\delta v_{0}=$ $\pm \gamma \delta x_{0}$. Let's take $\delta v_{0}=-\gamma \delta x_{0}$, so that the initial velocity is directed toward the unstable fixed point (UFP). I.e. the initial velocity is negative if we are to the right of the UFP $\left(\delta x_{0}>0\right)$ and positive if we are to the left of the UFP $\left(\delta x_{0}<0\right)$. The motion of the system is then

$$
\begin{equation*}
\delta x(t)=\delta x_{0} \exp (-\gamma t) \tag{1.116}
\end{equation*}
$$

The particle gets closer and closer to the unstable fixed point at $\delta x=0$, but it takes an infinite amount of time to actually get there. Put another way, the time it takes to get from δx_{0} to a closer point $\delta x<\delta x_{0}$ is

$$
\begin{equation*}
t=\gamma^{-1} \ln \left(\frac{\delta x_{0}}{\delta x}\right) \tag{1.117}
\end{equation*}
$$

This diverges logarithmically as $\delta x \rightarrow 0$. Generically, then, the period of motion along a separatrix is infinite.

1.6.5 Linearized dynamics in the vicinity of a fixed point

Linearizing in the vicinity of such a fixed point, we write $\delta x=x-x^{*}$ and $\delta v=v-v^{*}$, obtaining

$$
\frac{d}{d t}\binom{\delta x}{\delta v}=\left(\begin{array}{cc}
0 & 1 \tag{1.118}\\
-\frac{1}{m} U^{\prime \prime}\left(x^{*}\right) & 0
\end{array}\right)\binom{\delta x}{\delta v}+\ldots,
$$

This is a linear equation, which we can solve completely.
Consider the general linear equation $\dot{\varphi}=A \varphi$, where A is a fixed real matrix. Now whenever we have a problem involving matrices, we should start thinking about eigenvalues and eigenvectors. Invariably, the eigenvalues and eigenvectors will prove to be useful, if not essential, in solving the problem. The eigenvalue equation is

$$
\begin{equation*}
A \boldsymbol{\psi}_{\alpha}=\lambda_{\alpha} \boldsymbol{\psi}_{\alpha} \tag{1.119}
\end{equation*}
$$

Here ψ_{α} is the $\alpha^{\text {th }}$ right eigenvector ${ }^{2}$ of A. The eigenvalues are roots of the characteristic equation $P(\lambda)=$ 0 , where $P(\lambda)=\operatorname{det}(\lambda \cdot \mathbb{I}-A)$. Let's expand $\varphi(t)$ in terms of the right eigenvectors of A :

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=\sum_{\alpha} C_{\alpha}(t) \boldsymbol{\psi}_{\alpha} \tag{1.120}
\end{equation*}
$$

Assuming, for the purposes of this discussion, that A is nondegenerate, and its eigenvectors span R^{N}, the dynamical system can be written as a set of decoupled first order ODEs for the coefficients $C_{\alpha}(t)$:

$$
\begin{equation*}
\dot{C}_{\alpha}=\lambda_{\alpha} C_{\alpha} \tag{1.121}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
C_{\alpha}(t)=C_{\alpha}(0) \exp \left(\lambda_{\alpha} t\right) \tag{1.122}
\end{equation*}
$$

If $\operatorname{Re}\left(\lambda_{\alpha}\right)>0, C_{\alpha}(t)$ flows off to infinity, while if $\operatorname{Re}\left(\lambda_{\alpha}\right)>0, C_{\alpha}(t)$ flows to zero. If $\left|\lambda_{\alpha}\right|=1$, then $C_{\alpha}(t)$ oscillates with frequency $\operatorname{Im}\left(\lambda_{\alpha}\right)$.

[^1]

Figure 1.3: Phase curves in the vicinity of centers and saddles.

For a two-dimensional matrix, it is easy to show - an exercise for the reader - that

$$
\begin{equation*}
P(\lambda)=\lambda^{2}-T \lambda+D, \tag{1.123}
\end{equation*}
$$

where $T=\operatorname{Tr}(A)$ and $D=\operatorname{det}(A)$. The eigenvalues are then

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4 D} . \tag{1.124}
\end{equation*}
$$

We'll study the general case in Physics 110B. For now, we focus on our conservative mechanical system of eqn. 1.118. The trace and determinant of the above matrix are $T=0$ and $D=\frac{1}{m} U^{\prime \prime}\left(x^{*}\right)$. Thus, there are only two (generic) possibilities: centers, when $U^{\prime \prime}\left(x^{*}\right)>0$, and saddles, when $U^{\prime \prime}\left(x^{*}\right)<0$. Examples of each are shown in Fig. 1.2.

1.7 Appendix: Examples of Conservative One-Dimensional Systems

1.7.1 Harmonic oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy is $U(x)=\frac{1}{2} k x^{2}$. The equation of motion is

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-\frac{d U}{d x}=-k x \tag{1.125}
\end{equation*}
$$

where m is the mass and k the force constant (of a spring). With $v=\dot{x}$, this may be written as the $N=2$ system,

$$
\frac{d}{d t}\binom{x}{v}=\left(\begin{array}{cc}
0 & 1 \tag{1.126}\\
-\omega^{2} & 0
\end{array}\right)\binom{x}{v}=\binom{v}{-\omega^{2} x},
$$

Figure 1.4: Phase curves for the harmonic oscillator.
where $\omega=\sqrt{k / m}$ has the dimensions of frequency (inverse time). The solution is well known:

$$
\begin{align*}
& x(t)=x_{0} \cos (\omega t)+\frac{v_{0}}{\omega} \sin (\omega t) \tag{1.127}\\
& v(t)=v_{0} \cos (\omega t)-\omega x_{0} \sin (\omega t) .
\end{align*}
$$

The phase curves are ellipses:

$$
\begin{equation*}
\omega_{0} x^{2}(t)+\omega_{0}^{-1} v^{2}(t)=C \tag{1.128}
\end{equation*}
$$

where C is a constant, independent of time. A sketch of the phase curves and of the phase flow is shown in Fig. 13.1. Note that the x and v axes have different dimensions.

Energy is conserved:

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \tag{1.129}
\end{equation*}
$$

Therefore we may find the length of the semimajor and semiminor axes by setting $v=0$ or $x=0$, which gives

$$
\begin{equation*}
x_{\max }=\sqrt{\frac{2 E}{k}} \quad, \quad v_{\max }=\sqrt{\frac{2 E}{m}} . \tag{1.130}
\end{equation*}
$$

The area of the elliptical phase curves is thus

$$
\begin{equation*}
\mathcal{A}(E)=\pi x_{\max } v_{\max }=\frac{2 \pi E}{\sqrt{m k}} . \tag{1.131}
\end{equation*}
$$

The period of motion is therefore

$$
\begin{equation*}
T(E)=m \frac{\partial \mathcal{A}}{\partial E}=2 \pi \sqrt{\frac{m}{k}} \tag{1.132}
\end{equation*}
$$

which is independent of E.

1.7.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of length ℓ. The potential is $U(\theta)=-m g \ell \cos \theta$, hence

$$
\begin{equation*}
m \ell^{2} \ddot{\theta}=-\frac{d U}{d \theta}=-m g \ell \sin \theta \tag{1.133}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\frac{d}{d t}\binom{\theta}{\omega}=\binom{\omega}{-\omega_{0}^{2} \sin \theta} \tag{1.134}
\end{equation*}
$$

where $\omega=\dot{\theta}$ is the angular velocity, and where $\omega_{0}=\sqrt{g / \ell}$ is the natural frequency of small oscillations. The conserved energy is

$$
\begin{equation*}
E=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+U(\theta) . \tag{1.135}
\end{equation*}
$$

Assuming the pendulum is released from rest at $\theta=\theta_{0}$,

$$
\begin{equation*}
\frac{2 E}{m \ell^{2}}=\dot{\theta}^{2}-2 \omega_{0}^{2} \cos \theta=-2 \omega_{0}^{2} \cos \theta_{0} \tag{1.136}
\end{equation*}
$$

The period for motion of amplitude θ_{0} is then

$$
\begin{equation*}
T\left(\theta_{0}\right)=\frac{\sqrt{8}}{\omega_{0}} \int_{0}^{\theta_{0}} \frac{d \theta}{\sqrt{\cos \theta-\cos \theta_{0}}}=\frac{4}{\omega_{0}} K\left(\sin ^{2} \frac{1}{2} \theta_{0}\right) \tag{1.137}
\end{equation*}
$$

where $\mathrm{K}(z)$ is the complete elliptic integral of the first kind. Expanding $K(z)$, we have

$$
\begin{equation*}
T\left(\theta_{0}\right)=\frac{2 \pi}{\omega_{0}}\left\{1+\frac{1}{4} \sin ^{2}\left(\frac{1}{2} \theta_{0}\right)+\frac{9}{64} \sin ^{4}\left(\frac{1}{2} \theta_{0}\right)+\ldots\right\} \tag{1.138}
\end{equation*}
$$

For $\theta_{0} \rightarrow 0$, the period approaches the usual result $2 \pi / \omega_{0}$, valid for the linearized equation $\ddot{\theta}=-\omega_{0}^{2} \theta$. As $\theta_{0} \rightarrow \frac{\pi}{2}$, the period diverges logarithmically.
The phase curves for the pendulum are shown in Fig. 13.2. The small oscillations of the pendulum are essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation, $\sin \theta \approx \theta$, and the pendulum equations of motion are exactly those of the harmonic oscillator. These oscillations are called librations. They involve a back-and-forth motion in real space, and the phase space motion is contractable to a point, in the topological sense. However, if the initial angular velocity is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In this case, the pendulum bob keeps swinging around in the same direction, because, as we'll see in a later lecture, the total energy is sufficiently large. The phase curve which separates these two topologically distinct motions is called a separatrix.

Figure 1.5: Phase curves for the simple pendulum. The separatrix divides phase space into regions of rotation and libration.

1.7.3 Other potentials

Using the phase plotter application written by Ben Schmidel, available on the Physics 110A course web page, it is possible to explore the phase curves for a wide variety of potentials. Three examples are shown in the following pages. The first is the effective potential for the Kepler problem,

$$
\begin{equation*}
U_{\mathrm{eff}}(r)=-\frac{k}{r}+\frac{\ell^{2}}{2 \mu r^{2}}, \tag{1.139}
\end{equation*}
$$

about which we shall have much more to say when we study central forces. Here r is the separation between two gravitating bodies of masses $m_{1,2}, \mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the 'reduced mass', and $k=$ $G m_{1} m_{2}$, where G is the Cavendish constant. We can then write

$$
\begin{equation*}
U_{\mathrm{eff}}(r)=U_{0}\left\{-\frac{1}{x}+\frac{1}{2 x^{2}}\right\} \tag{1.140}
\end{equation*}
$$

where $r_{0}=\ell^{2} / \mu k$ has the dimensions of length, and $x \equiv r / r_{0}$, and where $U_{0}=k / r_{0}=\mu k^{2} / \ell^{2}$. Thus, if distances are measured in units of r_{0} and the potential in units of U_{0}, the potential may be written in dimensionless form as $\mathcal{U}(x)=-\frac{1}{x}+\frac{1}{2 x^{2}}$.
The second is the hyperbolic secant potential,

$$
\begin{equation*}
U(x)=-U_{0} \operatorname{sech}^{2}(x / a) \tag{1.141}
\end{equation*}
$$

Figure 1.6: Phase curves for the Kepler effective potential $U(x)=-x^{-1}+\frac{1}{2} x^{-2}$.
which, in dimensionless form, is $\mathcal{U}(x)=-\operatorname{sech}^{2}(x)$, after measuring distances in units of a and potential in units of U_{0}.

Figure 1.7: Phase curves for the potential $U(x)=-\operatorname{sech}^{2}(x)$.
The final example is

$$
\begin{equation*}
U(x)=U_{0}\left\{\cos \left(\frac{x}{a}\right)+\frac{x}{2 a}\right\} . \tag{1.142}
\end{equation*}
$$

Figure 1.8: Phase curves for the potential $U(x)=\cos (x)+\frac{1}{2} x$.

Again measuring x in units of a and U in units of U_{0}, we arrive at $\mathcal{U}(x)=\cos (x)+\frac{1}{2} x$.

1.8 Appendix: Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are $\left\{x_{1}, \ldots, x_{d}\right\}$, where d is the dimension of space. Consider a different set of coordinates, $\left\{q_{1}, \ldots, q_{d}\right\}$, which are related to the original coordinates x_{μ} via the d equations

$$
\begin{equation*}
q_{\mu}=q_{\mu}\left(x_{1}, \ldots, x_{d}\right) \tag{1.143}
\end{equation*}
$$

In general these are nonlinear equations.
Let $\hat{\boldsymbol{e}}_{i}^{0}=\hat{\boldsymbol{x}}_{i}$ be the Cartesian set of orthonormal unit vectors, and define $\hat{\boldsymbol{e}}_{\mu}$ to be the unit vector perpendicular to the surface $d q_{\mu}=0$. A differential change in position can now be described in both coordinate systems:

$$
\begin{equation*}
d \boldsymbol{s}=\sum_{i=1}^{d} \hat{\boldsymbol{e}}_{i}^{0} d x_{i}=\sum_{\mu=1}^{d} \hat{\boldsymbol{e}}_{\mu} h_{\mu}(q) d q_{\mu} \tag{1.144}
\end{equation*}
$$

where each $h_{\mu}(q)$ is an as yet unknown function of all the components q_{ν}. Finding the coefficient of $d q_{\mu}$ then gives

$$
\begin{equation*}
h_{\mu}(q) \hat{e}_{\mu}=\sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \hat{\boldsymbol{e}}_{i}^{0} \quad \Rightarrow \quad \hat{\boldsymbol{e}}_{\mu}=\sum_{i=1}^{d} M_{\mu i} \hat{\boldsymbol{e}}_{i}^{0} \tag{1.145}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\mu i}(q)=\frac{1}{h_{\mu}(q)} \frac{\partial x_{i}}{\partial q_{\mu}} \tag{1.146}
\end{equation*}
$$

The dot product of unit vectors in the new coordinate system is then

$$
\begin{equation*}
\hat{\boldsymbol{e}}_{\mu} \cdot \hat{\boldsymbol{e}}_{\nu}=\left(M M^{\mathrm{t}}\right)_{\mu \nu}=\frac{1}{h_{\mu}(q) h_{\nu}(q)} \sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \frac{\partial x_{i}}{\partial q_{\nu}} \tag{1.147}
\end{equation*}
$$

The condition that the new basis be orthonormal is then

$$
\begin{equation*}
\sum_{i=1}^{d} \frac{\partial x_{i}}{\partial q_{\mu}} \frac{\partial x_{i}}{\partial q_{\nu}}=h_{\mu}^{2}(q) \delta_{\mu \nu} \tag{1.148}
\end{equation*}
$$

This gives us the relation

$$
\begin{equation*}
h_{\mu}(q)=\sqrt{\sum_{i=1}^{d}\left(\frac{\partial x_{i}}{\partial q_{\mu}}\right)^{2}} \tag{1.149}
\end{equation*}
$$

Note that

$$
\begin{equation*}
(d \boldsymbol{s})^{2}=\sum_{\mu=1}^{d} h_{\mu}^{2}(q)\left(d q_{\mu}\right)^{2} \tag{1.150}
\end{equation*}
$$

For general coordinate systems, which are not necessarily orthogonal, we have

$$
\begin{equation*}
(d \boldsymbol{s})^{2}=\sum_{\mu, \nu=1}^{d} g_{\mu \nu}(q) d q_{\mu} d q_{\nu} \tag{1.151}
\end{equation*}
$$

where $g_{\mu \nu}(q)$ is a real, symmetric, positive definite matrix called the metric tensor.

Figure 1.9: Volume element Ω for computing divergences.

1.8.1 Example : spherical coordinates

Consider spherical coordinates (ρ, θ, ϕ):

$$
\begin{equation*}
x=\rho \sin \theta \cos \phi \quad, \quad y=\rho \sin \theta \sin \phi \quad, \quad z=\rho \cos \theta . \tag{1.152}
\end{equation*}
$$

It is now a simple matter to derive the results

$$
\begin{equation*}
h_{\rho}^{2}=1 \quad, \quad h_{\theta}^{2}=\rho^{2} \quad, \quad h_{\phi}^{2}=\rho^{2} \sin ^{2} \theta . \tag{1.153}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{\rho}} d \rho+\rho \hat{\boldsymbol{\theta}} d \theta+\rho \sin \theta \hat{\boldsymbol{\phi}} d \phi \tag{1.154}
\end{equation*}
$$

1.8.2 Vector calculus: grad, div, curl

Here we restrict our attention to $d=3$. The gradient ∇U of a function $U(q)$ is defined by

$$
\begin{align*}
d U & =\frac{\partial U}{\partial q_{1}} d q_{1}+\frac{\partial U}{\partial q_{2}} d q_{2}+\frac{\partial U}{\partial q_{3}} d q_{3} \\
& \equiv \nabla U \cdot d \boldsymbol{s} \tag{1.155}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\boldsymbol{\nabla}=\frac{\hat{e}_{1}}{h_{1}(q)} \frac{\partial}{\partial q_{1}}+\frac{\hat{e}_{2}}{h_{2}(q)} \frac{\partial}{\partial q_{2}}+\frac{\hat{e}_{3}}{h_{3}(q)} \frac{\partial}{\partial q_{3}} . \tag{1.156}
\end{equation*}
$$

For the divergence, we use the divergence theorem, and we appeal to Fig. 14.12:

$$
\begin{equation*}
\int_{\Omega} d V \boldsymbol{\nabla} \cdot \boldsymbol{A}=\int_{\partial \Omega} d S \hat{\boldsymbol{n}} \cdot \boldsymbol{A} \tag{1.157}
\end{equation*}
$$

where Ω is a region of three-dimensional space and $\partial \Omega$ is its closed two-dimensional boundary. The LHS of this equation is

$$
\begin{equation*}
\text { LHS }=\boldsymbol{\nabla} \cdot \boldsymbol{A} \cdot\left(h_{1} d q_{1}\right)\left(h_{2} d q_{2}\right)\left(h_{3} d q_{3}\right) \tag{1.158}
\end{equation*}
$$

The RHS is

$$
\begin{align*}
\text { RHS } & =\left.A_{1} h_{2} h_{3}\right|_{q_{1}} ^{q_{1}+d q_{1}} d q_{2} d q_{3}+\left.A_{2} h_{1} h_{3}\right|_{q_{2}} ^{q_{2}+d q_{2}} d q_{1} d q_{3}+\left.A_{3} h_{1} h_{2}\right|_{q_{3}} ^{q_{1}+d q_{3}} d q_{1} d q_{2} \tag{1.159}\\
& =\left[\frac{\partial}{\partial q_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(A_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial q_{3}}\left(A_{3} h_{1} h_{2}\right)\right] d q_{1} d q_{2} d q_{3} .
\end{align*}
$$

We therefore conclude

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(A_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial q_{3}}\left(A_{3} h_{1} h_{2}\right)\right] . \tag{1.160}
\end{equation*}
$$

To obtain the curl $\boldsymbol{\nabla} \times \boldsymbol{A}$, we use Stokes' theorem again,

$$
\begin{equation*}
\int_{\Sigma} d S \hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{A}=\oint_{\partial \Sigma} d \boldsymbol{\ell} \cdot \boldsymbol{A} \tag{1.161}
\end{equation*}
$$

where Σ is a two-dimensional region of space and $\partial \Sigma$ is its one-dimensional boundary. Now consider a differential surface element satisfying $d q_{1}=0$, i.e. a rectangle of side lengths $h_{2} d q_{2}$ and $h_{3} d q_{3}$. The LHS of the above equation is

$$
\begin{equation*}
\text { LHS }=\hat{\boldsymbol{e}}_{1} \cdot \boldsymbol{\nabla} \times \boldsymbol{A}\left(h_{2} d q_{2}\right)\left(h_{3} d q_{3}\right) . \tag{1.162}
\end{equation*}
$$

The RHS is

$$
\begin{align*}
\text { RHS } & =\left.A_{3} h_{3}\right|_{q_{2}} ^{q_{2}+d q_{2}} d q_{3}-\left.A_{2} h_{2}\right|_{q_{3}} ^{q_{3}+d q_{3}} d q_{2} \\
& =\left[\frac{\partial}{\partial q_{2}}\left(A_{3} h_{3}\right)-\frac{\partial}{\partial q_{3}}\left(A_{2} h_{2}\right)\right] d q_{2} d q_{3} \tag{1.163}
\end{align*}
$$

Therefore

$$
\begin{equation*}
(\boldsymbol{\nabla} \times \boldsymbol{A})_{1}=\frac{1}{h_{2} h_{3}}\left(\frac{\partial\left(h_{3} A_{3}\right)}{\partial q_{2}}-\frac{\partial\left(h_{2} A_{2}\right)}{\partial q_{3}}\right) . \tag{1.164}
\end{equation*}
$$

This is one component of the full result

$$
\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{h_{1} h_{2} h_{3}} \operatorname{det}\left(\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \tag{1.165}\\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} A_{1} & h_{2} A_{2} & h_{3} A_{3}
\end{array}\right)
$$

The Laplacian of a scalar function U is given by

$$
\begin{align*}
\nabla^{2} U & =\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} U \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial U}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial U}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial U}{\partial q_{3}}\right)\right\} . \tag{1.166}
\end{align*}
$$

Rectangular coordinates

In rectangular coordinates (x, y, z), we have

$$
\begin{equation*}
h_{x}=h_{y}=h_{z}=1 . \tag{1.167}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{x}} d x+\hat{\boldsymbol{y}} d y+\hat{\boldsymbol{z}} d z \tag{1.168}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2} . \tag{1.169}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\boldsymbol{\nabla} U=\hat{\boldsymbol{x}} \frac{\partial U}{\partial x}+\hat{\boldsymbol{y}} \frac{\partial U}{\partial y}+\hat{\boldsymbol{z}} \frac{\partial U}{\partial z} . \tag{1.170}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \tag{1.171}
\end{equation*}
$$

The curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\boldsymbol{z}} . \tag{1.172}
\end{equation*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}} \tag{1.173}
\end{equation*}
$$

Cylindrical coordinates

In cylindrical coordinates (ρ, ϕ, z), we have

$$
\begin{equation*}
\hat{\boldsymbol{\rho}}=\hat{\boldsymbol{x}} \cos \phi+\hat{\boldsymbol{y}} \sin \phi \quad, \quad \hat{\boldsymbol{x}}=\hat{\boldsymbol{\rho}} \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \quad, \quad d \hat{\boldsymbol{\rho}}=\hat{\boldsymbol{\phi}} d \phi \tag{1.174}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{x}} \sin \phi+\hat{\boldsymbol{y}} \cos \phi \quad, \quad \hat{\boldsymbol{y}}=\hat{\boldsymbol{\rho}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \quad, \quad d \hat{\boldsymbol{\phi}}=-\hat{\boldsymbol{\rho}} d \phi . \tag{1.175}
\end{equation*}
$$

The metric is given in terms of

$$
\begin{equation*}
h_{\rho}=1 \quad, \quad h_{\phi}=\rho \quad, \quad h_{z}=1 \tag{1.176}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{\rho}} d \rho+\hat{\boldsymbol{\phi}} \rho d \phi+\hat{\boldsymbol{z}} d z \tag{1.177}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2} . \tag{1.178}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla U=\hat{\boldsymbol{\rho}} \frac{\partial U}{\partial \rho}+\frac{\hat{\phi}}{\rho} \frac{\partial U}{\partial \phi}+\hat{z} \frac{\partial U}{\partial z} \tag{1.179}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} . \tag{1.180}
\end{equation*}
$$

The curl is

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{\boldsymbol{\rho}}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\phi}}+\left(\frac{1}{\rho} \frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \phi}\right) \hat{\boldsymbol{z}} . \tag{1.181}
\end{equation*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial U}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} U}{\partial \phi^{2}}+\frac{\partial^{2} U}{\partial z^{2}} \tag{1.182}
\end{equation*}
$$

Spherical coordinates

In spherical coordinates (r, θ, ϕ), we have

$$
\begin{align*}
& \hat{\boldsymbol{r}}=\hat{\boldsymbol{x}} \sin \theta \cos \phi+\hat{\boldsymbol{y}} \sin \theta \sin \phi+\hat{\boldsymbol{z}} \sin \theta \\
& \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{x}} \cos \theta \cos \phi+\hat{\boldsymbol{y}} \cos \theta \sin \phi-\hat{\boldsymbol{z}} \cos \theta \tag{1.183}\\
& \hat{\phi}=-\hat{\boldsymbol{x}} \sin \phi+\hat{\boldsymbol{y}} \cos \phi,
\end{align*}
$$

for which

$$
\begin{equation*}
\hat{\boldsymbol{r}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \quad, \quad \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{r}} \quad, \quad \hat{\phi} \times \hat{\boldsymbol{r}}=\hat{\boldsymbol{\theta}} . \tag{1.184}
\end{equation*}
$$

The inverse is

$$
\begin{align*}
& \hat{\boldsymbol{x}}=\hat{\boldsymbol{r}} \sin \theta \cos \phi+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\
& \hat{\boldsymbol{y}}=\hat{\boldsymbol{r}} \sin \theta \sin \phi+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \tag{1.185}\\
& \hat{\boldsymbol{z}}=\hat{\boldsymbol{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta .
\end{align*}
$$

The differential relations are

$$
\begin{align*}
d \hat{\boldsymbol{r}} & =\hat{\boldsymbol{\theta}} d \theta+\sin \theta \hat{\boldsymbol{\phi}} d \phi \\
d \hat{\boldsymbol{\theta}} & =-\hat{\boldsymbol{r}} d \theta+\cos \theta \hat{\boldsymbol{\phi}} d \phi \tag{1.186}\\
d \hat{\boldsymbol{\phi}} & =-(\sin \theta \hat{\boldsymbol{r}}+\cos \theta \hat{\boldsymbol{\theta}}) d \phi
\end{align*}
$$

The metric is given in terms of

$$
\begin{equation*}
h_{r}=1 \quad, \quad h_{\theta}=r \quad, \quad h_{\phi}=r \sin \theta . \tag{1.187}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d \boldsymbol{s}=\hat{\boldsymbol{r}} d r+\hat{\boldsymbol{\theta}} r d \theta+\hat{\boldsymbol{\phi}} r \sin \theta d \phi \tag{1.188}
\end{equation*}
$$

and the velocity squared is

$$
\begin{equation*}
\dot{s}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2} \tag{1.189}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla U=\hat{\boldsymbol{r}} \frac{\partial U}{\partial r}+\frac{\hat{\boldsymbol{\theta}}}{r} \frac{\partial U}{\partial \theta}+\frac{\hat{\boldsymbol{\phi}}}{r \sin \theta} \frac{\partial U}{\partial \phi} . \tag{1.190}
\end{equation*}
$$

The divergence is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} . \tag{1.191}
\end{equation*}
$$

The curl is

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{r \sin \theta} & \left(\frac{\partial\left(\sin \theta A_{\phi}\right)}{\partial \theta}-\frac{\partial A_{\theta}}{\partial \phi}\right) \hat{\boldsymbol{r}}+\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial\left(r A_{\phi}\right)}{\partial r}\right) \hat{\boldsymbol{\theta}} \tag{1.192}\\
& +\frac{1}{r}\left(\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\boldsymbol{\phi}} .
\end{align*}
$$

The Laplacian is

$$
\begin{equation*}
\nabla^{2} U=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial U}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial U}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} U}{\partial \phi^{2}} \tag{1.193}
\end{equation*}
$$

Kinetic energy

Note the form of the kinetic energy of a point particle:

$$
\begin{align*}
T=\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2} & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \tag{1.194}\\
& =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right) \\
& =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right) \\
& =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)
\end{align*}
$$

Chapter 2

Linear Oscillations

2.1 Harmonic Motion

Harmonic motion is ubiquitous in Physics. The reason is that any potential energy function, when expanded in a Taylor series in the vicinity of a local minimum, is a harmonic function:

$$
\begin{equation*}
U(\vec{q})=U\left(\vec{q}^{*}\right)+\sum_{j=1}^{N} \overbrace{\left.\frac{\partial U}{\partial q_{j}}\right|_{\vec{q}=\vec{q}^{*}} ^{\nabla U\left(\vec{q}^{*}\right)=0}}\left(q_{j}-q_{j}^{*}\right)+\left.\frac{1}{2} \sum_{j, k=1}^{N} \frac{\partial^{2} U}{\partial q_{j} \partial q_{k}}\right|_{\vec{q}=\vec{q}^{*}}\left(q_{j}-q_{j}^{*}\right)\left(q_{k}-q_{k}^{*}\right)+\ldots, \tag{2.1}
\end{equation*}
$$

where the $\left\{q_{j}\right\}$ are generalized coordinates - more on this when we discuss Lagrangians. In one dimension, we have simply

$$
\begin{equation*}
U(x)=U\left(x^{*}\right)+\frac{1}{2} U^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2}+\ldots . \tag{2.2}
\end{equation*}
$$

Provided the deviation $\eta=x-x^{*}$ is small enough in magnitude, the remaining terms in the Taylor expansion may be ignored. Newton's Second Law then gives

$$
\begin{equation*}
m \ddot{\eta}=-U^{\prime \prime}\left(x^{*}\right) \eta+\mathcal{O}\left(\eta^{2}\right) \tag{2.3}
\end{equation*}
$$

This, to lowest order, is the equation of motion for a harmonic oscillator. If $U^{\prime \prime}\left(x^{*}\right)>0$, the equilibrium point $x=x^{*}$ is stable, since for small deviations from equilibrium the restoring force pushes the system back toward the equilibrium point. When $U^{\prime \prime}\left(x^{*}\right)<0$, the equilibrium is unstable, and the forces push one further away from equilibrium.

2.2 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by $F=-\gamma v$. We begin with the homogeneous equation for a damped harmonic oscillator,

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \beta \frac{d x}{d t}+\omega_{0}^{2} x=0 \tag{2.4}
\end{equation*}
$$

where $\gamma=2 \beta m$. To solve, write $x(t)=\sum_{n} C_{n} e^{-i \omega_{n} t}$. This renders the differential equation 2.4 an algebraic equation for the two eigenfrequencies ω_{i}, each of which must satisfy

$$
\begin{equation*}
\omega^{2}+2 i \beta \omega-\omega_{0}^{2}=0 \tag{2.5}
\end{equation*}
$$

hence

$$
\begin{equation*}
\omega_{ \pm}=-i \beta \pm\left(\omega_{0}^{2}-\beta^{2}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

The most general solution to eqn. 2.4 is then

$$
\begin{equation*}
x(t)=C_{+} e^{-i \omega_{+} t}+C_{-} e^{-i \omega_{-} t} \tag{2.7}
\end{equation*}
$$

where $C_{ \pm}$are arbitrary constants. Notice that the eigenfrequencies are in general complex, with a negative imaginary part (so long as the damping coefficient β is positive). Thus $e^{-i \omega_{ \pm} t}$ decays to zero as $t \rightarrow \infty$.

2.2.1 Classes of damped harmonic motion

We identify three classes of motion:
(i) Underdamped $\left(\omega_{0}^{2}>\beta^{2}\right)$
(ii) Overdamped $\left(\omega_{0}^{2}<\beta^{2}\right)$
(iii) Critically Damped $\left(\omega_{0}^{2}=\beta^{2}\right)$.

Underdamped motion

The solution for underdamped motion is

$$
\begin{align*}
& x(t)=A \cos (\nu t+\phi) e^{-\beta t} \\
& \dot{x}(t)=-\omega_{0} A \cos \left(\nu t+\phi+\sin ^{-1}\left(\beta / \omega_{0}\right)\right) e^{-\beta t} \tag{2.8}
\end{align*}
$$

where $\nu=\sqrt{\omega_{0}^{2}-\beta^{2}}$, and where A and ϕ are constants determined by initial conditions. From $x_{0}=$ $A \cos \phi$ and $\dot{x}_{0}=-\beta A \cos \phi-\nu A \sin \phi$, we have $\dot{x}_{0}+\beta x_{0}=-\nu A \sin \phi$, and

$$
\begin{equation*}
A=\sqrt{x_{0}^{2}+\left(\frac{\dot{x}_{0}+\beta x_{0}}{\nu}\right)^{2}} \quad, \quad \phi=-\tan ^{-1}\left(\frac{\dot{x}_{0}+\beta x_{0}}{\nu x_{0}}\right) . \tag{2.9}
\end{equation*}
$$

Overdamped motion

The solution in the case of overdamped motion is

$$
\begin{align*}
& x(t)=C e^{-(\beta-\lambda) t}+D e^{-(\beta+\lambda) t} \\
& \dot{x}(t)=-(\beta-\lambda) C e^{-(\beta-\lambda) t}-(\beta+\lambda) D e^{-(\beta+\lambda) t} \tag{2.10}
\end{align*}
$$

where $\lambda=\sqrt{\beta^{2}-\omega_{0}^{2}}$ and where C and D are constants determined by the initial conditions:

$$
\left(\begin{array}{cc}
1 & 1 \tag{2.11}\\
-(\beta-\lambda) & -(\beta+\lambda)
\end{array}\right)\binom{C}{D}=\binom{x_{0}}{\dot{x}_{0}} .
$$

Inverting the above matrix, we have the solution

$$
\begin{equation*}
C=\frac{(\beta+\lambda) x_{0}}{2 \lambda}+\frac{\dot{x}_{0}}{2 \lambda} \quad, \quad D=-\frac{(\beta-\lambda) x_{0}}{2 \lambda}-\frac{\dot{x}_{0}}{2 \lambda} . \tag{2.12}
\end{equation*}
$$

Critically damped motion

The solution in the case of critically damped motion is

$$
\begin{align*}
& x(t)=E e^{-\beta t}+F t e^{-\beta t} \\
& \dot{x}(t)=-(\beta E+(\beta t-1) F) e^{-\beta t} . \tag{2.13}
\end{align*}
$$

Thus, $x_{0}=E$ and $\dot{x}_{0}=F-\beta E$, so

$$
\begin{equation*}
E=x_{0} \quad, \quad F=\dot{x}_{0}+\beta x_{0} \tag{2.14}
\end{equation*}
$$

The screen door analogy

The three types of behavior are depicted in fig, 2.1. To concretize these cases in one's mind, it is helpful to think of the case of a screen door or a shock absorber. If the hinges on the door are underdamped, the door will swing back and forth (assuming it doesn't have a rim which smacks into the door frame) several times before coming to a stop. If the hinges are overdamped, the door may take a very long time to close. To see this, note that for $\beta \gg \omega_{0}$ we have

$$
\begin{align*}
\sqrt{\beta^{2}-\omega_{0}^{2}} & =\beta\left(1-\frac{\omega_{0}^{2}}{\beta^{2}}\right)^{-1 / 2} \\
& =\beta\left(1-\frac{\omega_{0}^{2}}{2 \beta^{2}}-\frac{\omega_{0}^{4}}{8 \beta^{4}}+\ldots\right) \tag{2.15}
\end{align*}
$$

which leads to

$$
\begin{align*}
& \beta-\sqrt{\beta^{2}-\omega_{0}^{2}}=\frac{\omega_{0}^{2}}{2 \beta}+\frac{\omega_{0}^{4}}{8 \beta^{3}}+\ldots \\
& \beta+\sqrt{\beta^{2}-\omega_{0}^{2}}=2 \beta-\frac{\omega_{0}^{2}}{2 \beta}-+\ldots \tag{2.16}
\end{align*}
$$

Thus, we can write

$$
\begin{equation*}
x(t)=C e^{-t / \tau_{1}}+D e^{-t / \tau_{2}} \tag{2.17}
\end{equation*}
$$

Figure 2.1: Three classifications of damped harmonic motion. The initial conditions are $x(0)=1$, $\dot{x}(0)=0$.
with

$$
\begin{align*}
& \tau_{1}=\frac{1}{\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}} \approx \frac{2 \beta}{\omega_{0}^{2}} \\
& \tau_{2}=\frac{1}{\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}} \approx \frac{1}{2 \beta} . \tag{2.18}
\end{align*}
$$

Thus $x(t)$ is a sum of exponentials, with decay times $\tau_{1,2}$. For $\beta \gg \omega_{0}$, we have that τ_{1} is much larger than τ_{2} - the ratio is $\tau_{1} / \tau_{2} \approx 4 \beta^{2} / \omega_{0}^{2} \gg 1$. Thus, on time scales on the order of τ_{1}, the second term has completely damped away. The decay time τ_{1}, though, is very long, since β is so large. So a highly overdamped oscillator will take a very long time to come to equilbrium.

2.2.2 Remarks on the case of critical damping

Define the first order differential operator

$$
\begin{equation*}
\mathcal{D}_{t}=\frac{d}{d t}+\beta . \tag{2.19}
\end{equation*}
$$

The solution to $\mathcal{D}_{t} x(t)=0$ is $\tilde{x}(t)=A e^{-\beta t}$, where A is a constant. Note that the commutator of \mathcal{D}_{t} and t is unity:

$$
\begin{equation*}
\left[\mathcal{D}_{t}, t\right]=1 \tag{2.20}
\end{equation*}
$$

where $[A, B] \equiv A B-B A$. The simplest way to verify eqn. 2.20 is to compute its action upon an arbitrary function $f(t)$:

$$
\begin{align*}
{\left[\mathcal{D}_{t}, t\right] f(t) } & =\left(\frac{d}{d t}+\beta\right) t f(t)-t\left(\frac{d}{d t}+\beta\right) f(t) \tag{2.21}\\
& =\frac{d}{d t}(t f(t))-t \frac{d}{d t} f(t)=f(t)
\end{align*}
$$

We know that $x(t)=\tilde{x}(t)=A e^{-\beta t}$ satisfies $\mathcal{D}_{t} x(t)=0$. Therefore

$$
\begin{align*}
0 & =\mathcal{D}_{t}\left[\mathcal{D}_{t}, t\right] \tilde{x}(t) \\
& =\mathcal{D}_{t}^{2}(t \tilde{x}(t))-\mathcal{D}_{t} t \overbrace{\mathcal{D}_{t} \tilde{x}(t)}^{0}=\mathcal{D}_{t}^{2}(t \tilde{x}(t)) . \tag{2.22}
\end{align*}
$$

We already know that $\mathcal{D}_{t}^{2} \tilde{x}(t)=\mathcal{D}_{t} \mathcal{D}_{t} \tilde{x}(t)=0$. The above equation establishes that the second independent solution to the second order $\operatorname{ODE} \mathcal{D}_{t}^{2} x(t)=0$ is $x(t)=t \tilde{x}(t)$. Indeed, we can keep going, and show that

$$
\begin{equation*}
\mathcal{D}_{t}^{n}\left(t^{n-1} \tilde{x}(t)\right)=0 \tag{2.23}
\end{equation*}
$$

Thus, the n independent solutions to the $n^{\text {th }}$ order ODE

$$
\begin{equation*}
\left(\frac{d}{d t}+\beta\right)^{n} x(t)=0 \tag{2.24}
\end{equation*}
$$

are

$$
\begin{equation*}
x_{k}(t)=A t^{k} e^{-\beta t} \quad, \quad k=0,1, \ldots, n-1 \tag{2.25}
\end{equation*}
$$

2.2.3 Phase portraits for the damped harmonic oscillator

Expressed as a dynamical system, the equation of motion $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0$ is written as two coupled first order ODEs, viz.

$$
\begin{align*}
\dot{x} & =v \\
\dot{v} & =-\omega_{0}^{2} x-2 \beta v \tag{2.26}
\end{align*}
$$

In the theory of dynamical systems, a nullcline is a curve along which one component of the phase space velocity $\dot{\varphi}$ vanishes. In our case, there are two nullclines: $\dot{x}=0$ and $\dot{v}=0$. The equation of the first nullcline, $\dot{x}=0$, is simply $v=0$, i.e. the first nullcline is the x-axis. The equation of the second nullcline, $\dot{v}=0$, is $v=-\left(\omega_{0}^{2} / 2 \beta\right) x$. This is a line which runs through the origin and has negative slope. Everywhere along the first nullcline $\dot{x}=0$, we have that $\dot{\varphi}$ lies parallel to the v-axis. Similarly, everywhere along the second nullcline $\dot{v}=0$, we have that $\dot{\varphi}$ lies parallel to the x-axis. The situation is depicted in fig, 2.2.

Figure 2.2: Phase curves for the damped harmonic oscillator. Left panel: underdamped motion. Right panel: overdamped motion. Note the nullclines along $v=0$ and $v=-\left(\omega_{0}^{2} / 2 \beta\right) x$, which are shown as dashed lines.

2.3 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \beta \frac{d x}{d t}+\omega_{0}^{2} x=f(t) \tag{2.27}
\end{equation*}
$$

where $f(t)=F(t) / m$. Since this equation is linear in $x(t)$, we can, without loss of generality, restrict out attention to harmonic forcing terms of the form

$$
\begin{equation*}
f(t)=f_{0} \cos \left(\Omega t+\varphi_{0}\right)=\operatorname{Re}\left[f_{0} e^{-i \varphi_{0}} e^{-i \Omega t}\right] \tag{2.28}
\end{equation*}
$$

where Re stands for "real part". Here, Ω is the forcing frequency.
Consider first the complex equation

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}+2 \beta \frac{d z}{d t}+\omega_{0}^{2} z=f_{0} e^{-i \varphi_{0}} e^{-i \Omega t} \tag{2.29}
\end{equation*}
$$

We try a solution $z(t)=z_{0} e^{-i \Omega t}$. Plugging in, we obtain the algebraic equation

$$
\begin{equation*}
z_{0}=\frac{f_{0} e^{-i \varphi_{0}}}{\omega_{0}^{2}-2 i \beta \Omega-\Omega^{2}} \equiv A(\Omega) e^{i \delta(\Omega)} f_{0} e^{-i \varphi_{0}} . \tag{2.30}
\end{equation*}
$$

The amplitude $A(\Omega)$ and phase shift $\delta(\Omega)$ are given by the equation

$$
\begin{equation*}
A(\Omega) e^{i \delta(\Omega)}=\frac{1}{\omega_{0}^{2}-2 i \beta \Omega-\Omega^{2}} . \tag{2.31}
\end{equation*}
$$

Figure 2.3: Amplitude and phase shift versus oscillator frequency (units of ω_{0}) for β / ω_{0} values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

A basic fact of complex numbers:

$$
\begin{equation*}
\frac{1}{a-i b}=\frac{a+i b}{a^{2}+b^{2}}=\frac{e^{i \tan ^{-1}(b / a)}}{\sqrt{a^{2}+b^{2}}} . \tag{2.32}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& A(\Omega)=\left(\left(\omega_{0}^{2}-\Omega^{2}\right)^{2}+4 \beta^{2} \Omega^{2}\right)^{-1 / 2} \\
& \delta(\Omega)=\tan ^{-1}\left(\frac{2 \beta \Omega}{\omega_{0}^{2}-\Omega^{2}}\right) . \tag{2.33}
\end{align*}
$$

Now since the coefficients β and ω_{0}^{2} are real, we can take the complex conjugate of eqn. 2.29, and write

$$
\begin{align*}
& \ddot{z}+2 \beta \dot{z}+\omega_{0}^{2} z=f_{0} e^{-i \varphi_{0}} e^{-i \Omega t} \tag{2.34}\\
& \ddot{z}+2 \beta \dot{\bar{z}}+\omega_{0}^{2} \bar{z}=f_{0} e^{+i \varphi_{0}} e^{+i \Omega t}
\end{align*}
$$

where \bar{z} is the complex conjugate of z. We now add these two equations and divide by two to arrive at

$$
\begin{equation*}
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=f_{0} \cos \left(\Omega t+\varphi_{0}\right) . \tag{2.35}
\end{equation*}
$$

Therefore, the real, physical solution we seek is

$$
\begin{align*}
x_{\mathrm{inh}}(t) & =\operatorname{Re}\left[A(\Omega) e^{i \delta(\Omega)} \cdot f_{0} e^{-i \varphi_{0}} e^{-i \Omega t}\right] \tag{2.36}\\
& =A(\Omega) f_{0} \cos \left(\Omega t+\varphi_{0}-\delta(\Omega)\right) .
\end{align*}
$$

The quantity $A(\Omega)$ is the amplitude of the response (in units of f_{0}), while $\delta(\Omega)$ is the (dimensionless) phase lag (typically expressed in radians).

The maximum of the amplitude $A(\Omega)$ occurs when $A^{\prime}(\Omega)=0$. From

$$
\begin{equation*}
\frac{d A}{d \Omega}=-\frac{2 \Omega}{[A(\Omega)]^{3}}\left(\Omega^{2}-\omega_{0}^{2}+2 \beta^{2}\right) \tag{2.37}
\end{equation*}
$$

we conclude that $A^{\prime}(\Omega)=0$ for $\Omega=0$ and for $\Omega=\Omega_{\mathrm{R}}$, where

$$
\begin{equation*}
\Omega_{\mathrm{R}}=\sqrt{\omega_{0}^{2}-2 \beta^{2}} \tag{2.38}
\end{equation*}
$$

The solution at $\Omega=\Omega_{\mathrm{R}}$ pertains only if $\omega_{0}^{2}>2 \beta^{2}$, of course, in which case $\Omega=0$ is a local minimum and $\Omega=\Omega_{\mathrm{R}}$ a local maximum. If $\omega_{0}^{2}<2 \beta^{2}$ there is only a local maximum, at $\Omega=0$. See fig, 2.3.

Since equation 2.27 is linear, we can add a solution to the homogeneous equation to $x_{\text {inh }}(t)$ and we will still have a solution. Thus, the most general solution to eqn. 2.27 is Therefore, the real, physical solution we seek is

$$
\begin{align*}
x(t) & =x_{\text {inh }}(t)+x_{\mathrm{hom}}(t) \\
& =\operatorname{Re}\left[A(\Omega) e^{i \delta(\Omega)} \cdot f_{0} e^{-i \varphi_{0}} e^{-i \Omega t}\right]+C_{+} e^{-i \omega_{+} t}+C_{-} e^{-i \omega_{-} t} \tag{2.39}\\
& =\overbrace{A(\Omega) f_{0} \cos \left(\Omega t+\varphi_{0}-\delta(\Omega)\right)}^{x_{\text {inh }}(t)}+\overbrace{C e^{-\beta t} \cos (\nu t)+D e^{-\beta t} \sin (\nu t)}^{x_{\mathrm{hon}}(t)},
\end{align*}
$$

where $\nu=\sqrt{\omega_{0}^{2}-\beta^{2}}$ as before.
The last two terms in eqn. 2.39 are the solution to the homogeneous equation, i.e. with $f(t)=0$. They are necessary to include because they carry with them the two constants of integration which always arise in the solution of a second order ODE. That is, C and D are adjusted so as to satisfy $x(0)=x_{0}$ and $\dot{x}_{0}=v_{0}$. However, due to their $e^{-\beta t}$ prefactor, these terms decay to zero once t reaches a relatively low multiple of β^{-1}. They are called transients, and may be set to zero if we are only interested in the long time behavior of the system. This means, incidentally, that the initial conditions are effectively forgotten over a time scale on the order of β^{-1}.

For $\Omega_{\mathrm{R}}>0$, one defines the quality factor, Q, of the oscillator by $Q=\Omega_{\mathrm{R}} / 2 \beta . Q$ is a rough measure of how many periods the unforced oscillator executes before its initial amplitude is damped down to a small value. For a forced oscillator driven near resonance, and for weak damping, Q is also related to the ratio of average energy in the oscillator to the energy lost per cycle by the external source. To see
this, let us compute the energy lost per cycle,

$$
\begin{align*}
\Delta E & =m \int_{0}^{2 \pi / \Omega} d t \dot{x} f(t) \\
& =-m \int_{0}^{2 \pi / \Omega} d t \Omega A f_{0}^{2} \sin \left(\Omega t+\varphi_{0}-\delta\right) \cos \left(\Omega t+\varphi_{0}\right) \tag{2.40}\\
& =\pi A f_{0}^{2} m \sin \delta \\
& =2 \pi \beta m \Omega A^{2}(\Omega) f_{0}^{2}
\end{align*}
$$

since $\sin \delta(\Omega)=2 \beta \Omega A(\Omega)$. The oscillator energy, averaged over the cycle, is

$$
\begin{align*}
\langle E\rangle & =\frac{\Omega}{2 \pi} \int_{0}^{2 \pi / \Omega} d t \frac{1}{2} m\left(\dot{x}^{2}+\omega_{0}^{2} x^{2}\right) \tag{2.41}\\
& =\frac{1}{4} m\left(\Omega^{2}+\omega_{0}^{2}\right) A^{2}(\Omega) f_{0}^{2} .
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\frac{2 \pi\langle E\rangle}{\Delta E}=\frac{\Omega^{2}+\omega_{0}^{2}}{4 \beta \Omega} . \tag{2.42}
\end{equation*}
$$

Thus, for $\Omega \approx \Omega_{\mathrm{R}}$ and $\beta^{2} \ll \omega_{0}^{2}$, we have

$$
\begin{equation*}
Q \approx \frac{2 \pi\langle E\rangle}{\Delta E} \approx \frac{\omega_{0}}{2 \beta} . \tag{2.43}
\end{equation*}
$$

2.3.1 Resonant forcing

When the damping β vanishes, the response diverges at resonance. The solution to the resonantly forced oscillator

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=f_{0} \cos \left(\omega_{0} t+\varphi_{0}\right) \tag{2.44}
\end{equation*}
$$

is given by

$$
\begin{equation*}
x(t)=\frac{f_{0}}{2 \omega_{0}} t \sin \left(\omega_{0} t+\varphi_{0}\right)+\overbrace{A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)}^{x_{\text {hom }}(t)} . \tag{2.45}
\end{equation*}
$$

The amplitude of this solution grows linearly due to the energy pumped into the oscillator by the resonant external forcing. In the real world, nonlinearities can mitigate this unphysical, unbounded response.

Figure 2.4: An $R-L-C$ circuit which behaves as a damped harmonic oscillator.

2.3.2 R - $L-C$ circuits

Consider the R - $L-C$ circuit of fig, 2.4. When the switch is to the left, the capacitor is charged, eventually to a steady state value $Q=C V$. At $t=0$ the switch is thrown to the right, completing the R - $L-C$ circuit. Recall that the sum of the voltage drops across the three elements must be zero:

$$
\begin{equation*}
L \frac{d I}{d t}+I R+\frac{Q}{C}=0 \tag{2.46}
\end{equation*}
$$

We also have $\dot{Q}=I$, hence

$$
\begin{equation*}
\frac{d^{2} Q}{d t^{2}}+\frac{R}{L} \frac{d Q}{d t}+\frac{1}{L C} Q=0 \tag{2.47}
\end{equation*}
$$

which is the equation for a damped harmonic oscillator, with $\omega_{0}=(L C)^{-1 / 2}$ and $\beta=R / 2 L$.
The boundary conditions at $t=0$ are $Q(0)=C V$ and $\dot{Q}(0)=0$. Under these conditions, the full solution at all times is

$$
\begin{align*}
Q(t) & =C V e^{-\beta t}\left(\cos \nu t+\frac{\beta}{\nu} \sin \nu t\right) \\
I(t) & =-C V \frac{\omega_{0}^{2}}{\nu} e^{-\beta t} \sin \nu t \tag{2.48}
\end{align*}
$$

again with $\nu=\sqrt{\omega_{0}^{2}-\beta^{2}}$.
If we put a time-dependent voltage source in series with the resistor, capacitor, and inductor, we would have

$$
\begin{equation*}
L \frac{d I}{d t}+I R+\frac{Q}{C}=V(t) \tag{2.49}
\end{equation*}
$$

which is the equation of a forced damped harmonic oscillator.

2.3.3 Examples

Third order linear ODE with forcing

The problem is to solve the equation

$$
\begin{equation*}
\mathcal{L}_{t} x \equiv \dddot{x}+(a+b+c) \ddot{x}+(a b+a c+b c) \dot{x}+a b c x=f_{0} \cos (\Omega t) . \tag{2.50}
\end{equation*}
$$

The key to solving this is to note that the differential operator \mathcal{L}_{t} factorizes:

$$
\begin{align*}
\mathcal{L}_{t} & =\frac{d^{3}}{d t^{3}}+(a+b+c) \frac{d^{2}}{d t^{2}}+(a b+a c+b c) \frac{d}{d t}+a b c \tag{2.51}\\
& =\left(\frac{d}{d t}+a\right)\left(\frac{d}{d t}+b\right)\left(\frac{d}{d t}+c\right),
\end{align*}
$$

which says that the third order differential operator appearing in the ODE is in fact a product of first order differential operators. Since

$$
\begin{equation*}
\frac{d x}{d t}+\alpha x=0 \quad \Longrightarrow \quad x(t)=A e^{-\alpha x} \tag{2.52}
\end{equation*}
$$

we see that the homogeneous solution takes the form

$$
\begin{equation*}
x_{\mathrm{h}}(t)=A e^{-a t}+B e^{-b t}+C e^{-c t} \tag{2.53}
\end{equation*}
$$

where A, B, and C are constants.
To find the inhomogeneous solution, we solve $L_{t} x=f_{0} e^{-i \Omega t}$ and take the real part. Writing $x(t)=$ $x_{0} e^{-i \Omega t}$, we have

$$
\begin{equation*}
\mathcal{L}_{t} x_{0} e^{-i \Omega t}=(a-i \Omega)(b-i \Omega)(c-i \Omega) x_{0} e^{-i \Omega t} \tag{2.54}
\end{equation*}
$$

and thus

$$
x_{0}=\frac{f_{0} e^{-i \Omega t}}{(a-i \Omega)(b-i \Omega)(c-i \Omega)} \equiv A(\Omega) e^{i \delta(\Omega)} f_{0} e^{-i \Omega t}
$$

where

$$
\begin{align*}
A(\Omega) & =\left[\left(a^{2}+\Omega^{2}\right)\left(b^{2}+\Omega^{2}\right)\left(c^{2}+\Omega^{2}\right)\right]^{-1 / 2} \tag{2.55}\\
\delta(\Omega) & =\tan ^{-1}\left(\frac{\Omega}{a}\right)+\tan ^{-1}\left(\frac{\Omega}{b}\right)+\tan ^{-1}\left(\frac{\Omega}{c}\right)
\end{align*}
$$

Thus, the most general solution to $L_{t} x(t)=f_{0} \cos (\Omega t)$ is

$$
\begin{equation*}
x(t)=A(\Omega) f_{0} \cos (\Omega t-\delta(\Omega))+A e^{-a t}+B e^{-b t}+C e^{-c t} \tag{2.56}
\end{equation*}
$$

Note that the phase shift increases monotonically from $\delta(0)=0$ to $\delta(\infty)=\frac{3}{2} \pi$.

Figure 2.5: A driven $L-C-R$ circuit, with $V(t)=V_{0} \cos (\omega t)$.

Mechanical analog of RLC circuit

Consider the electrical circuit in fig, 2.5. Our task is to construct its mechanical analog. To do so, we invoke Kirchoff's laws around the left and right loops:

$$
\begin{align*}
L_{1} \dot{I}_{1}+\frac{Q_{1}}{C_{1}}+R_{1}\left(I_{1}-I_{2}\right) & =0 \tag{2.57}\\
L_{2} \dot{I}_{2}+R_{2} I_{2}+R_{1}\left(I_{2}-I_{1}\right) & =V(t)
\end{align*}
$$

Let $Q_{1}(t)$ be the charge on the left plate of capacitor C_{1}, and define

$$
\begin{equation*}
Q_{2}(t)=\int_{0}^{t} d t^{\prime} I_{2}\left(t^{\prime}\right) \tag{2.58}
\end{equation*}
$$

Then Kirchoff's laws may be written

$$
\begin{align*}
& \ddot{Q}_{1}+\frac{R_{1}}{L_{1}}\left(\dot{Q}_{1}-\dot{Q}_{2}\right)+\frac{1}{L_{1} C_{1}} Q_{1}=0 \\
& \quad \ddot{Q}_{2}+\frac{R_{2}}{L_{2}} \dot{Q}_{2}+\frac{R_{1}}{L_{2}}\left(\dot{Q}_{2}-\dot{Q}_{1}\right)=\frac{V(t)}{L_{2}} . \tag{2.59}
\end{align*}
$$

Now consider the mechanical system in fig, 2.6. The blocks have masses M_{1} and M_{2}. The friction coefficient between blocks 1 and 2 is b_{1}, and the friction coefficient between block 2 and the floor is b_{2}. Here we assume a velocity-dependent frictional force $F_{\mathrm{f}}=-b \dot{x}$, rather than the more conventional constant $F_{\mathrm{f}}=-\mu W$, where W is the weight of an object. Velocity-dependent friction is applicable when the relative velocity of an object and a surface is sufficiently large. There is a spring of spring constant k_{1} which connects block 1 to the wall. Finally, block 2 is driven by a periodic acceleration $f_{0} \cos (\omega t)$. We now identify

$$
\begin{equation*}
X_{1} \leftrightarrow Q_{1} \quad, \quad X_{2} \leftrightarrow Q_{2} \quad, \quad b_{1} \leftrightarrow \frac{R_{1}}{L_{1}} \quad, \quad b_{2} \leftrightarrow \frac{R_{2}}{L_{2}} \quad, \quad k_{1} \leftrightarrow \frac{1}{L_{1} C_{1}} \quad, \tag{2.60}
\end{equation*}
$$

Figure 2.6: The equivalent mechanical circuit for fig, 2.5.
as well as $f(t) \leftrightarrow V(t) / L_{2}$.
The solution again proceeds by Fourier transform. We write

$$
\begin{equation*}
V(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{V}(\omega) e^{-i \omega t} \tag{2.61}
\end{equation*}
$$

and

$$
\left\{\begin{array}{c}
Q_{1}(t) \tag{2.62}\\
\hat{I}_{2}(t)
\end{array}\right\}=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left\{\begin{array}{c}
\hat{Q}_{1}(\omega) \\
\hat{I}_{2}(\omega)
\end{array}\right\} e^{-i \omega t}
$$

The frequency space version of Kirchoff's laws for this problem is

$$
\overbrace{\left(\begin{array}{c}
-\omega^{2}-i \omega R_{1} / L_{1}+1 / L_{1} C_{1} \tag{2.63}\\
\hat{G}(\omega) \\
i \omega R_{1} / L_{2}
\end{array} R_{1} / L_{1}\right.}^{-i \omega+\left(R_{1}+R_{2}\right) / L_{2}}) ~\binom{\hat{Q}_{1}(\omega)}{\hat{I}_{2}(\omega)}=\binom{0}{\hat{V}(\omega) / L_{2}}
$$

The homogeneous equation has eigenfrequencies given by the solution to $\operatorname{det} \hat{G}(\omega)=0$, which is a cubic equation. Correspondingly, there are three initial conditions to account for: $Q_{1}(0), I_{1}(0)$, and $I_{2}(0)$. As in the case of the single damped harmonic oscillator, these transients are damped, and for large times may be ignored. The solution then is

$$
\binom{\hat{Q}_{1}(\omega)}{\hat{I}_{2}(\omega)}=\left(\begin{array}{cc}
-\omega^{2}-i \omega R_{1} / L_{1}+1 / L_{1} C_{1} & R_{1} / L_{1} \tag{2.64}\\
i \omega R_{1} / L_{2} & -i \omega+\left(R_{1}+R_{2}\right) / L_{2}
\end{array}\right)^{-1}\binom{0}{\hat{V}(\omega) / L_{2}}
$$

To obtain the time-dependent $Q_{1}(t)$ and $I_{2}(t)$, we must compute the Fourier transform back to the time domain.

2.4 General Solution by Green's Function Method

For a general forcing function $f(t)$, we solve by Fourier transform. Recall that a function $F(t)$ in the time domain has a Fourier transform $\hat{F}(\omega)$ in the frequency domain. The relation between the two is: ${ }^{1}$

$$
\begin{equation*}
F(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \hat{F}(\omega) \Longleftrightarrow \hat{F}(\omega)=\int_{-\infty}^{\infty} d t e^{+i \omega t} F(t) \tag{2.65}
\end{equation*}
$$

We can convert the differential equation 2.3 to an algebraic equation in the frequency domain, $\hat{x}(\omega)=$ $\hat{G}(\omega) \hat{f}(\omega)$, where

$$
\begin{equation*}
\hat{G}(\omega)=\frac{1}{\omega_{0}^{2}-2 i \beta \omega-\omega^{2}} \tag{2.66}
\end{equation*}
$$

is the Green's function in the frequency domain. The general solution is written

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \hat{G}(\omega) \hat{f}(\omega)+x_{\mathrm{h}}(t) \tag{2.67}
\end{equation*}
$$

where $x_{\mathrm{h}}(t)=\sum_{i} C_{i} e^{-i \omega_{i} t}$ is a solution to the homogeneous equation. We may also write the above integral over the time domain:

$$
\begin{align*}
x(t) & =\int_{-\infty}^{\infty} d t^{\prime} G\left(t-t^{\prime}\right) f\left(t^{\prime}\right)+x_{\mathrm{h}}(t) \tag{2.68}\\
G(s) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega s} \hat{G}(\omega) \tag{2.69}\\
& =\nu^{-1} \exp (-\beta s) \sin (\nu s) \Theta(s)
\end{align*}
$$

where $\Theta(s)$ is the step function,

$$
\Theta(s)= \begin{cases}1 & \text { if } s \geq 0 \tag{2.70}\\ 0 & \text { if } s<0\end{cases}
$$

where once again $\nu \equiv \sqrt{\omega_{0}^{2}-\beta^{2}}$.

Example: force pulse

Consider a pulse force

$$
f(t)=f_{0} \Theta(t) \Theta(T-t)= \begin{cases}f_{0} & \text { if } 0 \leq t \leq T \tag{2.71}\\ 0 & \text { otherwise. }\end{cases}
$$

[^2]

Figure 2.7: Response of an underdamped oscillator to a pulse force.

In the underdamped regime, for example, we find the solution

$$
\begin{equation*}
x(t)=\frac{f_{0}}{\omega_{0}^{2}}\left\{1-e^{-\beta t} \cos \nu t-\frac{\beta}{\nu} e^{-\beta t} \sin \nu t\right\} \tag{2.72}
\end{equation*}
$$

if $0 \leq t \leq T$ and

$$
\begin{aligned}
& x(t)=\frac{f_{0}}{\omega_{0}^{2}}\left\{\left(e^{-\beta(t-T)} \cos \nu(t-T)-e^{-\beta t} \cos \nu t\right)\right. \\
&\left.+\frac{\beta}{\nu}\left(e^{-\beta(t-T)} \sin \nu(t-T)-e^{-\beta t} \sin \nu t\right)\right\}
\end{aligned}
$$

if $t>T$.

2.5 General Linear Autonomous Inhomogeneous ODEs

This method immediately generalizes to the case of general autonomous linear inhomogeneous ODEs of the form

$$
\begin{equation*}
\frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\ldots+a_{1} \frac{d x}{d t}+a_{0} x=f(t) \tag{2.73}
\end{equation*}
$$

We can write this as

$$
\begin{equation*}
\mathcal{L}_{t} x(t)=f(t) \tag{2.74}
\end{equation*}
$$

where \mathcal{L}_{t} is the $n^{\text {th }}$ order differential operator

$$
\begin{equation*}
\mathcal{L}_{t}=\frac{d^{n}}{d t^{n}}+a_{n-1} \frac{d^{n-1}}{d t^{n-1}}+\ldots+a_{1} \frac{d}{d t}+a_{0} \tag{2.75}
\end{equation*}
$$

The general solution to the inhomogeneous equation is given by

$$
\begin{equation*}
x(t)=x_{\mathrm{h}}(t)+\int_{-\infty}^{\infty} d t^{\prime} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) \tag{2.76}
\end{equation*}
$$

where $G\left(t, t^{\prime}\right)$ is the Green's function. Note that $\mathcal{L}_{t} x_{\mathrm{h}}(t)=0$. Thus, in order for eqns. 2.74 and 2.76 to be true, we must have

$$
\begin{equation*}
\mathcal{L}_{t} x(t)=\overbrace{\mathcal{L}_{t} x_{\mathrm{h}}(t)}^{\text {this vanishes }}+\int_{-\infty}^{\infty} d t^{\prime} \mathcal{L}_{t} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right)=f(t), \tag{2.77}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\mathcal{L}_{t} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right), \tag{2.78}
\end{equation*}
$$

where $\delta\left(t-t^{\prime}\right)$ is the Dirac δ-function. Some properties of $\delta(x)$:

$$
\begin{align*}
\int_{a}^{b} d x f(x) \delta(x-y) & = \begin{cases}f(y) & \text { if } a<y<b \\
0 & \text { if } y<a \text { or } y>b\end{cases} \tag{2.79}\\
\delta(g(x)) & =\sum_{\substack{x_{i} \text { with } \\
g\left(x_{i}\right)=0}} \frac{\delta\left(x-x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|} \tag{2.80}
\end{align*}
$$

valid for any functions $f(x)$ and $g(x)$. The sum in the second equation is over the zeros x_{i} of $g(x)$.
Incidentally, the Dirac δ-function enters into the relation between a function and its Fourier transform, in the following sense. We have

$$
\begin{align*}
& f(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \hat{f}(\omega) \tag{2.81}\\
& \hat{f}(\omega)=\int_{-\infty}^{\infty} d t e^{+i \omega t} f(t)
\end{align*}
$$

Substituting the second equation into the first, we have

$$
\begin{align*}
f(t) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \int_{-\infty}^{\infty} d t^{\prime} e^{i \omega t^{\prime}} f\left(t^{\prime}\right) \\
& =\int_{-\infty}^{\infty} d t^{\prime}\left\{\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{i \omega\left(t^{\prime}-t\right)}\right\} f\left(t^{\prime}\right) \tag{2.82}
\end{align*}
$$

which is indeed correct because the term in brackets is a representation of $\delta\left(t-t^{\prime}\right)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{i \omega s}=\delta(s) \tag{2.83}
\end{equation*}
$$

If the differential equation $\mathcal{L}_{t} x(t)=f(t)$ is defined over some finite t interval with prescribed boundary conditions on $x(t)$ at the endpoints, then $G\left(t, t^{\prime}\right)$ will depend on t and t^{\prime} separately. For the case we are considering, the interval is the entire real line $t \in(-\infty, \infty)$, and $G\left(t, t^{\prime}\right)=G\left(t-t^{\prime}\right)$ is a function of the single variable $t-t^{\prime}$.

Note that $\mathcal{L}_{t}=\mathcal{L}\left(\frac{d}{d t}\right)$ may be considered a function of the differential operator $\frac{d}{d t}$. If we now Fourier transform the equation $\mathcal{L}_{t} x(t)=f(t)$, we obtain

$$
\begin{align*}
\int_{-\infty}^{\infty} d t e^{i \omega t} f(t) & =\int_{-\infty}^{\infty} d t e^{i \omega t}\left\{\frac{d^{n}}{d t^{n}}+a_{n-1} \frac{d^{n-1}}{d t^{n-1}}+\ldots+a_{1} \frac{d}{d t}+a_{0}\right\} x(t) \tag{2.84}\\
& =\int_{-\infty}^{\infty} d t e^{i \omega t}\left\{(-i \omega)^{n}+a_{n-1}(-i \omega)^{n-1}+\ldots+a_{1}(-i \omega)+a_{0}\right\} x(t)
\end{align*}
$$

where we integrate by parts on t, assuming the boundary terms at $t= \pm \infty$ vanish, i.e. $x(\pm \infty)=0$, so that, inside the t integral,

$$
\begin{equation*}
e^{i \omega t}\left(\frac{d}{d t}\right)^{k} x(t) \rightarrow\left[\left(-\frac{d}{d t}\right)^{k} e^{i \omega t}\right] x(t)=(-i \omega)^{k} e^{i \omega t} x(t) \tag{2.85}
\end{equation*}
$$

Thus, if we define

$$
\begin{equation*}
\hat{\mathcal{L}}(\omega)=\sum_{k=0}^{n} a_{k}(-i \omega)^{k} \tag{2.86}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\hat{\mathcal{L}}(\omega) \hat{\boldsymbol{x}}(\omega)=\hat{f}(\omega) \tag{2.87}
\end{equation*}
$$

where $a_{n} \equiv 1$. According to the Fundamental Theorem of Algebra, the $n^{\text {th }}$ degree polynomial $\hat{\mathcal{L}}(\omega)$ may be uniquely factored over the complex ω plane into a product over n roots:

$$
\begin{equation*}
\hat{\mathcal{L}}(\omega)=(-i)^{n}\left(\omega-\omega_{1}\right)\left(\omega-\omega_{2}\right) \cdots\left(\omega-\omega_{n}\right) . \tag{2.88}
\end{equation*}
$$

If the $\left\{a_{k}\right\}$ are all real, then $[\hat{\mathcal{L}}(\omega)]^{*}=\hat{\mathcal{L}}\left(-\omega^{*}\right)$, hence if Ω is a root then so is $-\Omega^{*}$. Thus, the roots appear in pairs which are symmetric about the imaginary axis. I.e. if $\Omega=a+i b$ is a root, then so is $-\Omega^{*}=-a+i b$.

The general solution to the homogeneous equation is

$$
\begin{equation*}
x_{\mathrm{h}}(t)=\sum_{i=1}^{n} A_{i} e^{-i \omega_{i} t}, \tag{2.89}
\end{equation*}
$$

which involves n arbitrary complex constants A_{i}. The susceptibility, or Green's function in Fourier space, $\hat{G}(\omega)$ is then

$$
\begin{equation*}
\hat{G}(\omega)=\frac{1}{\hat{\mathcal{L}}(\omega)}=\frac{i^{n}}{\left(\omega-\omega_{1}\right)\left(\omega-\omega_{2}\right) \cdots\left(\omega-\omega_{n}\right)} \tag{2.90}
\end{equation*}
$$

and the general solution to the inhomogeneous equation is again given by

$$
\begin{equation*}
x(t)=x_{\mathrm{h}}(t)+\int_{-\infty}^{\infty} d t^{\prime} G\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \tag{2.91}
\end{equation*}
$$

where $x_{\mathrm{h}}(t)$ is the solution to the homogeneous equation, i.e. with zero forcing, and where

$$
\begin{align*}
G(s) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega s} \hat{G}(\omega) \\
& =i^{n} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{e^{-i \omega s}}{\left(\omega-\omega_{1}\right)\left(\omega-\omega_{2}\right) \cdots\left(\omega-\omega_{n}\right)} \tag{2.92}\\
& =\sum_{j=1}^{n} \frac{e^{-i \omega_{j} s}}{i \mathcal{L}^{\prime}\left(\omega_{j}\right)} \Theta(s),
\end{align*}
$$

where we assume that $\operatorname{Im} \omega_{j}<0$ for all j. The integral above was done using Cauchy's theorem and the calculus of residues - a beautiful result from the theory of complex functions.

As an example, consider the familiar case

$$
\begin{align*}
\hat{\mathcal{L}}(\omega) & =\omega_{0}^{2}-2 i \beta \omega-\omega^{2} \tag{2.93}\\
& =-\left(\omega-\omega_{+}\right)\left(\omega-\omega_{-}\right),
\end{align*}
$$

with $\omega_{ \pm}=-i \beta \pm \nu$, and $\nu=\left(\omega_{0}^{2}-\beta^{2}\right)^{1 / 2}$. This yields

$$
\begin{equation*}
\mathcal{L}^{\prime}\left(\omega_{ \pm}\right)=\mp\left(\omega_{+}-\omega_{-}\right)=\mp 2 \nu . \tag{2.94}
\end{equation*}
$$

Then according to equation 2.92,

$$
\begin{align*}
G(s) & =\left\{\frac{e^{-i \omega_{+} s}}{i \mathcal{L}^{\prime}\left(\omega_{+}\right)}+\frac{e^{-i \omega_{-} s}}{i \mathcal{L}^{\prime}\left(\omega_{-}\right)}\right\} \Theta(s) \\
& =\left\{\frac{e^{-\beta s} e^{-i \nu s}}{-2 i \nu}+\frac{e^{-\beta s} e^{i \nu s}}{2 i \nu}\right\} \Theta(s) \tag{2.95}\\
& =\nu^{-1} e^{-\beta s} \sin (\nu s) \Theta(s)
\end{align*}
$$

exactly as before.

2.6 Kramers-Krönig Relations (advanced material)

Suppose $\hat{\chi}(\omega) \equiv \hat{G}(\omega)$ is analytic in the UHP^{2}. Then for all ν, we must have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} \frac{\hat{\chi}(\nu)}{\nu-\omega+i \epsilon}=0 \tag{2.96}
\end{equation*}
$$

where ϵ is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming $\hat{\chi}(\omega)$ vanishes sufficiently rapidly that Jordan's lemma can be applied. Clearly this is an extremely weak restriction on $\hat{\chi}(\omega)$, given the fact that the denominator already causes the integrand to vanish as $|\omega|^{-1}$.
Let us examine the function

$$
\begin{equation*}
\frac{1}{\nu-\omega+i \epsilon}=\frac{\nu-\omega}{(\nu-\omega)^{2}+\epsilon^{2}}-\frac{i \epsilon}{(\nu-\omega)^{2}+\epsilon^{2}} . \tag{2.97}
\end{equation*}
$$

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the limit $\epsilon \rightarrow 0$, is equivalent to taking a principal part of the integral. That is, for any function $F(\nu)$ which is regular at $\nu=\omega$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} \frac{\nu-\omega}{(\nu-\omega)^{2}+\epsilon^{2}} F(\nu) \equiv \mathcal{P} \int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} \frac{F(\nu)}{\nu-\omega} \tag{2.98}
\end{equation*}
$$

The principal part symbol \mathcal{P} means that the singularity at $\nu=\omega$ is elided, either by smoothing out the function $1 /(\nu-\epsilon)$ as above, or by simply cutting out a region of integration of width ϵ on either side of $\nu=\omega$.

The imaginary part is more interesting. Let us write

$$
\begin{equation*}
h(u) \equiv \frac{\epsilon}{u^{2}+\epsilon^{2}} . \tag{2.99}
\end{equation*}
$$

For $|u| \gg \epsilon, h(u) \simeq \epsilon / u^{2}$, which vanishes as $\epsilon \rightarrow 0$. For $u=0, h(0)=1 / \epsilon$ which diverges as $\epsilon \rightarrow 0$. Thus, $h(u)$ has a huge peak at $u=0$ and rapidly decays to 0 as one moves off the peak in either direction a distance greater that ϵ. Finally, note that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d u h(u)=\pi \tag{2.100}
\end{equation*}
$$

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{\epsilon}{u^{2}+\epsilon^{2}}=\pi \delta(u) \tag{2.101}
\end{equation*}
$$

Thus, for positive infinitesimal ϵ,

$$
\begin{equation*}
\frac{1}{u \pm i \epsilon}=\mathcal{P} \frac{1}{u} \mp i \pi \delta(u) \tag{2.102}
\end{equation*}
$$

[^3]a most useful result.
We now return to our initial result 2.96 , and we separate $\hat{\chi}(\omega)$ into real and imaginary parts:
\[

$$
\begin{equation*}
\hat{\chi}(\omega)=\hat{\chi}^{\prime}(\omega)+i \hat{\chi}^{\prime \prime}(\omega) \tag{2.103}
\end{equation*}
$$

\]

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore have, for every real value of ω,

$$
\begin{equation*}
0=\int_{-\infty}^{\infty} \frac{d \nu}{2 \pi}\left[\chi^{\prime}(\nu)+i \chi^{\prime \prime}(\nu)\right]\left[\mathcal{P} \frac{1}{\nu-\omega}-i \pi \delta(\nu-\omega)\right] . \tag{2.104}
\end{equation*}
$$

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

$$
\begin{align*}
\chi^{\prime}(\omega) & =+\mathcal{P} \int_{-\infty}^{\infty} \frac{d \nu}{\pi} \frac{\hat{\chi}^{\prime \prime}(\nu)}{\nu-\omega} \\
\chi^{\prime \prime}(\omega) & =-\mathcal{P} \int_{-\infty}^{\infty} \frac{d \nu}{\pi} \frac{\hat{\chi}^{\prime}(\nu)}{\nu-\omega} \tag{2.105}
\end{align*}
$$

Chapter 3

Lagrangian Mechanics

3.1 Snell's Law

Warm-up problem: You are standing at point $\left(x_{1}, y_{1}\right)$ on the beach and you want to get to a point $\left(x_{2}, y_{2}\right)$ in the water, a few meters offshore. The interface between the beach and the water lies at $x=0$. What path results in the shortest travel time? It is not a straight line! This is because your speed v_{1} on the sand is greater than your speed v_{2} in the water. The optimal path actually consists of two line segments, as shown in fig. 3.1. Let the path pass through the point $(0, y)$ on the interface. Then the time T is a function of y :

$$
\begin{equation*}
T(y)=\frac{1}{v_{1}} \sqrt{x_{1}^{2}+\left(y-y_{1}\right)^{2}}+\frac{1}{v_{2}} \sqrt{x_{2}^{2}+\left(y_{2}-y\right)^{2}} . \tag{3.1}
\end{equation*}
$$

To find the minimum time, we set

$$
\begin{align*}
\frac{d T}{d y}=0 & =\frac{1}{v_{1}} \frac{y-y_{1}}{\sqrt{x_{1}^{2}+\left(y-y_{1}\right)^{2}}}-\frac{1}{v_{2}} \frac{y_{2}-y}{\sqrt{x_{2}^{2}+\left(y_{2}-y\right)^{2}}} \tag{3.2}\\
& =\frac{\sin \theta_{1}}{v_{1}}-\frac{\sin \theta_{2}}{v_{2}} .
\end{align*}
$$

Thus, the optimal path satisfies

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}} \tag{3.3}
\end{equation*}
$$

which is known as Snell's Law.
Snell's Law is familiar from optics, where the speed of light in a polarizable medium is written $v=c / n$, where n is the index of refraction. In terms of n,

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{3.4}
\end{equation*}
$$

If there are several interfaces, Snell's law holds at each one, so that

$$
\begin{equation*}
n_{i} \sin \theta_{i}=n_{i+1} \sin \theta_{i+1} \tag{3.5}
\end{equation*}
$$

Figure 3.1: The shortest path between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is not a straight line, but rather two successive line segments of different slope.
at the interface between media i and $i+1$.
In the limit where the number of slabs goes to infinity but their thickness is infinitesimal, we can regard n and θ as functions of a continuous variable x. One then has

$$
\begin{equation*}
\frac{\sin \theta(x)}{v(x)}=\frac{y^{\prime}}{v \sqrt{1+y^{\prime 2}}}=P \tag{3.6}
\end{equation*}
$$

where P is a constant. Here wve have used the result $\sin \theta=y^{\prime} / \sqrt{1+y^{\prime 2}}$, which follows from drawing a right triangle with side lengths $d x, d y$, and $\sqrt{d x^{2}+d y^{2}}$. If we differentiate the above equation with respect to x, we eliminate the constant and obtain the second order ODE

$$
\begin{equation*}
\frac{1}{1+y^{\prime 2}} \frac{y^{\prime \prime}}{y^{\prime}}=\frac{v^{\prime}}{v} . \tag{3.7}
\end{equation*}
$$

This is a differential equation that $y(x)$ must satisfy if the functional

$$
\begin{equation*}
T[y(x)]=\int \frac{d s}{v}=\int_{x_{1}}^{x_{2}} d x \frac{\sqrt{1+y^{\prime 2}}}{v(x)} \tag{3.8}
\end{equation*}
$$

is to be minimized.

3.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable, or several such variables, and returns a real (or complex) number. A functional is a mathematical object which takes an entire

Figure 3.2: The path of shortest length is composed of three line segments. The relation between the angles at each interface is governed by Snell's Law.
function and returns a number. In the case at hand, we have

$$
\begin{equation*}
T[y(x)]=\int_{x_{1}}^{x_{2}} d x L\left(y, y^{\prime}, x\right) \tag{3.9}
\end{equation*}
$$

where the function $L\left(y, y^{\prime}, x\right)$ is given by

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=\frac{1}{v(x)} \sqrt{1+y^{\prime 2}} \tag{3.10}
\end{equation*}
$$

Here $v(x)$ is a given function characterizing the medium, and $y(x)$ is the path whose time is to be evaluated.

In ordinary calculus, we extremize a function $f(x)$ by demanding that f not change to lowest order when we change $x \rightarrow x+d x$:

$$
\begin{equation*}
f(x+d x)=f(x)+f^{\prime}(x) d x+\frac{1}{2} f^{\prime \prime}(x)(d x)^{2}+\ldots . \tag{3.11}
\end{equation*}
$$

We say that $x=x^{*}$ is an extremum when $f^{\prime}\left(x^{*}\right)=0$.
For a functional, the first functional variation is obtained by sending $y(x) \rightarrow y(x)+\delta y(x)$, and extracting

Figure 3.3: A path $y(x)$ and its variation $y(x)+\delta y(x)$.
the variation in the functional to order δy. Thus, we compute

$$
\begin{align*}
T[y(x)+\delta y(x)] & =\int_{x_{1}}^{x_{2}} d x L\left(y+\delta y, y^{\prime}+\delta y^{\prime}, x\right) \\
& =\int_{x_{1}}^{x_{2}} d x\left\{L+\frac{\partial L}{\partial y} \delta y+\frac{\partial L}{\partial y^{\prime}} \delta y^{\prime}+\mathcal{O}\left((\delta y)^{2}\right)\right\} \\
& =T[y(x)]+\int_{x_{1}}^{x_{2}} d x\left\{\frac{\partial L}{\partial y} \delta y+\frac{\partial L}{\partial y^{\prime}} \frac{d}{d x} \delta y\right\} \tag{3.12}\\
& =T[y(x)]+\int_{x_{1}}^{x_{2}} d x\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right] \delta y+\left.\frac{\partial L}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}}
\end{align*}
$$

Now one very important thing about the variation $\delta y(x)$ is that it must vanish at the endpoints: $\delta y\left(x_{1}\right)=$ $\delta y\left(x_{2}\right)=0$. This is because the space of functions under consideration satisfy fixed boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$. Thus, the last term in the above equation vanishes, and we have

$$
\begin{equation*}
\delta T=\int_{x_{1}}^{x_{2}} d x\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right] \delta y \tag{3.13}
\end{equation*}
$$

We say that the first functional derivative of T with respect to $y(x)$ is

$$
\begin{equation*}
\frac{\delta T}{\delta y(x)}=\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right]_{x} \tag{3.14}
\end{equation*}
$$

where the subscript indicates that the expression inside the square brackets is to be evaluated at x. The functional $T[y(x)]$ is extremized when its first functional derivative vanishes, which results in a
differential equation for $y(x)$,

$$
\begin{equation*}
\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=0 \tag{3.15}
\end{equation*}
$$

known as the Euler-Lagrange equation.

$L\left(y, y^{\prime}, x\right)$ independent of y

Suppose $L\left(y, y^{\prime}, x\right)$ is independent of y. Then from the Euler-Lagrange equations we have that

$$
\begin{equation*}
P \equiv \frac{\partial L}{\partial y^{\prime}} \tag{3.16}
\end{equation*}
$$

is a constant. In classical mechanics, this will turn out to be a generalized momentum. For $L=\frac{1}{v} \sqrt{1+y^{\prime 2}}$, we have

$$
\begin{equation*}
P=\frac{y^{\prime}}{v \sqrt{1+y^{\prime 2}}} \tag{3.17}
\end{equation*}
$$

Setting $d P / d x=0$, we recover the second order ODE of eqn. 3.7. Solving for y^{\prime},

$$
\begin{equation*}
\frac{d y}{d x}= \pm \frac{v(x)}{\sqrt{v_{0}^{2}-v^{2}(x)}} \tag{3.18}
\end{equation*}
$$

where $v_{0}=1 / P$.

$L\left(y, y^{\prime}, x\right)$ independent of x

When $L\left(y, y^{\prime}, x\right)$ is independent of x, we can again integrate the equation of motion. Consider the quantity

$$
\begin{equation*}
H=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L . \tag{3.19}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{d H}{d x}=\frac{d}{d x}\left[y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L\right] & =y^{\prime \prime} \frac{\partial L}{\partial y^{\prime}}+y^{\prime} \frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)-\frac{\partial L}{\partial y^{\prime}} y^{\prime \prime}-\frac{\partial L}{\partial y} y^{\prime}-\frac{\partial L}{\partial x} \\
& =y^{\prime}\left[\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)-\frac{\partial L}{\partial y}\right]-\frac{\partial L}{\partial x} \tag{3.20}
\end{align*}
$$

where we have used the Euler-Lagrange equations to write $\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=\frac{\partial L}{\partial y}$. So if $\partial L / \partial x=0$, we have $d H / d x=0$, i.e. H is a constant.

3.2.1 Functional Taylor series

In general, we may expand a functional $F[y+\delta y]$ in a functional Taylor series,

$$
\begin{align*}
F[y+\delta y] & =F[y]+\int d x_{1} K_{1}\left(x_{1}\right) \delta y\left(x_{1}\right)+\frac{1}{2!} \int d x_{1} \int d x_{2} K_{2}\left(x_{1}, x_{2}\right) \delta y\left(x_{1}\right) \delta y\left(x_{2}\right) \tag{3.21}\\
& +\frac{1}{3!} \int d x_{1} \int d x_{2} \int d x_{3} K_{3}\left(x_{1}, x_{2}, x_{3}\right) \delta y\left(x_{1}\right) \delta y\left(x_{2}\right) \delta y\left(x_{3}\right)+\ldots
\end{align*}
$$

and we write

$$
\begin{equation*}
K_{n}\left(x_{1}, \ldots, x_{n}\right) \equiv \frac{\delta^{n} F}{\delta y\left(x_{1}\right) \cdots \delta y\left(x_{n}\right)} \tag{3.22}
\end{equation*}
$$

for the $n^{\text {th }}$ functional derivative.

3.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to problems in mathematics and physics.

3.3.1 Example 1 : minimal surface of revolution

Consider a surface formed by rotating the function $y(x)$ about the x-axis. The area is then

$$
\begin{equation*}
A[y(x)]=\int_{x_{1}}^{x_{2}} d x 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \tag{3.23}
\end{equation*}
$$

and is a functional of the curve $y(x)$. Thus we can define $L\left(y, y^{\prime}\right)=2 \pi y \sqrt{1+y^{\prime 2}}$ and make the identification $y(x) \leftrightarrow q(t)$. Since $L\left(y, y^{\prime}, x\right)$ is independent of x, we have

$$
\begin{equation*}
H=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L \quad \Rightarrow \quad \frac{d H}{d x}=-\frac{\partial L}{\partial x}, \tag{3.24}
\end{equation*}
$$

and when L has no explicit x-dependence, H is conserved. One finds

$$
\begin{equation*}
H=2 \pi y \cdot \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}-2 \pi y \sqrt{1+y^{\prime 2}}=-\frac{2 \pi y}{\sqrt{1+y^{\prime 2}}} \tag{3.25}
\end{equation*}
$$

Solving for y^{\prime},

$$
\begin{equation*}
\frac{d y}{d x}= \pm \sqrt{\left(\frac{2 \pi y}{H}\right)^{2}-1} \tag{3.26}
\end{equation*}
$$

which may be integrated with the substitution $y=\frac{H}{2 \pi} \cosh u$, yielding

$$
\begin{equation*}
y(x)=b \cosh \left(\frac{x-a}{b}\right) \tag{3.27}
\end{equation*}
$$

Figure 3.4: Minimal surface solution, with $y(x)=b \cosh (x / b)$ and $y\left(x_{0}\right)=y_{0}$. Top panel: $A / 2 \pi y_{0}^{2} v \mathrm{~s}$. y_{0} / x_{0}. Bottom panel: $\operatorname{sech}\left(x_{0} / b\right)$ vs. y_{0} / x_{0}. The blue curve corresponds to a global minimum of $A[y(x)]$, and the red curve to a local minimum or saddle point.
where a and $b=\frac{H}{2 \pi}$ are constants of integration. Note there are two such constants, as the original equation was second order. This shape is called a catenary. As we shall later find, it is also the shape of a uniformly dense rope hanging between two supports, under the influence of gravity. To fix the constants a and b, we invoke the boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.

Consider the case where $-x_{1}=x_{2} \equiv x_{0}$ and $y_{1}=y_{2} \equiv y_{0}$. Then clearly $a=0$, and we have

$$
\begin{equation*}
y_{0}=b \cosh \left(\frac{x_{0}}{b}\right) \quad \Rightarrow \quad \gamma=\kappa^{-1} \cosh \kappa \tag{3.28}
\end{equation*}
$$

with $\gamma \equiv y_{0} / x_{0}$ and $\kappa \equiv x_{0} / b$. One finds that for any $\gamma>1.5089$ there are two solutions, one of which is a global minimum and one of which is a local minimum or saddle of $A[y(x)]$. The solution with the smaller value of κ (i.e. the larger value of sech κ) yields the smaller value of A, as shown in fig. 3.4. Note that

$$
\begin{equation*}
\frac{y}{y_{0}}=\frac{\cosh (x / b)}{\cosh \left(x_{0} / b\right)} \tag{3.29}
\end{equation*}
$$

so $y(x=0)=y_{0} \operatorname{sech}\left(x_{0} / b\right)$.
When extremizing functions that are defined over a finite or semi-infinite interval, one must take care to evaluate the function at the boundary, for it may be that the boundary yields a global extremum even though the derivative may not vanish there. Similarly, when extremizing functionals, one must investigate the functions at the boundary of function space. In this case, such a function would be the
discontinuous solution, with

$$
y(x)= \begin{cases}y_{1} & \text { if } x=x_{1} \tag{3.30}\\ 0 & \text { if } x_{1}<x<x_{2} \\ y_{2} & \text { if } x=x_{2}\end{cases}
$$

This solution corresponds to a surface consisting of two discs of radii y_{1} and y_{2}, joined by an infinitesimally thin thread. The area functional evaluated for this particular $y(x)$ is clearly $A=\pi\left(y_{1}^{2}+y_{2}^{2}\right)$. In fig. 3.4, we plot $A / 2 \pi y_{0}^{2}$ versus the parameter $\gamma=y_{0} / x_{0}$. For $\gamma>\gamma_{c} \approx 1.564$, one of the catenary solutions is the global minimum. For $\gamma<\gamma_{\mathrm{c}}$, the minimum area is achieved by the discontinuous solution.

Note that the functional derivative,

$$
\begin{equation*}
K_{1}(x)=\frac{\delta A}{\delta y(x)}=\left\{\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right\}=\frac{2 \pi\left(1+y^{\prime 2}-y y^{\prime \prime}\right)}{\left(1+y^{\prime 2}\right)^{3 / 2}} \tag{3.31}
\end{equation*}
$$

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solution, where $K_{1}(x)=2 \pi$ throughout the interval $\left(-x_{0}, x_{0}\right)$. Since $y=0$ on this interval, y cannot be decreased. The fact that $K_{1}(x)>0$ means that increasing y will result in an increase in A, so the boundary value for A, which is $2 \pi y_{0}^{2}$, is indeed a local minimum.

We furthermore see in fig. 3.4 that for $\gamma<\gamma_{*} \approx 1.5089$ the local minimum and saddle are no longer present. This is the familiar saddle-node bifurcation, here in function space. Thus, for $\gamma \in\left[0, \gamma_{*}\right)$ there are no extrema of $A[y(x)]$, and the minimum area occurs for the discontinuous $y(x)$ lying at the boundary of function space. For $\gamma \in\left(\gamma_{*}, \gamma_{c}\right)$, two extrema exist, one of which is a local minimum and the other a saddle point. Still, the area is minimized for the discontinuous solution. For $\gamma \in\left(\gamma_{\mathrm{c}}, \infty\right)$, the local minimum is the global minimum, and has smaller area than for the discontinuous solution.

3.3.2 Example 2 : geodesic on a surface of revolution

We use cylindrical coordinates (ρ, ϕ, z) on the surface $z=z(\rho)$. Thus,

$$
\begin{align*}
d s^{2} & =d \rho^{2}+\rho^{2} d \phi^{2}+d x^{2} \\
& =\left\{1+\left[z^{\prime}(\rho)\right]^{2}\right\} d \rho+\rho^{2} d \phi^{2} \tag{3.32}
\end{align*}
$$

and the distance functional $D[\phi(\rho)]$ is

$$
\begin{equation*}
D[\phi(\rho)]=\int_{\rho_{1}}^{\rho_{2}} d \rho L\left(\phi, \phi^{\prime}, \rho\right) \tag{3.33}
\end{equation*}
$$

where

$$
\begin{equation*}
L\left(\phi, \phi^{\prime}, \rho\right)=\sqrt{1+z^{\prime 2}(\rho)+\rho^{2} \phi^{\prime 2}(\rho)} . \tag{3.34}
\end{equation*}
$$

The Euler-Lagrange equation is

$$
\begin{equation*}
\frac{\partial L}{\partial \phi}-\frac{d}{d \rho}\left(\frac{\partial L}{\partial \phi^{\prime}}\right)=0 \quad \Rightarrow \quad \frac{\partial L}{\partial \phi^{\prime}}=\text { const. } \tag{3.35}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial L}{\partial \phi^{\prime}}=\frac{\rho^{2} \phi^{\prime}}{\sqrt{1+z^{\prime 2}+\rho^{2} \phi^{\prime 2}}}=a \tag{3.36}
\end{equation*}
$$

where a is a constant. Solving for ϕ^{\prime}, we obtain

$$
\begin{equation*}
d \phi=\frac{a \sqrt{1+\left[z^{\prime}(\rho)\right]^{2}}}{\rho \sqrt{\rho^{2}-a^{2}}} d \rho \tag{3.37}
\end{equation*}
$$

which we must integrate to find $\phi(\rho)$, subject to boundary conditions $\phi\left(\rho_{i}\right)=\phi_{i}$, with $i=1,2$.
On a cone, $z(\rho)=\lambda \rho$, and we have

$$
\begin{equation*}
d \phi=a \sqrt{1+\lambda^{2}} \frac{d \rho}{\rho \sqrt{\rho^{2}-a^{2}}}=\sqrt{1+\lambda^{2}} d \tan ^{-1} \sqrt{\frac{\rho^{2}}{a^{2}}-1}, \tag{3.38}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\phi(\rho)=\beta+\sqrt{1+\lambda^{2}} \tan ^{-1} \sqrt{\frac{\rho^{2}}{a^{2}}-1}, \tag{3.39}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\rho \cos \left(\frac{\phi-\beta}{\sqrt{1+\lambda^{2}}}\right)=a \tag{3.40}
\end{equation*}
$$

The constants β and a are determined from $\phi\left(\rho_{i}\right)=\phi_{i}$.

3.3.3 Example 3 : brachistochrone

Problem: find the path between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ which a particle sliding frictionlessly and under constant gravitational acceleration will traverse in the shortest time. To solve this we first must invoke some elementary mechanics. Assuming the particle is released from (x_{1}, y_{1}) at rest, energy conservation says

$$
\begin{equation*}
\frac{1}{2} m v^{2}+m g y=m g y_{1} \tag{3.41}
\end{equation*}
$$

Then the time, which is a functional of the curve $y(x)$, is

$$
\begin{align*}
T[y(x)] & =\int_{x_{1}}^{x_{2}} \frac{d s}{v}=\frac{1}{\sqrt{2 g}} \int_{x_{1}}^{x_{2}} d x \sqrt{\frac{1+y^{\prime 2}}{y_{1}-y}} \\
& \equiv \int_{x_{1}}^{x_{2}} d x L\left(y, y^{\prime}, x\right) \tag{3.42}
\end{align*}
$$

with

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g\left(y_{1}-y\right)}} . \tag{3.43}
\end{equation*}
$$

Since L is independent of x, eqn. 3.20, we have that

$$
\begin{equation*}
H=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=-\left[2 g\left(y_{1}-y\right)\left(1+y^{\prime 2}\right)\right]^{-1 / 2} \tag{3.44}
\end{equation*}
$$

is conserved. This yields

$$
\begin{equation*}
d x=-\sqrt{\frac{y_{1}-y}{2 a-y_{1}+y}} d y \tag{3.45}
\end{equation*}
$$

with $a=\left(4 g H^{2}\right)^{-1}$. This may be integrated parametrically, writing

$$
\begin{equation*}
y_{1}-y=2 a \sin ^{2}\left(\frac{1}{2} \theta\right) \quad \Rightarrow \quad d x=2 a \sin ^{2}\left(\frac{1}{2} \theta\right) d \theta \tag{3.46}
\end{equation*}
$$

which results in the parametric equations

$$
\begin{align*}
x-x_{1} & =a(\theta-\sin \theta) \tag{3.47}\\
y-y_{1} & =-a(1-\cos \theta) .
\end{align*}
$$

This curve is known as a cycloid.

3.3.4 Ocean waves

Surface waves in fluids propagate with a definite relation between their angular frequency ω and their wavevector $k=2 \pi / \lambda$, where λ is the wavelength. The dispersion relation is a function $\omega=\omega(k)$. The group velocity of the waves is then $v(k)=d \omega / d k$.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

$$
\omega(k)=\sqrt{g k \tanh k h} \approx \begin{cases}\sqrt{g h} k & \text { shallow }(k h \ll 1) \tag{3.48}\\ \sqrt{g k} & \operatorname{deep}(k h \gg 1)\end{cases}
$$

Suppose we are in the shallow case, where the wavelength λ is significantly greater than the depth h of the fluid. This is the case for ocean waves which break at the shore. The phase velocity and group velocity are then identical, and equal to $v(h)=\sqrt{g h}$. The waves propagate more slowly as they approach the shore.

Let us choose the following coordinate system: x represents the distance parallel to the shoreline, y the distance perpendicular to the shore (which lies at $y=0$), and $h(y)$ is the depth profile of the bottom. We assume $h(y)$ to be a slowly varying function of y which satisfies $h(0)=0$. Suppose a disturbance in the ocean at position $\left(x_{2}, y_{2}\right)$ propagates until it reaches the shore at $\left(x_{1}, y_{1}=0\right)$. The time of propagation is

$$
\begin{equation*}
T[y(x)]=\int \frac{d s}{v}=\int_{x_{1}}^{x_{2}} d x \sqrt{\frac{1+y^{\prime 2}}{g h(y)}} . \tag{3.49}
\end{equation*}
$$

Figure 3.5: For shallow water waves, $v=\sqrt{g h}$. To minimize the propagation time from a source to the shore, the waves break parallel to the shoreline.

We thus identify the integrand

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{g h(y)}} \tag{3.50}
\end{equation*}
$$

As with the brachistochrone problem, to which this bears an obvious resemblance, L is cyclic in the independent variable x, hence

$$
\begin{equation*}
H=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=-\left[g h(y)\left(1+y^{\prime 2}\right)\right]^{-1 / 2} \tag{3.51}
\end{equation*}
$$

is constant. Solving for $y^{\prime}(x)$, we have

$$
\begin{equation*}
\tan \theta=\frac{d y}{d x}=\sqrt{\frac{a}{h(y)}-1}, \tag{3.52}
\end{equation*}
$$

where $a=(g H)^{-1}$ is a constant, and where θ is the local slope of the function $y(x)$. Thus, we conclude that near $y=0$, where $h(y) \rightarrow 0$, the waves come in parallel to the shoreline. If $h(y)=\alpha y$ has a linear profile, the solution is again a cycloid, with

$$
\begin{align*}
& x(\theta)=b(\theta-\sin \theta) \\
& y(\theta)=b(1-\cos \theta) \tag{3.53}
\end{align*}
$$

where $b=2 a / \alpha$ and where the shore lies at $\theta=0$. Expanding in a Taylor series in θ for small θ, we may eliminate θ and obtain $y(x)$ as

$$
\begin{equation*}
y(x)=\left(\frac{9}{2}\right)^{1 / 3} b^{1 / 3} x^{2 / 3}+\ldots . \tag{3.54}
\end{equation*}
$$

A tsunami is a shallow water wave that propagates in deep water. This requires $\lambda>h$, as we've seen, which means the disturbance must have a very long spatial extent out in the open ocean, where $h \sim$

10 km . An undersea earthquake is the only possible source; the characteristic length of earthquake fault lines can be hundreds of kilometers. If we take $h=10 \mathrm{~km}$, we obtain $v=\sqrt{g h} \approx 310 \mathrm{~m} / \mathrm{s}$ or $1100 \mathrm{~km} / \mathrm{hr}$. At these speeds, a tsunami can cross the Pacific Ocean in less than a day.
As the wave approaches the shore, it must slow down, since $v=\sqrt{g h}$ is diminishing. But energy is conserved, which means that the amplitude must concomitantly rise. In extreme cases, the water level rise at shore may be 20 meters or more.

3.4 More on Functionals

We remarked in section 3.2 that a function f is an animal which gets fed a real number x and excretes a real number $f(x)$. We say f maps the reals to the reals, or

$$
\begin{equation*}
f: \mathbf{R} \rightarrow \mathbf{R} \tag{3.55}
\end{equation*}
$$

Of course we also have functions $g: \mathbf{C} \rightarrow \mathbf{C}$ which eat and excrete complex numbers, multivariable functions $h: \mathbf{R}^{N} \rightarrow \mathbf{R}$ which eat N-tuples of numbers and excrete a single number, etc.
A functional $F[f(x)]$ eats entire functions (!) and excretes numbers. That is,

$$
\begin{equation*}
F:\{f(x) \mid x \in \mathbf{R}\} \rightarrow \mathbf{R} \tag{3.56}
\end{equation*}
$$

This says that F operates on the set of real-valued functions of a single real variable, yielding a real number. Some examples:

$$
\begin{align*}
& F[f(x)]=\frac{1}{2} \int_{-\infty}^{\infty} d x[f(x)]^{2} \\
& F[f(x)]=\frac{1}{2} \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d x^{\prime} K\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) \tag{3.57}\\
& F[f(x)]=\int_{-\infty}^{\infty} d x\left\{\frac{1}{2} A f^{2}(x)+\frac{1}{2} B\left(\frac{d f}{d x}\right)^{2}\right\}
\end{align*}
$$

In classical mechanics, the action S is a functional of the path $q(t)$:

$$
\begin{equation*}
S[q(t)]=\int_{t_{\mathrm{a}}}^{t_{\mathrm{b}}} d t\left\{\frac{1}{2} m \dot{q}^{2}-U(q)\right\} \tag{3.58}
\end{equation*}
$$

We can also have functionals which feed on functions of more than one independent variable, such as

$$
\begin{equation*}
S[y(x, t)]=\int_{t_{\mathrm{a}}}^{t_{\mathrm{b}}} d t \int_{x_{\mathrm{a}}}^{x_{\mathrm{b}}} d x\left\{\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2}\right\} \tag{3.59}
\end{equation*}
$$

Figure 3.6: A functional $S[q(t)]$ is the continuum limit of a function of a large number of variables, $S\left(q_{1}, \ldots, q_{M}\right)$.
which happens to be the functional for a string of mass density μ under uniform tension τ. Another example comes from electrodynamics:

$$
\begin{equation*}
S\left[A^{\mu}(\boldsymbol{x}, t)\right]=-\int d^{3} x \int d t\left\{\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}+\frac{1}{c} j_{\mu} A^{\mu}\right\} \tag{3.60}
\end{equation*}
$$

which is a functional of the four fields $\left\{A^{0}, A^{1}, A^{2}, A^{3}\right\}$, where $A^{0}=c \phi$. These are the components of the 4-potential, each of which is itself a function of four independent variables $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$, with $x^{0}=c t$. The field strength tensor is written in terms of derivatives of the $A^{\mu}: F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, where we use a metric $g_{\mu \nu}=\operatorname{diag}(+,-,-,-)$ to raise and lower indices. The 4 -potential couples linearly to the source term J_{μ}, which is the electric 4-current $(c \rho, \boldsymbol{J})$.

We extremize functions by sending the independent variable x to $x+d x$ and demanding that the variation $d f=0$ to first order in $d x$. That is,

$$
\begin{equation*}
f(x+d x)=f(x)+f^{\prime}(x) d x+\frac{1}{2} f^{\prime \prime}(x)(d x)^{2}+\ldots, \tag{3.61}
\end{equation*}
$$

whence $d f=f^{\prime}(x) d x+\mathcal{O}\left((d x)^{2}\right)$ and thus

$$
\begin{equation*}
f^{\prime}\left(x^{*}\right)=0 \quad \Longleftrightarrow \quad x^{*} \text { an extremum. } \tag{3.62}
\end{equation*}
$$

We extremize functionals by sending

$$
\begin{equation*}
f(x) \rightarrow f(x)+\delta f(x) \tag{3.63}
\end{equation*}
$$

and demanding that the variation δF in the functional $F[f(x)]$ vanish to first order in $\delta f(x)$. The variation $\delta f(x)$ must sometimes satisfy certain boundary conditions. For example, if $F[f(x)]$ only operates on functions which vanish at a pair of endpoints, i.e. $f\left(x_{a}\right)=f\left(x_{b}\right)=0$, then when we extremize the
functional F we must do so within the space of allowed functions. Thus, we would in this case require $\delta f\left(x_{a}\right)=\delta f\left(x_{b}\right)=0$. We may expand the functional $F[f+\delta f]$ in a functional Taylor series,

$$
\begin{align*}
F[f+\delta f] & =F[f]+\int d x_{1} K_{1}\left(x_{1}\right) \delta f\left(x_{1}\right)+\frac{1}{2!} \int d x_{1} \int d x_{2} K_{2}\left(x_{1}, x_{2}\right) \delta f\left(x_{1}\right) \delta f\left(x_{2}\right) \\
& +\frac{1}{3!} \int d x_{1} \int d x_{2} \int d x_{3} K_{3}\left(x_{1}, x_{2}, x_{3}\right) \delta f\left(x_{1}\right) \delta f\left(x_{2}\right) \delta f\left(x_{3}\right)+\ldots \tag{3.64}
\end{align*}
$$

and we write

$$
\begin{equation*}
K_{n}\left(x_{1}, \ldots, x_{n}\right) \equiv \frac{\delta^{n} F}{\delta f\left(x_{1}\right) \cdots \delta f\left(x_{n}\right)} \tag{3.65}
\end{equation*}
$$

In a more general case, $F=F\left[\left\{f_{i}(\boldsymbol{x})\right\}\right]$ is a functional of several functions, each of which is a function of several independent variables. ${ }^{1}$ We then write

$$
\begin{align*}
F\left[\left\{f_{i}+\delta f_{i}\right\}\right]= & F\left[\left\{f_{i}\right\}\right]+\int d \boldsymbol{x}_{1} K_{1}^{i}\left(\boldsymbol{x}_{1}\right) \delta f_{i}\left(\boldsymbol{x}_{1}\right) \\
& +\frac{1}{2!} \int d \boldsymbol{x}_{1} \int d \boldsymbol{x}_{2} K_{2}^{i j}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \delta f_{i}\left(\boldsymbol{x}_{1}\right) \delta f_{j}\left(\boldsymbol{x}_{2}\right) \tag{3.66}\\
& +\frac{1}{3!} \int d \boldsymbol{x}_{1} \int d \boldsymbol{x}_{2} \int d x_{3} K_{3}^{i j k}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, x_{3}\right) \delta f_{i}\left(\boldsymbol{x}_{1}\right) \delta f_{j}\left(\boldsymbol{x}_{2}\right) \delta f_{k}\left(\boldsymbol{x}_{3}\right)+\ldots
\end{align*}
$$

with

$$
\begin{equation*}
K_{n}^{i_{1} i_{2} \cdots i_{n}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)=\frac{\delta^{n} F}{\delta f_{i_{1}}\left(\boldsymbol{x}_{1}\right) \delta f_{i_{2}}\left(\boldsymbol{x}_{2}\right) \delta f_{i_{n}}\left(\boldsymbol{x}_{n}\right)} \tag{3.67}
\end{equation*}
$$

Another way to compute functional derivatives is to send

$$
\begin{equation*}
f(x) \rightarrow f(x)+\epsilon_{1} \delta\left(x-x_{1}\right)+\ldots+\epsilon_{n} \delta\left(x-x_{n}\right) \tag{3.68}
\end{equation*}
$$

and then differentiate n times with respect to ϵ_{1} through ϵ_{n}. That is,

Let's see how this works. As an example, we'll take the action functional from classical mechanics,

$$
\begin{equation*}
S[q(t)]=\int_{t_{\mathrm{a}}}^{t_{\mathrm{b}}} d t\left\{\frac{1}{2} m \dot{q}^{2}-U(q)\right\} \tag{3.70}
\end{equation*}
$$

To compute the first functional derivative, we replace the function $q(t)$ with $q(t)+\epsilon \delta\left(t-t_{1}\right)$, and expand in powers of ϵ :

$$
\begin{align*}
S\left[q(t)+\epsilon \delta\left(t-t_{1}\right)\right] & =S[q(t)]+\epsilon \int_{t_{\mathrm{a}}}^{t_{\mathrm{b}}} d t\left\{m \dot{q} \delta^{\prime}\left(t-t_{1}\right)-U^{\prime}(q) \delta\left(t-t_{1}\right)\right\} \tag{3.71}\\
& =-\epsilon\left\{m \ddot{q}\left(t_{1}\right)+U^{\prime}\left(q\left(t_{1}\right)\right)\right\}
\end{align*}
$$

${ }^{1}$ It may be also be that different functions depend on a different number of independent variables. E.g. $F=$ $F[f(x), g(x, y), h(x, y, z)]$.
hence

$$
\begin{equation*}
\frac{\delta S}{\delta q(t)}=-\left\{m \ddot{q}(t)+U^{\prime}(q(t))\right\} \tag{3.72}
\end{equation*}
$$

and setting the first functional derivative to zero yields Newton's Second Law, $m \ddot{q}=-U^{\prime}(q)$, for all $t \in\left[t_{\mathrm{a}}, t_{\mathrm{b}}\right]$. Note that we have used the result

$$
\begin{equation*}
\int_{-\infty}^{\infty} d t \delta^{\prime}\left(t-t_{1}\right) h(t)=-h^{\prime}\left(t_{1}\right) \tag{3.73}
\end{equation*}
$$

which is easily established upon integration by parts.
To compute the second functional derivative, we replace

$$
\begin{equation*}
q(t) \rightarrow q(t)+\epsilon_{1} \delta\left(t-t_{1}\right)+\epsilon_{2} \delta\left(t-t_{2}\right) \tag{3.74}
\end{equation*}
$$

and extract the term of order $\epsilon_{1} \epsilon_{2}$ in the double Taylor expansion. One finds this term to be

$$
\begin{equation*}
\epsilon_{1} \epsilon_{2} \int_{t_{\mathrm{a}}}^{t_{\mathrm{b}}} d t\left\{m \delta^{\prime}\left(t-t_{1}\right) \delta^{\prime}\left(t-t_{2}\right)-U^{\prime \prime}(q) \delta\left(t-t_{1}\right) \delta\left(t-t_{2}\right)\right\} \tag{3.75}
\end{equation*}
$$

Note that we needn't bother with terms proportional to ϵ_{1}^{2} or ϵ_{2}^{2} since the recipe is to differentiate once with respect to each of ϵ_{1} and ϵ_{2} and then to set $\epsilon_{1}=\epsilon_{2}=0$. This procedure uniquely selects the term proportional to $\epsilon_{1} \epsilon_{2}$, and yields

$$
\begin{equation*}
\frac{\delta^{2} S}{\delta q\left(t_{1}\right) \delta q\left(t_{2}\right)}=-\left\{m \delta^{\prime \prime}\left(t_{1}-t_{2}\right)+U^{\prime \prime}\left(q\left(t_{1}\right)\right) \delta\left(t_{1}-t_{2}\right)\right\} \tag{3.76}
\end{equation*}
$$

In multivariable calculus, the stability of an extremum is assessed by computing the matrix of second derivatives at the extremal point, known as the Hessian matrix. One has

$$
\begin{equation*}
\left.\frac{\partial f}{\partial x_{i}}\right|_{x^{*}}=0 \quad \forall i \quad ; \quad H_{i j}=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{x^{*}} . \tag{3.77}
\end{equation*}
$$

The eigenvalues of the Hessian $H_{i j}$ determine the stability of the extremum. Since $H_{i j}$ is a symmetric matrix, its eigenvectors η^{α} may be chosen to be orthogonal. The associated eigenvalues λ_{α}, defined by the equation

$$
\begin{equation*}
H_{i j} \eta_{j}^{\alpha}=\lambda_{\alpha} \eta_{i}^{\alpha} \tag{3.78}
\end{equation*}
$$

are the respective curvatures in the directions η^{α}, where $\alpha \in\{1, \ldots, n\}$ where n is the number of variables. The extremum is a local minimum if all the eigenvalues λ_{α} are positive, a maximum if all are negative, and otherwise is a saddle point. Near a saddle point, there are some directions in which the function increases and some in which it decreases.

In the case of functionals, the second functional derivative $K_{2}\left(x_{1}, x_{2}\right)$ defines an eigenvalue problem for $\delta f(x)$:

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}} d x_{2} K_{2}\left(x_{1}, x_{2}\right) \delta f\left(x_{2}\right)=\lambda \delta f\left(x_{1}\right) \tag{3.79}
\end{equation*}
$$

In general there are an infinite number of solutions to this equation which form a basis in function space, subject to appropriate boundary conditions at x_{a} and x_{b}. For example, in the case of the action functional from classical mechanics, the above eigenvalue equation becomes a differential equation,

$$
\begin{equation*}
-\left\{m \frac{d^{2}}{d t^{2}}+U^{\prime \prime}\left(q^{*}(t)\right)\right\} \delta q(t)=\lambda \delta q(t) \tag{3.80}
\end{equation*}
$$

where $q^{*}(t)$ is the solution to the Euler-Lagrange equations. As with the case of ordinary multivariable functions, the functional extremum is a local minimum (in function space) if every eigenvalue λ_{α} is positive, a local maximum if every eigenvalue is negative, and a saddle point otherwise.
Consider the simple harmonic oscillator, for which $U(q)=\frac{1}{2} m \omega_{0}^{2} q^{2}$. Then $U^{\prime \prime}\left(q^{*}(t)\right)=m \omega_{0}^{2}$; note that we don't even need to know the solution $q^{*}(t)$ to obtain the second functional derivative in this special case. The eigenvectors obey $m\left(\delta \ddot{q}+\omega_{0}^{2} \delta q\right)=-\lambda \delta q$, hence

$$
\begin{equation*}
\delta q(t)=A \cos \left(\sqrt{\omega_{0}^{2}+(\lambda / m)} t+\varphi\right) \tag{3.81}
\end{equation*}
$$

where A and φ are constants. Demanding $\delta q\left(t_{\mathrm{a}}\right)=\delta q\left(t_{\mathrm{b}}\right)=0$ requires

$$
\begin{equation*}
\sqrt{\omega_{0}^{2}+(\lambda / m)}\left(t_{\mathrm{b}}-t_{\mathrm{a}}\right)=n \pi, \tag{3.82}
\end{equation*}
$$

where n is an integer. Thus, the eigenfunctions are

$$
\begin{equation*}
\delta q_{n}(t)=A \sin \left(n \pi \cdot \frac{t-t_{\mathrm{a}}}{t_{\mathrm{b}}-t_{\mathrm{a}}}\right) \tag{3.83}
\end{equation*}
$$

and the eigenvalues are

$$
\begin{equation*}
\lambda_{n}=m\left(\frac{n \pi}{T}\right)^{2}-m \omega_{0}^{2} \tag{3.84}
\end{equation*}
$$

where $T=t_{\mathrm{b}}-t_{\mathrm{a}}$. Thus, so long as $T>\pi / \omega_{0}$, there is at least one negative eigenvalue. Indeed, for $\frac{n \pi}{\omega_{0}}<T<\frac{(n+1) \pi}{\omega_{0}}$ there will be n negative eigenvalues. This means the action is generally not a minimum, but rather lies at a saddle point in the (infinite-dimensional) function space.

To test this explicitly, consider a harmonic oscillator with the boundary conditions $q(0)=0$ and $q(T)=$ Q. The equations of motion, $\ddot{q}+\omega_{0}^{2} q=0$, along with the boundary conditions, determine the motion,

$$
\begin{equation*}
q^{*}(t)=\frac{Q \sin \left(\omega_{0} t\right)}{\sin \left(\omega_{0} T\right)} \tag{3.85}
\end{equation*}
$$

The action for this path is then

$$
\begin{align*}
S\left[q^{*}(t)\right] & =\int_{0}^{T} d t\left\{\frac{1}{2} m \dot{q}^{* 2}-\frac{1}{2} m \omega_{0}^{2} q^{* 2}\right\} \\
& =\frac{m \omega_{0}^{2} Q^{2}}{2 \sin ^{2} \omega_{0} T} \int_{0}^{T} d t\left\{\cos ^{2} \omega_{0} t-\sin ^{2} \omega_{0} t\right\} \tag{3.86}\\
& =\frac{1}{2} m \omega_{0} Q^{2} \operatorname{ctn}\left(\omega_{0} T\right)
\end{align*}
$$

Next consider the path $q(t)=Q t / T$ which satisfies the boundary conditions but does not satisfy the equations of motion (it proceeds with constant velocity). One finds the action for this path is

$$
\begin{equation*}
S[q(t)]=\frac{1}{2} m \omega_{0} Q^{2}\left(\frac{1}{\omega_{0} T}-\frac{1}{3} \omega_{0} T\right) \tag{3.87}
\end{equation*}
$$

Thus, provided $\omega_{0} T \neq n \pi$, in the limit $T \rightarrow \infty$ we find that the constant velocity path has lower action. Finally, consider the general mechanical action,

$$
\begin{equation*}
S[q(t)]=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t) \tag{3.88}
\end{equation*}
$$

We now evaluate the first few terms in the functional Taylor series:

$$
\begin{align*}
S\left[q^{*}(t)+\delta q(t)\right]= & \int_{t_{a}}^{t_{b}} d t\left\{L\left(q^{*}, \dot{q}^{*}, t\right)+\left.\frac{\partial L}{\partial q_{i}}\right|_{q^{*}} \delta q_{i}+\left.\frac{\partial L}{\partial \dot{q}_{i}}\right|_{q^{*}} \delta \dot{q}_{i}\right. \tag{3.89}\\
& \left.\quad+\left.\frac{1}{2} \frac{\partial^{2} L}{\partial q_{i} \partial q_{j}}\right|_{q^{*}} \delta q_{i} \delta q_{j}+\left.\frac{\partial^{2} L}{\partial q_{i} \partial \dot{q}_{j}}\right|_{q^{*}} \delta q_{i} \delta \dot{q}_{j}+\left.\frac{1}{2} \frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right|_{q^{*}} \delta \dot{q}_{i} \delta \dot{q}_{j}+\ldots\right\}
\end{align*}
$$

To identify the functional derivatives, we integrate by parts. Let $\Phi \ldots(t)$ be an arbitrary function of time. Then

$$
\begin{equation*}
\int_{t_{a}}^{t_{b}} d t \Phi_{i}(t) \delta \dot{q}_{i}(t)=-\int_{t_{a}}^{t_{b}} d t \dot{\Phi}_{i}(t) \delta q_{i}(t) \tag{3.90}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{t_{a}}^{t_{b}} d t \Phi_{i j}(t) \delta q_{i}(t) \delta \dot{q}_{j}(t) & =\int_{t_{a}}^{t_{b}} d t \int_{t_{a}}^{t_{b}} d t^{\prime} \Phi_{i j}(t) \delta\left(t-t^{\prime}\right) \frac{d}{d t^{\prime}} \delta q_{i}(t) \delta q_{j}\left(t^{\prime}\right) \tag{3.91}\\
& \left.=\int_{t_{a}}^{t_{b}} d t \int_{t_{a}}^{t_{b}} d t^{\prime} \Phi_{i j}(t)\right) \delta^{\prime}\left(t-t^{\prime}\right) \delta q_{i}(t) \delta q_{j}\left(t^{\prime}\right)
\end{align*}
$$

and

$$
\begin{align*}
\int_{t_{a}}^{t_{b}} d t \Phi_{i j}(t) d \dot{q}_{i}(t) \delta \dot{q}_{j}(t) & =\int_{t_{a}}^{t_{b}} d t \int_{t_{a}}^{t_{b}} d t^{\prime} \Phi_{i j}(t) \delta\left(t-t^{\prime}\right) \frac{d}{d t} \frac{d}{d t^{\prime}} \delta q_{i}(t) \delta q_{j}\left(t^{\prime}\right) \tag{3.92}\\
& =-\int_{t_{a}}^{t_{b}} d t \int_{t_{a}}^{t_{b}} d t^{\prime}\left[\dot{\Phi}_{i j}(t) \delta^{\prime}\left(t-t^{\prime}\right)+\Phi_{i j}(t) \delta^{\prime \prime}\left(t-t^{\prime}\right)\right] \delta q_{i}(t) \delta q_{j}\left(t^{\prime}\right)
\end{align*}
$$

Thus, the first two functional derivatives are given by

$$
\begin{equation*}
\frac{\delta S}{\delta q_{i}(t)}=\left[\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)\right]_{q^{*}(t)} \tag{3.93}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\delta^{2} S}{\delta q_{i}(t) \delta q_{j}\left(t^{\prime}\right)}=\left\{\left.\frac{\partial^{2} L}{\partial q_{i} \partial q_{j}}\right|_{q^{*}(t)} \delta\left(t-t^{\prime}\right)\right. & -\left.\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right|_{q^{*}(t)} \delta^{\prime \prime}\left(t-t^{\prime}\right) \\
& \left.+\left[2 \frac{\partial^{2} L}{\partial q_{i} \partial \dot{q}_{j}}-\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right)\right]_{q^{*}(t)} \delta^{\prime}\left(t-t^{\prime}\right)\right\} \tag{3.94}
\end{align*}
$$

3.5 Generalized Coordinates

A set of generalized coordinates q_{1}, \ldots, q_{n} completely describes the positions of all particles in a mechanical system. In a system with d_{f} degrees of freedom and k constraints, $n=d_{\mathrm{f}}-k$ independent generalized coordinates are needed to completely specify all the positions. A constraint is a relation among coordinates, such as $x^{2}+y^{2}+z^{2}=a^{2}$ for a particle moving on a sphere of radius a. In this case, $d_{\mathrm{f}}=3$ and $k=1$. In this case, we could eliminate z in favor of x and y, i.e. by writing $z= \pm \sqrt{a^{2}-x^{2}-y^{2}}$, or we could choose as coordinates the polar and azimuthal angles θ and ϕ.

For the moment we will assume that $n=d_{\mathrm{f}}-k$, and that the generalized coordinates are independent, satisfying no additional constraints among them. Later on we will learn how to deal with any remaining constraints among the $\left\{q_{1}, \ldots, q_{n}\right\}$.

The generalized coordinates may have units of length, or angle, or perhaps something totally different. In the theory of small oscillations, the normal coordinates are conventionally chosen to have units of $(\text { mass })^{1 / 2} \times$ (length). However, once a choice of generalized coordinate is made, with a concomitant set of units, the units of the conjugate momentum and force are determined:

$$
\begin{equation*}
\left[p_{\sigma}\right]=\frac{M L^{2}}{T} \cdot \frac{1}{\left[q_{\sigma}\right]} \quad, \quad\left[F_{\sigma}\right]=\frac{M L^{2}}{T^{2}} \cdot \frac{1}{\left[q_{\sigma}\right]} \tag{3.95}
\end{equation*}
$$

where $[A]$ means 'the units of A^{\prime}, and where M, L, and T stand for mass, length, and time, respectively. Thus, if q_{σ} has dimensions of length, then p_{σ} has dimensions of momentum and F_{σ} has dimensions of force. If q_{σ} is dimensionless, as is the case for an angle, p_{σ} has dimensions of angular momentum $\left(M L^{2} / T\right)$ and F_{σ} has dimensions of torque $\left(M L^{2} / T^{2}\right)$.

3.6 Hamilton's Principle

The equations of motion of classical mechanics are embodied in a variational principle, called Hamilton's principle. Hamilton's principle states that the motion of a system is such that the action functional

$$
\begin{equation*}
S[q(t)]=\int_{t_{1}}^{t_{2}} d t L(q, \dot{q}, t) \tag{3.96}
\end{equation*}
$$

is an extremum, i.e. $\delta S=0$. Here, $q=\left\{q_{1}, \ldots, q_{n}\right\}$ is a complete set of generalized coordinates for our mechanical system, and

$$
\begin{equation*}
L=T-U \tag{3.97}
\end{equation*}
$$

is the Lagrangian, where T is the kinetic energy and U is the potential energy. Setting the first variation of the action to zero gives the Euler-Lagrange equations,

$$
\begin{equation*}
\frac{d}{d t} \overbrace{\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)}^{\text {momentum } p_{\sigma}}=\overbrace{\frac{\partial L}{\partial q_{\sigma}}}^{\text {force } F_{\sigma}} . \tag{3.98}
\end{equation*}
$$

Thus, we have the familiar $\dot{p}_{\sigma}=F_{\sigma}$, also known as Newton's second law. Note, however, that the $\left\{q_{\sigma}\right\}$ are generalized coordinates, so p_{σ} may not have dimensions of momentum, nor F_{σ} of force. For example, if the generalized coordinate in question is an angle ϕ, then the corresponding generalized momentum is the angular momentum about the axis of ϕ 's rotation, and the generalized force is the torque.

3.6.1 Invariance of the equations of motion

Suppose

$$
\begin{equation*}
\tilde{L}(q, \dot{q}, t)=L(q, \dot{q}, t)+\frac{d}{d t} G(q, t) . \tag{3.99}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tilde{S}[q(t)]=S[q(t)]+G\left(q_{b}, t_{b}\right)-G\left(q_{a}, t_{a}\right) . \tag{3.100}
\end{equation*}
$$

Since the difference $\tilde{S}-S$ is a function only of the endpoint values $\left\{q_{a}, q_{b}\right\}$, their variations are identical: $\delta \tilde{S}=\delta S$. This means that L and \tilde{L} result in the same equations of motion. Thus, the equations of motion are invariant under a shift of L by a total time derivative of a function of coordinates and time.

3.6.2 Remarks on the order of the equations of motion

The equations of motion are second order in time. This follows from the fact that $L=L(q, \dot{q}, t)$. Using the chain rule,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)=\frac{\partial^{2} L}{\partial \dot{q}_{\sigma} \partial \dot{q}_{\sigma^{\prime}}} \ddot{q}_{\sigma^{\prime}}+\frac{\partial^{2} L}{\partial \dot{q}_{\sigma} \partial q_{\sigma^{\prime}}} \dot{q}_{\sigma^{\prime}}+\frac{\partial^{2} L}{\partial \dot{q}_{\sigma} \partial t} . \tag{3.101}
\end{equation*}
$$

That the equations are second order in time can be regarded as an empirical fact. It follows, as we have just seen, from the fact that L depends on q and on \dot{q}, but on no higher time derivative terms. Suppose the Lagrangian did depend on the generalized accelerations \ddot{q} as well. What would the equations of motion look like?

Taking the variation of S,

$$
\begin{align*}
\delta \int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, \ddot{q}, t)=\left[\frac{\partial L}{\partial \dot{q}_{\sigma}} \delta q_{\sigma}+\right. & \left.\frac{\partial L}{\partial \ddot{q}_{\sigma}} \delta \dot{q}_{\sigma}-\frac{d}{d t}\left(\frac{\partial L}{\partial \ddot{q}_{\sigma}}\right) \delta q_{\sigma}\right]_{t_{a}}^{t_{b}} \\
& +\int_{t_{a}}^{t_{b}} d t\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}_{\sigma}}\right)\right\} \delta q_{\sigma} \tag{3.102}
\end{align*}
$$

The boundary term vanishes if we require $\delta q_{\sigma}\left(t_{a}\right)=\delta q_{\sigma}\left(t_{b}\right)=\delta \dot{q}_{\sigma}\left(t_{a}\right)=\delta \dot{q}_{\sigma}\left(t_{b}\right)=0 \forall \sigma$. The equations of motion would then be fourth order in time.

3.6.3 Lagrangian for a free particle

For a free particle, we can use Cartesian coordinates for each particle as our system of generalized coordinates. For a single particle, the Lagrangian $L(\boldsymbol{x}, \boldsymbol{v}, t)$ must be a function solely of \boldsymbol{v}^{2}. This is because homogeneity with respect to space and time preclude any dependence of L on x or on t, and isotropy of space means L must depend on \boldsymbol{v}^{2}. We next invoke Galilean relativity, which says that the equations of motion are invariant under transformation to a reference frame moving with constant velocity. Let \boldsymbol{V} be the velocity of the new reference frame \mathcal{K}^{\prime} relative to our initial reference frame \mathcal{K}. Then $\boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{V} t$, and $\boldsymbol{v}^{\prime}=\boldsymbol{v}-\boldsymbol{V}$. In order that the equations of motion be invariant under the change in reference frame, we demand

$$
\begin{equation*}
L^{\prime}\left(\boldsymbol{v}^{\prime}\right)=L(\boldsymbol{v})+\frac{d}{d t} G(\boldsymbol{x}, t) . \tag{3.103}
\end{equation*}
$$

The only possibility is $L=\frac{1}{2} m \boldsymbol{v}^{2}$, where the constant m is the mass of the particle. Note:

$$
\begin{equation*}
L^{\prime}=\frac{1}{2} m(\boldsymbol{v}-\boldsymbol{V})^{2}=\frac{1}{2} m \boldsymbol{v}^{2}+\frac{d}{d t}\left(\frac{1}{2} m \boldsymbol{V}^{2} t-m \boldsymbol{V} \cdot \boldsymbol{x}\right)=L+\frac{d G}{d t} \tag{3.104}
\end{equation*}
$$

For N interacting particles,

$$
\begin{equation*}
L=\frac{1}{2} \sum_{a=1}^{N} m_{a}\left(\frac{d \boldsymbol{x}_{a}}{d t}\right)^{2}-U\left(\left\{\boldsymbol{x}_{a}\right\},\left\{\dot{\boldsymbol{x}}_{a}\right\}\right) \tag{3.105}
\end{equation*}
$$

Here, U is the potential energy. Generally, U is of the form

$$
\begin{equation*}
U=\sum_{a} U_{1}\left(\boldsymbol{x}_{a}\right)+\sum_{a<a^{\prime}} v\left(\boldsymbol{x}_{a}-\boldsymbol{x}_{a^{\prime}}\right) \tag{3.106}
\end{equation*}
$$

however, as we shall see, velocity-dependent potentials appear in the case of charged particles interacting with electromagnetic fields. In general, though,

$$
\begin{equation*}
L=T-U \tag{3.107}
\end{equation*}
$$

where T is the kinetic energy, and U is the potential energy.

3.7 Conserved Quantities

A conserved quantity $\Lambda(q, \dot{q}, t)$ is one which does not vary throughout the motion of the system. This means

$$
\begin{equation*}
\left.\frac{d \Lambda}{d t}\right|_{q=q(t)}=0 \tag{3.108}
\end{equation*}
$$

We shall discuss conserved quantities in detail in the chapter on Noether's Theorem, which follows.

3.7.1 Momentum conservation

The simplest case of a conserved quantity occurs when the Lagrangian does not explicitly depend on one or more of the generalized coordinates, i.e. when

$$
\begin{equation*}
F_{\sigma}=\frac{\partial L}{\partial q_{\sigma}}=0 \tag{3.109}
\end{equation*}
$$

We then say that L is cyclic in the coordinate q_{σ}. In this case, the Euler-Lagrange equations $\dot{p}_{\sigma}=F_{\sigma}$ say that the conjugate momentum p_{σ} is conserved. Consider, for example, the motion of a particle of mass m near the surface of the earth. Let (x, y) be coordinates parallel to the surface and z the height. We then have

$$
\begin{align*}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \\
& U=m g z \tag{3.110}\\
& L=T-U=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-m g z
\end{align*}
$$

Since

$$
\begin{equation*}
F_{x}=\frac{\partial L}{\partial x}=0 \quad \text { and } \quad F_{y}=\frac{\partial L}{\partial y}=0 \tag{3.111}
\end{equation*}
$$

we have that p_{x} and p_{y} are conserved, with

$$
\begin{equation*}
p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x} \quad, \quad p_{y}=\frac{\partial L}{\partial \dot{y}}=m \dot{y} . \tag{3.112}
\end{equation*}
$$

These first order equations can be integrated to yield

$$
\begin{equation*}
x(t)=x(0)+\frac{p_{x}}{m} t \quad, \quad y(t)=y(0)+\frac{p_{y}}{m} t . \tag{3.113}
\end{equation*}
$$

The z equation is of course

$$
\begin{equation*}
\dot{p}_{z}=m \ddot{z}=-m g=F_{z} \tag{3.114}
\end{equation*}
$$

with solution

$$
\begin{equation*}
z(t)=z(0)+\dot{z}(0) t-\frac{1}{2} g t^{2} . \tag{3.115}
\end{equation*}
$$

As another example, consider a particle moving in the (x, y) plane under the influence of a potential $U(x, y)=U\left(\sqrt{x^{2}+y^{2}}\right)$ which depends only on the particle's distance from the origin $\rho=\sqrt{x^{2}+y^{2}}$. The Lagrangian, expressed in two-dimensional polar coordinates (ρ, ϕ), is

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right)-U(\rho) \tag{3.116}
\end{equation*}
$$

We see that L is cyclic in the angle ϕ, hence

$$
\begin{equation*}
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m \rho^{2} \dot{\phi} \tag{3.117}
\end{equation*}
$$

is conserved. p_{ϕ} is the angular momentum of the particle about the \hat{z} axis. In the language of the calculus of variations, momentum conservation is what follows when the integrand of a functional is independent of the independent variable.

3.7.2 Energy conservation

When the integrand of a functional is independent of the dependent variable, another conservation law follows. For Lagrangian mechanics, consider the expression

$$
\begin{equation*}
H(q, \dot{q}, t)=\sum_{\sigma=1}^{n} p_{\sigma} \dot{q}_{\sigma}-L \tag{3.118}
\end{equation*}
$$

Now we take the total time derivative of H :

$$
\begin{equation*}
\frac{d H}{d t}=\sum_{\sigma=1}^{n}\left\{p_{\sigma} \ddot{q}_{\sigma}+\dot{p}_{\sigma} \dot{q}_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} \dot{q}_{\sigma}-\frac{\partial L}{\partial \dot{q}_{\sigma}} \ddot{q}_{\sigma}\right\}-\frac{\partial L}{\partial t} . \tag{3.119}
\end{equation*}
$$

We evaluate \dot{H} along the motion of the system, which entails that the terms in the curly brackets above cancel for each σ :

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}} \quad, \quad \dot{p}_{\sigma}=\frac{\partial L}{\partial q_{\sigma}} \tag{3.120}
\end{equation*}
$$

Thus, we find

$$
\begin{equation*}
\frac{d H}{d t}=-\frac{\partial L}{\partial t} \tag{3.121}
\end{equation*}
$$

which means that H is conserved whenever the Lagrangian contains no explicit time dependence. For a Lagrangian of the form

$$
\begin{equation*}
L=\sum_{a} \frac{1}{2} m_{a} \dot{\boldsymbol{r}}_{a}^{2}-U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \tag{3.122}
\end{equation*}
$$

we have that $\boldsymbol{p}_{a}=m_{a} \dot{\boldsymbol{r}}_{a}$, and

$$
\begin{equation*}
H=T+U=\sum_{a} \frac{1}{2} m_{a} \dot{\boldsymbol{r}}_{a}^{2}+U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \tag{3.123}
\end{equation*}
$$

However, it is not always the case that $H=T+U$ is the total energy, as we shall further on below.

3.8 Choosing Generalized Coordinates

Any choice of generalized coordinates will yield an equivalent set of equations of motion. However, some choices result in an apparently simpler set than others. This is often true with respect to the form of the potential energy. Additionally, certain constraints that may be present are more amenable to treatment using a particular set of generalized coordinates.

The kinetic energy T is always simple to write in Cartesian coordinates, and it is good practice, at least when one is first learning the method, to write T in Cartesian coordinates and then convert to generalized coordinates. In Cartesian coordinates, the kinetic energy of a single particle of mass m is

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) . \tag{3.124}
\end{equation*}
$$

If the motion is two-dimensional, and confined to the plane $z=$ const., one of course has $T=\frac{1}{2} m\left(\dot{x}^{2}+\right.$ \dot{y}^{2}).
Two other commonly used coordinate systems are the cylindrical and spherical systems. In cylindrical coordinates $(\rho, \phi, z), \rho$ is the radial coordinate in the (x, y) plane and ϕ is the azimuthal angle:

$$
\begin{equation*}
x=\rho \cos \phi \quad, \quad y=\rho \sin \phi \quad, \quad \dot{x}=\cos \phi \dot{\rho}-\rho \sin \phi \dot{\phi} \quad \dot{y}=\sin \phi \dot{\rho}+\rho \cos \phi \dot{\phi} \tag{3.125}
\end{equation*}
$$

and the third, orthogonal coordinate is of course z. The kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{x}^{2}\right)=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right) . \tag{3.126}
\end{equation*}
$$

When the motion is confined to a plane with $z=$ const., this coordinate system is often referred to as 'two-dimensional polar' coordinates.

In spherical coordinates $(r, \theta, \phi), r$ is the radius, θ is the polar angle, and ϕ is the azimuthal angle. On the globe, θ would be the 'colatitude', which is $\theta=\frac{\pi}{2}-\lambda$, where λ is the latitude. I.e. $\theta=0$ at the north pole. In spherical polar coordinates,

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & \dot{x}=\sin \theta \cos \phi \dot{r}+r \cos \theta \cos \phi \dot{\theta}-r \sin \theta \sin \phi \dot{\phi} \\
y=r \sin \theta \sin \phi & \dot{y}=\sin \theta \sin \phi \dot{r}+r \cos \theta \sin \phi \dot{\theta}+r \sin \theta \cos \phi \dot{\phi} \\
z=r \cos \theta & \tag{3.129}\\
\dot{z}=\cos \theta \dot{r}-r \sin \theta \dot{\theta} .
\end{array}
$$

The kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) . \tag{3.130}
\end{equation*}
$$

3.9 How to Solve Mechanics Problems

Here are some simple steps you can follow toward obtaining the equations of motion:

1. Choose a set of generalized coordinates $\left\{q_{1}, \ldots, q_{n}\right\}$.
2. Find the kinetic energy $T(q, \dot{q}, t)$, the potential energy $U(q, t)$, and the Lagrangian $L(q, \dot{q}, t)=T-U$. It is often helpful to first write the kinetic energy in Cartesian coordinates for each particle before converting to generalized coordinates.
3. Find the canonical momenta $p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}$ and the generalized forces $F_{\sigma}=\frac{\partial L}{\partial q_{\sigma}}$.
4. Identify any conserved quantities (more about this later).
5. Evaluate the time derivatives \dot{p}_{σ} and write the equations of motion $\dot{p}_{\sigma}=F_{\sigma}$. Be careful to differentiate properly, using the chain rule and the Leibniz rule where appropriate.
6. Integrate the equations of motion to obtain $\left\{q_{\sigma}(t)\right\}$ (easier said than done).

3.10 Examples

3.10.1 One-dimensional motion

For a one-dimensional mechanical system with potential energy $U(x)$,

$$
\begin{equation*}
L=T-U=\frac{1}{2} m \dot{x}^{2}-U(x) \tag{3.131}
\end{equation*}
$$

The canonical momentum is

$$
\begin{equation*}
p=\frac{\partial L}{\partial \dot{x}}=m \dot{x} \tag{3.132}
\end{equation*}
$$

and the equation of motion is

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} \quad \Rightarrow \quad m \ddot{x}=-U^{\prime}(x) \tag{3.133}
\end{equation*}
$$

which is of course $F=m a$.
Note that we can multiply the equation of motion by \dot{x} to get

$$
\begin{equation*}
0=\dot{x}\left\{m \ddot{x}+U^{\prime}(x)\right\}=\frac{d}{d t}\left\{\frac{1}{2} m \dot{x}^{2}+U(x)\right\}=\frac{d E}{d t}, \tag{3.134}
\end{equation*}
$$

where $E=T+U$.

3.10.2 Central force in two dimensions

Consider next a particle of mass m moving in two dimensions under the influence of a potential $U(\rho)$ which is a function of the distance from the origin $\rho=\sqrt{x^{2}+y^{2}}$. Clearly cylindrical ($2 d$ polar) coordinates are called for:

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right)-U(\rho) . \tag{3.135}
\end{equation*}
$$

The equations of motion are

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\rho}}\right)=\frac{\partial L}{\partial \rho} \quad \Rightarrow \quad m \ddot{\rho}=m \rho \dot{\phi}^{2}-U^{\prime}(\rho) \tag{3.136}\\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=\frac{\partial L}{\partial \phi} \quad \Rightarrow \quad \frac{d}{d t}\left(m \rho^{2} \dot{\phi}\right)=0 .
\end{align*}
$$

Note that the canonical momentum conjugate to ϕ, which is to say the angular momentum, is conserved:

$$
\begin{equation*}
p_{\phi}=m \rho^{2} \dot{\phi}=\text { const. } \tag{3.137}
\end{equation*}
$$

We can use this to eliminate $\dot{\phi}$ from the first Euler-Lagrange equation, obtaining

$$
\begin{equation*}
m \ddot{\rho}=\frac{p_{\phi}^{2}}{m \rho^{3}}-U^{\prime}(\rho) \tag{3.138}
\end{equation*}
$$

We can also write the total energy as

$$
\begin{align*}
E & =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right)+U(\rho) \\
& =\frac{1}{2} m \dot{\rho}^{2}+\frac{p_{\phi}^{2}}{2 m \rho^{2}}+U(\rho), \tag{3.139}
\end{align*}
$$

from which it may be shown that E is also a constant:

$$
\begin{equation*}
\frac{d E}{d t}=\left(m \ddot{\rho}-\frac{p_{\phi}^{2}}{m \rho^{3}}+U^{\prime}(\rho)\right) \dot{\rho}=0 \tag{3.140}
\end{equation*}
$$

We shall discuss this case in much greater detail in the coming weeks.

3.10.3 A sliding point mass on a sliding wedge

Consider the situation depicted in fig. 3.7, in which a point object of mass m slides frictionlessly along a wedge of opening angle α. The wedge itself slides frictionlessly along a horizontal surface, and its mass is M. We choose as generalized coordinates the horizontal position X of the left corner of the wedge, and the horizontal distance x from the left corner to the sliding point mass. The vertical coordinate of the sliding mass is then $y=x \tan \alpha$, where the horizontal surface lies at $y=0$. With these generalized coordinates, the kinetic energy is

$$
\begin{align*}
T & =\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} m(\dot{X}+\dot{x})^{2}+\frac{1}{2} m \dot{y}^{2} \tag{3.141}\\
& =\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}
\end{align*}
$$

The potential energy is simply

$$
\begin{equation*}
U=m g y=m g x \tan \alpha \tag{3.142}
\end{equation*}
$$

Thus, the Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}-m g x \tan \alpha \tag{3.143}
\end{equation*}
$$

Figure 3.7: A wedge of mass M and opening angle α slides frictionlessly along a horizontal surface, while a small object of mass m slides frictionlessly along the wedge.
and the equations of motion are

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{X}}\right)=\frac{\partial L}{\partial X} \quad \Rightarrow \quad(M+m) \ddot{X}+m \ddot{x}=0 \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} \quad \Rightarrow \quad m \ddot{X}+m\left(1+\tan ^{2} \alpha\right) \ddot{x}=-m g \tan \alpha . \tag{3.144}
\end{align*}
$$

At this point we can use the first of these equations to write

$$
\begin{equation*}
\ddot{X}=-\frac{m}{M+m} \ddot{x} \tag{3.145}
\end{equation*}
$$

Substituting this into the second equation, we obtain the constant accelerations

$$
\begin{equation*}
\ddot{x}=-\frac{(M+m) g \sin \alpha \cos \alpha}{M+m \sin ^{2} \alpha} \quad, \quad \ddot{X}=\frac{m g \sin \alpha \cos \alpha}{M+m \sin ^{2} \alpha} . \tag{3.146}
\end{equation*}
$$

3.10.4 A pendulum attached to a mass on a spring

Consider next the system depicted in fig. 3.8 in which a mass M moves horizontally while attached to a spring of spring constant k. Hanging from this mass is a pendulum of arm length ℓ and bob mass m.

A convenient set of generalized coordinates is (x, θ), where x is the displacement of the mass M relative to the equilibrium extension a of the spring, and θ is the angle the pendulum arm makes with respect to the vertical. Let the Cartesian coordinates of the pendulum bob be $\left(x_{1}, y_{1}\right)$. Then

$$
\begin{equation*}
x_{1}=a+x+\ell \sin \theta \quad, \quad y_{1}=-l \cos \theta . \tag{3.147}
\end{equation*}
$$

The kinetic energy is

$$
\begin{align*}
T & =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left[(\dot{x}+\ell \cos \theta \dot{\theta})^{2}+(\ell \sin \theta \dot{\theta})^{2}\right] \tag{3.148}\\
& =\frac{1}{2}(M+m) \dot{x}^{2}+\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m \ell \cos \theta \dot{x} \dot{\theta},
\end{align*}
$$

Figure 3.8: The spring-pendulum system.
and the potential energy is

$$
\begin{align*}
U & =\frac{1}{2} k x^{2}+m g y_{1} \tag{3.149}\\
& =\frac{1}{2} k x^{2}-m g \ell \cos \theta .
\end{align*}
$$

Thus,

$$
\begin{equation*}
L=\frac{1}{2}(M+m) \dot{x}^{2}+\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m \ell \cos \theta \dot{x} \dot{\theta}-\frac{1}{2} k x^{2}+m g \ell \cos \theta . \tag{3.150}
\end{equation*}
$$

The canonical momenta are

$$
\begin{align*}
& p_{x}=\frac{\partial L}{\partial \dot{x}}=(M+m) \dot{x}+m \ell \cos \theta \dot{\theta} \\
& p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m \ell \cos \theta \dot{x}+m \ell^{2} \dot{\theta}, \tag{3.151}
\end{align*}
$$

and the canonical forces are

$$
\begin{align*}
& F_{x}=\frac{\partial L}{\partial x}=-k x \tag{3.152}\\
& F_{\theta}=\frac{\partial L}{\partial \theta}=-m \ell \sin \theta \dot{x} \dot{\theta}-m g \ell \sin \theta
\end{align*}
$$

The equations of motion then yield

$$
\begin{align*}
(M+m) \ddot{x}+m \ell \cos \theta \ddot{\theta}-m \ell \sin \theta \dot{\theta}^{2} & =-k x \\
m \ell \cos \theta \ddot{x}+m \ell^{2} \ddot{\theta} & =-m g \ell \sin \theta \tag{3.153}
\end{align*}
$$

Small Oscillations : If we assume both x and θ are small, we may write $\sin \theta \approx \theta$ and $\cos \theta \approx 1$, in which case the equations of motion may be linearized to

$$
\begin{align*}
(M+m) \ddot{x}+m \ell \ddot{\theta}+k x & =0 \\
m \ell \ddot{x}+m \ell^{2} \ddot{\theta}+m g \ell \theta & =0 . \tag{3.154}
\end{align*}
$$

If we define

$$
\begin{equation*}
u \equiv \frac{x}{\ell} \quad, \quad \alpha \equiv \frac{m}{M} \quad, \quad \omega_{0}^{2} \equiv \frac{k}{M} \quad, \quad \omega_{1}^{2} \equiv \frac{g}{\ell}, \tag{3.155}
\end{equation*}
$$

then may be linearized to

$$
\begin{align*}
(1+\alpha) \ddot{u}+\alpha \ddot{\theta}+\omega_{0}^{2} u & =0 \\
\ddot{u}+\ddot{\theta}+\omega_{1}^{2} \theta & =0 . \tag{3.156}
\end{align*}
$$

We can solve by writing

$$
\begin{equation*}
\binom{u(t)}{\theta(t)}=\binom{a}{b} e^{-i \omega t} \tag{3.157}
\end{equation*}
$$

in which case

$$
\left(\begin{array}{cc}
\omega_{0}^{2}-(1+\alpha) \omega^{2} & -\alpha \omega^{2} \tag{3.158}\\
-\omega^{2} & \omega_{1}^{2}-\omega^{2}
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

In order to have a nontrivial solution (i.e. without $a=b=0$), the determinant of the above 2×2 matrix must vanish. This gives a condition on ω^{2}, with solutions

$$
\begin{equation*}
\omega_{ \pm}^{2}=\frac{1}{2}\left[\omega_{0}^{2}+(1+\alpha) \omega_{1}^{2}\right] \pm \frac{1}{2} \sqrt{\left[\omega_{0}^{2}-(1+\alpha) \omega_{1}^{2}\right]^{2}+4 \alpha \omega_{0}^{2} \omega_{1}^{2}} \tag{3.159}
\end{equation*}
$$

3.10.5 The double pendulum

As yet another example of the generalized coordinate approach to Lagrangian dynamics, consider the double pendulum system, sketched in fig. 3.9. We choose as generalized coordinates the two angles θ_{1} and θ_{2}. In order to evaluate the Lagrangian, we must obtain the kinetic and potential energies in terms of the generalized coordinates $\left\{\theta_{1}, \theta_{2}\right\}$ and their corresponding velocities $\left\{\dot{\theta}_{1}, \dot{\theta}_{2}\right\}$.
In Cartesian coordinates,

$$
\begin{align*}
& T=\frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \tag{3.160}\\
& U=m_{1} g y_{1}+m_{2} g y_{2}
\end{align*}
$$

We therefore express the Cartesian coordinates $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ in terms of the generalized coordinates $\left\{\theta_{1}, \theta_{2}\right\}$:

$$
\begin{array}{ll}
x_{1}=+\ell_{1} \sin \theta_{1} \\
y_{1}=-\ell_{1} \cos \theta_{1} & , \tag{3.161}
\end{array} \quad x_{2}=\ell_{1} \sin \theta_{1}+\ell_{2} \sin \theta_{2} . \quad y_{2}=-\ell_{1} \cos \theta_{1}-\ell_{2} \cos \theta_{2} .
$$

Thus, the velocities are

$$
\begin{array}{lll}
\dot{x}_{1}=\ell_{1} \dot{\theta}_{1} \cos \theta_{1} \\
\dot{y}_{1}=\ell_{1} \dot{\theta}_{1} \sin \theta_{1} & , & \dot{x}_{2}=\ell_{1} \dot{\theta}_{1} \cos \theta_{1}+\ell_{2} \dot{\theta}_{2} \cos \theta_{2} \tag{3.162}\\
\dot{y}_{2}=\ell_{1} \dot{\theta}_{1} \sin \theta_{1}+\ell_{2} \dot{\theta}_{2} \sin \theta_{2}
\end{array} .
$$

Figure 3.9: The double pendulum, with generalized coordinates θ_{1} and θ_{2}. All motion is confined to a single plane.

Thus,

$$
\begin{align*}
& T=\frac{1}{2} m_{1} \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2}\left\{\ell_{1}^{2} \dot{\theta}_{1}^{2}+2 \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\ell_{2}^{2} \dot{\theta}_{2}^{2}\right\} \\
& U=-m_{1} g \ell_{1} \cos \theta_{1}-m_{2} g \ell_{1} \cos \theta_{1}-m_{2} g \ell_{2} \cos \theta_{2}, \tag{3.163}
\end{align*}
$$

and

$$
\begin{align*}
L=T-U=\frac{1}{2}\left(m_{1}\right. & \left.+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}^{2}+m_{2} \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\frac{1}{2} m_{2} \ell_{2}^{2} \dot{\theta}_{2}^{2} \\
& +\left(m_{1}+m_{2}\right) g \ell_{1} \cos \theta_{1}+m_{2} g \ell_{2} \cos \theta_{2} \tag{3.164}
\end{align*}
$$

The generalized (canonical) momenta are

$$
\begin{align*}
& p_{1}=\frac{\partial L}{\partial \dot{\theta}_{1}}=\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{2} \\
& p_{2}=\frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1}+m_{2} \ell_{2}^{2} \dot{\theta}_{2} \tag{3.165}
\end{align*}
$$

and the equations of motion are

$$
\begin{align*}
\dot{p}_{1} & =\left(m_{1}+m_{2}\right) \ell_{1}^{2} \ddot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \ddot{\theta}_{2}-m_{2} \ell_{1} \ell_{2} \sin \left(\theta_{1}-\theta_{2}\right)\left(\dot{\theta}_{1}-\dot{\theta}_{2}\right) \dot{\theta}_{2} \\
& =-\left(m_{1}+m_{2}\right) g \ell_{1} \sin \theta_{1}-m_{2} \ell_{1} \ell_{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}=\frac{\partial L}{\partial \theta_{1}} \tag{3.166}
\end{align*}
$$

and

$$
\begin{align*}
\dot{p}_{2} & =m_{2} \ell_{1} \ell_{2} \cos \left(\theta_{1}-\theta_{2}\right) \ddot{\theta}_{1}-m_{2} \ell_{1} \ell_{2} \sin \left(\theta_{1}-\theta_{2}\right)\left(\dot{\theta}_{1}-\dot{\theta}_{2}\right) \dot{\theta}_{1}+m_{2} \ell_{2}^{2} \ddot{\theta}_{2} \\
& =-m_{2} g \ell_{2} \sin \theta_{2}+m_{2} \ell_{1} \ell_{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}=\frac{\partial L}{\partial \theta_{2}} . \tag{3.167}
\end{align*}
$$

We therefore find

$$
\begin{array}{r}
\ell_{1} \ddot{\theta}_{1}+\frac{m_{2} \ell_{2}}{m_{1}+m_{2}} \cos \left(\theta_{1}-\theta_{2}\right) \ddot{\theta}_{2}+\frac{m_{2} \ell_{2}}{m_{1}+m_{2}} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{2}^{2}+g \sin \theta_{1}=0 \tag{3.168}\\
\ell_{1} \cos \left(\theta_{1}-\theta_{2}\right) \ddot{\theta}_{1}+\ell_{2} \ddot{\theta}_{2}-\ell_{1} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1}^{2}+g \sin \theta_{2}=0
\end{array}
$$

Small Oscillations : The equations of motion are coupled, nonlinear second order ODEs. When the system is close to equilibrium, the amplitudes of the motion are small, and we may expand in powers of the θ_{1} and θ_{2}. The linearized equations of motion are then

$$
\begin{align*}
\ddot{\theta}_{1}+\alpha \beta \ddot{\theta}_{2}+\omega_{0}^{2} \theta_{1} & =0 \\
\ddot{\theta}_{1}+\beta \ddot{\theta}_{2}+\omega_{0}^{2} \theta_{2} & =0 \tag{3.169}
\end{align*}
$$

where we have defined

$$
\begin{equation*}
\alpha \equiv \frac{m_{2}}{m_{1}+m_{2}} \quad, \quad \beta \equiv \frac{\ell_{2}}{\ell_{1}} \quad, \quad \omega_{0}^{2} \equiv \frac{g}{\ell_{1}} . \tag{3.170}
\end{equation*}
$$

We can solve this coupled set of equations by a nifty trick. Let's take a linear combination of the first equation plus an undetermined coefficient, r, times the second:

$$
\begin{equation*}
(1+r) \ddot{\theta}_{1}+(\alpha+r) \beta \ddot{\theta}_{2}+\omega_{0}^{2}\left(\theta_{1}+r \theta_{2}\right)=0 \tag{3.171}
\end{equation*}
$$

We now demand that the ratio of the coefficients of θ_{2} and θ_{1} is the same as the ratio of the coefficients of $\ddot{\theta}_{2}$ and $\ddot{\theta}_{1}$:

$$
\begin{equation*}
\frac{(\alpha+r) \beta}{1+r}=r \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2}(\beta-1) \pm \frac{1}{2} \sqrt{(1-\beta)^{2}+4 \alpha \beta} \tag{3.172}
\end{equation*}
$$

When $r=r_{ \pm}$, the equation of motion may be written

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(\theta_{1}+r_{ \pm} \theta_{2}\right)=-\frac{\omega_{0}^{2}}{1+r_{ \pm}}\left(\theta_{1}+r_{ \pm} \theta_{2}\right) \tag{3.173}
\end{equation*}
$$

and defining the (unnormalized) normal modes

$$
\begin{equation*}
\xi_{ \pm} \equiv\left(\theta_{1}+r_{ \pm} \theta_{2}\right) \tag{3.174}
\end{equation*}
$$

we find

$$
\begin{equation*}
\ddot{\xi}_{ \pm}+\omega_{ \pm}^{2} \xi_{ \pm}=0 \tag{3.175}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega_{ \pm}=\frac{\omega_{0}}{\sqrt{1+r_{ \pm}}} \tag{3.176}
\end{equation*}
$$

Thus, by switching to the normal coordinates, we decoupled the equations of motion, and identified the two normal frequencies of oscillation. We shall have much more to say about small oscillations further below.

For example, with $\ell_{1}=\ell_{2}=\ell$ and $m_{1}=m_{2}=m$, we have $\alpha=\frac{1}{2}$, and $\beta=1$, in which case

$$
\begin{equation*}
r_{ \pm}= \pm \frac{1}{\sqrt{2}} \quad, \quad \xi_{ \pm}=\theta_{1} \pm \frac{1}{\sqrt{2}} \theta_{2} \quad, \quad \omega_{ \pm}=\sqrt{2 \mp \sqrt{2}} \sqrt{\frac{g}{\ell}} . \tag{3.177}
\end{equation*}
$$

Note that the oscillation frequency for the 'in-phase' mode ξ_{+}is low, and that for the 'out of phase' mode ξ_{-}is high.

3.10.6 The thingy

Four massless rods of length L are hinged together at their ends to form a rhombus. A particle of mass M is attached to each vertex. The opposite corners are joined by springs of spring constant k. In the square configuration, the strings are unstretched. The motion is confined to a plane, and the particles move only along the diagonals of the rhombus. Introduce suitable generalized coordinates and find the Lagrangian of the system. Deduce the equations of motion and find the frequency of small oscillations about equilibrium.

Solution

The rhombus is depicted in figure 3.10. Let a be the equilibrium length of the springs; clearly $L=\frac{a}{\sqrt{2}}$. Let ϕ be half of one of the opening angles, as shown. Then the masses are located at $(\pm X, 0)$ and $(0, \pm Y)$, with $X=\frac{a}{\sqrt{2}} \cos \phi$ and $Y=\frac{a}{\sqrt{2}} \sin \phi$. The spring extensions are $\delta X=2 X-a$ and $\delta Y=2 Y-a$. The kinetic and potential energies are therefore

$$
\begin{equation*}
T=M\left(\dot{X}^{2}+\dot{Y}^{2}\right)=\frac{1}{2} M a^{2} \dot{\phi}^{2} \tag{3.178}
\end{equation*}
$$

and

$$
\begin{align*}
U & =\frac{1}{2} k(\delta X)^{2}+\frac{1}{2} k(\delta Y)^{2} \\
& =\frac{1}{2} k a^{2}\left\{(\sqrt{2} \cos \phi-1)^{2}+(\sqrt{2} \sin \phi-1)^{2}\right\} \tag{3.179}\\
& =\frac{1}{2} k a^{2}\{3-2 \sqrt{2}(\cos \phi+\sin \phi)\} .
\end{align*}
$$

Note that minimizing $U(\phi)$ gives $\sin \phi=\cos \phi$, i.e. $\phi_{\text {eq }}=\frac{\pi}{4}$. The Lagrangian is then

$$
\begin{equation*}
L=T-U=\frac{1}{2} M a^{2} \dot{\phi}^{2}+\sqrt{2} k a^{2}(\cos \phi+\sin \phi)+\text { const. } \tag{3.180}
\end{equation*}
$$

Figure 3.10: The thingy: a rhombus with opening angles 2ϕ and $\pi-2 \phi$.

The equations of motion are

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}}=\frac{\partial L}{\partial \phi} \quad \Rightarrow \quad M a^{2} \ddot{\phi}=\sqrt{2} k a^{2}(\cos \phi-\sin \phi) \tag{3.181}
\end{equation*}
$$

It's always smart to expand about equilibrium, so let's write $\phi=\frac{\pi}{4}+\delta$, which leads to

$$
\begin{equation*}
\ddot{\delta}+\omega_{0}^{2} \sin \delta=0 \tag{3.182}
\end{equation*}
$$

with $\omega_{0}=\sqrt{2 k / M}$. This is the equation of a pendulum! Linearizing gives $\ddot{\delta}+\omega_{0}^{2} \delta=0$, so the small oscillation frequency is just ω_{0}.

3.11 The Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechanical system. Define the virial,

$$
\begin{equation*}
G(q, p)=\sum_{\sigma} p_{\sigma} q_{\sigma} . \tag{3.183}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{d G}{d t} & =\sum_{\sigma}\left(\dot{p}_{\sigma} q_{\sigma}+p_{\sigma} \dot{q}_{\sigma}\right) \\
& =\sum_{\sigma} q_{\sigma} F_{\sigma}+\sum_{\sigma} \dot{q}_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \tag{3.184}
\end{align*}
$$

Now suppose that $T=\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} \mathrm{T}_{\sigma \sigma^{\prime}}(q) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}$ is homogeneous of degree $k=2$ in \dot{q}, and that U is homogeneous of degree zero in \dot{q}. Then

$$
\begin{equation*}
\sum_{\sigma} \dot{q}_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}}=\sum_{\sigma} \dot{q}_{\sigma} \frac{\partial T}{\partial \dot{q}_{\sigma}}=2 T, \tag{3.185}
\end{equation*}
$$

which follows from Euler's theorem on homogeneous functions.
Now consider the time average of \dot{G} over a period τ :

$$
\begin{equation*}
\left\langle\frac{d G}{d t}\right\rangle=\frac{1}{\tau} \int_{0}^{\tau} d t \frac{d G}{d t}=\frac{1}{\tau}[G(\tau)-G(0)] \tag{3.186}
\end{equation*}
$$

If $G(t)$ is bounded, then in the limit $\tau \rightarrow \infty$ we must have $\langle\dot{G}\rangle=0$. Any bounded motion, such as the orbit of the earth around the Sun, will result in $\langle\dot{G}\rangle_{\tau \rightarrow \infty}=0$. But then

$$
\begin{equation*}
\left\langle\frac{d G}{d t}\right\rangle=2\langle T\rangle+\left\langle\sum_{\sigma} q_{\sigma} F_{\sigma}\right\rangle=0 \tag{3.187}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\langle T\rangle=-\frac{1}{2}\left\langle\sum_{\sigma} q_{\sigma} F_{\sigma}\right\rangle=\left\langle\frac{1}{2} \sum_{i} \boldsymbol{x}_{i} \cdot \nabla_{i} U\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right\rangle=\frac{1}{2} k\langle U\rangle \tag{3.188}
\end{equation*}
$$

where above equation pertains to homogeneous potentials of degree k in the Cartesian coordinates ${ }^{2}$. Finally, since $T+U=E$ is conserved, we have

$$
\begin{equation*}
\langle T\rangle=\frac{k E}{k+2} \quad, \quad\langle U\rangle=\frac{2 E}{k+2} \tag{3.189}
\end{equation*}
$$

3.12 Noether's Theorem

3.12.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential $U(r)$. The potential is a function only of the magnitude of the vector \boldsymbol{r}. The Lagrangian is then

$$
\begin{equation*}
L=T-U=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r), \tag{3.190}
\end{equation*}
$$

[^4]where we have chosen generalized coordinates (r, ϕ). The momentum conjugate to ϕ is $p_{\phi}=m r^{2} \dot{\phi}$. The generalized force F_{ϕ} clearly vanishes, since L does not depend on the coordinate ϕ. (One says that L is 'cyclic' in ϕ.) Thus, although $r=r(t)$ and $\phi=\phi(t)$ will in general be time-dependent, the combination $p_{\phi}=m r^{2} \dot{\phi}$ is constant. This is the conserved angular momentum about the $\hat{\boldsymbol{z}}$ axis.

If instead the particle moved in a potential $U(y)$, independent of x, then writing

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U(y), \tag{3.191}
\end{equation*}
$$

we have that the momentum $p_{x}=\partial L / \partial \dot{x}=m \dot{x}$ is conserved, because the generalized force $F_{x}=$ $\partial L / \partial x=0$ vanishes. This situation pertains in a uniform gravitational field, with $U(x, y)=m g y$, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry, there is an associated conserved charge. (The terminology 'charge' is from field theory.) Indeed, this is a rigorous result, known as Noether's Theorem. Consider a one-parameter family of transformations,

$$
\begin{equation*}
q_{\sigma} \longrightarrow \tilde{q}_{\sigma}(q, \zeta) \tag{3.192}
\end{equation*}
$$

where ζ is the continuous parameter. Suppose further (without loss of generality) that at $\zeta=0$ this transformation is the identity, i.e. $\tilde{q}_{\sigma}(q, 0)=q_{\sigma}$. The transformation may be nonlinear in the generalized coordinates. Suppose further that the Lagrangian L is invariant under the replacement $q \rightarrow \tilde{q}$. Then we must have

$$
\begin{align*}
0=\left.\frac{d}{d \zeta}\right|_{\zeta=0} L(\tilde{q}, \dot{\tilde{q}}, t) & =\left.\frac{\partial L}{\partial q_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \dot{\tilde{q}}_{\sigma}}{\partial \zeta}\right|_{\zeta=0} \\
& =\left.\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right) \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}+\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{d}{d t}\left(\frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0} \tag{3.193}\\
& =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0}
\end{align*}
$$

Thus, there is an associated conserved charge

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0} . \tag{3.194}
\end{equation*}
$$

3.12.2 Examples of one-parameter families of transformations

Consider the Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U\left(\sqrt{x^{2}+y^{2}}\right) . \tag{3.195}
\end{equation*}
$$

In two-dimensional polar coordinates, we have

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}\right)-U(\rho) \tag{3.196}
\end{equation*}
$$

and we may now define

$$
\begin{equation*}
\tilde{\rho}(\zeta)=\rho \quad, \quad \tilde{\phi}(\zeta)=\phi+\zeta . \tag{3.197}
\end{equation*}
$$

Note that $\tilde{\rho}(0)=\rho$ and $\tilde{\phi}(0)=\phi$, i.e. the transformation is the identity when $\zeta=0$. We now have

$$
\begin{equation*}
\Lambda=\left.\sum_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}=\left.\frac{\partial L}{\partial \dot{\rho}} \frac{\partial \tilde{\rho}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta}\right|_{\zeta=0}=m \rho^{2} \dot{\phi} . \tag{3.198}
\end{equation*}
$$

Another way to derive the same result which is somewhat instructive is to work out the transformation in Cartesian coordinates. We then have

$$
\begin{align*}
& \tilde{x}(\zeta)=x \cos \zeta-y \sin \zeta \\
& \tilde{y}(\zeta)=x \sin \zeta+y \cos \zeta . \tag{3.199}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial \tilde{x}}{\partial \zeta}=-\tilde{y} \quad, \quad \frac{\partial \tilde{y}}{\partial \zeta}=\tilde{x} \tag{3.200}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{x}} \frac{\partial \tilde{x}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{y}} \frac{\partial \tilde{y}}{\partial \zeta}\right|_{\zeta=0}=m(x \dot{y}-y \dot{x}) \tag{3.201}
\end{equation*}
$$

But

$$
\begin{equation*}
m(x \dot{y}-y \dot{x})=m \hat{\boldsymbol{z}} \cdot \boldsymbol{\rho} \times \dot{\boldsymbol{\rho}}=m \rho^{2} \dot{\phi} . \tag{3.202}
\end{equation*}
$$

As another example, consider the potential

$$
\begin{equation*}
U(\rho, \phi, z)=V(\rho, a \phi+z) \tag{3.203}
\end{equation*}
$$

where (ρ, ϕ, z) are cylindrical coordinates for a particle of mass m, and where a is a constant with dimensions of length. The Lagrangian is

$$
\begin{equation*}
\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)-V(\rho, a \phi+z) . \tag{3.204}
\end{equation*}
$$

This model possesses a helical symmetry, with a one-parameter family

$$
\begin{align*}
& \tilde{\rho}(\zeta)=\rho \\
& \tilde{\phi}(\zeta)=\phi+\zeta \tag{3.205}\\
& \tilde{z}(\zeta)=z-\zeta a .
\end{align*}
$$

Note that

$$
\begin{equation*}
a \tilde{\phi}+\tilde{z}=a \phi+z \tag{3.206}
\end{equation*}
$$

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter family of transformations. The conserved charge for this symmetry is

$$
\begin{equation*}
\Lambda=\left.\frac{\partial L}{\partial \dot{\rho}} \frac{\partial \tilde{\rho}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial L}{\partial \dot{z}} \frac{\partial \tilde{z}}{\partial \zeta}\right|_{\zeta=0}=m \rho^{2} \dot{\phi}-m a \dot{z} \tag{3.207}
\end{equation*}
$$

We can check explicitly that Λ is conserved, using the equations of motion

$$
\begin{gather*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=\frac{d}{d t}\left(m \rho^{2} \dot{\phi}\right)=\frac{\partial L}{\partial \phi}=-a \frac{\partial V}{\partial z} \tag{3.208}\\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{z}}\right)=\frac{d}{d t}(m \dot{z})=\frac{\partial L}{\partial z}=-\frac{\partial V}{\partial z}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\dot{\Lambda}=\frac{d}{d t}\left(m \rho^{2} \dot{\phi}\right)-a \frac{d}{d t}(m \dot{z})=0 \tag{3.209}
\end{equation*}
$$

3.12.3 Conservation of linear and angular momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation of all particles in the $\hat{\boldsymbol{n}}$ direction. Then our one-parameter family of transformations is given by

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{a}=\boldsymbol{x}_{a}+\zeta \hat{\boldsymbol{n}}, \tag{3.210}
\end{equation*}
$$

and the associated conserved Noether charge is

$$
\begin{equation*}
\Lambda=\sum_{a} \frac{\partial L}{\partial \dot{\boldsymbol{x}}_{a}} \cdot \hat{\boldsymbol{n}}=\hat{\boldsymbol{n}} \cdot \boldsymbol{P} \tag{3.211}
\end{equation*}
$$

where $\boldsymbol{P}=\sum_{a} \boldsymbol{p}_{a}$ is the total momentum of the system.
If the Lagrangian of a mechanical system is invariant under rotations about an axis $\hat{\boldsymbol{n}}$, then

$$
\begin{align*}
\tilde{\boldsymbol{x}}_{a} & =R(\zeta, \hat{\boldsymbol{n}}) \boldsymbol{x}_{a} \\
& =\boldsymbol{x}_{a}+\zeta \hat{\boldsymbol{n}} \times \boldsymbol{x}_{a}+\mathcal{O}\left(\zeta^{2}\right) \tag{3.212}
\end{align*}
$$

where we have expanded the rotation matrix $R(\zeta, \hat{\boldsymbol{n}})$ in powers of ζ. The conserved Noether charge associated with this symmetry is

$$
\begin{equation*}
\Lambda=\sum_{a} \frac{\partial L}{\partial \dot{\boldsymbol{x}}_{a}} \cdot \hat{\boldsymbol{n}} \times \boldsymbol{x}_{a}=\hat{\boldsymbol{n}} \cdot \sum_{a} \boldsymbol{x}_{a} \times \boldsymbol{p}_{a}=\hat{\boldsymbol{n}} \cdot \boldsymbol{L} \tag{3.213}
\end{equation*}
$$

where L is the total angular momentum of the system.

3.12.4 Invariance of L vs. Invariance of S

Observant readers might object that demanding invariance of L is too strict. We should instead be demanding invariance of the action S^{3}. Suppose S is invariant under

$$
\begin{align*}
t & \rightarrow \tilde{t}(q, t, \zeta) \tag{3.214}\\
q_{\sigma}(t) & \rightarrow \tilde{q}_{\sigma}(q, t, \zeta) .
\end{align*}
$$

[^5]Then invariance of S means

$$
\begin{equation*}
S=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t)=\int_{\tilde{t}_{a}}^{\tilde{t}_{b}} d t L(\tilde{q}, \dot{\tilde{q}}, t) \tag{3.215}
\end{equation*}
$$

Note that t is a dummy variable of integration, so it doesn't matter whether we call it t or \tilde{t}. The endpoints of the integral, however, do change under the transformation. Now consider an infinitesimal transformation, for which $\delta t=\tilde{t}-t$ and $\delta q=\tilde{q}(\tilde{t})-q(t)$ are both small. Thus,

$$
\begin{equation*}
S=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t)=\int_{t_{a}+\delta t_{a}}^{t_{b}+\delta t_{b}} d t\left\{L(q, \dot{q}, t)+\frac{\partial L}{\partial q_{\sigma}} \bar{\delta} q_{\sigma}+\frac{\partial L}{\partial \dot{q}_{\sigma}} \bar{\delta} \dot{q}_{\sigma}+\ldots\right\} \tag{3.216}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{\delta} q_{\sigma}(t) & \equiv \tilde{q}_{\sigma}(t)-q_{\sigma}(t) \\
& =\tilde{q}_{\sigma}(\tilde{t})-\tilde{q}_{\sigma}(\tilde{t})+\tilde{q}_{\sigma}(t)-q_{\sigma}(t) \tag{3.217}\\
& =\delta q_{\sigma}-\dot{q}_{\sigma} \delta t+\mathcal{O}(\delta q \delta t)
\end{align*}
$$

Subtracting eqn. 3.216 from eqn. 3.215, we obtain

$$
\begin{align*}
0 & =L_{b} \delta t_{b}-L_{a} \delta t_{a}+\left.\frac{\partial L}{\partial \dot{q}_{\sigma}}\right|_{b} \bar{\delta} q_{\sigma, b}-\left.\frac{\partial L}{\partial \dot{q}_{\sigma}}\right|_{a} \bar{\delta} q_{\sigma, a}+\int_{t_{a}+\delta t_{a}}^{t_{b}+\delta t_{b}} d t\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)\right\} \bar{\delta} q_{\sigma}(t) \tag{3.218}\\
& =\int_{t_{a}}^{t_{b}} d t \frac{d}{d t}\left\{\left(L-\frac{\partial L}{\partial \dot{q}_{\sigma}} \dot{q}_{\sigma}\right) \delta t+\frac{\partial L}{\partial \dot{q}_{\sigma}} \delta q_{\sigma}\right\}
\end{align*}
$$

where $L_{a, b}$ is $L(q, \dot{q}, t)$ evaluated at $t=t_{a, b}$. Thus, if $\zeta \equiv \delta \zeta$ is infinitesimal, and

$$
\begin{align*}
\delta t & =A(q, t) \delta \zeta \tag{3.219}\\
\delta q_{\sigma} & =B_{\sigma}(q, t) \delta \zeta
\end{align*}
$$

then the conserved charge is

$$
\begin{align*}
\Lambda & =\left(L-\frac{\partial L}{\partial \dot{q}_{\sigma}} \dot{q}_{\sigma}\right) A(q, t)+\frac{\partial L}{\partial \dot{q}_{\sigma}} B_{\sigma}(q, t) \tag{3.220}\\
& =-H(q, p, t) A(q, t)+p_{\sigma} B_{\sigma}(q, t) .
\end{align*}
$$

Thus, when $A=0$, we recover our earlier results, obtained by assuming invariance of L. Note that conservation of H follows from time translation invariance: $t \rightarrow t+\zeta$, for which $A=1$ and $B_{\sigma}=0$. Here we have written

$$
\begin{equation*}
H=p_{\sigma} \dot{q}_{\sigma}-L \tag{3.221}
\end{equation*}
$$

and expressed it in terms of the momenta p_{σ}, the coordinates q_{σ}, and time $t . H$ is called the Hamiltonian.

3.13 The Hamiltonian

3.13.1 From Lagrangian to Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical momentum conjugate to the generalized coordinate q_{σ} is

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}} . \tag{3.222}
\end{equation*}
$$

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the Legendre transform ${ }^{4}$ of L :

$$
\begin{equation*}
H(q, p, t)=\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma}-L . \tag{3.223}
\end{equation*}
$$

Let's examine the differential of H :

$$
\begin{align*}
d H & =\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}+p_{\sigma} d \dot{q}_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}-\frac{\partial L}{\partial \dot{q}_{\sigma}} d \dot{q}_{\sigma}\right)-\frac{\partial L}{\partial t} d t \\
& =\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}\right)-\frac{\partial L}{\partial t} d t \tag{3.224}
\end{align*}
$$

where we have invoked the definition of p_{σ} to cancel the coefficients of $d \dot{q}_{\sigma}$. Since $\dot{p}_{\sigma}=\partial L / \partial q_{\sigma}$, we have Hamilton's equations of motion,

$$
\begin{equation*}
\dot{q}_{\sigma}=\frac{\partial H}{\partial p_{\sigma}} \quad, \quad \dot{p}_{\sigma}=-\frac{\partial H}{\partial q_{\sigma}} . \tag{3.225}
\end{equation*}
$$

Thus, we can write

$$
\begin{equation*}
d H=\sum_{\sigma}\left(\dot{q}_{\sigma} d p_{\sigma}-\dot{p}_{\sigma} d q_{\sigma}\right)-\frac{\partial L}{\partial t} d t . \tag{3.226}
\end{equation*}
$$

Dividing by $d t$, we obtain

$$
\begin{equation*}
\frac{d H}{d t}=-\frac{\partial L}{\partial t} \tag{3.227}
\end{equation*}
$$

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever there is no explicit time dependence to L.
Example \#1 : For a simple $d=1$ system with $L=\frac{1}{2} m \dot{x}^{2}-U(x)$, we have $p=m \dot{x}$ and

$$
\begin{equation*}
H=p \dot{x}-L=\frac{1}{2} m \dot{x}^{2}+U(x)=\frac{p^{2}}{2 m}+U(x) \tag{3.228}
\end{equation*}
$$

Example \#2 : Consider now the mass point - wedge system analyzed above, with

$$
\begin{equation*}
L=\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}-m g x \tan \alpha \tag{3.229}
\end{equation*}
$$

[^6]The canonical momenta are

$$
\begin{align*}
P & =\frac{\partial L}{\partial \dot{X}}=(M+m) \dot{X}+m \dot{x} \tag{3.230}\\
p & =\frac{\partial L}{\partial \dot{x}}=m \dot{X}+m\left(1+\tan ^{2} \alpha\right) \dot{x}
\end{align*}
$$

The Hamiltonian is given by

$$
\begin{align*}
H & =P \dot{X}+p \dot{x}-L \\
& =\frac{1}{2}(M+m) \dot{X}^{2}+m \dot{X} \dot{x}+\frac{1}{2} m\left(1+\tan ^{2} \alpha\right) \dot{x}^{2}+m g x \tan \alpha . \tag{3.231}
\end{align*}
$$

However, this is not quite H, since $H=H(X, x, P, p, t)$ must be expressed in terms of the coordinates and the momenta and not the coordinates and velocities. So we must eliminate \dot{X} and \dot{x} in favor of P and p. We do this by inverting the relations

$$
\binom{P}{p}=\left(\begin{array}{cc}
M+m & m \tag{3.232}\\
m & m\left(1+\tan ^{2} \alpha\right)
\end{array}\right)\binom{\dot{X}}{\dot{x}}
$$

to obtain

$$
\binom{\dot{X}}{\dot{x}}=\frac{1}{m\left(M+(M+m) \tan ^{2} \alpha\right)}\left(\begin{array}{cc}
m\left(1+\tan ^{2} \alpha\right) & -m \tag{3.233}\\
-m & M+m
\end{array}\right)\binom{P}{p} .
$$

Substituting into 3.231, we obtain

$$
\begin{equation*}
H=\frac{M+m}{2 m} \frac{P^{2} \cos ^{2} \alpha}{M+m \sin ^{2} \alpha}-\frac{P p \cos ^{2} \alpha}{M+m \sin ^{2} \alpha}+\frac{p^{2}}{2\left(M+m \sin ^{2} \alpha\right)}+m g x \tan \alpha . \tag{3.234}
\end{equation*}
$$

Notice that $\dot{P}=0$ since $\frac{\partial L}{\partial X}=0 . P$ is the total horizontal momentum of the system (wedge plus particle) and it is conserved.

3.13.2 Is $H=T+U$?

The most general form of the kinetic energy is

$$
\begin{align*}
T & =T_{2}+T_{1}+T_{0} \\
& =\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)}(q, t) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+T^{(0)}(q, t), \tag{3.235}
\end{align*}
$$

where $T^{(n)}(q, \dot{q}, t)$ is homogeneous of degree n in the velocities ${ }^{5}$. We assume a potential energy of the form

$$
\begin{align*}
U & =U_{1}+U_{0} \tag{3.236}\\
& =U_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+U^{(0)}(q, t),
\end{align*}
$$

[^7]which allows for velocity-dependent forces, as we have with charged particles moving in an electromagnetic field. The Lagrangian is then
\[

$$
\begin{equation*}
L=T-U=\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)}(q, t) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}+T^{(0)}(q, t)-U_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma}-U^{(0)}(q, t) \tag{3.237}
\end{equation*}
$$

\]

The canonical momentum conjugate to q_{σ} is

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}=T_{\sigma \sigma^{\prime}}^{(2)} \dot{\sigma}_{\sigma^{\prime}}+T_{\sigma}^{(1)}(q, t)-U_{\sigma}^{(1)}(q, t) \tag{3.238}
\end{equation*}
$$

which is inverted to give

$$
\begin{equation*}
\dot{q}_{\sigma}=T_{\sigma \sigma^{\prime}}^{(2)^{-1}}\left(p_{\sigma^{\prime}}-T_{\sigma^{\prime}}^{(1)}+U_{\sigma^{\prime}}^{(1)}\right) . \tag{3.239}
\end{equation*}
$$

The Hamiltonian is then

$$
\begin{align*}
H & =p_{\sigma} \dot{q}_{\sigma}-L \\
& =\frac{1}{2} T_{\sigma \sigma^{\prime}}^{(2)-1}\left(p_{\sigma}-T_{\sigma}^{(1)}+U_{\sigma}^{(1)}\right)\left(p_{\sigma^{\prime}}-T_{\sigma^{\prime}}^{(1)}+U_{\sigma^{\prime}}^{(1)}\right)-T_{0}+U_{0} \tag{3.240}\\
& =T_{2}-T_{0}+U_{0} .
\end{align*}
$$

If T_{0}, T_{1}, and U_{1} vanish, i.e. if $T(q, \dot{q}, t)$ is a homogeneous function of degree two in the generalized velocities, and $U(q, t)$ is velocity-independent, then $H=T+U$. But if T_{0} or T_{1} is nonzero, or the potential is velocity-dependent, then $H \neq T+U$.

3.13.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is further constrained to rotate with angular velocity $\dot{\phi}=\omega$ about the $\hat{\boldsymbol{z}}$-axis, as shown in fig. 3.11.

The most convenient set of generalized coordinates is spherical polar (r, θ, ϕ), in which case

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) \tag{3.241}\\
& =\frac{1}{2} m a^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right) .
\end{align*}
$$

Thus, $T_{2}=\frac{1}{2} m a^{2} \dot{\theta}^{2}$ and $T_{0}=\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta$. The potential energy is $U(\theta)=m g a(1-\cos \theta)$. The momentum conjugate to θ is $p_{\theta}=m a^{2} \dot{\theta}$, and thus

$$
\begin{align*}
H\left(\theta, p_{\theta}\right) & =T_{2}-T_{0}+U \\
& =\frac{1}{2} m a^{2} \dot{\theta}^{2}-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta+m g a(1-\cos \theta) \tag{3.242}\\
& =\frac{p_{\theta}^{2}}{2 m a^{2}}-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta+m g a(1-\cos \theta) .
\end{align*}
$$

For this problem, we can define the effective potential

$$
\begin{align*}
U_{\mathrm{eff}}(\theta) \equiv U-T_{0} & =m g a(1-\cos \theta)-\frac{1}{2} m a^{2} \omega^{2} \sin ^{2} \theta \\
& =m g a\left(1-\cos \theta-\frac{\omega^{2}}{2 \omega_{0}^{2}} \sin ^{2} \theta\right) \tag{3.243}
\end{align*}
$$

Figure 3.11: A bead of mass m on a rotating hoop of radius a.
where $\omega_{0}^{2} \equiv g / a$. The Lagrangian may then be written

$$
\begin{equation*}
L=\frac{1}{2} m a^{2} \dot{\theta}^{2}-U_{\mathrm{eff}}(\theta) \tag{3.244}
\end{equation*}
$$

and thus the equations of motion are

$$
\begin{equation*}
m a^{2} \ddot{\theta}=-\frac{\partial U_{\mathrm{eff}}}{\partial \theta} . \tag{3.245}
\end{equation*}
$$

Equilibrium is achieved when $U_{\text {eff }}^{\prime}(\theta)=0$, which gives

$$
\begin{equation*}
\frac{\partial U_{\mathrm{eff}}}{\partial \theta}=m g a \sin \theta\left\{1-\frac{\omega^{2}}{\omega_{0}^{2}} \cos \theta\right\}=0 \tag{3.246}
\end{equation*}
$$

i.e. $\theta^{*}=0, \theta^{*}=\pi$, or $\theta^{*}= \pm \cos ^{-1}\left(\omega_{0}^{2} / \omega^{2}\right)$, where the last pair of equilibria are present only for $\omega^{2}>\omega_{0}^{2}$. The stability of these equilibria is assessed by examining the sign of $U_{\text {eff }}^{\prime \prime}\left(\theta^{*}\right)$. We have

$$
\begin{equation*}
U_{\mathrm{eff}}^{\prime \prime}(\theta)=m g a\left\{\cos \theta-\frac{\omega^{2}}{\omega_{0}^{2}}\left(2 \cos ^{2} \theta-1\right)\right\} \tag{3.247}
\end{equation*}
$$

Thus,

$$
U_{\mathrm{eff}}^{\prime \prime}\left(\theta^{*}\right)=\left\{\begin{array}{ll}
m g a\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right) & \text { at } \theta^{*}=0 \tag{3.248}\\
-m g a\left(1+\frac{\omega^{2}}{\omega_{0}^{2}}\right) & \text { at } \theta^{*}=\pi \\
m g a\left(\frac{\omega^{2}}{\omega_{0}^{2}}-\frac{\omega_{0}^{2}}{\omega^{2}}\right) & \text { at } \theta^{*}= \pm \cos ^{-1}\left(\frac{\omega_{0}^{2}}{\omega^{2}}\right) .
\end{array} .\right.
$$

Figure 3.12: The effective potential $U_{\text {eff }}(\theta)=m g a\left[1-\cos \theta-\frac{\omega^{2}}{2 \omega_{0}^{2}} \sin ^{2} \theta\right]$. (The dimensionless potential $\tilde{U}_{\text {eff }}(x)=U_{\text {eff }} / m g a$ is shown, where $x=\theta / \pi$.) Left panels: $\omega=\frac{1}{2} \sqrt{3} \omega_{0}$. Right panels: $\omega=\sqrt{3} \omega_{0}$.

Thus, $\theta^{*}=0$ is stable for $\omega^{2}<\omega_{0}^{2}$ but becomes unstable when the rotation frequency ω is sufficiently large, i.e. when $\omega^{2}>\omega_{0}^{2}$. In this regime, there are two new equilibria, at $\theta^{*}= \pm \cos ^{-1}\left(\omega_{0}^{2} / \omega^{2}\right)$, which are both stable. The equilibrium at $\theta^{*}=\pi$ is always unstable, independent of the value of ω. The situation is depicted in fig. 3.12.

3.13.4 Charged particle in a magnetic field

Consider next the case of a charged particle moving in the presence of an electromagnetic field. The particle's potential energy is

$$
\begin{equation*}
U(\boldsymbol{r}, \dot{\boldsymbol{r}})=q \phi(\boldsymbol{r}, t)-\frac{q}{c} \boldsymbol{A}(\boldsymbol{r}, t) \cdot \dot{\boldsymbol{r}}, \tag{3.249}
\end{equation*}
$$

which is velocity-dependent. The kinetic energy is $T=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}$, as usual. Here $\phi(\boldsymbol{r})$ is the scalar potential and $\boldsymbol{A}(\boldsymbol{r})$ the vector potential. The electric and magnetic fields are given by

$$
\begin{equation*}
\boldsymbol{E}=-\boldsymbol{\nabla} \phi-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \quad, \quad \boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A} . \tag{3.250}
\end{equation*}
$$

The canonical momentum is

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial \dot{\boldsymbol{r}}}=m \dot{\boldsymbol{r}}+\frac{q}{c} \boldsymbol{A} \tag{3.251}
\end{equation*}
$$

and hence the Hamiltonian is

$$
\begin{align*}
H(\boldsymbol{r}, \boldsymbol{p}, t) & =\boldsymbol{p} \cdot \dot{\boldsymbol{r}}-L \\
& =m \dot{\boldsymbol{r}}^{2}+\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{r}}-\frac{1}{2} m \dot{\boldsymbol{r}}^{2}-\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{r}}+q \phi \\
& =\frac{1}{2} m \dot{\boldsymbol{r}}^{2}+q \phi \tag{3.252}\\
& =\frac{1}{2 m}\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}(\boldsymbol{r}, t)\right)^{2}+q \phi(\boldsymbol{r}, t) .
\end{align*}
$$

If \boldsymbol{A} and ϕ are time-independent, then $H(\boldsymbol{r}, \boldsymbol{p})$ is conserved.
Let's work out the equations of motion. We have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{r}}}\right)=\frac{\partial L}{\partial \boldsymbol{r}} \tag{3.253}
\end{equation*}
$$

which gives

$$
\begin{equation*}
m \ddot{\boldsymbol{r}}+\frac{q}{c} \frac{d \boldsymbol{A}}{d t}=-q \boldsymbol{\nabla} \phi+\frac{q}{c} \boldsymbol{\nabla}(\boldsymbol{A} \cdot \dot{\boldsymbol{r}}), \tag{3.254}
\end{equation*}
$$

or, in component notation,

$$
\begin{equation*}
m \ddot{x}_{i}+\frac{q}{c} \frac{\partial A_{i}}{\partial x_{j}} \dot{x}_{j}+\frac{q}{c} \frac{\partial A_{i}}{\partial t}=-q \frac{\partial \phi}{\partial x_{i}}+\frac{q}{c} \frac{\partial A_{j}}{\partial x_{i}} \dot{x}_{j} \tag{3.255}
\end{equation*}
$$

which is to say

$$
\begin{equation*}
m \ddot{x}_{i}=-q \frac{\partial \phi}{\partial x_{i}}-\frac{q}{c} \frac{\partial A_{i}}{\partial t}+\frac{q}{c}\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}\right) \dot{x}_{j} \tag{3.256}
\end{equation*}
$$

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank three, $\epsilon_{i j k}$:

$$
\begin{equation*}
B_{i}=\epsilon_{i j k} \frac{\partial A_{k}}{\partial x_{j}} \tag{3.257}
\end{equation*}
$$

and using the result

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m} \tag{3.258}
\end{equation*}
$$

we have $\epsilon_{i j k} B_{i}=\partial_{j} A_{k}-\partial_{k} A_{j}$, and

$$
\begin{equation*}
m \ddot{x}_{i}=-q \frac{\partial \phi}{\partial x_{i}}-\frac{q}{c} \frac{\partial A_{i}}{\partial t}+\frac{q}{c} \epsilon_{i j k} \dot{x}_{j} B_{k} \tag{3.259}
\end{equation*}
$$

or, in vector notation,

$$
\begin{align*}
m \ddot{\boldsymbol{r}} & =-q \boldsymbol{\nabla} \phi-\frac{q}{c} \frac{\partial \boldsymbol{A}}{\partial t}+\frac{q}{c} \dot{\boldsymbol{r}} \times(\boldsymbol{\nabla} \times \boldsymbol{A}) \tag{3.260}\\
& =q \boldsymbol{E}+\frac{q}{c} \dot{\boldsymbol{r}} \times \boldsymbol{B}
\end{align*}
$$

which is, of course, the Lorentz force law.

3.14 Motion in Rapidly Oscillating Fields

3.14.1 Slow and fast dynamics

Consider a free particle moving under the influence of an oscillating force $F(t)=F_{0} \cos (\omega t)$. Newton's second law is then $m \ddot{q}=F \cos \omega t$, the solution to which is

$$
\begin{equation*}
q(t)=a+b t-\frac{F_{0} \cos \omega t}{m \omega^{2}} . \tag{3.261}
\end{equation*}
$$

where $q_{\mathrm{h}}(t) \equiv a+b t$ is the solution to the homogeneous (unforced) equation of motion. Note that the amplitude of the response $q-q_{\mathrm{h}}$ goes as ω^{-2} and is therefore small when ω is large.
Now consider a general $n=1$ system, with

$$
\begin{equation*}
H(q, p, t)=H^{0}(q, p)+\widetilde{V}(q) \cos (\omega t) \tag{3.262}
\end{equation*}
$$

where we will assume $\widetilde{V}(q)$ is small. We also assume that ω is much greater than any natural oscillation frequency associated with H_{0}. We separate the motion $q(t)$ and $p(t)$ into slow and fast components:

$$
\begin{align*}
& q(t)=Q(t)+\zeta(t) \\
& p(t)=P(t)+\pi(t) \tag{3.263}
\end{align*}
$$

where $\zeta(t)$ and $\pi(t)$ oscillate with the driving frequency ω. Since ζ and π will be small, we expand Hamilton's equations in these quantities:

$$
\begin{align*}
& \dot{Q}+\dot{\zeta}= \frac{\partial H^{0}}{\partial P}+\frac{\partial^{2} H^{0}}{\partial P^{2}} \pi+\frac{\partial^{2} H^{0}}{\partial Q \partial P} \zeta+\frac{1}{2} \frac{\partial^{3} H^{0}}{\partial Q^{2} \partial P} \zeta^{2}+ \\
& \begin{aligned}
& \dot{P}+\dot{\pi}=-\frac{\partial^{3} H^{0}}{\partial Q \partial H^{2}} \\
& \partial Q \\
&-\frac{\partial^{2} H^{0}}{\partial Q^{2}} \zeta-\frac{\partial^{2} H^{0}}{\partial Q \partial P} \pi-\frac{1}{2} \frac{\partial^{3} H^{0}}{\partial P^{3} H^{0}} \pi^{2}+\ldots \\
& \partial Q^{3} \\
& \zeta^{2}- \frac{\partial^{3} H^{0}}{\partial Q^{2} \partial P} \zeta \pi-\frac{1}{2} \frac{\partial^{3} H^{0}}{\partial Q \partial P^{2}} \pi^{2} \\
&-\frac{\partial \widetilde{V}}{\partial Q} \cos (\omega t)-\frac{\partial^{2} \widetilde{V}}{\partial Q^{2}} \zeta \cos (\omega t)-\ldots .
\end{aligned} \tag{3.264}
\end{align*}
$$

We now average over the fast degrees of freedom to obtain an equation of motion for the slow variables Q and P, which we here carry to lowest nontrivial order in averages of fluctuating quantities:

$$
\begin{align*}
& \dot{Q}=H_{P}^{0}+\frac{1}{2} H_{Q Q P}^{0}\left\langle\zeta^{2}\right\rangle+H_{Q P P}^{0}\langle\zeta \pi\rangle+\frac{1}{2} H_{P P P}^{0}\left\langle\pi^{2}\right\rangle \tag{3.265}\\
& \dot{P}=-H_{Q}^{0}-\frac{1}{2} H_{Q Q Q}^{0}\left\langle\zeta^{2}\right\rangle-H_{Q Q P}^{0}\langle\zeta \pi\rangle-\frac{1}{2} H_{Q P P}^{0}\left\langle\pi^{2}\right\rangle-\widetilde{V}_{Q Q}\langle\zeta \cos \omega t\rangle
\end{align*}
$$

where we now adopt the shorthand notation $H_{Q Q P}^{0}=\frac{\partial^{3} H^{0}}{\partial^{2} Q \partial P}$, etc. The fast degrees of freedom obey

$$
\begin{align*}
& \dot{\zeta}=H_{Q P}^{0} \zeta+H_{P P}^{0} \pi \\
& \dot{\pi}=-H_{Q Q}^{0} \zeta-H_{Q P}^{0} \pi-\widetilde{V}_{Q} \cos (\omega t) . \tag{3.266}
\end{align*}
$$

We can solve these by replacing $\widetilde{V}_{Q} \cos \omega t$ with $\widetilde{V}_{Q} e^{-i \omega t}$, and writing $\zeta(t)=\zeta_{0} e^{-i \omega t}$ and $\pi(t)=\pi_{0} e^{-i \omega t}$, resulting in

$$
\left(\begin{array}{cc}
H_{Q P}^{0}+i \omega & H_{P P}^{0} \tag{3.267}\\
-H_{Q Q}^{0} & -H_{Q P}^{0}+i \omega
\end{array}\right)\binom{\zeta_{0}}{\pi_{0}}=\binom{0}{\tilde{V}_{Q}} .
$$

We now invert the matrix to obtain ζ_{0} and π_{0}, then take the real part, which yields

$$
\begin{align*}
\zeta(t) & =\omega^{-2} H_{P P}^{0} \widetilde{V}_{Q} \cos \omega t+\mathcal{O}\left(\omega^{-4}\right) \tag{3.268}\\
\pi(t) & =-\omega^{-2} H_{Q P}^{0} \widetilde{V}_{Q} \cos \omega t-\omega^{-1} \widetilde{V}_{Q} \sin \omega t+\mathcal{O}\left(\omega^{-3}\right) .
\end{align*}
$$

Invoking $\left\langle\cos ^{2}(\omega t)\right\rangle=\left\langle\sin ^{2}(\omega t)\right\rangle=\frac{1}{2}$ and $\langle\cos (\omega t) \sin (\omega t)\rangle=0$, we substitute into eqns. 3.265 to obtain

$$
\begin{align*}
& \dot{Q}=H_{P}^{0}+\frac{1}{4} \omega^{-2} H_{P P P}^{0} \widetilde{V}_{Q}^{2}+\mathcal{O}\left(\omega^{-4}\right) \tag{3.269}\\
& \dot{P}=-H_{Q}^{0}-\frac{1}{4} \omega^{-2} H_{Q P P}^{0} \widetilde{V}_{Q}^{2}-\frac{1}{2} \omega^{-2} H_{P P}^{0} \widetilde{V}_{Q} \widetilde{V}_{Q Q}+\mathcal{O}\left(\omega^{-4}\right) .
\end{align*}
$$

These equations may be written compactly as

$$
\begin{equation*}
\dot{Q}=\frac{\partial K}{\partial P} \quad, \quad \dot{P}=-\frac{\partial K}{\partial Q} \tag{3.270}
\end{equation*}
$$

where

$$
\begin{equation*}
K(Q, P)=H^{0}(Q, P)+\frac{1}{4 \omega^{2}} \frac{\partial^{2} H^{0}}{\partial P^{2}}\left(\frac{\partial \widetilde{V}}{\partial Q}\right)^{2}+\ldots \tag{3.271}
\end{equation*}
$$

3.14.2 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the pendulum bob are

$$
\begin{equation*}
x=\ell \sin \theta \quad, \quad y=a(t)-\ell \cos \theta . \tag{3.272}
\end{equation*}
$$

The Lagrangian is easily obtained:

$$
\left.\begin{array}{rl}
L & =\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m \ell \dot{a} \dot{\theta} \sin \theta+m g \ell \cos \theta+\frac{1}{2} m \dot{a}^{2}-m g a \\
\text { these may be dropped } \tag{3.273}
\end{array}\right] . \overbrace{\frac{1}{2} m \dot{a}^{2}-m g a-\frac{d}{d t}(m \ell \dot{a} \cos \theta)} .
$$

Thus we may take the Lagrangian to be

$$
\begin{equation*}
L=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m(g+\ddot{a}) \ell \cos \theta, \tag{3.274}
\end{equation*}
$$

from which we derive the Hamiltonian

$$
\begin{align*}
H\left(\theta, p_{\theta}\right) & =\frac{p_{\theta}^{2}}{2 m \ell^{2}}-m g \ell \cos \theta-m \ell \ddot{a} \cos \theta \tag{3.275}\\
& =H_{0}\left(\theta, p_{\theta}, t\right)+\widetilde{V}(\theta) \sin \omega t
\end{align*}
$$

Figure 3.13: Dimensionless potential $v(\Theta)$ for $r=0$ (black curve), $r=0.5$ (red), and $r=2$ (blue).

We have assumed $a(t)=a_{0} \sin \omega t$, so

$$
\begin{equation*}
\tilde{V}(\theta)=m \ell a_{0} \omega^{2} \cos \theta \tag{3.276}
\end{equation*}
$$

Writing $\theta \equiv \Theta+\zeta$ and $p_{\theta} \equiv L+\pi$, the effective Hamiltonian, per eqn. 3.271, is

$$
\begin{equation*}
K(\Theta, L)=\frac{L^{2}}{2 m \ell^{2}}-m g \ell \cos \Theta+\frac{1}{4} m a_{0}^{2} \omega^{2} \sin ^{2} \Theta \tag{3.277}
\end{equation*}
$$

Let's define the dimensionless parameter

$$
\begin{equation*}
r \equiv \frac{\omega^{2} a_{0}^{2}}{2 g \ell} . \tag{3.278}
\end{equation*}
$$

The slow variable Θ executes motion in the effective potential $V_{\text {eff }}(\Theta)=m g \ell v(\Theta)$, with

$$
\begin{equation*}
v(\Theta)=-\cos \Theta+\frac{r}{2} \sin ^{2} \Theta . \tag{3.279}
\end{equation*}
$$

Differentiating, we find that $V_{\text {eff }}(\Theta)$ is stationary when

$$
\begin{equation*}
v^{\prime}(\Theta)=0 \quad \Rightarrow \quad r \sin \Theta \cos \Theta=-\sin \Theta \tag{3.280}
\end{equation*}
$$

Thus, $\Theta=0$ and $\Theta=\pi$, where $\sin \Theta=0$, are equilibria. When $r>1$ (note $r>0$ always), there are two new solutions, given by the roots of $\cos \Theta=-r^{-1}$.

To assess stability of these equilibria, we compute the second derivative:

$$
\begin{equation*}
v^{\prime \prime}(\Theta)=\cos \Theta+r \cos 2 \Theta \tag{3.281}
\end{equation*}
$$

From this, we see that $\Theta=0$ is stable, i.e. $v^{\prime \prime}(\Theta=0)>0$, always, but $\Theta=\pi$ is stable for $r>1$ and unstable for $r<1$. When $r>1$, two new solutions appear, at $\cos \Theta=-r^{-1}$, for which

$$
\begin{equation*}
v^{\prime \prime}\left(\cos ^{-1}(-1 / r)\right)=r^{-1}-r \tag{3.282}
\end{equation*}
$$

which is always negative since $r>1$ in order for these equilibria to exist. The situation is sketched in fig. 3.13, showing $v(\Theta)$ for three representative values of the parameter r. For $r<1$, the equilibrium at $\Theta=\pi$ is unstable, but as r increases, a subcritical pitchfork bifurcation is encountered at $r=1$, and $\Theta=\pi$ becomes stable, while the outlying $\Theta=\cos ^{-1}(-1 / r)$ solutions are unstable.

3.15 Field Theory: Systems with Several Independent Variables

3.15.1 Equations of motion and Noether's theorem

Suppose $\phi_{a}(x)$ depends on several independent variables: $x=\left\{x^{1}, x^{2}, \ldots, x^{n}\right\}$. Furthermore, suppose

$$
\begin{equation*}
S\left[\left\{\phi_{a}(x)\right\}\right]=\int_{\Omega} d^{n} x \mathcal{L}\left(\phi_{a} \partial_{\mu} \phi_{a}, x\right) \tag{3.283}
\end{equation*}
$$

i.e. the Lagrangian density \mathcal{L} is a function of the fields ϕ_{a}; their partial derivatives $\partial \phi_{a} / \partial x^{\mu}$, and possibly the independent variables x^{μ} as well. Here Ω is a region in \mathbb{R}^{n}. In dynamical field theories, we write $x=\left(x^{0}, x^{1}, \ldots, x^{d}\right)$ where d is the dimension of space and $x^{0}=c t$, where t is time and c is a constant with dimensions of speed. In such cases $n=d+1$ and we can identify $x^{0} \equiv x^{n}$.

Then the first variation of S is

$$
\begin{align*}
\delta S & =\int_{\Omega} d^{n} x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \delta \phi_{a}}{\partial x^{\mu}}\right\} \tag{3.284}\\
& =\oint_{\partial \Omega} d \Sigma n^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}+\int_{\Omega} d^{n} x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right\} \delta \phi_{a},
\end{align*}
$$

where $\partial \Omega$ is the ($n-1$)-dimensional boundary of $\Omega, d \Sigma$ is the differential surface area, and n^{μ} is the unit vector normal to $\partial \Omega$. If we demand $\partial \mathcal{L} /\left.\partial\left(\partial_{\mu} \phi_{a}\right)\right|_{\partial \Omega}=0$ or $\left.\delta \phi_{a}\right|_{\partial \Omega}=0$, the surface term vanishes, and we conclude

$$
\begin{equation*}
\frac{\delta S}{\delta \phi_{a}(\boldsymbol{x})}=\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \tag{3.285}
\end{equation*}
$$

Next, consider the one-parameter family of field transformations

$$
\begin{equation*}
\phi_{a}(x) \rightarrow \widetilde{\phi}_{a}(\phi(x), \zeta) \tag{3.286}
\end{equation*}
$$

such that $\widetilde{\phi}_{a}(\phi(x), \zeta=0)=\phi_{a}(x)$. If the Lagrangian density \mathcal{L} is independent of this transformation, then

$$
\begin{align*}
\left.\frac{d \mathcal{L}}{d \zeta}\right|_{\zeta=0} & =\left.\frac{\partial \mathcal{L}}{\partial \phi_{a}} \frac{\partial \widetilde{\phi}_{a}}{\partial \zeta}\right|_{\zeta=0}+\left.\sum_{\mu=1}^{n} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial\left(\partial_{\mu} \widetilde{\phi}_{a}\right)}{\partial \zeta}\right|_{\zeta=0} \\
& =\sum_{\mu=1}^{n}\left\{\left.\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \frac{\partial \widetilde{\phi}_{a}}{\partial \zeta}\right|_{\zeta=0}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \widetilde{\phi}_{a}}{\partial \zeta}\right)_{\zeta=0}\right\} \tag{3.287}\\
& =\sum_{\mu=1}^{n} \frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \widetilde{\phi}_{a}}{\partial \zeta}\right)_{\zeta=0}
\end{align*}
$$

We can write this as $\partial_{\mu} J^{\mu}=0$, where

$$
\begin{equation*}
\left.J^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \widetilde{\phi}_{a}}{\partial \zeta}\right|_{\zeta=0} \tag{3.288}
\end{equation*}
$$

We call $\Lambda=J^{0} / c$ the total charge. If we assume $\boldsymbol{J}=0$ at the spatial boundaries of our system, then integrating the conservation law $\partial_{\mu} J^{\mu}$ (summation convention) over the spatial region Ω gives

$$
\begin{equation*}
\frac{d \Lambda}{d t}=\int_{\Omega} d^{3} x \partial_{0} J^{0}=-\int_{\Omega} d^{3} x \nabla \cdot \boldsymbol{J}=-\oint_{\partial \Omega} d \Sigma \hat{\boldsymbol{n}} \cdot \boldsymbol{J}=0 \tag{3.289}
\end{equation*}
$$

assuming $J=0$ at the boundary $\partial \Omega$.
As an example, consider the case of a stretched string of linear mass density ρ and tension τ. The action is a functional of the height $y(x, t)$, where the coordinate along the string, x, and time, t, are the two independent variables. The Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \rho\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2} . \tag{3.290}
\end{equation*}
$$

The Euler-Lagrange equations are

$$
\begin{align*}
0=\frac{\delta S}{\delta y(x, t)} & =-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial y^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right) \\
& =\frac{\partial}{\partial x}\left(\tau \frac{\partial y}{\partial x}\right)-\rho \frac{\partial^{2} y}{\partial t^{2}} \tag{3.291}
\end{align*}
$$

where $y^{\prime}=\partial y / \partial x$ and $\dot{y}=\partial y / \partial t$. We've assumed boundary conditions where $\delta y\left(x_{a}, t\right)=\delta y\left(x_{b}, t\right)=$ $\delta y\left(x, t_{a}\right)=\delta y\left(x, t_{b}\right)=0$. At this point, $\rho(x)$ and $\tau(x)$ may be position-dependent. For constant ρ and τ, we obtain the Helmholtz equation $\rho \ddot{y}=\tau y^{\prime \prime}$, where $c=(\tau / \rho)^{1 / 2}$ is the speed of wave propagation.
For practice with the Minkowski notation, we define $x^{0} \equiv c t$ and $x^{1} \equiv x$ and the two-dimensional space-time coordinate vector is then $x^{\mu}=\left(x^{0}, x^{1}\right)=(c t, x)$. The Lagrangian can then be written $\mathcal{L}=$ $\frac{1}{2} \tau\left(\partial_{\mu} y\right)\left(\partial^{\mu} y\right)$, where $x_{\mu}=g_{\mu \nu} x^{\nu}=(c t,-x)$, in which case $\partial_{\mu}=\partial / \partial x^{\mu}$ and $\partial^{\mu}=\partial / \partial x_{\mu}$. Clearly \mathcal{L}
remains invariant under the one-parameter family of transformations $y \rightarrow y+\zeta$, and the conserved Noether current is

$$
\begin{equation*}
J^{\mu}=\tau \frac{\partial y}{\partial x_{\mu}} \tag{3.292}
\end{equation*}
$$

and we have $\partial_{\mu} J^{\mu}=0$, which is equivalent to $\partial^{\mu} J_{\mu}=0$. (Upper indices are called covariant while lower ones are contravariant.) Current conservation in this system is simply a restatement of the Helmholtz equation.

Maxwell's equations

The Lagrangian density for an electromagnetic field with sources is

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-\frac{1}{c} j_{\mu} A^{\mu} . \tag{3.293}
\end{equation*}
$$

The equations of motion are then

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial A^{\mu}}-\frac{\partial}{\partial x^{\nu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} A^{\nu}\right)}\right)=0 \quad \Rightarrow \quad \partial_{\mu} F^{\mu \nu}=\frac{4 \pi}{c} j^{\nu} \tag{3.294}
\end{equation*}
$$

which are Maxwell's equations.

Relativistic complex scalar field

As an example, consider the case of a complex scalar field, with Lagrangian density

$$
\begin{equation*}
\mathcal{L}\left(\psi, \psi^{*}, \partial_{\mu} \psi, \partial_{\mu} \psi^{*}\right)=\frac{1}{2} K\left(\partial_{\mu} \psi^{*}\right)\left(\partial^{\mu} \psi\right)-U\left(\psi^{*} \psi\right) . \tag{3.295}
\end{equation*}
$$

This is invariant under the transformation $\psi \rightarrow e^{i \zeta} \psi, \psi^{*} \rightarrow e^{-i \zeta} \psi^{*}$. Thus,

$$
\begin{equation*}
\frac{\partial \tilde{\psi}}{\partial \zeta}=i e^{i \zeta} \psi \quad, \quad \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}=-i e^{-i \zeta} \psi^{*} \tag{3.296}
\end{equation*}
$$

and, summing over both ψ and ψ^{*} fields, we have

$$
\begin{align*}
J^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \cdot(i \psi)+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)} \cdot\left(-i \psi^{*}\right) \tag{3.297}\\
& =\frac{K}{2 i}\left(\psi^{*} \partial^{\mu} \psi-\psi \partial^{\mu} \psi^{*}\right) .
\end{align*}
$$

The potential, which depends on $|\psi|^{2}$, is independent of ζ. Hence, this form of conserved 4-current is valid for an entire class of potentials.

3.15.2 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

$$
\begin{equation*}
\mathcal{L}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \psi^{*} \cdot \boldsymbol{\nabla} \psi-g\left(|\psi|^{2}-n_{0}\right)^{2} \tag{3.298}
\end{equation*}
$$

This describes a nonrelativistic Bose fluid with repulsive short-ranged interactions. Here $\psi(\boldsymbol{x}, t)$ is again a complex scalar field, and ψ^{*} is its complex conjugate. Using the Leibniz rule, we have

$$
\begin{align*}
\delta S\left[\psi^{*}, \psi\right]= & S\left[\psi^{*}+\delta \psi^{*}, \psi+\delta \psi\right] \\
= & \int d t \int d^{d} x\left\{i \hbar \psi^{*} \frac{\partial \delta \psi}{\partial t}+i \hbar \delta \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \psi^{*} \cdot \boldsymbol{\nabla} \delta \psi-\frac{\hbar^{2}}{2 m} \nabla \delta \psi^{*} \cdot \boldsymbol{\nabla} \psi\right. \\
& \left.-2 g\left(|\psi|^{2}-n_{0}\right)\left(\psi^{*} \delta \psi+\psi \delta \psi^{*}\right)\right\} \tag{3.299}\\
= & \int d t \int d^{d} x\left\{\left[-i \hbar \frac{\partial \psi^{*}}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*}\right] \delta \psi\right. \\
& \left.+\left[i \hbar \frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi\right] \delta \psi^{*}\right\},
\end{align*}
$$

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing $S\left[\psi^{*}, \psi\right]$ therefore results in the nonlinear Schrödinger equation (NLSE),

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+2 g\left(|\psi|^{2}-n_{0}\right) \psi \tag{3.300}
\end{equation*}
$$

as well as its complex conjugate,

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}+2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} . \tag{3.301}
\end{equation*}
$$

Note that these equations are indeed the Euler-Lagrange equations:

$$
\begin{gather*}
\frac{\delta S}{\delta \psi}=\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi}\right) \tag{3.302}\\
\frac{\delta S}{\delta \psi^{*}}=\frac{\partial \mathcal{L}}{\partial \psi^{*}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}}\right)
\end{gather*}
$$

with $x^{\mu}=(t, \boldsymbol{x})^{6}$. Plugging in

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}=-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi}=i \hbar \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \tag{3.303}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi^{*}}=i \hbar \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi^{*}}=0 \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \psi \tag{3.304}
\end{equation*}
$$

${ }^{6}$ In the nonrelativistic case, there is no utility in defining $x^{0}=c t$, so we simply define $x^{0}=t$.
we recover the NLSE and its conjugate.
The Gross-Pitaevskii model also possesses a $\mathrm{U}(1)$ or $\mathrm{O}(2)$ invariance, viz.

$$
\begin{equation*}
\psi(\boldsymbol{x}, t) \rightarrow \widetilde{\psi}(\boldsymbol{x}, t)=e^{i \zeta} \psi(\boldsymbol{x}, t) \quad, \quad \psi^{*}(\boldsymbol{x}, t) \rightarrow \widetilde{\psi}^{*}(\boldsymbol{x}, t)=e^{-i \zeta} \psi^{*}(\boldsymbol{x}, t) \tag{3.305}
\end{equation*}
$$

Thus, the conserved Noether current is then

$$
\begin{align*}
J^{\mu} & =\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} \frac{\partial \widetilde{\psi}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}} \frac{\partial \widetilde{\psi}^{*}}{\partial \zeta}\right|_{\zeta=0} \\
J^{0} & =-\hbar|\psi|^{2} \tag{3.306}\\
\boldsymbol{J} & =-\frac{\hbar^{2}}{2 i m}\left(\psi^{*} \nabla \psi-\psi \boldsymbol{\nabla} \psi^{*}\right) .
\end{align*}
$$

Dividing out by \hbar, taking $J^{0} \equiv-\hbar \rho$ and $\boldsymbol{J} \equiv-\hbar \boldsymbol{j}$, we obtain the continuity equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{j}=0 \tag{3.307}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=|\psi|^{2} \quad, \quad \boldsymbol{j}=\frac{\hbar}{2 i m}\left(\psi^{*} \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \psi^{*}\right) . \tag{3.308}
\end{equation*}
$$

are the particle density and the particle current, respectively.

3.16 Constraints

3.16.1 Introduction

A mechanical system of N point particles in d dimensions possesses $n=d N$ degrees of freedom ${ }^{7}$. To specify these degrees of freedom, we can choose any independent set of generalized coordinates $\left\{q_{1}, \ldots, q_{n}\right\}$. Oftentimes, however, not all n coordinates are independent.

Consider, for example, the situation in fig. 3.14, where a cylinder of radius a rolls over a half-cylinder of radius R. If there is no slippage, then the angles θ_{1} and θ_{2} are not independent, and they obey the equation of constraint,

$$
\begin{equation*}
R \theta_{1}=a\left(\theta_{2}-\theta_{1}\right) \tag{3.309}
\end{equation*}
$$

In this case, we can easily solve the constraint equation and substitute $\theta_{2}=\left(1+\frac{R}{a}\right) \theta_{1}$. In other cases, though, the equation of constraint might not be so easily solved (e.g. it may be nonlinear). How then do we proceed?

[^8]

Figure 3.14: A cylinder of radius a rolls along a half-cylinder of radius R. When there is no slippage, the angles θ_{1} and θ_{2} obey the constraint equation $R \theta_{1}=a\left(\theta_{2}-\theta_{1}\right)$.

3.16.2 Constrained extremization of functions: Lagrange multipliers

Given $F\left(x_{1}, \ldots, x_{n}\right)$ to be extremized subject to k constraints of the form $G_{j}\left(x_{1}, \ldots, x_{n}\right)=0$ where $j=1, \ldots, k$, construct

$$
\begin{equation*}
F^{*}\left(x_{1}, \ldots, x_{n} ; \lambda_{1}, \ldots, \lambda_{k}\right) \equiv F\left(x_{1}, \ldots, x_{n}\right)+\sum_{j=1}^{k} \lambda_{j} G_{j}\left(x_{1}, \ldots, x_{n}\right) \tag{3.310}
\end{equation*}
$$

which is a function of the $(n+k)$ variables $\left\{x_{1}, \ldots, x_{n} ; \lambda_{1}, \ldots, \lambda_{k}\right\}$, where the quantities $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ are Lagrange undetermined multipliers. We now freely extremize the extended function F^{*} :

$$
\begin{align*}
d F^{*} & =\sum_{\sigma=1}^{n} \frac{\partial F^{*}}{\partial x_{\sigma}} d x_{\sigma}+\sum_{j=1}^{k} \frac{\partial F^{*}}{\partial \lambda_{j}} d \lambda_{j} \\
& =\sum_{\sigma=1}^{n}\left(\frac{\partial F}{\partial x_{\sigma}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial x_{\sigma}}\right) d x_{\sigma}+\sum_{j=1}^{k} G_{j} d \lambda_{j}=0 \tag{3.311}
\end{align*}
$$

This results in the $(n+k)$ equations

$$
\begin{align*}
\frac{\partial F}{\partial x_{\sigma}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial x_{\sigma}} & =0 & (\sigma=1, \ldots, n) \tag{3.312}\\
G_{j} & =0 & (j=1, \ldots, k)
\end{align*}
$$

The interpretation of all this is as follows. The first n equations in 3.312 can be written in vector form as

$$
\begin{equation*}
\nabla F+\sum_{j=1}^{k} \lambda_{j} \nabla G_{j}=0 \tag{3.313}
\end{equation*}
$$

This says that the (n-component) vector $\boldsymbol{\nabla} F$ is linearly dependent upon the k vectors ∇G_{j}. Thus, any movement in the direction of ∇F must necessarily entail movement along one or more of the directions ∇G_{j}. This would require violating the constraints, since movement along ∇G_{j} takes us off the level set $G_{j}=0$. Were ∇F linearly independent of the set $\left\{\nabla G_{j}\right\}$, this would mean that we could find a differential displacement $d \boldsymbol{x}$ which has finite overlap with ∇F but zero overlap with each ∇G_{j}. Thus $\boldsymbol{x}+d \boldsymbol{x}$ would still satisfy $G_{j}(\boldsymbol{x}+d \boldsymbol{x})=0$, but F would change by the finite amount $d F=\boldsymbol{\nabla} F(\boldsymbol{x}) \cdot d \boldsymbol{x}$. Put another way, when we extremize $F(\boldsymbol{x})$ without constraints, we identify points $\boldsymbol{x} \in \mathbb{R}^{n}$ where the gradient ∇F vanishes. However, when we have k constraints of the form $G_{j}(\boldsymbol{x})=0$, the subset

$$
\begin{equation*}
\Upsilon=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid G_{j}(\boldsymbol{x})=0 \forall j \in\{1, \ldots, k\}\right\} \tag{3.314}
\end{equation*}
$$

is a hypersurface of dimension $n-k$. Generically we should not expect any of the solutions to $\nabla F=0$ to lie within the subspace Υ. Extremizing $F(\boldsymbol{x})$ subject to the k constraints $G_{j}(\boldsymbol{x})=0$ means that we must find the extrema of $F(\boldsymbol{x})$ for $\boldsymbol{x} \in \Upsilon \subset \mathbb{R}^{n}$. All such extrema satisfy that $\nabla F(\boldsymbol{x})$ is perpendicular to the hypersurface Υ, i.e. $\nabla F(\boldsymbol{x})$ must lie in the k-dimensional subspace spanned by the vectors $\boldsymbol{\nabla} G_{j}(\boldsymbol{x})$.

Example : volume of a cylinder

To see how this formalism works in practice, let's extremize the volume $V=\pi a^{2} h$ of a cylinder of radius a and height h, subject to the constraint

$$
\begin{equation*}
G(a, h)=2 \pi a+\frac{h^{2}}{b}-\ell=0 \tag{3.315}
\end{equation*}
$$

We therefore define

$$
\begin{equation*}
V^{*}(a, h, \lambda) \equiv V(a, h)+\lambda G(a, h) \tag{3.316}
\end{equation*}
$$

and set

$$
\begin{align*}
& \frac{\partial V^{*}}{\partial a}=2 \pi a h+2 \pi \lambda=0 \tag{3.317}\\
& \frac{\partial V^{*}}{\partial h}=\pi a^{2}+2 \lambda \frac{h}{b}=0 \tag{3.318}\\
& \frac{\partial V^{*}}{\partial \lambda}=2 \pi a+\frac{h^{2}}{b}-\ell=0 . \tag{3.319}
\end{align*}
$$

Solving these three equations simultaneously gives

$$
\begin{equation*}
a=\frac{2 \ell}{5 \pi} \quad, \quad h=\sqrt{\frac{b \ell}{5}} \quad, \quad \lambda=-\frac{2}{5^{3 / 2} \pi} b^{1 / 2} \ell^{3 / 2} \quad, \quad V^{*}=\frac{4}{5^{5 / 2} \pi} \ell^{5 / 2} b^{1 / 2} \tag{3.320}
\end{equation*}
$$

3.16.3 Constraints and variational calculus

Before addressing the subject of constrained dynamical systems, let's consider the issue of constraints in the broader context of variational calculus. Suppose we have a functional

$$
\begin{equation*}
F[\boldsymbol{y}(x)]=\int_{x_{a}}^{x_{b}} d x L\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}, x\right), \tag{3.321}
\end{equation*}
$$

which we want to extremize subject to some constraints. Here \boldsymbol{y} stands for an n-component vector of functions $\left\{y_{\sigma}(x)\right\}$. We assume that the endpoint values $y_{\sigma}\left(x_{a}\right)$ and $y_{\sigma}\left(x_{b}\right)$ are fixed for each σ. There are two classes of constraints we will consider:

1. Integral constraints: These are of the form

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}} d x N_{j}\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}, x\right)=C_{j} \tag{3.322}
\end{equation*}
$$

where j labels the constraint.
2. Holonomic constraints: These are of the form

$$
\begin{equation*}
G_{j}(\boldsymbol{y}, x)=0 \tag{3.323}
\end{equation*}
$$

The cylinders system in fig. 3.14 provides an example of a holonomic constraint. There, $G(\theta, t)=$ $R \theta_{1}-a\left(\theta_{2}-\theta_{1}\right)=0$. As an example of a problem with an integral constraint, suppose we want to know the shape of a hanging rope of fixed length C. This means we minimize the rope's potential energy,

$$
\begin{equation*}
U[y(x)]=\rho g \int_{x_{a}}^{x_{b}} d s y(x)=\rho g \int_{x_{a}}^{x_{b}} d x y \sqrt{1+y^{\prime 2}} \tag{3.324}
\end{equation*}
$$

where ρ is the linear mass density of the rope, subject to the fixed-length constraint

$$
\begin{equation*}
C=\int_{x_{a}}^{x_{b}} d s=\int_{x_{a}}^{x_{b}} d x \sqrt{1+y^{\prime 2}} \tag{3.325}
\end{equation*}
$$

Note $d s=\sqrt{d x^{2}+d y^{2}}$ is the differential element of arc length along the rope. To solve problems like these, we again use the method of Lagrange multipliers.

3.16.4 Extremization of functionals : integral constraints

Given a functional

$$
\begin{equation*}
F\left[\left\{y_{\sigma}(x)\right\}\right]=\int_{x_{a}}^{x_{b}} d x L\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right) \quad(\sigma=1, \ldots, n) \tag{3.326}
\end{equation*}
$$

subject to boundary conditions $\delta y_{\sigma}\left(x_{a}\right)=\delta y_{\sigma}\left(x_{b}\right)=0$ and k constraints of the form

$$
\begin{equation*}
\int_{x_{a}}^{x_{b}} d x N_{l}\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right)=C_{l} \quad(l=1, \ldots, k) \tag{3.327}
\end{equation*}
$$

construct the extended functional

$$
\begin{equation*}
F^{*}\left[\left\{y_{\sigma}(x)\right\} ;\left\{\lambda_{j}\right\}\right] \equiv \int_{x_{a}}^{x_{b}} d x\left\{L\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right)+\sum_{l=1}^{k} \lambda_{l} N_{l}\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right)\right\}-\sum_{l=1}^{k} \lambda_{l} C_{l} \tag{3.328}
\end{equation*}
$$

and freely extremize over $\left\{y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{k}\right\}$. This results in $(n+k)$ equations

$$
\begin{align*}
\frac{\partial L}{\partial y_{\sigma}}-\frac{d}{d x}\left(\frac{\partial L}{\partial y_{\sigma}^{\prime}}\right)+\sum_{l=1}^{k} \lambda_{l}\left\{\frac{\partial N_{l}}{\partial y_{\sigma}}-\frac{d}{d x}\left(\frac{\partial N_{l}}{\partial y_{\sigma}^{\prime}}\right)\right\} & =0 \quad(\sigma=1, \ldots, n) \\
\int_{x_{a}}^{x_{b}} d x N_{l}\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right) & =C_{l} \quad(l=1, \ldots, k) \tag{3.329}
\end{align*}
$$

3.16.5 Extremization of functionals : holonomic constraints

Given a functional

$$
\begin{equation*}
F\left[\left\{y_{\sigma}(x)\right\}\right]=\int_{x_{a}}^{x_{b}} d x L\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right) \quad(\sigma=1, \ldots, n) \tag{3.330}
\end{equation*}
$$

subject to boundary conditions $\delta y_{\sigma}\left(x_{a}\right)=\delta y_{\sigma}\left(x_{b}\right)=0$ and k constraints of the form

$$
\begin{equation*}
G_{j}\left(\left\{y_{\sigma}(x)\right\}, x\right)=0 \quad(j=1, \ldots, k) \tag{3.331}
\end{equation*}
$$

construct the extended functional

$$
\begin{equation*}
F^{*}\left[\left\{y_{\sigma}(x)\right\} ;\left\{\lambda_{j}(x)\right\}\right] \equiv \int_{x_{a}}^{x_{b}} d x\left\{L\left(\left\{y_{\sigma}\right\},\left\{y_{\sigma}^{\prime}\right\}, x\right)+\sum_{j=1}^{k} \lambda_{j} G_{j}\left(\left\{y_{\sigma}\right\}\right)\right\} \tag{3.332}
\end{equation*}
$$

and freely extremize over the $(n+k)$ functions $\left\{y_{1}(x), \ldots, y_{n}(x) ; \lambda_{1}(x), \ldots, \lambda_{k}(x)\right\}$:

$$
\begin{equation*}
\delta F^{*}=\int_{x_{a}}^{x_{b}} d x\left\{\sum_{\sigma=1}^{n}\left(\frac{\partial L}{\partial y_{\sigma}}-\frac{d}{d x}\left(\frac{\partial L}{\partial y_{\sigma}^{\prime}}\right)+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial y_{\sigma}}\right) \delta y_{\sigma}+\sum_{j=1}^{k} G_{j} \delta \lambda_{j}\right\}=0 \tag{3.333}
\end{equation*}
$$

resulting in the $(n+k)$ equations

$$
\begin{align*}
\frac{d}{d x}\left(\frac{\partial L}{\partial y_{\sigma}^{\prime}}\right)-\frac{\partial L}{\partial y_{\sigma}} & =\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial y_{\sigma}} \quad(\sigma=1, \ldots, n) \tag{3.334}\\
G_{j} & =0 \quad(j=1, \ldots, k) .
\end{align*}
$$

3.16.6 Examples of functional extremization with constraints

Hanging rope

We minimize the potential energy functional

$$
\begin{equation*}
U[y(x)]=\rho g \int_{x_{1}}^{x_{2}} d x y \sqrt{1+y^{\prime 2}} \tag{3.335}
\end{equation*}
$$

where ρ is the linear mass density, subject to the constraint of fixed total length,

$$
\begin{equation*}
C[y(x)]=\int_{x_{1}}^{x_{2}} d x \sqrt{1+y^{\prime 2}} . \tag{3.336}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
U^{*}[y(x), \lambda]=U[y(x)]+\lambda C[y(x)]=\int_{x_{1}}^{x_{2}} d x L^{*}\left(y, y^{\prime}, x\right) \tag{3.337}
\end{equation*}
$$

with

$$
\begin{equation*}
L^{*}\left(y, y^{\prime}, x\right)=(\rho g y+\lambda) \sqrt{1+y^{\prime 2}} . \tag{3.338}
\end{equation*}
$$

Since $\partial L^{*} / \partial x=0$ we have that

$$
\begin{equation*}
H=y^{\prime} \frac{\partial L^{*}}{\partial y^{\prime}}-L^{*}=-\frac{\rho g y+\lambda}{\sqrt{1+y^{\prime 2}}} \tag{3.339}
\end{equation*}
$$

is constant. Thus,

$$
\begin{equation*}
\frac{d y}{d x}= \pm H^{-1} \sqrt{(\rho g y+\lambda)^{2}-H^{2}} \tag{3.340}
\end{equation*}
$$

with solution

$$
\begin{equation*}
y(x)=-\frac{\lambda}{\rho g}+\frac{H}{\rho g} \cosh \left(\frac{\rho g}{H}(x-a)\right) . \tag{3.341}
\end{equation*}
$$

Here, H, a, and λ are constants to be determined by demanding $y\left(x_{i}\right)=y_{i}(i=1,2)$, and that the total length of the rope is C.

Geodesic on a curved surface

Consider next the problem of a geodesic on a curved surface. Let the equation for the surface be

$$
\begin{equation*}
G(x, y, z)=0 . \tag{3.342}
\end{equation*}
$$

We wish to extremize the distance,

$$
\begin{equation*}
D=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{d x^{2}+d y^{2}+d z^{2}} . \tag{3.343}
\end{equation*}
$$

We introduce a parameter t defined on the unit interval: $t \in[0,1]$, such that $x(0)=x_{a}, x(1)=x_{b}$, etc. Then D may be regarded as a functional, viz.

$$
\begin{equation*}
D[x(t), y(t), z(t)]=\int_{0}^{1} d t \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} \tag{3.344}
\end{equation*}
$$

We impose the constraint by forming the extended functional, D^{*} :

$$
\begin{equation*}
D^{*}[x(t), y(t), z(t), \lambda(t)] \equiv \int_{0}^{1} d t\left\{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}+\lambda G(x, y, z)\right\} \tag{3.345}
\end{equation*}
$$

and we demand that the first functional derivatives of D^{*} vanish:

$$
\begin{align*}
& \frac{\delta D^{*}}{\delta x(t)}=-\frac{d}{d t}\left(\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)+\lambda \frac{\partial G}{\partial x}=0 \\
& \frac{\delta D^{*}}{\delta y(t)}=-\frac{d}{d t}\left(\frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)+\lambda \frac{\partial G}{\partial y}=0 \tag{3.346}\\
& \frac{\delta D^{*}}{\delta z(t)}=-\frac{d}{d t}\left(\frac{\dot{z}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)+\lambda \frac{\partial G}{\partial z}=0 \\
& \frac{\delta D^{*}}{\delta \lambda(t)}=G(x, y, z)=0 .
\end{align*}
$$

Thus,

$$
\begin{equation*}
\lambda(t)=\frac{v \ddot{x}-\dot{x} \dot{v}}{v^{2} \partial_{x} G}=\frac{v \ddot{y}-\dot{y} \dot{v}}{v^{2} \partial_{y} G}=\frac{v \ddot{z}-\dot{z} \dot{v}}{v^{2} \partial_{z} G}, \tag{3.347}
\end{equation*}
$$

with $v=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}$ and $\partial_{x} \equiv \frac{\partial}{\partial x}$, etc. These three equations are supplemented by $G(x, y, z)=0$, which is the fourth.

3.16.7 Constraints in Lagrangian mechanics

Let us write our system of constraints in the differential form

$$
\begin{equation*}
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) d q_{\sigma}+h_{j}(q, t) d t=0 \quad(j=1, \ldots, k) \tag{3.348}
\end{equation*}
$$

If the partial derivatives satisfy

$$
\begin{equation*}
\frac{\partial g_{j \sigma}}{\partial q_{\sigma^{\prime}}}=\frac{\partial g_{j \sigma^{\prime}}}{\partial q_{\sigma}} \quad, \quad \frac{\partial g_{j \sigma}}{\partial t}=\frac{\partial h_{j}}{\partial q_{\sigma}} \tag{3.349}
\end{equation*}
$$

then the k differentials can be integrated to give $d G_{j}(q, t)=0$ for each $j \in\{1, \ldots, k\}$, where

$$
\begin{equation*}
g_{j \sigma}=\frac{\partial G_{j}}{\partial q_{\sigma}} \quad, \quad h_{j}=\frac{\partial G_{j}}{\partial t} . \tag{3.350}
\end{equation*}
$$

The action functional is

$$
\begin{equation*}
S\left[\left\{q_{\sigma}(t)\right\}\right]=\int_{t_{a}}^{t_{b}} d t L\left(\left\{q_{\sigma}\right\},\left\{\dot{q}_{\sigma}\right\}, t\right) \quad(\sigma=1, \ldots, n) \tag{3.351}
\end{equation*}
$$

subject to boundary conditions $\delta q_{\sigma}\left(t_{a}\right)=\delta q_{\sigma}\left(t_{b}\right)=0$. The first variation of S is given by

$$
\begin{equation*}
\delta S=\int_{t_{a}}^{t_{b}} d t \sum_{\sigma=1}^{n}\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)\right\} \delta q_{\sigma} \tag{3.352}
\end{equation*}
$$

Since the $\left\{q_{\sigma}(t)\right\}$ are no longer independent, we cannot infer that the term in brackets vanishes for each index σ. What are the constraints on the variations $\delta q_{\sigma}(t)$? The constraints are expressed in terms of virtual displacements which take no time: $\delta t=0$. Thus,

$$
\begin{equation*}
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) \delta q_{\sigma}(t)=0 \tag{3.353}
\end{equation*}
$$

where $j=1, \ldots, k$ is the constraint index. We may now relax the constraint by introducing k undetermined functions $\lambda_{j}(t)$, by adding integrals of the above equations with undetermined coefficient functions to δS :

$$
\begin{equation*}
\sum_{\sigma=1}^{n}\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)+\sum_{j=1}^{k} \lambda_{j}(t) g_{j \sigma}(q, t)\right\} \delta q_{\sigma}(t)=0 \tag{3.354}
\end{equation*}
$$

Now we can demand that the term in brackets vanish for all σ. Thus, we obtain a set of $(n+k)$ equations,

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)-\frac{\partial L}{\partial q_{\sigma}} & =\sum_{j=1}^{k} \lambda_{j}(t) g_{j \sigma}(q, t) \equiv Q_{\sigma} \tag{3.355}\\
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) \dot{q}_{\sigma}+h_{j}(q, t) & =0
\end{align*}
$$

in $(n+k)$ unknowns $\left\{q_{1}, \ldots, q_{n}, \lambda_{1}, \ldots, \lambda_{k}\right\}$. Here, Q_{σ} is the force of constraint conjugate to the generalized coordinate q_{σ}. Thus, with

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}} \quad, \quad F_{\sigma}=\frac{\partial L}{\partial q_{\sigma}} \quad, \quad Q_{\sigma}=\sum_{j=1}^{k} \lambda_{j} g_{j \sigma} \tag{3.356}
\end{equation*}
$$

we write Newton's second law as

$$
\begin{equation*}
\dot{p}_{\sigma}=F_{\sigma}+Q_{\sigma} \tag{3.357}
\end{equation*}
$$

Note that we can write

$$
\begin{equation*}
\frac{\delta S}{\delta \boldsymbol{q}(t)}=\frac{\partial L}{\partial \boldsymbol{q}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{q}}}\right) \tag{3.358}
\end{equation*}
$$

and that the instantaneous constraints may be written

$$
\begin{equation*}
\boldsymbol{g}_{j} \cdot \delta \boldsymbol{q}=0 \quad(j=1, \ldots, k) \tag{3.359}
\end{equation*}
$$

Thus, by demanding

$$
\begin{equation*}
\frac{\delta S}{\delta \boldsymbol{q}(t)}+\sum_{j=1}^{k} \lambda_{j} \boldsymbol{g}_{j}=0 \tag{3.360}
\end{equation*}
$$

we require that the functional derivative be linearly dependent on the k vectors \boldsymbol{g}_{j}.

3.16.8 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter family of coordinate transformations results in an associated conserved quantity Λ, and how a lack of explicit time dependence in L results in the conservation of the Hamiltonian H. In deriving both these results, however, we used the equations of motion $\dot{p}_{\sigma}=F_{\sigma}$. What happens when we have constraints, in which case $\dot{p}_{\sigma}=F_{\sigma}+Q_{\sigma}$?

Let's begin with the Hamiltonian. We have $H=\dot{q}_{\sigma} p_{\sigma}-L$, hence

$$
\begin{align*}
\frac{d H}{d t} & =\left(p_{\sigma}-\frac{\partial L}{\partial \dot{q}_{\sigma}}\right) \ddot{q}_{\sigma}+\left(\dot{p}_{\sigma}-\frac{\partial L}{\partial q_{\sigma}}\right) \dot{q}_{\sigma}-\frac{\partial L}{\partial t} \\
& =Q_{\sigma} \dot{q}_{\sigma}-\frac{\partial L}{\partial t} \tag{3.361}
\end{align*}
$$

We now use

$$
\begin{equation*}
Q_{\sigma} \dot{q}_{\sigma}=\lambda_{j} g_{j \sigma} \dot{q}_{\sigma}=-\lambda_{j} h_{j} \tag{3.362}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\frac{d H}{d t}=-\lambda_{j} h_{j}-\frac{\partial L}{\partial t} . \tag{3.363}
\end{equation*}
$$

We therefore conclude that in a system with constraints of the form $g_{j \sigma} \dot{q}_{\sigma}+h_{j}=0$, the Hamiltonian is conserved if each $h_{j}=0$ and if L is not explicitly dependent on time. In the case of holonomic constraints, $h_{j}=\frac{\partial G_{j}}{\partial t}$, so H is conserved if neither L nor any of the constraints G_{j} is explicitly time-dependent.
Next, let us rederive Noether's theorem when constraints are present. We assume a one-parameter family of transformations $q_{\sigma} \rightarrow \tilde{q}_{\sigma}(\zeta)$ leaves L invariant. Then

$$
\begin{align*}
0=\frac{d L}{d \zeta} & =\frac{\partial L}{\partial \tilde{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}+\frac{\partial L}{\partial \dot{\tilde{q}}_{\sigma}} \frac{\partial \dot{\tilde{q}}_{\sigma}}{\partial \zeta} \\
& =\left(\dot{\tilde{p}}_{\sigma}-\tilde{Q}_{\sigma}\right) \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}+\tilde{p}_{\sigma} \frac{d}{d t}\left(\frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right) \tag{3.364}\\
& =\frac{d}{d t}\left(\tilde{p}_{\sigma} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)-\lambda_{j} \tilde{g}_{j \sigma} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} .
\end{align*}
$$

Now let us write the constraints in differential form as

$$
\begin{equation*}
\tilde{g}_{j \sigma} d \tilde{q}_{\sigma}+\tilde{h}_{j} d t+\tilde{k}_{j} d \zeta=0 \tag{3.365}
\end{equation*}
$$

We now have

$$
\begin{equation*}
\frac{d \Lambda}{d t}=\lambda_{j} \tilde{k}_{j} \tag{3.366}
\end{equation*}
$$

which says that if the constraints are independent of ζ then Λ is conserved. For holonomic constraints, this means that

$$
\begin{equation*}
G_{j}(\tilde{q}(\zeta), t)=0 \quad \Rightarrow \quad \tilde{k}_{j}=\frac{\partial G_{j}}{\partial \zeta}=0 \tag{3.367}
\end{equation*}
$$

i.e. $G_{j}(\tilde{q}, t)$ has no explicit ζ dependence.

3.17 Worked Examples

Here we consider several example problems of constrained dynamics, and work each out in full detail.

3.17.1 One cylinder rolling off another

As an example of the constraint formalism, consider the system in fig. 3.14, where a cylinder of radius a rolls atop a cylinder of radius R. We have two constraints:

$$
\begin{array}{ll}
G_{1}\left(r, \theta_{1}, \theta_{2}\right)=r-R-a=0 & \text { (cylinders in contact) } \\
G_{2}\left(r, \theta_{1}, \theta_{2}\right)=R \theta_{1}-a\left(\theta_{2}-\theta_{1}\right)=0 & \text { (no slipping) } \tag{3.369}
\end{array}
$$

from which we obtain the $g_{j \sigma}$:

$$
g_{j \sigma}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.370}\\
0 & R+a & -a
\end{array}\right)
$$

which is to say

$$
\begin{array}{ll}
\frac{\partial G_{1}}{\partial r}=1 \quad, \quad \frac{\partial G_{1}}{\partial \theta_{1}}=0 \quad, \quad \frac{\partial G_{1}}{\partial \theta_{2}}=0 \tag{3.371}\\
\frac{\partial G_{2}}{\partial r}=0 \quad, \quad \frac{\partial G_{2}}{\partial \theta_{1}}=R+a \quad, \quad \frac{\partial G_{2}}{\partial \theta_{2}}=-a
\end{array}
$$

The Lagrangian is

$$
\begin{equation*}
L=T-U=\frac{1}{2} M\left(\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}\right)+\frac{1}{2} I \dot{\theta}_{2}^{2}-M g r \cos \theta_{1} \tag{3.372}
\end{equation*}
$$

where M and I are the mass and rotational inertia of the rolling cylinder, respectively. Note that the kinetic energy is a sum of center-of-mass translation $T_{\mathrm{tr}}=\frac{1}{2} M\left(\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}\right)$ and rotation about the center-
of-mass, $T_{\text {rot }}=\frac{1}{2} I \dot{\theta}_{2}^{2}$. The equations of motion are

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=M \ddot{r}-M r \dot{\theta}_{1}^{2}+M g \cos \theta_{1}=\lambda_{1} \equiv Q_{r} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right)-\frac{\partial L}{\partial \theta_{1}}=M r^{2} \ddot{\theta}_{1}+2 M r \dot{r} \dot{\theta}_{1}-M g r \sin \theta_{1}=(R+a) \lambda_{2} \equiv Q_{\theta_{1}} \tag{3.373}\\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right)-\frac{\partial L}{\partial \theta_{2}}=I \ddot{\theta}_{2}=-a \lambda_{2} \equiv Q_{\theta_{2}}
\end{align*}
$$

To these three equations we add the two constraints, resulting in five equations in the five unknowns $\left\{r, \theta_{1}, \theta_{2}, \lambda_{1}, \lambda_{2}\right\}$.

We solve by first implementing the constraints, which give $r=(R+a)$ a constant (i.e. $\dot{r}=0)$, and $\dot{\theta}_{2}=\left(1+\frac{R}{a}\right) \dot{\theta}_{1}$. Substituting these into the above equations gives

$$
\begin{align*}
-M(R+a) \dot{\theta}_{1}^{2}+M g \cos \theta_{1} & =\lambda_{1} \tag{3.374}\\
M(R+a)^{2} \ddot{\theta}_{1}-M g(R+a) \sin \theta_{1} & =(R+a) \lambda_{2} \tag{3.375}\\
I\left(\frac{R+a}{a}\right) \ddot{\theta}_{1} & =-a \lambda_{2} \tag{3.376}
\end{align*}
$$

From eqn. 3.376 we obtain

$$
\begin{equation*}
\lambda_{2}=-\frac{I}{a} \ddot{\theta}_{2}=-\frac{R+a}{a^{2}} I \ddot{\theta}_{1} \tag{3.377}
\end{equation*}
$$

which we substitute into eqn. 3.375 to obtain

$$
\begin{equation*}
\left(M+\frac{I}{a^{2}}\right)(R+a)^{2} \ddot{\theta}_{1}-M g(R+a) \sin \theta_{1}=0 \tag{3.378}
\end{equation*}
$$

Multiplying by $\dot{\theta}_{1}$, we obtain an exact differential, which may be integrated to yield

$$
\begin{equation*}
\frac{1}{2} M\left(1+\frac{I}{M a^{2}}\right) \dot{\theta}_{1}^{2}+\frac{M g}{R+a} \cos \theta_{1}=\frac{M g}{R+a} \cos \theta_{1}^{\circ} \tag{3.379}
\end{equation*}
$$

Here, we have assumed that $\dot{\theta}_{1}=0$ when $\theta_{1}=\theta_{1}^{\circ}$, i.e. the rolling cylinder is released from rest at $\theta_{1}=\theta_{1}^{\circ}$. Finally, inserting this result into eqn. 3.374, we obtain the radial force of constraint,

$$
\begin{equation*}
Q_{r}=\frac{M g}{1+\alpha}\left\{(3+\alpha) \cos \theta_{1}-2 \cos \theta_{1}^{\circ}\right\} \tag{3.380}
\end{equation*}
$$

where $\alpha=I / M a^{2}$ is a dimensionless parameter $(0 \leq \alpha \leq 1)$. This is the radial component of the normal force between the two cylinders. When Q_{r} vanishes, the cylinders lose contact - the rolling cylinder flies off. Clearly this occurs at an angle $\theta_{1}=\theta_{1}^{*}$, where

$$
\begin{equation*}
\theta_{1}^{*}=\cos ^{-1}\left(\frac{2 \cos \theta_{1}^{\circ}}{3+\alpha}\right) \tag{3.381}
\end{equation*}
$$

The detachment angle θ_{1}^{*} is an increasing function of α, which means that larger I delays detachment. This makes good sense, since when I is larger the gain in kinetic energy is split between translational and rotational motion of the rolling cylinder. Note also that $Q_{r}\left(\theta_{1}^{\circ}\right)=M g \cos \theta_{1}^{\circ}$ balances the initial radial component of the force of gravity.

Finally, note that the differential equation

$$
\begin{equation*}
d t=\left(\frac{R+a}{2 g}\right)^{1 / 2} \frac{d \theta}{\sqrt{\cos \theta_{1}^{\circ}-\cos \theta_{1}}} \tag{3.382}
\end{equation*}
$$

may be integrated to yield $\theta_{1}(t)$ for $t \in\left[0, t^{*}\right]$, where $\theta_{1}\left(t^{*}\right)=\theta_{1}^{*}$, i.e. t^{*} is the time to detachment.

3.17.2 Frictionless motion along a curve

Consider the situation in fig. 3.15 where a skier moves frictionlessly under the influence of gravity along a general curve $y=h(x)$. The Lagrangian for this problem is

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y \tag{3.383}
\end{equation*}
$$

and the (holonomic) constraint is

$$
\begin{equation*}
G(x, y)=y-h(x)=0 . \tag{3.384}
\end{equation*}
$$

Accordingly, the Euler-Lagrange equations are

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)-\frac{\partial L}{\partial q_{\sigma}}=\lambda \frac{\partial G}{\partial q_{\sigma}} \tag{3.385}
\end{equation*}
$$

where $q_{1}=x$ and $q_{2}=y$. Thus, we obtain

$$
\begin{align*}
m \ddot{x}=-\lambda h^{\prime}(x) & =Q_{x} \\
m \ddot{y}+m g=\lambda & =Q_{y} \tag{3.386}
\end{align*} .
$$

We eliminate y in favor of x by invoking the constraint. Since we need \ddot{y}, we must differentiate the constraint, which gives

$$
\begin{equation*}
\dot{y}=h^{\prime}(x) \dot{x} \quad, \quad \ddot{y}=h^{\prime}(x) \ddot{x}+h^{\prime \prime}(x) \dot{x}^{2} . \tag{3.387}
\end{equation*}
$$

Using the second Euler-Lagrange equation, we then obtain

$$
\begin{equation*}
\frac{\lambda}{m}=g+h^{\prime}(x) \ddot{x}+h^{\prime \prime}(x) \dot{x}^{2} \tag{3.388}
\end{equation*}
$$

Finally, we substitute this into the first E-L equation to obtain an equation for x alone:

$$
\begin{equation*}
\left(1+\left[h^{\prime}(x)\right]^{2}\right) \ddot{x}+h^{\prime}(x) h^{\prime \prime}(x) \dot{x}^{2}+g h^{\prime}(x)=0 \tag{3.389}
\end{equation*}
$$

Had we started by eliminating $y=h(x)$ at the outset, writing

$$
\begin{equation*}
L(x, \dot{x})=\frac{1}{2} m\left(1+\left[h^{\prime}(x)\right]^{2}\right) \dot{x}^{2}-m g h(x), \tag{3.390}
\end{equation*}
$$

Figure 3.15: Frictionless motion under gravity along a curved surface. The skier flies off the surface when the normal force vanishes.
we would also have obtained this equation of motion.
The skier flies off the curve when the vertical force of constraint $Q_{y}=\lambda$ starts to become negative, because the curve can only supply a positive normal force. Suppose the skier starts from rest at a height y_{0}. We may then determine the point x at which the skier detaches from the curve by setting $\lambda(x)=0$. To do so, we must eliminate \dot{x} and \ddot{x} in terms of x. For \ddot{x}, we may use the equation of motion to write

$$
\begin{equation*}
\ddot{x}=-\left(\frac{g h^{\prime}+h^{\prime} h^{\prime \prime} \dot{x}^{2}}{1+h^{\prime 2}}\right) \tag{3.391}
\end{equation*}
$$

which allows us to write

$$
\begin{equation*}
\lambda=m\left(\frac{g+h^{\prime \prime} \dot{x}^{2}}{1+h^{\prime 2}}\right) \tag{3.392}
\end{equation*}
$$

To eliminate \dot{x}, we use conservation of energy,

$$
\begin{equation*}
E=m g y_{0}=\frac{1}{2} m\left(1+h^{\prime 2}\right) \dot{x}^{2}+m g h \tag{3.393}
\end{equation*}
$$

which fixes

$$
\begin{equation*}
\dot{x}^{2}=2 g\left(\frac{y_{0}-h}{1+h^{\prime 2}}\right) \tag{3.394}
\end{equation*}
$$

Putting it all together, we have

$$
\begin{equation*}
\lambda(x)=\frac{m g}{\left(1+h^{\prime 2}\right)^{2}}\left\{1+h^{\prime 2}+2\left(y_{0}-h\right) h^{\prime \prime}\right\} \tag{3.395}
\end{equation*}
$$

The skier detaches from the curve when $\lambda(x)=0$, i.e. when

$$
\begin{equation*}
1+h^{\prime 2}+2\left(y_{0}-h\right) h^{\prime \prime}=0 \tag{3.396}
\end{equation*}
$$

Figure 3.16: Finding the local radius of curvature: $z=\eta^{2} / 2 R$.

There is a somewhat easier way of arriving at the same answer. This is to note that the skier must fly off when the local centripetal force equals the gravitational force normal to the curve, i.e.

$$
\begin{equation*}
\frac{m v^{2}(x)}{R(x)}=m g \cos \theta(x), \tag{3.397}
\end{equation*}
$$

where $R(x)$ is the local radius of curvature. Now $\tan \theta=h^{\prime}$, so $\cos \theta=\left(1+h^{\prime 2}\right)^{-1 / 2}$. The square of the velocity is $v^{2}=\dot{x}^{2}+\dot{y}^{2}=\left(1+h^{\prime 2}\right) \dot{x}^{2}$. What is the local radius of curvature $R(x)$? This can be determined from the following argument, and from the sketch in fig. 3.16. Writing $x=x^{*}+\epsilon$, we have

$$
\begin{equation*}
y=h\left(x^{*}\right)+h^{\prime}\left(x^{*}\right) \epsilon+\frac{1}{2} h^{\prime \prime}\left(x^{*}\right) \epsilon^{2}+\ldots . \tag{3.398}
\end{equation*}
$$

We now drop a perpendicular segment of length z from the point (x, y) to the line which is tangent to the curve at $\left(x^{*}, h\left(x^{*}\right)\right)$. According to fig. 3.16, this means

$$
\begin{equation*}
\binom{\epsilon}{y}=\eta \cdot \frac{1}{\sqrt{1+h^{\prime 2}}}\binom{1}{h^{\prime}}-z \cdot \frac{1}{\sqrt{1+h^{\prime 2}}}\binom{-h^{\prime}}{1} . \tag{3.399}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
y & =h^{\prime} \epsilon+\frac{1}{2} h^{\prime \prime} \epsilon^{2} \\
& =h^{\prime}\left(\frac{\eta+z h^{\prime}}{\sqrt{1+h^{\prime 2}}}\right)+\frac{1}{2} h^{\prime \prime}\left(\frac{\eta+z h^{\prime}}{\sqrt{1+{h^{\prime 2}}^{\prime}}}\right)^{2} \tag{3.400}\\
& =\frac{\eta h^{\prime}+z h^{\prime 2}}{\sqrt{1+h^{\prime 2}}}+\frac{h^{\prime \prime} \eta^{2}}{2\left(1+h^{\prime 2}\right)}+\mathcal{O}(\eta z)=\frac{\eta h^{\prime}-z}{\sqrt{1+h^{\prime 2}}}
\end{align*}
$$

from which we obtain

$$
\begin{equation*}
z=-\frac{h^{\prime \prime} \eta^{2}}{2\left(1+h^{\prime 2}\right)^{3 / 2}}+\mathcal{O}\left(\eta^{3}\right) \tag{3.401}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
R(x)=-\frac{1}{h^{\prime \prime}(x)} \cdot\left(1+\left[h^{\prime}(x)\right]^{2}\right)^{3 / 2} \tag{3.402}
\end{equation*}
$$

Thus, the detachment condition,

$$
\begin{equation*}
\frac{m v^{2}}{R}=-\frac{m h^{\prime \prime} \dot{x}^{2}}{\sqrt{1+h^{\prime 2}}}=\frac{m g}{\sqrt{1+h^{\prime 2}}}=m g \cos \theta \tag{3.403}
\end{equation*}
$$

reproduces the result from eqn. 3.392.

3.17.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane. The inclined plane has opening angle α and mass M, and itself slides frictionlessly along a horizontal surface. Find the motion of the system.

Figure 3.17: A hoop rolling down an inclined plane lying on a frictionless surface.

Solution : Referring to the sketch in fig. 3.17, the center of the hoop is located at

$$
\begin{align*}
& x=X+s \cos \alpha-a \sin \alpha \\
& y=s \sin \alpha+a \cos \alpha, \tag{3.404}
\end{align*}
$$

where X is the location of the lower left corner of the wedge, and s is the distance along the wedge to the bottom of the hoop. If the hoop rotates through an angle θ, the no-slip condition is $a \dot{\theta}+\dot{s}=0$. Thus,

$$
\begin{align*}
L & =\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}-m g y \\
& =\frac{1}{2}\left(m+\frac{I}{a^{2}}\right) \dot{s}^{2}+\frac{1}{2}(M+m) \dot{X}^{2}+m \cos \alpha \dot{X} \dot{s}-m g s \sin \alpha-m g a \cos \alpha . \tag{3.405}
\end{align*}
$$

Since X is cyclic in L, the momentum

$$
\begin{equation*}
P_{X}=(M+m) \dot{X}+m \cos \alpha \dot{s} \tag{3.406}
\end{equation*}
$$

is preserved: $\dot{P}_{X}=0$. The second equation of motion, corresponding to the generalized coordinate s, is

$$
\begin{equation*}
\left(1+\frac{I}{m a^{2}}\right) \ddot{s}+\cos \alpha \ddot{X}=-g \sin \alpha \tag{3.407}
\end{equation*}
$$

Using conservation of P_{X}, we eliminate \ddot{s} in favor of \ddot{X}, and immediately obtain

$$
\begin{equation*}
\ddot{X}=\frac{g \sin \alpha \cos \alpha}{\left(1+\frac{M}{m}\right)\left(1+\frac{I}{m a^{2}}\right)-\cos ^{2} \alpha} \equiv a_{X} \tag{3.408}
\end{equation*}
$$

The result

$$
\begin{equation*}
\ddot{s}=-\frac{g\left(1+\frac{M}{m}\right) \sin \alpha}{\left(1+\frac{M}{m}\right)\left(1+\frac{I}{m a^{2}}\right)-\cos ^{2} \alpha} \equiv a_{s} \tag{3.409}
\end{equation*}
$$

follows immediately. Thus,

$$
\begin{align*}
X(t) & =X(0)+\dot{X}(0) t+\frac{1}{2} a_{X} t^{2} \tag{3.410}\\
s(t) & =s(0)+\dot{s}(0) t+\frac{1}{2} a_{s} t^{2}
\end{align*}
$$

Note that $a_{s}<0$ while $a_{X}>0$, i.e. the hoop rolls down and to the left as the wedge slides to the right. Note that $I=m a^{2}$ for a hoop; we've computed the answer here for general I.

3.17.4 Pendulum with nonrigid support

A particle of mass m is suspended from a flexible string of length ℓ in a uniform gravitational field. While hanging motionless in equilibrium, it is struck a horizontal blow resulting in an initial angular velocity ω_{0}. Treating the system as one with two degrees of freedom and a constraint, answer the following:
(a) Compute the Lagrangian, the equation of constraint, and the equations of motion.

Solution : The Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+m g r \cos \theta . \tag{3.411}
\end{equation*}
$$

The constraint is $r=\ell$. The equations of motion are

$$
\begin{align*}
m \ddot{r}-m r \dot{\theta}^{2}-m g \cos \theta & =\lambda \tag{3.412}\\
m r^{2} \ddot{\theta}+2 m r \dot{r} \dot{\theta}-m g \sin \theta & =0 .
\end{align*}
$$

(b) Compute the tension in the string as a function of angle θ.

Solution : Energy is conserved, hence

$$
\begin{equation*}
\frac{1}{2} m \ell^{2} \dot{\theta}^{2}-m g \ell \cos \theta=\frac{1}{2} m \ell^{2} \dot{\theta}_{0}^{2}-m g \ell \cos \theta_{0} \tag{3.413}
\end{equation*}
$$

We take $\theta_{0}=0$ and $\dot{\theta}_{0}=\omega_{0}$. Thus,

$$
\begin{equation*}
\dot{\theta}^{2}=\omega_{0}^{2}-2 \Omega^{2}(1-\cos \theta), \tag{3.414}
\end{equation*}
$$

with $\Omega=\sqrt{g / \ell}$. Substituting this into the equation for λ, we obtain

$$
\begin{equation*}
\lambda=m g\left\{2-3 \cos \theta-\frac{\omega_{0}^{2}}{\Omega^{2}}\right\} \tag{3.415}
\end{equation*}
$$

(c) Show that if $\omega_{0}^{2}<2 g / \ell$ then the particle's motion is confined below the horizontal and that the tension in the string is always positive (defined such that positive means exerting a pulling force and negative means exerting a pushing force). Note that the difference between a string and a rigid rod is that the string can only pull but the rod can pull or push. Thus, the string tension must always be positive or else the string goes "slack".

Solution : Since $\dot{\theta}^{2} \geq 0$, we must have

$$
\begin{equation*}
\frac{\omega_{0}^{2}}{2 \Omega^{2}} \geq 1-\cos \theta \tag{3.416}
\end{equation*}
$$

The condition for slackness is $\lambda=0$, or

$$
\begin{equation*}
\frac{\omega_{0}^{2}}{2 \Omega^{2}}=1-\frac{3}{2} \cos \theta \tag{3.417}
\end{equation*}
$$

Thus, if $\omega_{0}^{2}<2 \Omega^{2}$, we have

$$
\begin{equation*}
1>\frac{\omega_{0}^{2}}{2 \Omega^{2}}>1-\cos \theta>1-\frac{3}{2} \cos \theta \tag{3.418}
\end{equation*}
$$

and the string never goes slack. Note the last equality follows from $\cos \theta>0$. The string rises to a maximum angle

$$
\begin{equation*}
\theta_{\max }=\cos ^{-1}\left(1-\frac{\omega_{0}^{2}}{2 \Omega^{2}}\right) \tag{3.419}
\end{equation*}
$$

(d) Show that if $2 g / \ell<\omega_{0}^{2}<5 g / \ell$ the particle rises above the horizontal and the string becomes slack (the tension vanishes) at an angle θ^{*}. Compute θ^{*}.

Solution: When $\omega^{2}>2 \Omega^{2}$, the string rises above the horizontal and goes slack at an angle

$$
\begin{equation*}
\theta^{*}=\cos ^{-1}\left(\frac{2}{3}-\frac{\omega_{0}^{2}}{3 \Omega^{2}}\right) . \tag{3.420}
\end{equation*}
$$

This solution craps out when the string is still taut at $\theta=\pi$, which means $\omega_{0}^{2}=5 \Omega^{2}$.
(e) Show that if $\omega_{0}^{2}>5 g / \ell$ the tension is always positive and the particle executes circular motion.

Solution: For $\omega_{0}^{2}>5 \Omega^{2}$, the string never goes slack. Furthermore, $\dot{\theta}$ never vanishes. Therefore, the pendulum undergoes circular motion, albeit not with constant angular velocity.

Figure 3.18: A ladder sliding down a wall and across a floor.

3.17.5 Falling ladder

A uniform ladder of length ℓ and mass m has one end on a smooth horizontal floor and the other end against a smooth vertical wall. The ladder is initially at rest and makes an angle θ_{0} with respect to the horizontal.
(a) Make a convenient choice of generalized coordinates and find the Lagrangian.

Solution: I choose as generalized coordinates the Cartesian coordinates (x, y) of the ladder's center of mass, and the angle θ it makes with respect to the floor. The Lagrangian is then

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}-m g y . \tag{3.421}
\end{equation*}
$$

There are two constraints: one enforcing contact along the wall, and the other enforcing contact along the floor. These are written

$$
\begin{align*}
& G_{1}(x, y, \theta)=x-\frac{1}{2} \ell \cos \theta=0 \\
& G_{2}(x, y, \theta)=y-\frac{1}{2} \ell \sin \theta=0 . \tag{3.422}
\end{align*}
$$

(b) Prove that the ladder leaves the wall when its upper end has fallen to a height $\frac{2}{3} L \sin \theta_{0}$. The equations of motion are

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)-\frac{\partial L}{\partial q_{\sigma}}=\sum_{j} \lambda_{j} \frac{\partial G_{j}}{\partial q_{\sigma}} . \tag{3.423}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
m \ddot{x} & =\lambda_{1}=Q_{x} \\
m \ddot{y}+m g & =\lambda_{2}=Q_{y} \tag{3.424}\\
I \ddot{\theta} & =\frac{1}{2} \ell\left(\lambda_{1} \sin \theta-\lambda_{2} \cos \theta\right)=Q_{\theta} .
\end{align*}
$$

We now implement the constraints to eliminate x and y in terms of θ. We have

$$
\begin{array}{rll}
\dot{x}=-\frac{1}{2} \ell \sin \theta \dot{\theta} & , & \ddot{x}=-\frac{1}{2} \ell \cos \theta \dot{\theta}^{2}-\frac{1}{2} \ell \sin \theta \ddot{\theta} \\
\dot{y}=\frac{1}{2} \ell \cos \theta \dot{\theta} & , & \ddot{y}=-\frac{1}{2} \ell \sin \theta \dot{\theta}^{2}+\frac{1}{2} \ell \cos \theta \ddot{\theta} . \tag{3.425}
\end{array}
$$

We can now obtain the forces of constraint in terms of the function $\theta(t)$:

$$
\begin{align*}
& \lambda_{1}=-\frac{1}{2} m \ell\left(\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}\right) \tag{3.426}\\
& \lambda_{2}=+\frac{1}{2} m \ell\left(\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right)+m g .
\end{align*}
$$

We substitute these into the last equation of motion to obtain the result

$$
\begin{equation*}
I \ddot{\theta}=-I_{0} \ddot{\theta}-\frac{1}{2} m g \ell \cos \theta, \tag{3.427}
\end{equation*}
$$

which is to say $(1+\alpha) \ddot{\theta}=-2 \omega_{0}^{2} \cos \theta$, with $I_{0}=\frac{1}{4} m \ell^{2}, \alpha \equiv I / I_{0}$ and $\omega_{0}=\sqrt{g / \ell}$. This may be integrated once (multiply by $\dot{\theta}$ to convert to a total derivative) to yield

$$
\begin{equation*}
\frac{1}{2}(1+\alpha) \dot{\theta}^{2}+2 \omega_{0}^{2} \sin \theta=2 \omega_{0}^{2} \sin \theta_{0} \tag{3.428}
\end{equation*}
$$

which is of course a statement of energy conservation. This,

$$
\begin{equation*}
\dot{\theta}^{2}=\frac{4 \omega_{0}^{2}\left(\sin \theta_{0}-\sin \theta\right)}{1+\alpha} \quad, \quad \ddot{\theta}=-\frac{2 \omega_{0}^{2} \cos \theta}{1+\alpha} \tag{3.429}
\end{equation*}
$$

We may now obtain $\lambda_{1}(\theta)$ and $\lambda_{2}(\theta)$:

$$
\begin{align*}
& \lambda_{1}(\theta)=-\frac{m g}{1+\alpha}\left(3 \sin \theta-2 \sin \theta_{0}\right) \cos \theta \\
& \lambda_{2}(\theta)=\frac{m g}{1+\alpha}\left\{\left(3 \sin \theta-2 \sin \theta_{0}\right) \sin \theta+\alpha\right\} \tag{3.430}
\end{align*}
$$

Demanding $\lambda_{1}(\theta)=0$ gives the detachment angle $\theta=\theta_{d}$, where

$$
\begin{equation*}
\sin \theta_{\mathrm{d}}=\frac{2}{3} \sin \theta_{0} \tag{3.431}
\end{equation*}
$$

Note that $\lambda_{2}\left(\theta_{\mathrm{d}}\right)=m g \alpha /(1+\alpha)>0$, so the normal force from the floor is always positive for $\theta>\theta_{d}$. The time to detachment is

$$
\begin{equation*}
T_{1}\left(\theta_{0}\right)=\int \frac{d \theta}{\dot{\theta}}=\frac{\sqrt{1+\alpha}}{2 \omega_{0}} \int_{\theta_{\mathrm{d}}}^{\theta_{0}} \frac{d \theta}{\sqrt{\sin \theta_{0}-\sin \theta}} \tag{3.432}
\end{equation*}
$$

(c) Show that the subsequent motion can be reduced to quadratures (i.e. explicit integrals).

Solution : After the detachment, there is no longer a constraint G_{1}. The equations of motion are

$$
\begin{align*}
m \ddot{x} & =0 \quad \text { (conservation of } x \text {-momentum) } \\
m \ddot{y}+m g & =\lambda \tag{3.433}\\
I \ddot{\theta} & =-\frac{1}{2} \ell \lambda \cos \theta \quad,
\end{align*}
$$

along with the constraint $y=\frac{1}{2} \ell \sin \theta$. Eliminating y in favor of θ using the constraint, the second equation yields

$$
\begin{equation*}
\lambda=m g-\frac{1}{2} m \ell \sin \theta \dot{\theta}^{2}+\frac{1}{2} m \ell \cos \theta \ddot{\theta} . \tag{3.434}
\end{equation*}
$$

Plugging this into the third equation of motion, we find

$$
\begin{equation*}
I \ddot{\theta}=-2 I_{0} \omega_{0}^{2} \cos \theta+I_{0} \sin \theta \cos \theta \dot{\theta}^{2}-I_{0} \cos ^{2} \theta \ddot{\theta} . \tag{3.435}
\end{equation*}
$$

Multiplying by $\dot{\theta}$ one again obtains a total time derivative, which is equivalent to rediscovering energy conservation:

$$
\begin{equation*}
E=\frac{1}{2}\left(I+I_{0} \cos ^{2} \theta\right) \dot{\theta}^{2}+2 I_{0} \omega_{0}^{2} \sin \theta . \tag{3.436}
\end{equation*}
$$

Figure 3.19: Plot of time to fall for the slipping ladder. Here $x=\sin \theta_{0}$.
By continuity with the first phase of the motion, we obtain the initial conditions for this second phase:

$$
\begin{aligned}
& \theta=\sin ^{-1}\left(\frac{2}{3} \sin \theta_{0}\right) \\
& \dot{\theta}=-2 \omega_{0} \sqrt{\frac{\sin \theta_{0}}{3(1+\alpha)}} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
E & =\frac{1}{2}\left(I+I_{0}-\frac{4}{9} I_{0} \sin ^{2} \theta_{0}\right) \cdot \frac{4 \omega_{0}^{2} \sin \theta_{0}}{3(1+\alpha)}+\frac{1}{3} m g \ell \sin \theta_{0} \tag{3.437}\\
& =2 I_{0} \omega_{0}^{2} \cdot\left\{1+\frac{4}{27} \frac{\sin ^{2} \theta_{0}}{1+\alpha}\right\} \sin \theta_{0} .
\end{align*}
$$

(d) Find an expression for the time $T\left(\theta_{0}\right)$ it takes the ladder to smack against the floor. Note that, expressed in units of the time scale $\sqrt{L / g}, T$ is a dimensionless function of θ_{0}. Numerically integrate this expression and plot T versus θ_{0}.
Solution : The time from detachment to smack is

$$
\begin{equation*}
T_{2}\left(\theta_{0}\right)=\int \frac{d \theta}{\dot{\theta}}=\frac{1}{2 \omega_{0}} \int_{0}^{\theta_{\mathrm{d}}} d \theta \sqrt{\frac{1+\alpha \cos ^{2} \theta}{\left(1-\frac{4}{27} \frac{\sin ^{2} \theta_{0}}{1+\alpha}\right) \sin \theta_{0}-\sin \theta}} . \tag{3.438}
\end{equation*}
$$

The total time is then $T\left(\theta_{0}\right)=T_{1}\left(\theta_{0}\right)+T_{2}\left(\theta_{0}\right)$. For a uniformly dense ladder, $I=\frac{1}{12} m \ell^{2}=\frac{1}{3} I_{0}$, and therefore $\alpha=\frac{1}{3}$.
(e) What is the horizontal velocity of the ladder at long times?

Solution : From the moment of detachment, and thereafter,

$$
\begin{equation*}
\dot{x}=-\frac{1}{2} \ell \sin \theta \dot{\theta}=\sqrt{\frac{4 g \ell}{27(1+\alpha)}} \sin ^{3 / 2} \theta_{0} \tag{3.439}
\end{equation*}
$$

(f) Describe in words the motion of the ladder subsequent to it slapping against the floor.

Solution: Only a fraction of the ladder's initial potential energy is converted into kinetic energy of horizontal motion. The rest is converted into kinetic energy of vertical motion and of rotation. The slapping of the ladder against the floor is an elastic collision. After the collision, the ladder must rise again, and continue to rise and fall ad infinitum, as it slides along with constant horizontal velocity.

3.17.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in fig. 3.20. We choose as generalized coordinates the Cartesian coordinates (X, Y) of the center of the hoop, the Cartesian coordinates (x, y) for the point mass, the angle ϕ through which the hoop turns, and the angle θ which the point mass makes with respect to the vertical. These six coordinates are not all independent. Indeed, there are only two independent coordinates for this system, which can be taken to be θ and ϕ. Thus, there are four constraints:

$$
\begin{align*}
X-R \phi & \equiv G_{1}=0 \\
Y-R & \equiv G_{2}=0 \tag{3.440}\\
x-X-R \sin \theta & \equiv G_{3}=0 \\
y-Y+R \cos \theta & \equiv G_{4}=0 .
\end{align*}
$$

Figure 3.20: A point mass m inside a hoop of mass M, radius R, and moment of inertia I.
The kinetic and potential energies are easily expressed in terms of the Cartesian coordinates, aside from the energy of rotation of the hoop about its CM, which is expressed in terms of $\dot{\phi}$:

$$
\begin{align*}
T & =\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\phi}^{2} \tag{3.441}\\
U & =M g Y+m g y .
\end{align*}
$$

The moment of inertia of the hoop about its CM is $I=M R^{2}$, but we could imagine a situation in which I were different. For example, we could instead place the point mass inside a very short cylinder with two solid end caps, in which case $I=\frac{1}{2} M R^{2}$. The Lagrangian is then

$$
\begin{equation*}
L=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\phi}^{2}-M g Y-m g y . \tag{3.442}
\end{equation*}
$$

Note that L as written is completely independent of θ and $\dot{\theta}$!

Continuous symmetry

Note that there is a continuous symmetry to L which is satisfied by all the constraints, under

$$
\begin{equation*}
\tilde{X}(\zeta)=X+\zeta \quad, \quad \tilde{Y}(\zeta)=Y \quad, \quad \tilde{x}(\zeta)=x+\zeta \quad, \quad \tilde{y}(\zeta)=y \quad, \quad \tilde{\phi}(\zeta)=\phi+\frac{\zeta}{R} \quad, \quad \tilde{\theta}(\zeta)=\theta \tag{3.443}
\end{equation*}
$$

Thus, according to Noether's theorem, there is a conserved quantity

$$
\begin{equation*}
\Lambda=\frac{\partial L}{\partial \dot{X}}+\frac{\partial L}{\partial \dot{x}}+\frac{1}{R} \frac{\partial L}{\partial \dot{\phi}}=M \dot{X}+m \dot{x}+\frac{I}{R} \dot{\phi} . \tag{3.444}
\end{equation*}
$$

This means $\dot{\Lambda}=0$. This reflects the overall conservation of momentum in the x-direction.

Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the Hamiltonian is conserved. And since T is homogeneous of degree two in the generalized velocities, we have $H=E=T+U$:

$$
\begin{equation*}
E=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\phi}^{2}+M g Y+m g y . \tag{3.445}
\end{equation*}
$$

Equations of motion

We have $n=6$ generalized coordinates and $k=4$ constraints. Thus, there are four undetermined multipliers $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ used to impose the constraints. This makes for ten unknowns: X, Y, x, y, ϕ, $\theta, \lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}. Accordingly, we have ten equations: six equations of motion plus the four equations of constraint. The equations of motion are obtained from

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)=\frac{\partial L}{\partial q_{\sigma}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial q_{\sigma}} \tag{3.446}
\end{equation*}
$$

Taking each generalized coordinate in turn, the equations of motion are thus

$$
\begin{align*}
M \ddot{X} & =\lambda_{1}-\lambda_{3} \\
M \ddot{Y} & =-M g+\lambda_{2}-\lambda_{4} \\
m \ddot{x} & =\lambda_{3} \tag{3.447}\\
m \ddot{y} & =-m g+\lambda_{4} \\
I \ddot{\phi} & =-R \lambda_{1} \\
0 & =-R \cos \theta \lambda_{3}-R \sin \theta \lambda_{4} .
\end{align*}
$$

Along with the four constraint equations, these determine the motion of the system. Note that the last of the equations of motion, for the generalized coordinate $q_{\sigma}=\theta$, says that $Q_{\theta}=0$, which means that the force of constraint on the point mass is radial. Were the point mass replaced by a rolling object, there would be an angular component to this constraint in order that there be no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y, x, and y in terms of θ and ϕ :

$$
\begin{equation*}
X=R \phi \quad, \quad Y=R \quad, \quad x=R \phi+R \sin \theta \quad, \quad y=R(1-\cos \theta) . \tag{3.448}
\end{equation*}
$$

We also need the derivatives:

$$
\begin{equation*}
\dot{x}=R \dot{\phi}+R \cos \theta \dot{\theta} \quad, \quad \ddot{x}=R \ddot{\phi}+R \cos \theta \ddot{\theta}-R \sin \theta \dot{\theta}^{2} \tag{3.449}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{y}=R \sin \theta \dot{\theta} \quad, \quad \ddot{y}=R \sin \theta \ddot{\theta}+R \cos \theta \dot{\theta}^{2} \tag{3.450}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\dot{X}=R \dot{\phi} \quad, \quad \ddot{X}=R \ddot{\phi} \quad, \quad \dot{Y}=0 \quad, \quad \ddot{Y}=0 \tag{3.451}
\end{equation*}
$$

We now may write the conserved charge as

$$
\begin{equation*}
\Lambda=\frac{1}{R}\left(I+M R^{2}+m R^{2}\right) \dot{\phi}+m R \cos \theta \dot{\theta} \tag{3.452}
\end{equation*}
$$

This, in turn, allows us to eliminate $\dot{\phi}$ in terms of $\dot{\theta}$ and the constant Λ :

$$
\begin{equation*}
\dot{\phi}=\frac{\gamma}{1+\gamma}\left(\frac{\Lambda}{m R}-\dot{\theta} \cos \theta\right) \tag{3.453}
\end{equation*}
$$

where $\gamma=m R^{2} /\left(I+M R^{2}\right)$.
The energy is then

$$
\begin{align*}
E & =\frac{1}{2}\left(I+M R^{2}\right) \dot{\phi}^{2}+\frac{1}{2} m\left(R^{2} \dot{\phi}^{2}+R^{2} \dot{\theta}^{2}+2 R^{2} \cos \theta \dot{\phi} \dot{\theta}\right)+M g R+m g R(1-\cos \theta) \\
& =\frac{1}{2} m R^{2}\left\{\left(\frac{1+\gamma \sin ^{2} \theta}{1+\gamma}\right) \dot{\theta}^{2}+\frac{2 g}{R}(1-\cos \theta)+\frac{\gamma}{1+\gamma}\left(\frac{\Lambda}{m R}\right)^{2}+\frac{2 M g}{m R}\right\} \tag{3.454}
\end{align*}
$$

The last two terms inside the big bracket are constant, so we can write this as

$$
\begin{equation*}
\left(\frac{1+\gamma \sin ^{2} \theta}{1+\gamma}\right) \dot{\theta}^{2}+\frac{2 g}{R}(1-\cos \theta)=\frac{4 g k}{R} . \tag{3.455}
\end{equation*}
$$

Here, k is a dimensionless measure of the energy of the system, after subtracting the aforementioned constants. If $k>1$, then $\dot{\theta}^{2}>0$ for all θ, which would result in 'loop-the-loop' motion of the point mass inside the hoop - provided, that is, the normal force of the hoop doesn't vanish and the point mass doesn't detach from the hoop's surface.

Equation motion for $\theta(t)$

The equation of motion for θ obtained by eliminating all other variables from the original set of ten equations is the same as $\dot{E}=0$, and may be written

$$
\begin{equation*}
\left(\frac{1+\gamma \sin ^{2} \theta}{1+\gamma}\right) \ddot{\theta}+\left(\frac{\gamma \sin \theta \cos \theta}{1+\gamma}\right) \dot{\theta}^{2}=-\frac{g}{R} . \tag{3.456}
\end{equation*}
$$

We can use this to write $\ddot{\theta}$ in terms of $\dot{\theta}^{2}$, and, after invoking eqn. 3.455, in terms of θ itself. We find

$$
\begin{align*}
\dot{\theta}^{2} & =\frac{4 g}{R} \cdot\left(\frac{1+\gamma}{1+\gamma \sin ^{2} \theta}\right)\left(k-\sin ^{2} \frac{1}{2} \theta\right) \\
\ddot{\theta} & =-\frac{g}{R} \cdot \frac{(1+\gamma) \sin \theta}{\left(1+\gamma \sin ^{2} \theta\right)^{2}}\left[4 \gamma\left(k-\sin ^{2} \frac{1}{2} \theta\right) \cos \theta+1+\gamma \sin ^{2} \theta\right] . \tag{3.457}
\end{align*}
$$

Forces of constraint

We can solve for the λ_{j}, and thus obtain the forces of constraint

$$
\begin{align*}
\lambda_{3} & =m \ddot{x}=m R \ddot{\phi}+m R \cos \theta \ddot{\theta}-m R \sin \theta \dot{\theta}^{2} \\
& =\frac{m R}{1+\gamma}\left[\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right] \tag{3.458}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{4} & =m \ddot{y}+m g=m g+m R \sin \theta \ddot{\theta}+m R \cos \theta \dot{\theta}^{2} \\
& =m R\left[\ddot{\theta} \sin \theta+\dot{\theta}^{2} \sin \theta+\frac{g}{R}\right] \tag{3.459}
\end{align*}
$$

and

$$
\begin{align*}
& \lambda_{1}=-\frac{I}{R} \ddot{\phi}=\frac{(1+\gamma) I}{m R^{2}} \lambda_{3} \tag{3.460}\\
& \lambda_{2}=(M+m) g+m \ddot{y}=\lambda_{4}+M g
\end{align*}
$$

One can check that $\lambda_{3} \cos \theta+\lambda_{4} \sin \theta=0$.
The condition that the normal force of the hoop on the point mass vanish is $\lambda_{3}=0$, which entails $\lambda_{4}=0$. This gives

$$
\begin{equation*}
-\left(1+\gamma \sin ^{2} \theta\right) \cos \theta=4(1+\gamma)\left(k-\sin ^{2} \frac{1}{2} \theta\right) . \tag{3.461}
\end{equation*}
$$

Note that this requires $\cos \theta<0$, i.e. the point of detachment lies above the horizontal diameter of the hoop. Clearly if k is sufficiently large, the equality cannot be satisfied, and the point mass executes a periodic 'loop-the-loop' motion. In particular, setting $\theta=\pi$, we find that

$$
\begin{equation*}
k_{\mathrm{c}}=1+\frac{1}{4(1+\gamma)} . \tag{3.462}
\end{equation*}
$$

If $k>k_{\mathrm{c}}$, then there is periodic 'loop-the-loop' motion. If $k<k_{\mathrm{c}}$, then the point mass may detach at a critical angle θ^{*}, but only if the motion allows for $\cos \theta<0$. From the energy conservation equation, we have that the maximum value of θ achieved occurs when $\dot{\theta}=0$, which means

$$
\begin{equation*}
\cos \theta_{\max }=1-2 k \tag{3.463}
\end{equation*}
$$

If $\frac{1}{2}<k<k_{\mathrm{c}}$, then, we have the possibility of detachment. This means the energy must be large enough but not too large.

3.18 Appendix : Legendre Transformations

A convex function of a single variable $f(x)$ is one for which $f^{\prime \prime}(x)>0$ everywhere. The Legendre transform of a convex function $f(x)$ is a function $g(p)$ defined as follows. Let p be a real number, and consider the line $y=p x$, as shown in fig. 3.21. We define the point $x(p)$ as the value of x for which the difference $F(x, p)=p x-f(x)$ is greatest. Then define $g(p)=F(x(p), p) .{ }^{8}$ The value $x(p)$ is unique if $f(x)$ is convex, since $x(p)$ is determined by the equation

$$
\begin{equation*}
f^{\prime}(x(p))=p . \tag{3.464}
\end{equation*}
$$

[^9]

Figure 3.21: Construction for the Legendre transformation of a function $f(x)$.
Note that from $p=f^{\prime}(x(p))$ we have, according to the chain rule,

$$
\begin{equation*}
\frac{d}{d p} f^{\prime}(x(p))=f^{\prime \prime}(x(p)) x^{\prime}(p) \quad \Longrightarrow \quad x^{\prime}(p)=\left[f^{\prime \prime}(x(p))\right]^{-1} \tag{3.465}
\end{equation*}
$$

From this, we can prove that $g(p)$ is itself convex:

$$
\begin{align*}
g^{\prime}(p) & =\frac{d}{d p}[p x(p)-f(x(p))] \tag{3.466}\\
& =p x^{\prime}(p)+x(p)-f^{\prime}(x(p)) x^{\prime}(p)=x(p)
\end{align*}
$$

hence

$$
\begin{equation*}
g^{\prime \prime}(p)=x^{\prime}(p)=\left[f^{\prime \prime}(x(p))\right]^{-1}>0 \tag{3.467}
\end{equation*}
$$

In higher dimensions, the generalization of the definition $f^{\prime \prime}(x)>0$ is that a function $F\left(x_{1}, \ldots, x_{n}\right)$ is convex if the matrix of second derivatives, called the Hessian,

$$
\begin{equation*}
H_{i j}(\boldsymbol{x})=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \tag{3.468}
\end{equation*}
$$

is positive definite. That is, all the eigenvalues of $H_{i j}(\boldsymbol{x})$ must be positive for every \boldsymbol{x}. We then define the Legendre transform $\boldsymbol{G}(\boldsymbol{p})$ as

$$
\begin{equation*}
\boldsymbol{G}(\boldsymbol{p})=\boldsymbol{p} \cdot \boldsymbol{x}-F(\boldsymbol{x}) \tag{3.469}
\end{equation*}
$$

where $\boldsymbol{p}=\boldsymbol{\nabla} F$. Note that

$$
\begin{equation*}
d G=\boldsymbol{x} \cdot d \boldsymbol{p}+\boldsymbol{p} \cdot d \boldsymbol{x}-\boldsymbol{\nabla} F \cdot d \boldsymbol{x}=\boldsymbol{x} \cdot d \boldsymbol{p} \tag{3.470}
\end{equation*}
$$

which establishes that G is a function of \boldsymbol{p} and that

$$
\begin{equation*}
\frac{\partial G}{\partial p_{j}}=x_{j} \tag{3.471}
\end{equation*}
$$

Note also that the Legendre transformation is self dual, which is to say that the Legendre transform of $G(\boldsymbol{p})$ is $F(\boldsymbol{x}): F \rightarrow G \rightarrow F$ under successive Legendre transformations.

We can also define a partial Legendre transformation as follows. Consider a function of q variables $F(\boldsymbol{x}, \boldsymbol{y})$, where $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\boldsymbol{y}=\left\{y_{1}, \ldots, y_{n}\right\}$, with $q=m+n$. Define $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{m}\right\}$, and

$$
\begin{equation*}
G(\boldsymbol{p}, \boldsymbol{y})=\boldsymbol{p} \cdot \boldsymbol{x}-F(\boldsymbol{x}, \boldsymbol{y}) \tag{3.472}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{a}=\frac{\partial F}{\partial x_{a}} \quad, \quad a \in\{1, \ldots, m\} . \tag{3.473}
\end{equation*}
$$

These equations are then to be inverted to yield

$$
\begin{equation*}
x_{a}=x_{a}(\boldsymbol{p}, \boldsymbol{y})=\frac{\partial G}{\partial p_{a}} \tag{3.474}
\end{equation*}
$$

Note that

$$
\begin{equation*}
p_{a}=\frac{\partial F}{\partial x_{a}}(\boldsymbol{x}(\boldsymbol{p}, \boldsymbol{y}), \boldsymbol{y}) \tag{3.475}
\end{equation*}
$$

Thus, from the chain rule,

$$
\begin{equation*}
\delta_{a b}=\frac{\partial p_{a}}{\partial p_{b}}=\frac{\partial^{2} F}{\partial x_{a} \partial x_{c}} \frac{\partial x_{c}}{\partial p_{b}}=\frac{\partial^{2} F}{\partial x_{a} \partial x_{c}} \frac{\partial^{2} G}{\partial p_{c} \partial p_{b}} \tag{3.476}
\end{equation*}
$$

which says

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial p_{a} \partial p_{b}}=\frac{\partial x_{a}}{\partial p_{b}}=\mathrm{K}_{a b}^{-1} \tag{3.477}
\end{equation*}
$$

where the $m \times m$ partial Hessian is

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x_{a} \partial x_{b}}=\frac{\partial p_{a}}{\partial x_{b}}=\mathrm{K}_{a b} \tag{3.478}
\end{equation*}
$$

Note that $\mathrm{K}_{a b}=\mathrm{K}_{b a}$ is symmetric. And with respect to the \boldsymbol{y} coordinates,

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial y_{\mu} \partial y_{\nu}}=-\frac{\partial^{2} F}{\partial y_{\mu} \partial y_{\nu}}=-\mathrm{L}_{\mu \nu} \tag{3.479}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{L}_{\mu \nu}=\frac{\partial^{2} F}{\partial y_{\mu} \partial y_{\nu}} \tag{3.480}
\end{equation*}
$$

is the partial Hessian in the \boldsymbol{y} coordinates. Now it is easy to see that if the full $q \times q$ Hessian matrix $H_{i j}$ is positive definite, then any submatrix such as $\mathrm{K}_{a b}$ or $\mathrm{L}_{\mu \nu}$ must also be positive definite. In this case, the partial Legendre transform is convex in $\left\{p_{1}, \ldots, p_{m}\right\}$ and concave in $\left\{y_{1}, \ldots, y_{n}\right\}$.

Chapter 4

Central Forces and Orbital Mechanics

4.1 Reduction to a one-body problem

Consider two particles interacting via a potential $U\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)$. Such a potential, which depends only on the relative distance between the particles, is called a central potential. The Lagrangian of this system is then

$$
\begin{equation*}
L=T-U=\frac{1}{2} m_{1} \dot{\boldsymbol{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\boldsymbol{r}}_{2}^{2}-U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) . \tag{4.1}
\end{equation*}
$$

4.1.1 Center-of-mass (CM) and relative coordinates

The two-body central force problem may always be reduced to two independent one-body problems, by transforming to center-of-mass (\boldsymbol{R}) and relative (\boldsymbol{r}) coordinates (see fig. 4.1), viz.

$$
\begin{array}{ll}
\boldsymbol{R}=\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{m_{1}+m_{2}} & \boldsymbol{r} \\
\boldsymbol{r}_{1}=\boldsymbol{R}+\frac{\boldsymbol{r}_{1}-\boldsymbol{r}_{2}}{m_{1}+m_{2}} \boldsymbol{r} & \boldsymbol{r}_{2} \tag{4.3}
\end{array}=\boldsymbol{R}-\frac{m_{1}}{m_{1}+m_{2}} \boldsymbol{r}
$$

We then have

$$
\begin{align*}
L & =\frac{1}{2} m_{1} \dot{\boldsymbol{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\boldsymbol{r}}_{2}^{2}-U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) \tag{4.4}\\
& =\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}-U(r) .
\end{align*}
$$

where

$$
\begin{align*}
M & =m_{1}+m_{2} \quad \text { (total mass) } \\
\mu & =\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { (reduced mass) } . \tag{4.5}
\end{align*}
$$

Figure 4.1: Center-of-mass (\boldsymbol{R}) and relative (\boldsymbol{r}) coordinates.

4.1.2 Solution to the CM problem

We have $\partial L / \partial \boldsymbol{R}=0$, which gives $\dot{\boldsymbol{R}}=0$ and hence

$$
\begin{equation*}
\boldsymbol{R}(t)=\boldsymbol{R}(0)+\dot{\boldsymbol{R}}(0) t \tag{4.6}
\end{equation*}
$$

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

4.1.3 Solution to the relative coordinate problem

Angular momentum conservation: We have that $\boldsymbol{\ell}=\boldsymbol{r} \times \boldsymbol{p}=\mu \boldsymbol{r} \times \dot{\boldsymbol{r}}$ is a constant of the motion. This means that the motion $\boldsymbol{r}(t)$ is confined to a plane perpendicular to ℓ. It is convenient to adopt two-dimensional polar coordinates (r, ϕ). The magnitude of ℓ is

$$
\begin{equation*}
\ell=\mu r^{2} \dot{\phi}=2 \mu \dot{\mathcal{A}} \tag{4.7}
\end{equation*}
$$

where $d \mathcal{A}=\frac{1}{2} r^{2} d \phi$ is the differential element of area subtended relative to the force center. The relative coordinate vector for a central force problem subtends equal areas in equal times. This is known as Kepler's Second Law.

Energy conservation: The equation of motion for the relative coordinate is

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{r}}}\right)=\frac{\partial L}{\partial \boldsymbol{r}} \quad \Rightarrow \quad \mu \ddot{\boldsymbol{r}}=-\frac{\partial U}{\partial \boldsymbol{r}} \tag{4.8}
\end{equation*}
$$

Taking the dot product with $\dot{\boldsymbol{r}}$, we have

$$
\begin{align*}
0 & =\mu \ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}}+\frac{\partial U}{\partial \boldsymbol{r}} \cdot \dot{\boldsymbol{r}} \tag{4.9}\\
& =\frac{d}{d t}\left\{\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}+U(r)\right\}=\frac{d E}{d t}
\end{align*}
$$

Thus, the relative coordinate contribution to the total energy is itself conserved. The total energy is of course $E_{\text {tot }}=E+\frac{1}{2} M \dot{\boldsymbol{R}}^{2}$.
Since $\boldsymbol{\ell}$ is conserved, and since $\boldsymbol{r} \cdot \boldsymbol{\ell}=0$, all motion is confined to a plane perpendicular to $\boldsymbol{\ell}$. Choosing coordinates such that $\hat{z}=\hat{\ell}$, we have

$$
\begin{align*}
E & =\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}+U(r)=\frac{1}{2} \mu \dot{r}^{2}+\frac{\ell^{2}}{2 \mu r^{2}}+U(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+U_{\mathrm{eff}}(r) \tag{4.10}\\
U_{\mathrm{eff}}(r) & =\frac{\ell^{2}}{2 \mu r^{2}}+U(r) .
\end{align*}
$$

Integration of the Equations of Motion, Step I: The second order equation for $r(t)$ is

$$
\begin{equation*}
\frac{d E}{d t}=0 \quad \Rightarrow \quad \mu \ddot{r}=\frac{\ell^{2}}{\mu r^{3}}-\frac{d U(r)}{d r}=-\frac{d U_{\mathrm{eff}}(r)}{d r} . \tag{4.11}
\end{equation*}
$$

However, conservation of energy reduces this to a first order equation, via

$$
\begin{equation*}
\dot{r}= \pm \sqrt{\frac{2}{\mu}\left(E-U_{\mathrm{eff}}(r)\right)} \Rightarrow d t= \pm \frac{\sqrt{\frac{\mu}{2}} d r}{\sqrt{E-\frac{\ell^{2}}{2 \mu r^{2}}-U(r)}} \tag{4.12}
\end{equation*}
$$

This gives $t(r)$, which must be inverted to obtain $r(t)$. In principle this is possible. Note that a constant of integration also appears at this stage - call it $r_{0}=r(t=0)$.

Integration of the Equations of Motion, Step II: After finding $r(t)$ one can integrate to find $\phi(t)$ using the conservation of ℓ :

$$
\begin{equation*}
\dot{\phi}=\frac{\ell}{\mu r^{2}} \quad \Rightarrow \quad d \phi=\frac{\ell}{\mu r^{2}(t)} d t . \tag{4.13}
\end{equation*}
$$

This gives $\phi(t)$, and introduces another constant of integration - call it $\phi_{0}=\phi(t=0)$.

Pause to Reflect on the Number of Constants: Confined to the plane perpendicular to ℓ, the relative coordinate vector has two degrees of freedom. The equations of motion are second order in time, leading to four constants of integration. Our four constants are E, ℓ, r_{0}, and ϕ_{0}.
The original problem involves two particles, hence six positions and six velocities, making for 12 initial conditions. Six constants are associated with the CM system: $\boldsymbol{R}(0)$ and $\dot{\boldsymbol{R}}(0)$. The six remaining constants associated with the relative coordinate system are ℓ (three components), E, r_{0}, and ϕ_{0}.

Geometric Equation of the Orbit: From $\ell=\mu r^{2} \dot{\phi}$, we have

$$
\begin{equation*}
\frac{d}{d t}=\frac{\ell}{\mu r^{2}} \frac{d}{d \phi} \tag{4.14}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}=\frac{\mu r^{4}}{\ell^{2}} F(r)+r \tag{4.15}
\end{equation*}
$$

where $F(r)=-d U(r) / d r$ is the magnitude of the central force. This second order equation may be reduced to a first order one using energy conservation:

$$
\begin{align*}
E & =\frac{1}{2} \mu \dot{r}^{2}+U_{\mathrm{eff}}(r) \\
& =\frac{\ell^{2}}{2 \mu r^{4}}\left(\frac{d r}{d \phi}\right)^{2}+U_{\mathrm{eff}}(r) . \tag{4.16}
\end{align*}
$$

Thus,

$$
\begin{equation*}
d \phi= \pm \frac{\ell}{\sqrt{2 \mu}} \cdot \frac{d r}{r^{2} \sqrt{E-U_{\mathrm{eff}}(r)}} \tag{4.17}
\end{equation*}
$$

which can be integrated to yield $\phi(r)$, and then inverted to yield $r(\phi)$. Note that only one integration need be performed to obtain the geometric shape of the orbit, while two integrations - one for $r(t)$ and one for $\phi(t)$ - must be performed to obtain the full motion of the system.

It is sometimes convenient to rewrite eqn. 4.15 in terms of the variable $s=1 / r$:

$$
\begin{equation*}
\frac{d^{2} s}{d \phi^{2}}+s=-\frac{\mu}{\ell^{2} s^{2}} F\left(s^{-1}\right) \tag{4.18}
\end{equation*}
$$

As an example, suppose the geometric orbit is $r(\phi)=k e^{\alpha \phi}$, known as a logarithmic spiral. What is the force? We invoke (4.15), with $s^{\prime \prime}(\phi)=\alpha^{2} s$, yielding

$$
\begin{equation*}
F\left(s^{-1}\right)=-\left(1+\alpha^{2}\right) \frac{\ell^{2}}{\mu} s^{3} \quad \Rightarrow \quad F(r)=-\frac{C}{r^{3}} \tag{4.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha^{2}=\frac{\mu C}{\ell^{2}}-1 \tag{4.20}
\end{equation*}
$$

The general solution for $s(\phi)$ for this force law is

$$
s(\phi)= \begin{cases}A \cosh (\alpha \phi)+B \sinh (-\alpha \phi) & \text { if } \ell^{2}>\mu C \tag{4.21}\\ A^{\prime} \cos (|\alpha| \phi)+B^{\prime} \sin (|\alpha| \phi) & \text { if } \ell^{2}<\mu C\end{cases}
$$

The logarithmic spiral shape is a special case of the first kind of orbit.

4.2 Almost Circular Orbits

A circular orbit with $r(t)=r_{0}$ satisfies $\ddot{r}=0$, which means that $U_{\text {eff }}^{\prime}\left(r_{0}\right)=0$, which says that $F\left(r_{0}\right)=$ $-\ell^{2} / \mu r_{0}^{3}$. This is negative, indicating that a circular orbit is possible only if the force is attractive over

Figure 4.2: Stable and unstable circular orbits. Left panel: $U(r)=-k / r$ produces a stable circular orbit. Right panel: $U(r)=-k / r^{4}$ produces an unstable circular orbit.
some range of distances. Since $\dot{r}=0$ as well, we must also have $E=U_{\text {eff }}\left(r_{0}\right)$. An almost circular orbit has $r(t)=r_{0}+\eta(t)$, where $\left|\eta / r_{0}\right| \ll 1$. To lowest order in η, one derives the equations

$$
\begin{equation*}
\frac{d^{2} \eta}{d t^{2}}=-\omega^{2} \eta \quad, \quad \omega^{2}=\frac{1}{\mu} U_{\mathrm{eff}}^{\prime \prime}\left(r_{0}\right) \tag{4.22}
\end{equation*}
$$

If $\omega^{2}>0$, the circular orbit is stable and the perturbation oscillates harmonically. If $\omega^{2}<0$, the circular orbit is unstable and the perturbation grows exponentially. For the geometric shape of the perturbed orbit, we write $r=r_{0}+\eta$, and from (4.15) we obtain

$$
\begin{equation*}
\frac{d^{2} \eta}{d \phi^{2}}=\left(\frac{\mu r_{0}^{4}}{\ell^{2}} F^{\prime}\left(r_{0}\right)-3\right) \eta=-\beta^{2} \eta \tag{4.23}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta^{2}=3+\left.\frac{d \ln F(r)}{d \ln r}\right|_{r_{0}} \tag{4.24}
\end{equation*}
$$

The solution here is

$$
\begin{equation*}
\eta(\phi)=\eta_{0} \cos \beta\left(\phi-\delta_{0}\right) \tag{4.25}
\end{equation*}
$$

where η_{0} and δ_{0} are initial conditions. Setting $\eta=\eta_{0}$, we obtain the sequence of ϕ values

$$
\begin{equation*}
\phi_{n}=\delta_{0}+\frac{2 \pi n}{\beta} \tag{4.26}
\end{equation*}
$$

at which $\eta(\phi)$ is a local maximum, i.e. at apoapsis, where $r=r_{0}+\eta_{0}$. Setting $r=r_{0}-\eta_{0}$ is the condition for closest approach, i.e. periapsis. The condition for periapsis is thus $\phi=\phi_{n}+\pi \beta^{-1}$. The difference,

$$
\begin{equation*}
\Delta \phi=\phi_{n+1}-\phi_{n}-2 \pi=2 \pi\left(\beta^{-1}-1\right) \tag{4.27}
\end{equation*}
$$

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during each cycle. If $\beta>1$, the apsides advance, i.e. it takes less than a complete revolution $\Delta \phi=2 \pi$ between successive periapses. If
$\beta<1$, the apsides retreat, and it takes longer than a complete revolution between successive periapses. The situation is depicted in fig. 4.3 for the case $\beta=1.1$. Below, we will exhibit a soluble model in which the precessing orbit may be determined exactly. Finally, note that if $\beta=p / q$ is a rational number, then the orbit is closed, i.e. it eventually retraces itself, after every q revolutions.

As an example, let $F(r)=-k r^{-\alpha}$. Solving for a circular orbit, we write

$$
\begin{equation*}
U_{\mathrm{eff}}^{\prime}(r)=\frac{k}{r^{\alpha}}-\frac{\ell^{2}}{\mu r^{3}}=0 \tag{4.28}
\end{equation*}
$$

which has a solution only for $k>0$, corresponding to an attractive potential. We then find

$$
\begin{equation*}
r_{0}=\left(\frac{\ell^{2}}{\mu k}\right)^{1 /(3-\alpha)} \tag{4.29}
\end{equation*}
$$

and $\beta^{2}=3-\alpha$. The shape of the perturbed orbits follows from $\eta^{\prime \prime}=-\beta^{2} \eta$. Thus, while circular orbits exist whenever $k>0$, small perturbations about these orbits are stable only for $\beta^{2}>0$, i.e. for $\alpha<3$. One then has $\eta(\phi)=A \cos \beta\left(\phi-\phi_{0}\right)$. The perturbed orbits are closed, at least to lowest order in η, for $\alpha=3-(p / q)^{2}$, i.e. for $\beta=p / q$. The situation is depicted in fig. 4.2, for the potentials $U(r)=-k / r$ ($\alpha=2$) and $U(r)=-k / r^{4}(\alpha=5)$.

4.3 Precession in a Soluble Model

Let's start with the answer and work backwards. Consider the geometrical orbit,

$$
\begin{equation*}
r(\phi)=\frac{r_{0}}{1-\epsilon \cos \beta \phi} \tag{4.30}
\end{equation*}
$$

Our interest is in bound orbits, for which $0 \leq \epsilon<1$ (see fig. 4.3). What sort of potential gives rise to this orbit? Writing $s=1 / r$ as before, we have

$$
\begin{equation*}
s(\phi)=s_{0}(1-\varepsilon \cos \beta \phi) . \tag{4.31}
\end{equation*}
$$

Substituting into (4.18), we have

$$
\begin{align*}
-\frac{\mu}{\ell^{2} s^{2}} F\left(s^{-1}\right) & =\frac{d^{2} s}{d \phi^{2}}+s \\
& =\beta^{2} s_{0} \epsilon \cos \beta \phi+s \tag{4.32}\\
& =\left(1-\beta^{2}\right) s+\beta^{2} s_{0}
\end{align*}
$$

from which we conclude

$$
\begin{equation*}
F(r)=-\frac{k}{r^{2}}+\frac{C}{r^{3}} \tag{4.33}
\end{equation*}
$$

with

$$
\begin{equation*}
k=\beta^{2} s_{0} \frac{\ell^{2}}{\mu} \quad, \quad C=\left(\beta^{2}-1\right) \frac{\ell^{2}}{\mu} . \tag{4.34}
\end{equation*}
$$

Figure 4.3: Precession in a soluble model, with geometric orbit $r(\phi)=r_{0} /(1-\varepsilon \cos \beta \phi)$, shown here with $\beta=1.1$. Periapsis and apoapsis advance by $\Delta \phi=2 \pi\left(1-\beta^{-1}\right)$ per cycle.

The corresponding potential is

$$
\begin{equation*}
U(r)=-\frac{k}{r}+\frac{C}{2 r^{2}}+U_{\infty} \tag{4.35}
\end{equation*}
$$

where U_{∞} is an arbitrary constant, conveniently set to zero. If μ and C are given, we have

$$
\begin{equation*}
r_{0}=\frac{\ell^{2}}{\mu k}+\frac{C}{k} \quad, \quad \beta=\sqrt{1+\frac{\mu C}{\ell^{2}}} . \tag{4.36}
\end{equation*}
$$

When $C=0$, these expressions recapitulate those from the Kepler problem. Note that when $\ell^{2}+\mu C<$ 0 that the effective potential is monotonically increasing as a function of r. In this case, the angular momentum barrier is overwhelmed by the (attractive, $C<0$) inverse square part of the potential, and $U_{\text {eff }}(r)$ is monotonically increasing. The orbit then passes through the force center. It is a useful exercise to derive the total energy for the orbit,

$$
\begin{equation*}
E=\left(\varepsilon^{2}-1\right) \frac{\mu k^{2}}{2\left(\ell^{2}+\mu C\right)} \quad \Longleftrightarrow \quad \varepsilon^{2}=1+\frac{2 E\left(\ell^{2}+\mu C\right)}{\mu k^{2}} . \tag{4.37}
\end{equation*}
$$

Figure 4.4: The effective potential for the Kepler problem, and associated phase curves. The orbits are geometrically described as conic sections: hyperbolae ($E>0$), parabolae ($E=0$), ellipses ($E_{\min }<E<$ $0)$, and circles $\left(E=E_{\text {min }}\right)$.

4.4 The Kepler Problem: $U(r)=-k r^{-1}$

4.4.1 Geometric shape of orbits

The force is $F(r)=-k r^{-2}$, hence the equation for the geometric shape of the orbit is

$$
\begin{equation*}
\frac{d^{2} s}{d \phi^{2}}+s=-\frac{\mu}{\ell^{2} s^{2}} F\left(s^{-1}\right)=\frac{\mu k}{\ell^{2}} \tag{4.38}
\end{equation*}
$$

with $s=1 / r$. Thus, the most general solution is

$$
\begin{equation*}
s(\phi)=s_{0}-C \cos \left(\phi-\phi_{0}\right), \tag{4.39}
\end{equation*}
$$

where C and ϕ_{0} are constants. Thus,

$$
\begin{equation*}
r(\phi)=\frac{r_{0}}{1-\varepsilon \cos \left(\phi-\phi_{0}\right)} \tag{4.40}
\end{equation*}
$$

where $r_{0}=\ell^{2} / \mu k$ and where we have defined a new constant $\varepsilon \equiv C r_{0}$.

4.4.2 Laplace-Runge-Lenz vector

Consider the vector

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{p} \times \boldsymbol{\ell}-\mu k \hat{\boldsymbol{r}}, \tag{4.41}
\end{equation*}
$$

where $\hat{\boldsymbol{r}}=\boldsymbol{r} /|\boldsymbol{r}|$ is the unit vector pointing in the direction of \boldsymbol{r}. We may now show that \boldsymbol{A} is conserved:

$$
\begin{align*}
\frac{d \boldsymbol{A}}{d t} & =\frac{d}{d t}\left\{\boldsymbol{p} \times \boldsymbol{\ell}-\mu k \frac{\boldsymbol{r}}{r}\right\} \\
& =\dot{\boldsymbol{p}} \times \boldsymbol{\ell}+\boldsymbol{p} \times \dot{\boldsymbol{\ell}}-\mu k \frac{r \dot{\boldsymbol{r}}-\boldsymbol{r} \dot{\boldsymbol{r}}}{r^{2}} \\
& =-\frac{k \boldsymbol{r}}{r^{3}} \times(\mu \boldsymbol{r} \times \dot{\boldsymbol{r}})-\mu k \frac{\dot{\boldsymbol{r}}}{r}+\mu k \frac{\dot{\boldsymbol{r}} \boldsymbol{r}}{r^{2}} \tag{4.42}\\
& =-\mu k \frac{\boldsymbol{r}(\boldsymbol{r} \cdot \dot{\boldsymbol{r}})}{r^{3}}+\mu k \frac{\dot{\boldsymbol{r}}(\boldsymbol{r} \cdot \boldsymbol{r})}{r^{3}}-\mu k \frac{\dot{\boldsymbol{r}}}{r}+\mu k \frac{\dot{\boldsymbol{r}} \boldsymbol{r}}{r^{2}}=0
\end{align*}
$$

So \boldsymbol{A} is a conserved vector which clearly lies in the plane of the motion. \boldsymbol{A} points toward periapsis, i.e. toward the point of closest approach to the force center.

Let's assume apoapsis occurs at $\phi=\phi_{0}$. Then

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{r}=-A r \cos \left(\phi-\phi_{0}\right)=\ell^{2}-\mu k r \tag{4.43}
\end{equation*}
$$

giving

$$
\begin{equation*}
r(\phi)=\frac{\ell^{2}}{\mu k-A \cos \left(\phi-\phi_{0}\right)}=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \left(\phi-\phi_{0}\right)}, \tag{4.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon=\frac{A}{\mu k} \quad, \quad a\left(1-\varepsilon^{2}\right)=\frac{\ell^{2}}{\mu k} . \tag{4.45}
\end{equation*}
$$

The orbit is a conic section with eccentricity ε. Squaring \boldsymbol{A}, one finds

$$
\begin{align*}
\boldsymbol{A}^{2} & =(\boldsymbol{p} \times \boldsymbol{\ell})^{2}-2 \mu k \hat{\boldsymbol{r}} \cdot \boldsymbol{p} \times \boldsymbol{\ell}+\mu^{2} k^{2} \\
& =p^{2} \ell^{2}-2 \mu \ell^{2} \frac{k}{r}+\mu^{2} k^{2} \tag{4.46}\\
& =2 \mu \ell^{2}\left(\frac{p^{2}}{2 \mu}-\frac{k}{r}+\frac{\mu k^{2}}{2 \ell^{2}}\right)=2 \mu \ell^{2}\left(E+\frac{\mu k^{2}}{2 \ell^{2}}\right)
\end{align*}
$$

and thus

$$
\begin{equation*}
a=-\frac{k}{2 E} \quad, \quad \varepsilon^{2}=1+\frac{2 E \ell^{2}}{\mu k^{2}} . \tag{4.47}
\end{equation*}
$$

Note that for circular orbits $\boldsymbol{A}=0$.

4.4.3 Kepler orbits are conic sections

There are four classes of conic sections:

- Circle: $\varepsilon=0, E=-\mu k^{2} / 2 \ell^{2}$, radius $a=\ell^{2} / \mu k$. The force center lies at the center of circle.
- Ellipse: $0<\varepsilon<1,-\mu k^{2} / 2 \ell^{2}<E<0$, semimajor axis $a=-k / 2 E$, semiminor axis $b=a \sqrt{1-\varepsilon^{2}}$. The force center is at one of the foci.

Figure 4.5: Keplerian orbits are conic sections, classified according to eccentricity: hyperbola $(\varepsilon>1)$, parabola ($\varepsilon=1$), ellipse ($0<\varepsilon<1$), and circle ($\varepsilon=0$). The Laplace-Runge-Lenz vector, \boldsymbol{A}, points toward periapsis, but its length $A=\mu k \varepsilon$ vanishes for circular orbits.

- Parabola: $\varepsilon=1, E=0$, force center is the focus.
- Hyperbola: $\varepsilon>1, E>0$, force center is closest focus (attractive) or farthest focus (repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the ellipse of fig. 4.6. The law of cosines gives

$$
\begin{equation*}
\rho^{2}=r^{2}+4 f^{2}-4 r f \cos \phi, \tag{4.48}
\end{equation*}
$$

where $f=\varepsilon a$ is the focal distance. Now for any point on an ellipse, the sum of the distances to the left and right foci is a constant, and taking $\phi=0$ we see that this constant is $2 a$. Thus, $\rho=2 a-r$, and we have

$$
\begin{align*}
(2 a-r)^{2}=4 a^{2}-4 a r+r^{2} & =r^{2}+4 \varepsilon^{2} a^{2}-4 \varepsilon r \cos \phi \\
\Rightarrow \quad r(1-\varepsilon \cos \phi) & =a\left(1-\varepsilon^{2}\right) \tag{4.49}
\end{align*}
$$

Thus, we obtain

$$
\begin{equation*}
r(\phi)=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \phi} \tag{4.50}
\end{equation*}
$$

and we therefore conclude that

$$
\begin{equation*}
r_{0}=\frac{\ell^{2}}{\mu k}=a\left(1-\varepsilon^{2}\right) . \tag{4.51}
\end{equation*}
$$

Figure 4.6: The Keplerian ellipse, with the force center at the left focus. The focal distance is $f=\varepsilon a$, where a is the semimajor axis length. The length of the semiminor axis is $b=\sqrt{1-\varepsilon^{2}} a$.

Next let us examine the energy,

$$
\begin{align*}
E & =\frac{1}{2} \mu \dot{r}^{2}+U_{\mathrm{eff}}(r) \\
& =\frac{1}{2} \mu\left(\frac{\ell}{\mu r^{2}} \frac{d r}{d \phi}\right)^{2}+\frac{\ell^{2}}{2 \mu r^{2}}-\frac{k}{r} \tag{4.52}\\
& =\frac{\ell^{2}}{2 \mu}\left(\frac{d s}{d \phi}\right)^{2}+\frac{\ell^{2}}{2 \mu} s^{2}-k s,
\end{align*}
$$

with

$$
\begin{equation*}
s=\frac{1}{r}=\frac{\mu k}{\ell^{2}}(1-\varepsilon \cos \phi) . \tag{4.53}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{d s}{d \phi}=\frac{\mu k}{\ell^{2}} \varepsilon \sin \phi \tag{4.54}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\frac{d s}{d \phi}\right)^{2} & =\frac{\mu^{2} k^{2}}{\ell^{4}} \varepsilon^{2} \sin ^{2} \phi \\
& =\frac{\mu^{2} k^{2} \varepsilon^{2}}{\ell^{4}}-\left(\frac{\mu k}{\ell^{2}}-s\right)^{2} \tag{4.55}\\
& =-s^{2}+\frac{2 \mu k}{\ell^{2}} s+\frac{\mu^{2} k^{2}}{\ell^{4}}\left(\varepsilon^{2}-1\right) .
\end{align*}
$$

Substituting this into eqn. 4.52, we obtain

$$
\begin{equation*}
E=\frac{\mu k^{2}}{2 \ell^{2}}\left(\varepsilon^{2}-1\right) \tag{4.56}
\end{equation*}
$$

For the hyperbolic orbit, depicted in fig. 4.7, we have $r-\rho=\mp 2 a$, depending on whether we are on the attractive or repulsive branch, respectively. We then have

$$
\begin{align*}
(r \pm 2 a)^{2}=4 a^{2} \pm 4 a r+r^{2} & =r^{2}+4 \varepsilon^{2} a^{2}-4 \varepsilon r \cos \phi \tag{4.57}\\
\Rightarrow \quad r(\pm 1+\varepsilon \cos \phi) & =a\left(\varepsilon^{2}-1\right)
\end{align*}
$$

Figure 4.7: The Keplerian hyperbolae, with the force center at the left focus. The left (blue) branch corresponds to an attractive potential, while the right (red) branch corresponds to a repulsive potential. The equations of these branches are $r=\rho=\mp 2 a$, where the top sign corresponds to the left branch and the bottom sign to the right branch.

This yields

$$
\begin{equation*}
r(\phi)=\frac{a\left(\varepsilon^{2}-1\right)}{ \pm 1+\varepsilon \cos \phi} . \tag{4.58}
\end{equation*}
$$

4.4.4 Period of bound Kepler orbits

From $\ell=\mu r^{2} \dot{\phi}=2 \mu \dot{\mathcal{A}}$, the period is $\tau=2 \mu \mathcal{A} / \ell$, where $\mathcal{A}=\pi a^{2} \sqrt{1-\varepsilon^{2}}$ is the area enclosed by the orbit. This gives

$$
\begin{equation*}
\tau=2 \pi\left(\frac{\mu a^{3}}{k}\right)^{1 / 2}=2 \pi\left(\frac{a^{3}}{G M}\right)^{1 / 2} \tag{4.59}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\frac{a^{3}}{\tau^{2}}=\frac{G M}{4 \pi^{2}} \tag{4.60}
\end{equation*}
$$

where $k=G m_{1} m_{2}$ and $M=m_{1}+m_{2}$ is the total mass. For planetary orbits, $m_{1}=M_{\odot}$ is the solar mass and $m_{2}=m_{\mathrm{p}}$ is the planetary mass. We then have

$$
\begin{equation*}
\frac{a^{3}}{\tau^{2}}=\left(1+\frac{m_{\mathrm{p}}}{M_{\odot}}\right) \frac{G M_{\odot}}{4 \pi^{2}} \approx \frac{G M_{\odot}}{4 \pi^{2}} \tag{4.61}
\end{equation*}
$$

which is to an excellent approximation independent of the planetary mass. (Note that $m_{\mathrm{p}} / M_{\odot} \approx 10^{-3}$ even for Jupiter.) This analysis also holds, mutatis mutandis, for the case of satellites orbiting the earth, and indeed in any case where the masses are grossly disproportionate in magnitude.

4.4.5 Escape velocity

The threshold for escape from a gravitational potential occurs at $E=0$. Since $E=T+U$ is conserved, we determine the escape velocity for a body a distance r from the force center by setting

$$
\begin{equation*}
E=0=\frac{1}{2} \mu v_{\mathrm{esc}}^{2}(t)-\frac{G m_{1} m_{2}}{r} \Rightarrow v_{\mathrm{esc}}(r)=\sqrt{\frac{2 G M}{r}} . \tag{4.62}
\end{equation*}
$$

with $M=m_{1}+m_{2}$. For an object on earth's surface, $v_{\text {esc }}=\sqrt{2 g R_{\mathrm{E}}}=11.2 \mathrm{~km} / \mathrm{s}$, assuming the object is much less massive than the earth itself.

4.4.6 Satellites and spacecraft

A satellite in a circular orbit a distance h above the earth's surface has an orbital period

$$
\begin{equation*}
\tau=\frac{2 \pi}{\sqrt{G M_{\mathrm{E}}}}\left(R_{\mathrm{E}}+h\right)^{3 / 2} \tag{4.63}
\end{equation*}
$$

where we take $m_{\text {satellite }} \ll M_{\mathrm{E}}$. For low earth orbit (LEO), $h \ll R_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}$, in which case $\tau_{\text {LEO }}=2 \pi \sqrt{R_{\mathrm{E}} / g}=1.4 \mathrm{hr}$.

Consider a weather satellite in an elliptical orbit whose closest approach to the earth (perigee) is 200 km above the earth's surface and whose farthest distance (apogee) is 7200 km above the earth's surface. What is the satellite's orbital period? From fig. 4.6, we see that

$$
\begin{align*}
d_{\text {apogee }} & =R_{\mathrm{E}}+7200 \mathrm{~km}=13571 \mathrm{~km} \\
d_{\text {perigee }} & =R_{\mathrm{E}}+200 \mathrm{~km}=6971 \mathrm{~km} \tag{4.64}\\
a & =\frac{1}{2}\left(d_{\text {apogee }}+d_{\text {perigee }}\right)=10071 \mathrm{~km} .
\end{align*}
$$

We then have

$$
\begin{equation*}
\tau=\left(\frac{a}{R_{\mathrm{E}}}\right)^{3 / 2} \cdot \tau_{\mathrm{LEO}} \approx 2.65 \mathrm{hr} \tag{4.65}
\end{equation*}
$$

What happens if a spacecraft in orbit about the earth fires its rockets? Clearly the energy and angular momentum of the orbit will change, and this means the shape will change. If the rockets are fired (in the direction of motion) at perigee, then perigee itself is unchanged, because $\boldsymbol{v} \cdot \boldsymbol{r}=0$ is left unchanged at this point. However, E is increased, hence the eccentricity $\varepsilon=\sqrt{1+\frac{2 E \ell^{2}}{\mu k^{2}}}$ increases. This is the most efficient way of boosting a satellite into an orbit with higher eccentricity. Conversely, and somewhat paradoxically, when a satellite in LEO loses energy due to frictional drag of the atmosphere, the energy E decreases. Initially, because the drag is weak and the atmosphere is isotropic, the orbit remains circular. Since E decreases, $\langle T\rangle=-E$ must increase, which means that the frictional forces cause the satellite to speed up!

Figure 4.8: At perigee of an elliptical orbit $r_{\mathrm{i}}(\phi)$, a radial impulse $\Delta \boldsymbol{p}$ is applied. The shape of the resulting orbit $r_{\mathrm{f}}(\phi)$ is shown.

4.4.7 Two examples of orbital mechanics

- Problem \#1: At perigee of an elliptical Keplerian orbit, a satellite receives an impulse $\Delta \boldsymbol{p}=p_{0} \hat{\boldsymbol{r}}$. Describe the resulting orbit.
- Solution \#1: Since the impulse is radial, the angular momentum $\boldsymbol{\ell}=\boldsymbol{r} \times \boldsymbol{p}$ is unchanged. The energy, however, does change, with $\Delta E=p_{0}^{2} / 2 \mu$. Thus,

$$
\begin{equation*}
\varepsilon_{\mathrm{f}}^{2}=1+\frac{2 E_{\mathrm{f}} \ell^{2}}{\mu k^{2}}=\varepsilon_{\mathrm{i}}^{2}+\left(\frac{\ell p_{0}}{\mu k}\right)^{2} \tag{4.66}
\end{equation*}
$$

The new semimajor axis length is

$$
\begin{align*}
a_{\mathrm{f}} & =\frac{\ell^{2} / \mu k}{1-\varepsilon_{\mathrm{f}}^{2}}=a_{\mathrm{i}} \cdot \frac{1-\varepsilon_{\mathrm{i}}^{2}}{1-\varepsilon_{\mathrm{f}}^{2}} \tag{4.67}\\
& =\frac{a_{\mathrm{i}}}{1-\left(a_{\mathrm{i}} p_{0}^{2} / \mu k\right)} .
\end{align*}
$$

The shape of the final orbit must also be a Keplerian ellipse, described by

$$
\begin{equation*}
r_{\mathrm{f}}(\phi)=\frac{\ell^{2}}{\mu k} \cdot \frac{1}{1-\varepsilon_{\mathrm{f}} \cos (\phi+\delta)} \tag{4.68}
\end{equation*}
$$

Figure 4.9: The larger circular orbit represents the orbit of the earth. The elliptical orbit represents that for an object orbiting the Sun with distance at perihelion equal to the Sun's radius.
where the phase shift δ is determined by setting

$$
\begin{equation*}
r_{\mathrm{i}}(\pi)=r_{\mathrm{f}}(\pi)=\frac{\ell^{2}}{\mu k} \cdot \frac{1}{1+\varepsilon_{\mathrm{i}}} . \tag{4.69}
\end{equation*}
$$

Solving for δ, we obtain

$$
\begin{equation*}
\delta=\cos ^{-1}\left(\varepsilon_{\mathrm{i}} / \varepsilon_{\mathrm{f}}\right) . \tag{4.70}
\end{equation*}
$$

The situation is depicted in fig. 4.8.

- Problem \#2: Which is more energy efficient - to send nuclear waste outside the solar system, or to send it into the Sun?
- Solution \#2: Escape velocity for the solar system is $v_{\mathrm{esc}, \odot}(r)=\sqrt{G M_{\odot} / r}$. At a distance a_{E}, we then have $v_{\text {esc }, \odot}\left(a_{\mathrm{E}}\right)=\sqrt{2} v_{\mathrm{E}}$, where $v_{\mathrm{E}}=\sqrt{G M_{\odot} / a_{\mathrm{E}}}=2 \pi a_{\mathrm{E}} / \tau_{\mathrm{E}}=29.9 \mathrm{~km} / \mathrm{s}$ is the velocity of the earth in its orbit. The satellite is launched from earth, and clearly the most energy efficient launch will be one in the direction of the earth's motion, in which case the velocity after escape from earth must be $u=(\sqrt{2}-1) v_{\mathrm{E}}=12.4 \mathrm{~km} / \mathrm{s}$. The speed just above the earth's atmosphere must then be \tilde{u}, where

$$
\begin{equation*}
\frac{1}{2} m \tilde{u}^{2}-\frac{G M_{\mathrm{E}} m}{R_{\mathrm{E}}}=\frac{1}{2} m u^{2}, \tag{4.71}
\end{equation*}
$$

or, in other words,

$$
\begin{equation*}
\tilde{u}^{2}=u^{2}+v_{\mathrm{esc}, \mathrm{E}}^{2} . \tag{4.72}
\end{equation*}
$$

We compute $\tilde{u}=16.7 \mathrm{~km} / \mathrm{s}$.
The second method is to place the trash ship in an elliptical orbit whose perihelion is the Sun's radius, $R_{\odot}=6.98 \times 10^{8} \mathrm{~m}$, and whose aphelion is a_{E}. Invoking the general equation for the shape
of the Keplerian orbit $r(\phi)=\left(\ell^{2} / \mu k\right) /(1-\varepsilon \cos \phi)$, we then solve the two equations

$$
\begin{align*}
& r(\phi=\pi)=R_{\odot}=\frac{1}{1+\varepsilon} \cdot \frac{\ell^{2}}{\mu k} \tag{4.73}\\
& r(\phi=0)=a_{\mathrm{E}}=\frac{1}{1-\varepsilon} \cdot \frac{\ell^{2}}{\mu k} .
\end{align*}
$$

We thereby obtain

$$
\begin{equation*}
\varepsilon=\frac{a_{\mathrm{E}}-R_{\odot}}{a_{\mathrm{E}}+R_{\odot}}=0.991, \tag{4.74}
\end{equation*}
$$

which is a very eccentric ellipse, and

$$
\begin{align*}
\frac{\ell^{2}}{\mu k} & =\frac{a_{\mathrm{E}}^{2} v^{2}}{G\left(M_{\odot}+m\right)} \approx a_{\mathrm{E}} \cdot \frac{v^{2}}{v_{\mathrm{E}}^{2}} \tag{4.75}\\
& =(1-\varepsilon) a_{\mathrm{E}}=\frac{2 a_{\mathrm{E}} R_{\odot}}{a_{\mathrm{E}}+R_{\odot}} .
\end{align*}
$$

Hence,

$$
\begin{equation*}
v^{2}=\frac{2 R_{\odot}}{a_{\mathrm{E}}+R_{\odot}} v_{\mathrm{E}}^{2} \tag{4.76}
\end{equation*}
$$

and the necessary velocity relative to earth is

$$
\begin{equation*}
u=\left(\sqrt{\frac{2 R_{\odot}}{a_{\mathrm{E}}+R_{\odot}}}-1\right) v_{\mathrm{E}} \approx-0.904 v_{\mathrm{E}} \tag{4.77}
\end{equation*}
$$

i.e. $u=-27.0 \mathrm{~km} / \mathrm{s}$. Launch is in the opposite direction from the earth's orbital motion, and from $\tilde{u}^{2}=u^{2}+v_{\text {esc, } \mathrm{E}}^{2}$ we find $\tilde{u}=-29.2 \mathrm{~km} / \mathrm{s}$, which is larger (in magnitude) than in the first scenario. Thus, it is cheaper to ship the trash out of the solar system than to send it crashing into the Sun, by a factor $\tilde{u}_{\mathrm{I}}^{2} / \tilde{u}_{\mathrm{II}}^{2}=0.327$.

4.5 Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch 3/3/72), Pioneer 11 (launch $4 / 6 / 73$), Voyager 1 (launch 9/5/77), and Voyager 2 (launch $8 / 20 / 77$). ${ }^{1}$ The latter two are still functioning, and each are moving away from the Sun at a velocity of roughly $3.5 \mathrm{AU} / \mathrm{yr}$.

As the first objects of earthly origin to leave our solar system, both Pioneer spacecraft featured a graphic message in the form of a $6^{\prime \prime} \times 9^{\prime \prime}$ gold anodized plaque affixed to the spacecrafts' frame. This plaque was designed in part by the late astronomer and popular science writer Carl Sagan. The humorist Dave Barry, in an essay entitled Bring Back Carl's Plaque, remarks,

[^10]

Figure 4.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

But the really bad part is what they put on the plaque. I mean, if we're going to have a plaque, it ought to at least show the aliens what we're really like, right? Maybe a picture of people eating cheeseburgers and watching "The Dukes of Hazzard." Then if aliens found it, they'd say, "Ah. Just plain folks."
But no. Carl came up with this incredible science-fair-wimp plaque that features drawings of - you are not going to believe this - a hydrogen atom and naked people. To represent the entire Earth! This is crazy! Walk the streets of any town on this planet, and the two things you will almost never see are hydrogen atoms and naked people.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct trip to Neptune along a Keplerian ellipse with $r_{\mathrm{p}}=a_{\mathrm{E}}=1 \mathrm{AU}$ and $r_{\mathrm{a}}=a_{\mathrm{N}}=30.06 \mathrm{AU}$ would take 30.6 years. To see this, note that $r_{\mathrm{p}}=a(1-\varepsilon)$ and $r_{\mathrm{a}}=a(1+\varepsilon)$ yield

$$
\begin{equation*}
a=\frac{1}{2}\left(a_{\mathrm{E}}+a_{\mathrm{N}}\right)=15.53 \mathrm{AU} \quad, \quad \varepsilon=\frac{a_{\mathrm{N}}-a_{\mathrm{E}}}{a_{\mathrm{N}}+a_{\mathrm{E}}}=0.9356 . \tag{4.78}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\tau=\frac{1}{2} \tau_{\mathrm{E}} \cdot\left(\frac{a}{a_{\mathrm{E}}}\right)^{3 / 2}=30.6 \mathrm{yr} . \tag{4.79}
\end{equation*}
$$

The energy cost per kilogram of such a mission is computed as follows. Let the speed of the probe after its escape from earth be $v_{\mathrm{p}}=\lambda v_{\mathrm{E}}$, and the speed just above the atmosphere (i.e. neglecting atmospheric friction) is v_{0}. For the most efficient launch possible, the probe is shot in the direction of earth's instantaneous motion about the Sun. Then we must have

$$
\begin{equation*}
\frac{1}{2} m v_{0}^{2}-\frac{G M_{\mathrm{E}} m}{R_{\mathrm{E}}}=\frac{1}{2} m(\lambda-1)^{2} v_{\mathrm{E}}^{2}, \tag{4.80}
\end{equation*}
$$

since the speed of the probe in the frame of the earth is $v_{\mathrm{p}}-v_{\mathrm{E}}=(\lambda-1) v_{\mathrm{E}}$. Thus,

$$
\begin{align*}
& \frac{E}{m}=\frac{1}{2} v_{0}^{2}=\left[\frac{1}{2}(\lambda-1)^{2}+h\right] v_{\mathrm{E}}^{2} \\
& v_{\mathrm{E}}^{2}=\frac{G M_{\odot}}{a_{\mathrm{E}}}=6.24 \times 10^{7} R_{\mathrm{J}} / \mathrm{kg} \tag{4.81}
\end{align*}
$$

where

$$
\begin{equation*}
h \equiv \frac{M_{\mathrm{E}}}{M_{\odot}} \cdot \frac{a_{\mathrm{E}}}{R_{\mathrm{E}}}=7.050 \times 10^{-2} \tag{4.82}
\end{equation*}
$$

Therefore, a convenient dimensionless measure of the energy is

$$
\begin{equation*}
\eta \equiv \frac{2 E}{m v_{\mathrm{E}}^{2}}=\frac{v_{0}^{2}}{v_{\mathrm{E}}^{2}}=(\lambda-1)^{2}+2 h . \tag{4.83}
\end{equation*}
$$

As we shall derive below, a direct mission to Neptune requires

$$
\begin{equation*}
\lambda \geq \sqrt{\frac{2 a_{\mathrm{N}}}{a_{\mathrm{N}}+a_{\mathrm{E}}}}=1.3913 \tag{4.84}
\end{equation*}
$$

which is close to the criterion for escape from the solar system, $\lambda_{\text {esc }}=\sqrt{2}$. Note that about 52% of the energy is expended after the probe escapes the Earth's pull, and 48% is expended in liberating the probe from Earth itself.

This mission can be done much more economically by taking advantage of a Jupiter flyby, as shown in fig. 4.11. The idea of a flyby is to steal some of Jupiter's momentum and then fly away very fast before Jupiter realizes and gets angry. The CM frame of the probe-Jupiter system is of course the rest frame of Jupiter, and in this frame conservation of energy means that the final velocity $\boldsymbol{u}_{\mathrm{f}}$ is of the same magnitude as the initial velocity $\boldsymbol{u}_{\mathrm{i}}$. However, in the frame of the Sun, the initial and final velocities are $\boldsymbol{v}_{\mathrm{J}}+\boldsymbol{u}_{\mathrm{i}}$ and $\boldsymbol{v}_{\mathrm{J}}+\boldsymbol{u}_{\mathrm{f}}$, respectively, where $\boldsymbol{v}_{\mathrm{J}}$ is the velocity of Jupiter in the rest frame of the Sun. If, as shown in the inset to fig. 4.11, $\boldsymbol{u}_{\mathrm{f}}$ is roughly parallel to $\boldsymbol{v}_{\mathrm{J}}$, the probe's velocity in the Sun's frame will be enhanced. Thus, the motion of the probe is broken up into three segments:

I: Earth to Jupiter
II : Scatter off Jupiter's gravitational pull
III : Jupiter to Neptune
We now analyze each of these segments in detail. In so doing, it is useful to recall that the general form of a Keplerian orbit is

$$
\begin{equation*}
r(\phi)=\frac{d}{1-\varepsilon \cos \phi} \quad, \quad d=\frac{\ell^{2}}{\mu k}=\left|\varepsilon^{2}-1\right| a . \tag{4.85}
\end{equation*}
$$

The energy is

$$
\begin{equation*}
E=\left(\varepsilon^{2}-1\right) \frac{\mu k^{2}}{2 \ell^{2}} \tag{4.86}
\end{equation*}
$$

Figure 4.11: Mission to Neptune. The figure at the lower right shows the orbits of Earth, Jupiter, and Neptune in black. The cheapest (in terms of energy) direct flight to Neptune, shown in blue, would take 30.6 years. By swinging past the planet Jupiter, the satellite can pick up great speed and with even less energy the mission time can be cut to 8.5 years (red curve). The inset in the upper left shows the scattering event with Jupiter.
with $k=G M m$, where M is the mass of either the Sun or a planet. In either case, M dominates, and $\mu=M m /(M+m) \simeq m$ to extremely high accuracy. The time for the trajectory to pass from $\phi=\phi_{1}$ to $\phi=\phi_{2}$ is

$$
\begin{equation*}
T=\int d t=\int_{\phi_{1}}^{\phi_{2}} \frac{d \phi}{\dot{\phi}}=\frac{\mu}{\ell} \int_{\phi_{1}}^{\phi_{2}} d \phi r^{2}(\phi)=\frac{\ell^{3}}{\mu k^{2}} \int_{\phi_{1}}^{\phi_{2}} \frac{d \phi}{[1-\varepsilon \cos \phi]^{2}} . \tag{4.87}
\end{equation*}
$$

For reference,

$$
\begin{aligned}
a_{\mathrm{E}} & =1 \mathrm{AU} & a_{\mathrm{J}} & =5.20 \mathrm{AU}
\end{aligned} r a_{\mathrm{N}}=30.06 \mathrm{AU}, ~ M_{\mathrm{J}}=1.900 \times 10^{27} \mathrm{~kg} \quad M_{\mathrm{E}}=1.989 \times 10^{30} \mathrm{~kg}
$$

with $1 \mathrm{AU}=1.496 \times 10^{8} \mathrm{~km}$. Here $a_{\mathrm{E}, \mathrm{J}, \mathrm{N}}$ and $M_{\mathrm{E}, \mathrm{J}, \odot}$ are the orbital radii and masses of Earth, Jupiter, and Neptune, and the Sun. The last thing we need to know is the radius of Jupiter,

$$
R_{\mathrm{J}}=9.558 \times 10^{-4} \mathrm{AU} .
$$

We need R_{J} because the distance of closest approach to Jupiter, or perijove, must be R_{J} or greater, or else the probe crashes into Jupiter!

4.5.1 Earth to Jupiter (Phase I)

The probe's velocity at perihelion is $v_{\mathrm{p}}=\lambda v_{\mathrm{E}}$. The angular momentum is $\ell=\mu a_{\mathrm{E}} \cdot \lambda v_{\mathrm{E}}$, whence

$$
\begin{equation*}
d=\frac{\left(a_{\mathrm{E}} \lambda v_{\mathrm{E}}\right)^{2}}{G M_{\odot}}=\lambda^{2} a_{\mathrm{E}} \tag{4.88}
\end{equation*}
$$

From $r(\pi)=a_{E}$, we obtain

$$
\begin{equation*}
\varepsilon_{\mathrm{I}}=\lambda^{2}-1 . \tag{4.89}
\end{equation*}
$$

This orbit will intersect the orbit of Jupiter if $r_{\mathrm{a}} \geq a_{\mathrm{J}}$, which means

$$
\begin{equation*}
\frac{d}{1-\varepsilon_{\mathrm{I}}} \geq a_{\mathrm{J}} \quad \Rightarrow \quad \lambda \geq \sqrt{\frac{2 a_{\mathrm{J}}}{a_{\mathrm{J}}+a_{\mathrm{E}}}}=1.2952 \tag{4.90}
\end{equation*}
$$

If this inequality holds, then intersection of Jupiter's orbit will occur for

$$
\begin{equation*}
\phi_{\mathrm{J}}=2 \pi-\cos ^{-1}\left(\frac{a_{\mathrm{J}}-\lambda^{2} a_{\mathrm{E}}}{\left(\lambda^{2}-1\right) a_{\mathrm{J}}}\right) . \tag{4.91}
\end{equation*}
$$

Finally, the time for this portion of the trajectory is

$$
\begin{equation*}
\tau_{\mathrm{EJ}}=\tau_{\mathrm{E}} \cdot \lambda^{3} \int_{\pi}^{\phi_{\mathrm{J}}} \frac{d \phi}{2 \pi} \frac{1}{\left[1-\left(\lambda^{2}-1\right) \cos \phi\right]^{2}} . \tag{4.92}
\end{equation*}
$$

4.5.2 Encounter with Jupiter (Phase II)

We are interested in the final speed $\boldsymbol{v}_{\mathrm{f}}$ of the probe after its encounter with Jupiter. We will determine the speed v_{f} and the angle δ which the probe makes with respect to Jupiter after its encounter. According to the geometry of fig. 4.11,

$$
\begin{align*}
v_{\mathrm{f}}^{2} & =v_{\mathrm{J}}^{2}+u^{2}-2 u v_{\mathrm{J}} \cos (\chi+\gamma) \\
\cos \delta & =\frac{v_{\mathrm{J}}^{2}+v_{\mathrm{f}}^{2}-u^{2}}{2 v_{\mathrm{f}} v_{\mathrm{J}}} \tag{4.93}
\end{align*}
$$

Note that

$$
\begin{equation*}
v_{\mathrm{J}}^{2}=\frac{G M_{\odot}}{a_{\mathrm{J}}}=\frac{a_{\mathrm{E}}}{a_{\mathrm{J}}} \cdot v_{\mathrm{E}}^{2} \tag{4.94}
\end{equation*}
$$

But what are u, χ, and γ ?
To determine u, we invoke

$$
\begin{equation*}
u^{2}=v_{\mathrm{J}}^{2}+v_{\mathrm{i}}^{2}-2 v_{\mathrm{J}} v_{\mathrm{i}} \cos \beta \tag{4.95}
\end{equation*}
$$

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter's orbit is given by energy conservation:

$$
\begin{equation*}
\frac{1}{2} m\left(\lambda v_{\mathrm{E}}\right)^{2}-\frac{G M_{\odot} m}{a_{\mathrm{E}}}=\frac{1}{2} m v_{\mathrm{i}}^{2}-\frac{G M_{\odot} m}{a_{\mathrm{J}}} \tag{4.96}
\end{equation*}
$$

which yields

$$
\begin{equation*}
v_{i}^{2}=\left(\lambda^{2}-2+\frac{2 a_{\mathrm{E}}}{a_{\mathrm{J}}}\right) v_{\mathrm{E}}^{2} \tag{4.97}
\end{equation*}
$$

As for β, we invoke conservation of angular momentum:

$$
\begin{equation*}
\mu\left(v_{\mathrm{i}} \cos \beta\right) a_{\mathrm{J}}=\mu\left(\lambda v_{\mathrm{E}}\right) a_{\mathrm{E}} \quad \Rightarrow \quad v_{\mathrm{i}} \cos \beta=\lambda \frac{a_{\mathrm{E}}}{a_{\mathrm{J}}} v_{\mathrm{E}} . \tag{4.98}
\end{equation*}
$$

The angle γ is determined from

$$
\begin{equation*}
v_{\mathrm{J}}=v_{\mathrm{i}} \cos \beta+u \cos \gamma \tag{4.99}
\end{equation*}
$$

Putting all this together, we obtain

$$
\begin{align*}
v_{\mathrm{i}} & =v_{\mathrm{E}} \sqrt{\lambda^{2}-2+2 x} \\
u & =v_{\mathrm{E}} \sqrt{\lambda^{2}-2+3 x-2 \lambda x^{3 / 2}} \tag{4.100}\\
\cos \gamma & =\frac{\sqrt{x}-\lambda x}{\sqrt{\lambda^{2}-2+3 x-2 \lambda x^{3 / 2}}},
\end{align*}
$$

where

$$
\begin{equation*}
x \equiv \frac{a_{\mathrm{E}}}{a_{\mathrm{J}}}=0.1923 \tag{4.101}
\end{equation*}
$$

We next consider the scattering of the probe by the planet Jupiter. In the Jovian frame, we may write

$$
\begin{equation*}
r(\phi)=\frac{\kappa R_{\mathrm{J}}\left(1+\varepsilon_{\mathrm{J}}\right)}{1+\varepsilon_{\mathrm{J}} \cos \phi} \tag{4.102}
\end{equation*}
$$

where perijove occurs at

$$
\begin{equation*}
r(0)=\kappa R_{\mathrm{J}} \tag{4.103}
\end{equation*}
$$

Here, κ is a dimensionless quantity, which is simply perijove in units of the Jovian radius. Clearly we require $\kappa>1$ or else the probe crashes into Jupiter! The probe's energy in this frame is simply $E=\frac{1}{2} m u^{2}$, which means the probe enters into a hyperbolic orbit about Jupiter. Next, from

$$
\begin{align*}
E & =\frac{k}{2} \frac{\varepsilon^{2}-1}{\ell^{2} / \mu k} \tag{4.104}\\
\frac{\ell^{2}}{\mu k} & =(1+\varepsilon) \kappa R_{\mathrm{J}}
\end{align*}
$$

we find

$$
\begin{equation*}
\varepsilon_{\mathrm{J}}=1+\kappa\left(\frac{R_{\mathrm{J}}}{a_{\mathrm{E}}}\right)\left(\frac{M_{\odot}}{M_{\mathrm{J}}}\right)\left(\frac{u}{v_{\mathrm{E}}}\right)^{2} \tag{4.105}
\end{equation*}
$$

The opening angle of the Keplerian hyperbola is then $\phi_{\mathrm{c}}=\cos ^{-1}\left(\varepsilon_{\mathrm{J}}^{-1}\right)$, and the angle χ is related to ϕ_{c} through

$$
\begin{equation*}
\chi=\pi-2 \phi_{\mathrm{c}}=\pi-2 \cos ^{-1}\left(\frac{1}{\varepsilon_{\mathrm{J}}}\right) \tag{4.106}
\end{equation*}
$$

Figure 4.12: Total time for Earth-Neptune mission as a function of dimensionless velocity at perihelion, $\lambda=v_{\mathrm{p}} / v_{\mathrm{E}}$. Six different values of κ, the value of perijove in units of the Jovian radius, are shown: $\kappa=1.0$ (thick blue), $\kappa=5.0$ (red), $\kappa=20$ (green), $\kappa=50$ (blue), $\kappa=100$ (magenta), and $\kappa=\infty$ (thick black).

Therefore, we may finally write

$$
\begin{align*}
v_{\mathrm{f}} & =\sqrt{x v_{\mathrm{E}}^{2}+u^{2}+2 u v_{\mathrm{E}} \sqrt{x} \cos \left(2 \phi_{\mathrm{c}}-\gamma\right)} \tag{4.107}\\
\cos \delta & =\frac{x v_{\mathrm{E}}^{2}+v_{\mathrm{f}}^{2}-u^{2}}{2 v_{\mathrm{f}} v_{\mathrm{E}} \sqrt{x}} . \tag{4.108}
\end{align*}
$$

4.5.3 Jupiter to Neptune (Phase III)

Immediately after undergoing gravitational scattering off Jupiter, the energy and angular momentum of the probe are

$$
\begin{equation*}
E=\frac{1}{2} m v_{\mathrm{f}}^{2}-\frac{G M_{\odot} m}{a_{\mathrm{J}}} \tag{4.109}
\end{equation*}
$$

and

$$
\begin{equation*}
\ell=\mu v_{\mathrm{f}} a_{\mathrm{J}} \cos \delta . \tag{4.110}
\end{equation*}
$$

We write the geometric equation for the probe's orbit as

$$
\begin{equation*}
r(\phi)=\frac{d}{1+\varepsilon \cos \left(\phi-\phi_{J}-\alpha\right)}, \tag{4.111}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\frac{\ell^{2}}{\mu k}=\left(\frac{v_{\mathrm{f}} a_{\mathrm{J}} \cos \delta}{v_{\mathrm{E}} a_{\mathrm{E}}}\right)^{2} a_{\mathrm{E}} \tag{4.112}
\end{equation*}
$$

Setting $E=\left(\mu k^{2} / 2 \ell^{2}\right)\left(\varepsilon^{2}-1\right)$, we obtain the eccentricity

$$
\begin{equation*}
\varepsilon=\sqrt{1+\left(\frac{v_{\mathrm{f}}^{2}}{v_{\mathrm{E}}^{2}}-\frac{2 a_{\mathrm{E}}}{a_{\mathrm{J}}}\right) \frac{d}{a_{\mathrm{E}}}} . \tag{4.113}
\end{equation*}
$$

Note that the orbit is hyperbolic - the probe will escape the Sun - if $v_{\mathrm{f}}>v_{\mathrm{E}} \cdot \sqrt{2 x}$. The condition that this orbit intersect Jupiter at $\phi=\phi_{J}$ yields

$$
\begin{equation*}
\cos \alpha=\frac{1}{\varepsilon}\left(\frac{d}{a_{\mathrm{J}}}-1\right) \tag{4.114}
\end{equation*}
$$

which determines the angle α. Interception of Neptune occurs at

$$
\begin{equation*}
\frac{d}{1+\varepsilon \cos \left(\phi_{\mathrm{N}}-\phi_{\mathrm{J}}-\alpha\right)}=a_{\mathrm{N}} \quad \Rightarrow \quad \phi_{\mathrm{N}}=\phi_{\mathrm{J}}+\alpha+\cos ^{-1} \frac{1}{\varepsilon}\left(\frac{d}{a_{\mathrm{N}}}-1\right) \tag{4.115}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\tau_{\mathrm{JN}}=\tau_{\mathrm{E}} \cdot\left(\frac{d}{a_{\mathrm{E}}}\right)^{3} \int_{\phi_{\mathrm{J}}}^{\phi_{\mathrm{N}}} \frac{d \phi}{2 \pi} \frac{1}{\left[1+\varepsilon \cos \left(\phi-\phi_{\mathrm{J}}-\alpha\right)\right]^{2}} \tag{4.116}
\end{equation*}
$$

The total time to Neptune is then the sum,

$$
\begin{equation*}
\tau_{\mathrm{EN}}=\tau_{\mathrm{EJ}}+\tau_{\mathrm{JN}} \tag{4.117}
\end{equation*}
$$

In fig. 4.12, we plot the mission time $\tau_{\text {EN }}$ versus the velocity at perihelion, $v_{\mathrm{p}}=\lambda v_{\mathrm{E}}$, for various values of κ. The value $\kappa=\infty$ corresponds to the case of no Jovian encounter at all.

4.6 Restricted Three-Body Problem

Problem : Consider the 'restricted three body problem' in which a light object of mass m (e.g. a satellite) moves in the presence of two celestial bodies of masses m_{1} and m_{2} (e.g. the sun and the earth, or the earth and the moon). Suppose m_{1} and m_{2} execute stable circular motion about their common center of mass. You may assume $m \ll m_{2} \leq m_{1}$.
(a) Show that the angular frequency for the motion of masses 1 and 2 is related to their (constant) relative separation, by

$$
\begin{equation*}
\omega_{0}^{2}=\frac{G M}{r_{0}^{3}} \tag{4.118}
\end{equation*}
$$

where $M=m_{1}+m_{2}$ is the total mass.
Solution : For a Kepler potential $U=-k / r$, the circular orbit lies at $r_{0}=\ell^{2} / \mu k$, where $\ell=\mu r^{2} \dot{\phi}$ is the angular momentum and $k=G m_{1} m_{2}$. This gives

$$
\begin{equation*}
\omega_{0}^{2}=\frac{\ell^{2}}{\mu^{2} r_{0}^{4}}=\frac{k}{\mu r_{0}^{3}}=\frac{G M}{r_{0}^{3}} \tag{4.119}
\end{equation*}
$$

Figure 4.13: The Lagrange points for the earth-sun system. Credit: WMAP project.
with $\omega_{0}=\dot{\phi}$.
(b) The satellite moves in the combined gravitational field of the two large bodies; the satellite itself is of course much too small to affect their motion. In deriving the motion for the satellilte, it is convenient to choose a reference frame whose origin is the CM and which rotates with angular velocity ω_{0}. In the rotating frame the masses m_{1} and m_{2} lie, respectively, at $x_{1}=-\alpha r_{0}$ and $x_{2}=\beta r_{0}$, with

$$
\begin{equation*}
\alpha=\frac{m_{2}}{M} \quad, \quad \beta=\frac{m_{1}}{M} \tag{4.120}
\end{equation*}
$$

and with $y_{1}=y_{2}=0$. Note $\alpha+\beta=1$.
Show that the Lagrangian for the satellite in this rotating frame may be written

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}-\omega_{0} y\right)^{2}+\frac{1}{2} m\left(\dot{y}+\omega_{0} x\right)^{2}+\frac{G m_{1} m}{\sqrt{\left(x+\alpha r_{0}\right)^{2}+y^{2}}}+\frac{G m_{2} m}{\sqrt{\left(x-\beta r_{0}\right)^{2}+y^{2}}} . \tag{4.121}
\end{equation*}
$$

Solution : Let the original (inertial) coordinates be $\left(x_{0}, y_{0}\right)$. Then let us define the rotated coordinates (x, y) as

$$
\begin{align*}
& x=\cos \left(\omega_{0} t\right) x_{0}+\sin \left(\omega_{0} t\right) y_{0} \tag{4.122}\\
& y=-\sin \left(\omega_{0} t\right) x_{0}+\cos \left(\omega_{0} t\right) y_{0} .
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \dot{x}=\cos \left(\omega_{0} t\right) \dot{x}_{0}+\sin \left(\omega_{0} t\right) \dot{y}_{0}+\omega_{0} y \tag{4.123}\\
& \dot{y}=-\sin \left(\omega_{0} t\right) x_{0}+\cos \left(\omega_{0} t\right) y_{0}-\omega_{0} x .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left(\dot{x}-\omega_{0} y\right)^{2}+\left(\dot{y}+\omega_{0} x\right)^{2}=\dot{x}_{0}^{2}+\dot{y}_{0}^{2} \tag{4.124}
\end{equation*}
$$

The Lagrangian is then

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}-\omega_{0} y\right)^{2}+\frac{1}{2} m\left(\dot{y}+\omega_{0} x\right)^{2}+\frac{G m_{1} m}{\sqrt{\left(x-x_{1}\right)^{2}+y^{2}}}+\frac{G m_{2} m}{\sqrt{\left(x-x_{2}\right)^{2}+y^{2}}} \tag{4.125}
\end{equation*}
$$

which, with $x_{1} \equiv-\alpha r_{0}$ and $x_{2} \equiv \beta r_{0}$, agrees with eqn. 4.121
(c) Lagrange discovered that there are five special points where the satellite remains fixed in the rotating frame. These are called the Lagrange points \{L1, L2, L3, L4, L5\}. A sketch of the Lagrange points for the earth-sun system is provided in fig. 4.13. Observation: In working out the rest of this problem, I found it convenient to measure all distances in units of r_{0} and times in units of ω_{0}^{-1}, and to eliminate G by writing $G m_{1}=\beta \omega_{0}^{2} r_{0}^{3}$ and $G m_{2}=\alpha \omega_{0}^{2} r_{0}^{3}$.
Assuming the satellite is stationary in the rotating frame, derive the equations for the positions of the Lagrange points.
Solution: At this stage it is convenient to measure all distances in units of r_{0} and times in units of ω_{0}^{-1} to factor out a term $m r_{0}^{2} \omega_{0}^{2}$ from L, writing the dimensionless Lagrangian $\widetilde{L} \equiv L /\left(m r_{0}^{2} \omega_{0}^{2}\right)$. Using as well the definition of ω_{0}^{2} to eliminate G, we have

$$
\begin{equation*}
\widetilde{L}=\frac{1}{2}(\dot{\xi}-\eta)^{2}+\frac{1}{2}(\dot{\eta}+\xi)^{2}+\frac{\beta}{\sqrt{(\xi+\alpha)^{2}+\eta^{2}}}+\frac{\alpha}{\sqrt{(\xi-\beta)^{2}+\eta^{2}}} \tag{4.126}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi \equiv \frac{x}{r_{0}} \quad, \quad \eta \equiv \frac{y}{r_{0}} \quad, \quad \dot{\xi} \equiv \frac{1}{\omega_{0} r_{0}} \frac{d x}{d t} \quad, \quad \dot{\eta} \equiv \frac{1}{\omega_{0} r_{0}} \frac{d y}{d t} . \tag{4.127}
\end{equation*}
$$

The equations of motion are then

$$
\begin{align*}
& \ddot{\xi}-2 \dot{\eta}=\xi-\frac{\beta(\xi+\alpha)}{d_{1}^{3}}-\frac{\alpha(\xi-\beta)}{d_{2}^{3}} \tag{4.128}\\
& \ddot{\eta}+2 \dot{\xi}=\eta-\frac{\beta \eta}{d_{1}^{3}}-\frac{\alpha \eta}{d_{2}^{3}}
\end{align*}
$$

where

$$
\begin{equation*}
d_{1}=\sqrt{(\xi+\alpha)^{2}+\eta^{2}} \quad, \quad d_{2}=\sqrt{(\xi-\beta)^{2}+\eta^{2}} \tag{4.129}
\end{equation*}
$$

Here, $\xi \equiv x / r_{0}, \xi=y / r_{0}$, etc. Recall that $\alpha+\beta=1$. Setting the time derivatives to zero yields the static equations for the Lagrange points:

$$
\begin{align*}
& \xi=\frac{\beta(\xi+\alpha)}{d_{1}^{3}}+\frac{\alpha(\xi-\beta)}{d_{2}^{3}} \\
& \eta=\frac{\beta \eta}{d_{1}^{3}}+\frac{\alpha \eta}{d_{2}^{3}}, \tag{4.130}
\end{align*}
$$

(d) Show that the Lagrange points with $y=0$ are determined by a single nonlinear equation. Show graphically that this equation always has three solutions, one with $x<x_{1}$, a second with $x_{1}<x<x_{2}$, and a third with $x>x_{2}$. These solutions correspond to the points L3, L1, and L2, respectively.

Figure 4.14: Graphical solution for the Lagrange points L1, L2, and L3.

Solution : If $\eta=0$ the second equation is automatically satisfied. The first equation then gives

$$
\begin{equation*}
\xi=\beta \cdot \frac{\xi+\alpha}{|\xi+\alpha|^{3}}+\alpha \cdot \frac{\xi-\beta}{|\xi-\beta|^{3}} \tag{4.131}
\end{equation*}
$$

The RHS of the above equation diverges to $+\infty$ for $\xi=-\alpha+0^{+}$and $\xi=\beta+0^{+}$, and diverges to $-\infty$ for $\xi=-\alpha-0^{+}$and $\xi=\beta-0^{+}$, where 0^{+}is a positive infinitesimal. The situation is depicted in fig. 4.14. Clearly there are three solutions, one with $\xi<-\alpha$, one with $-\alpha<\xi<\beta$, and one with $\xi>\beta$.
(e) Show that the remaining two Lagrange points, L4 and L5, lie along equilateral triangles with the two masses at the other vertices.

Solution : If $\eta \neq 0$, then dividing the second equation by η yields

$$
\begin{equation*}
1=\frac{\beta}{d_{1}^{3}}+\frac{\alpha}{d_{2}^{3}} \tag{4.132}
\end{equation*}
$$

Substituting this into the first equation,

$$
\begin{equation*}
\xi=\left(\frac{\beta}{d_{1}^{3}}+\frac{\alpha}{d_{2}^{3}}\right) \xi+\left(\frac{1}{d_{1}^{3}}-\frac{1}{d_{2}^{3}}\right) \alpha \beta, \tag{4.133}
\end{equation*}
$$

gives

$$
\begin{equation*}
d_{1}=d_{2} . \tag{4.134}
\end{equation*}
$$

Reinserting this into the previous equation then gives the remarkable result,

$$
\begin{equation*}
d_{1}=d_{2}=1 \tag{4.135}
\end{equation*}
$$

which says that each of L4 and L5 lies on an equilateral triangle whose two other vertices are the masses m_{1} and m_{2}. The side length of this equilateral triangle is r_{0}. Thus, the dimensionless coordinates of L4 and L5 are

$$
\begin{equation*}
\left(\xi_{\mathrm{L} 4}, \eta_{\mathrm{L} 4}\right)=\left(\frac{1}{2}-\alpha, \frac{\sqrt{3}}{2}\right) \quad, \quad\left(\xi_{\mathrm{L} 5}, \eta_{\mathrm{L} 5}\right)=\left(\frac{1}{2}-\alpha,-\frac{\sqrt{3}}{2}\right) . \tag{4.136}
\end{equation*}
$$

It turns out that L1, L2, and L3 are always unstable. Satellites placed in these positions must undergo periodic course corrections in order to remain approximately fixed. The SOlar and Heliopheric Observation satellite, SOHO , is located at L 1 , which affords a continuous unobstructed view of the Sun.
(f) Show that the Lagrange points L4 and L5 are stable (obviously you need only consider one of them) provided that the mass ratio m_{1} / m_{2} is sufficiently large. Determine this critical ratio. Also find the frequency of small oscillations for motion in the vicinity of L4 and L5.

Solution : Now we write

$$
\begin{equation*}
\xi=\xi_{\mathrm{L} 4}+\delta \xi \quad, \quad \eta=\eta_{\mathrm{L} 4}+\delta \eta \tag{4.137}
\end{equation*}
$$

and derive the linearized dynamics. Expanding the equations of motion to lowest order in $\delta \xi$ and $\delta \eta$, we have

$$
\begin{align*}
\delta \ddot{\xi}-2 \delta \dot{\eta} & =\left(1-\beta+\left.\frac{3}{2} \beta \frac{\partial d_{1}}{\partial \xi}\right|_{\mathrm{L} 4}-\alpha-\left.\frac{3}{2} \alpha \frac{\partial d_{2}}{\partial \xi}\right|_{\mathrm{L} 4}\right) \delta \xi+\left(\left.\frac{3}{2} \beta \frac{\partial d_{1}}{\partial \eta}\right|_{\mathrm{L} 4}-\left.\frac{3}{2} \alpha \frac{\partial d_{2}}{\partial \eta}\right|_{\mathrm{L} 4}\right) \delta \eta \tag{4.138}\\
& =\frac{3}{4} \delta \xi+\frac{3 \sqrt{3}}{4} \varepsilon \delta \eta
\end{align*}
$$

and

$$
\begin{align*}
\delta \ddot{\eta}+2 \delta \dot{\xi} & =\left(\left.\frac{3 \sqrt{3}}{2} \beta \frac{\partial d_{1}}{\partial \xi}\right|_{\mathrm{L} 4}+\left.\frac{3 \sqrt{3}}{2} \alpha \frac{\partial d_{2}}{\partial \xi}\right|_{\mathrm{L} 4}\right) \delta \xi+\left(\left.\frac{3 \sqrt{3}}{2} \beta \frac{\partial d_{1}}{\partial \eta}\right|_{\mathrm{L} 4}+\left.\frac{3 \sqrt{3}}{2} \alpha \frac{\partial d_{2}}{\partial \eta}\right|_{\mathrm{L} 4}\right) \delta \eta \tag{4.139}\\
& =\frac{3 \sqrt{3}}{4} \varepsilon \delta \xi+\frac{9}{4} \delta \eta
\end{align*}
$$

where we have defined

$$
\begin{equation*}
\varepsilon \equiv \beta-\alpha=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} . \tag{4.140}
\end{equation*}
$$

As defined, $\varepsilon \in[0,1]$.
Fourier transforming the differential equation, we replace each time derivative by ($-i \nu$), and thereby obtain

$$
\left(\begin{array}{cc}
\nu^{2}+\frac{3}{4} & -2 i \nu+\frac{3}{4} \sqrt{3} \varepsilon \tag{4.141}\\
2 i \nu+\frac{3}{4} \sqrt{3} \varepsilon & \nu^{2}+\frac{9}{4}
\end{array}\right)\binom{\delta \hat{\xi}}{\delta \hat{\eta}}=0 .
$$

Nontrivial solutions exist only when the determinant D vanishes. One easily finds

$$
\begin{equation*}
D\left(\nu^{2}\right)=\nu^{4}-\nu^{2}+\frac{27}{16}\left(1-\varepsilon^{2}\right) \tag{4.142}
\end{equation*}
$$

which yields a quadratic equation in ν^{2}, with roots

$$
\begin{equation*}
\nu^{2}=\frac{1}{2} \pm \frac{1}{4} \sqrt{27 \varepsilon^{2}-23} . \tag{4.143}
\end{equation*}
$$

These frequencies are dimensionless. To convert to dimensionful units, we simply multiply the solutions for ν by ω_{0}, since we have rescaled time by ω_{0}^{-1}.

Note that the L4 and L5 points are stable only if $\varepsilon^{2}>\frac{23}{27}$. If we define the mass ratio $\gamma \equiv m_{1} / m_{2}$, the stability condition is equivalent to

$$
\begin{equation*}
\gamma=\frac{m_{1}}{m_{2}}>\frac{\sqrt{27}+\sqrt{23}}{\sqrt{27}-\sqrt{23}}=24.960 \tag{4.144}
\end{equation*}
$$

which is satisfied for both the Sun-Jupiter system $(\gamma=1047)$ - and hence for the Sun and any planet and also for the Earth-Moon system $(\gamma=81.2)$.

Objects found at the L4 and L5 points are called Trojans, after the three large asteroids Agamemnon, Achilles, and Hector found orbiting in the L4 and L5 points of the Sun-Jupiter system. No large asteroids have been found in the L4 and L5 points of the Sun-Earth system.

Personal aside : David T. Wilkinson

The image in fig. 4.13 comes from the education and outreach program of the Wilkinson Microwave Anisotropy Probe (WMAP) project, a NASA mission, launched in 2001, which has produced some of the

Figure 4.15: David T. Wilkinson (1935-2002).
most important recent data in cosmology. The project is named in honor of David T. Wilkinson, who was a leading cosmologist at Princeton, and a founder of the Cosmic Background Explorer (COBE) satellite (launched in 1989). WMAP was sent to the L2 Lagrange point, on the night side of the earth, where it can constantly scan the cosmos with an ultra-sensitive microwave detector, shielded by the earth from interfering solar electromagnetic radiation. The L2 point is of course unstable, with a time scale of about 23 days. Satellites located at such points must undergo regular course and attitude corrections to remain situated.

During the summer of 1981, as an undergraduate at Princeton, I was a member of Wilkinson's "gravity group," working under Jeff Kuhn and Ken Libbrecht. It was a pretty big group and Dave - everyone would call him Dave - used to throw wonderful parties at his home, where we'd always play volleyball. I was very fortunate to get to know David Wilkinson a bit - after working in his group that summer I took a class from him the following year. He was a wonderful person, a superb teacher, and a world class physicist.

Chapter 5

Linearized Dynamics of Coupled Oscillations

5.1 Euler-Lagrange Equations of Motion

We assume, for a set of n generalized coordinates $\left\{q_{1}, \ldots, q_{n}\right\}$, that the kinetic energy is a quadratic function of the velocities,

$$
\begin{equation*}
T=\frac{1}{2} T_{\sigma \sigma^{\prime}}\left(q_{1}, \ldots, q_{n}\right) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}} \tag{5.1}
\end{equation*}
$$

where the sum on σ and σ^{\prime} from 1 to n is implied. For example, expressed in terms of polar coordinates (r, θ, ϕ), the matrix $T_{i j}$ is

$$
T_{\sigma \sigma^{\prime}}=m\left(\begin{array}{ccc}
1 & 0 & 0 \tag{5.2}\\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \quad \Longrightarrow \quad T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) .
$$

The potential $U\left(q_{1}, \ldots, q_{n}\right)$ is assumed to be a function of the generalized coordinates alone: $U=U(q)$. A more general formulation of the problem of small oscillations is given in the appendix, section 5.8.

The generalized momenta are

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}=T_{\sigma \sigma^{\prime}} \dot{q}_{\sigma^{\prime}}, \tag{5.3}
\end{equation*}
$$

and the generalized forces are

$$
\begin{equation*}
F_{\sigma}=\frac{\partial L}{\partial q_{\sigma}}=\frac{1}{2} \frac{\partial T_{\sigma^{\prime} \sigma^{\prime \prime}}}{\partial q_{\sigma}} \dot{q}_{\sigma^{\prime}} \dot{q}_{\sigma^{\prime \prime}}-\frac{\partial U}{\partial q_{\sigma}} . \tag{5.4}
\end{equation*}
$$

The Euler-Lagrange equations are then $\dot{p}_{\sigma}=F_{\sigma}$, or

$$
\begin{equation*}
T_{\sigma \sigma^{\prime}} \ddot{q}_{\sigma^{\prime}}+\left(\frac{\partial T_{\sigma \sigma^{\prime}}}{\partial q_{\sigma^{\prime \prime}}}-\frac{1}{2} \frac{\partial T_{\sigma^{\prime} \sigma^{\prime \prime}}}{\partial q_{\sigma}}\right) \dot{q}_{\sigma^{\prime}} \dot{q}_{\sigma^{\prime \prime}}=-\frac{\partial U}{\partial q_{\sigma}} \tag{5.5}
\end{equation*}
$$

which is a set of coupled nonlinear second order ODEs. Here we are using the Einstein 'summation convention', where we automatically sum over any and all repeated indices.

5.2 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium $\left\{\bar{q}_{1}, \ldots, \bar{q}_{n}\right\}$, which satisfies the n nonlinear equations

$$
\begin{equation*}
\left.\frac{\partial U}{\partial q_{\sigma}}\right|_{q=\bar{q}}=0 . \tag{5.6}
\end{equation*}
$$

Once an equilibrium is found (note that there may be more than one static equilibrium), we expand about this equilibrium, writing

$$
\begin{equation*}
q_{\sigma} \equiv \bar{q}_{\sigma}+\eta_{\sigma} . \tag{5.7}
\end{equation*}
$$

The coordinates $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ represent the displacements relative to equilibrium.
We next expand the Lagrangian to quadratic order in the generalized displacements, yielding

$$
\begin{equation*}
L=\frac{1}{2} \mathrm{~T}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma} \dot{\eta}_{\sigma^{\prime}}-\frac{1}{2} \mathrm{~V}_{\sigma \sigma^{\prime}} \eta_{\sigma} \eta_{\sigma^{\prime}}, \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} T}{\partial \dot{q}_{\sigma} \partial \dot{q}_{\sigma^{\prime}}}\right|_{q=\bar{q}} \quad, \quad \mathrm{~V}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} U}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}}\right|_{q=\bar{q}} \tag{5.9}
\end{equation*}
$$

Writing η^{t} for the row-vector $\left(\eta_{1}, \ldots, \eta_{n}\right)$, we may suppress indices and write

$$
\begin{equation*}
L=\frac{1}{2} \dot{\boldsymbol{\eta}}^{\mathrm{t}} \mathrm{~T} \dot{\boldsymbol{\eta}}-\frac{1}{2} \boldsymbol{\eta}^{\mathrm{t}} \mathrm{~V} \boldsymbol{\eta}, \tag{5.10}
\end{equation*}
$$

where T and V are the constant matrices of eqn. 5.9.

5.3 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate transformation from the generalized displacements $\boldsymbol{\eta}$ to a new set of coordinates $\boldsymbol{\xi}$, which render the Lagrangian particularly simple. All that is required is a linear transformation,

$$
\begin{equation*}
\eta_{\sigma}=\mathrm{A}_{\sigma i} \xi_{i} \tag{5.11}
\end{equation*}
$$

where both σ and i run from 1 to n. The $n \times n$ matrix $\mathrm{A}_{\sigma i}$ is known as the modal matrix. With the substitution $\boldsymbol{\eta}=\mathrm{A} \boldsymbol{\xi}$ (hence $\boldsymbol{\eta}^{\mathrm{t}}=\boldsymbol{\xi}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}$, where $\mathrm{A}_{i \sigma}^{\mathrm{t}}=\mathrm{A}_{\sigma i}$ is the matrix transpose), we have

$$
\begin{equation*}
L=\frac{1}{2} \dot{\boldsymbol{\xi}}^{\mathrm{t}} \mathrm{~A}^{\mathrm{t}} \mathrm{TA} \dot{\boldsymbol{\xi}}-\frac{1}{2} \boldsymbol{\xi}^{\mathrm{t}} \mathrm{~A}^{\mathrm{t}} \mathrm{VA} \boldsymbol{\xi} \tag{5.12}
\end{equation*}
$$

We now choose the matrix A such that

$$
\begin{align*}
& \mathrm{A}^{\mathrm{t}} \mathrm{TA}=\mathbb{I} \\
& \mathrm{A}^{\mathrm{t}} \mathrm{VA}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right) \tag{5.13}
\end{align*}
$$

With this choice of A, the Lagrangian decouples:

$$
\begin{equation*}
L=\frac{1}{2} \sum_{i=1}^{n}\left(\dot{\xi}_{i}^{2}-\omega_{i}^{2} \xi_{i}^{2}\right) \tag{5.14}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
\xi_{i}(t)=C_{i} \cos \left(\omega_{i} t\right)+D_{i} \sin \left(\omega_{i} t\right) \tag{5.15}
\end{equation*}
$$

where $\left\{C_{1}, \ldots, C_{n}\right\}$ and $\left\{D_{1}, \ldots, D_{n}\right\}$ are $2 n$ constants of integration, and where no sum is implied on i. Note that

$$
\begin{equation*}
\boldsymbol{\xi}=\mathrm{A}^{-1} \boldsymbol{\eta}=\mathrm{A}^{\mathrm{t}} \mathrm{~T} \boldsymbol{\eta} \tag{5.16}
\end{equation*}
$$

In terms of the original generalized displacements, the solution is

$$
\begin{equation*}
\eta_{\sigma}(t)=\sum_{i=1}^{n} \mathrm{~A}_{\sigma i}\left\{C_{i} \cos \left(\omega_{i} t\right)+D_{i} \sin \left(\omega_{i} t\right)\right\} \tag{5.17}
\end{equation*}
$$

and the constants of integration are linearly related to the initial generalized displacements and generalized velocities:

$$
\begin{align*}
C_{i} & =\mathrm{A}_{i \sigma}^{\mathrm{t}} \mathrm{~T}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}}(0) \tag{5.18}\\
D_{i} & =\omega_{i}^{-1} \mathrm{~A}_{i \sigma}^{\mathrm{t}} \mathrm{~T}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma^{\prime}}(0)
\end{align*}
$$

again with no implied sum on i on the RHS of the second equation, and where we have used $A^{-1}=A^{t} T$, from eqn. 5.13. (The implied sums in eqn. 5.18 are over σ and σ^{\prime}.)

If all the generalized coordinates have units of length, i.e. $\left[q_{\sigma}\right]=L$, then

$$
\begin{equation*}
\left[\mathrm{T}_{\sigma \sigma^{\prime}}\right]=M \quad, \quad\left[\mathrm{~V}_{\sigma \sigma^{\prime}}\right]=M T^{-2} \quad, \quad\left[A_{\sigma i}\right]=M^{-1 / 2} \quad, \quad\left[\xi_{i}\right]=M^{1 / 2} L \tag{5.19}
\end{equation*}
$$

Can you really just choose an A so that both of eqns. 5.13 hold?

Yes.

Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special relation between them. In particular, they need not commute, hence they do not necessarily share any eigenvectors. Nevertheless, they may be simultaneously diagonalized as per eqns. 5.13. Here's why:

- Since T is symmetric, it can be diagonalized by an orthogonal transformation. That is, there exists a matrix $\mathcal{O}_{1} \in \mathrm{O}(n)$ such that

$$
\begin{equation*}
\mathcal{O}_{1}^{\mathrm{t}} \mathrm{~T} \mathcal{O}_{1}=\mathrm{T}_{\mathrm{d}} \tag{5.20}
\end{equation*}
$$

where T_{d} is diagonal.

- We may safely assume that T is positive definite. Otherwise the kinetic energy can become arbitrarily negative, which is unphysical. Therefore, one may form the matrix $\mathrm{T}_{\mathrm{d}}^{-1 / 2}$ which is the diagonal matrix whose entries are the inverse square roots of the corresponding entries of T_{d}. Consider the linear transformation $\mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2}$. Its effect on T is

$$
\begin{equation*}
\mathrm{T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{1}^{\mathrm{t}} \mathrm{~T} \mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2}=1 \tag{5.21}
\end{equation*}
$$

- Since \mathcal{O}_{1} and T_{d} are wholly derived from T , the only thing we know about

$$
\begin{equation*}
\widetilde{\mathrm{V}} \equiv \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{1}^{\mathrm{t}} \mathrm{~V} \mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \tag{5.22}
\end{equation*}
$$

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by some orthogonal matrix $\mathcal{O}_{2} \in \mathrm{O}(n)$. As T has already been transformed to the identity, the additional orthogonal transformation has no effect there. Thus, we have shown that there exist orthogonal matrices \mathcal{O}_{1} and \mathcal{O}_{2} such that

$$
\begin{align*}
& \mathcal{O}_{2}^{\mathrm{t}} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{1}^{\mathrm{t}} \mathrm{~T} \mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{2}=1 \\
& \mathcal{O}_{2}^{\mathrm{t}} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{1}^{\mathrm{t}} \mathrm{~V} \mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{2}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right) \tag{5.23}
\end{align*}
$$

All that remains is to identify the modal matrix $\mathrm{A}=\mathcal{O}_{1} \mathrm{~T}_{\mathrm{d}}^{-1 / 2} \mathcal{O}_{2}$.

Note that it is not possible to simultaneously diagonalize three symmetric matrices in general.

5.3.1 Finding the modal matrix

While the above proof allows one to construct A by finding the two orthogonal matrices \mathcal{O}_{1} and \mathcal{O}_{2}, such a procedure is extremely cumbersome. It would be much more convenient if A could be determined in one fell swoop. Fortunately, this is possible.

We start with the equations of motion, $\mathrm{T} \ddot{\boldsymbol{\eta}}+\mathrm{V} \boldsymbol{\eta}=0$. In component notation, we have

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}} \ddot{\eta}_{\sigma^{\prime}}+\mathrm{V}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}}=0 \tag{5.24}
\end{equation*}
$$

We now assume that $\boldsymbol{\eta}(t)$ oscillates with a single frequency ω, i.e. $\eta_{\sigma}(t)=\psi_{\sigma} e^{-i \omega t}$. This results in a set of linear algebraic equations for the components ψ_{σ} :

$$
\begin{equation*}
\left(\omega^{2} \mathrm{~T}_{\sigma \sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}}\right) \psi_{\sigma^{\prime}}=0 \tag{5.25}
\end{equation*}
$$

These are n equations in n unknowns: one for each value of $\sigma=1, \ldots, n$. Because the equations are homogeneous and linear, there is always a trivial solution $\psi=0$. In fact one might think this is the only solution, since

$$
\begin{equation*}
\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right) \boldsymbol{\psi}=0 \quad \stackrel{?}{\Longrightarrow} \quad \boldsymbol{\psi}=\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right)^{-1} 0=0 \tag{5.26}
\end{equation*}
$$

However, this fails when the matrix $\omega^{2} \mathrm{~T}-\mathrm{V}$ is defective ${ }^{1}$, i.e. when

$$
\begin{equation*}
\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right)=0 \tag{5.27}
\end{equation*}
$$

Since T and V are of rank n, the above determinant yields an $n^{\text {th }}$ order polynomial in ω^{2}, whose n roots are the desired squared eigenfrequencies $\left\{\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right\}$.
Once the n eigenfrequencies are obtained, the modal matrix is constructed as follows. Solve the equations

$$
\begin{equation*}
\sum_{\sigma^{\prime}=1}^{n}\left(\omega_{i}^{2} \mathrm{~T}_{\sigma \sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}}\right) \psi_{\sigma^{\prime}}^{(i)}=0 \tag{5.28}
\end{equation*}
$$

which are a set of $(n-1)$ linearly independent equations among the n components of the eigenvector $\boldsymbol{\psi}^{(i)}$. That is, there are n equations $(\sigma=1, \ldots, n)$, but one linear dependency since $\operatorname{det}\left(\omega_{i}^{2} \mathrm{~T}-\mathrm{V}\right)=0$. The eigenvectors may be chosen to satisfy a generalized orthogonality relationship,

$$
\begin{equation*}
\psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=\delta_{i j} \tag{5.29}
\end{equation*}
$$

To see this, let us duplicate eqn. 5.28 , replacing i with j, and multiply both equations as follows:

$$
\begin{align*}
& \psi_{\sigma}^{(j)} \times\left(\omega_{i}^{2} \mathrm{~T}_{\sigma \sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}}\right) \psi_{\sigma^{\prime}}^{(i)}=0 \\
& \psi_{\sigma}^{(i)} \times\left(\omega_{j}^{2} \mathrm{~T}_{\sigma \sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}}\right) \psi_{\sigma^{\prime}}^{(j)}=0 \tag{5.30}
\end{align*}
$$

Using the symmetry of T and V , upon subtracting these equations we obtain

$$
\begin{equation*}
\left(\omega_{i}^{2}-\omega_{j}^{2}\right) \sum_{\sigma, \sigma^{\prime}=1}^{n} \psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=0 \tag{5.31}
\end{equation*}
$$

where the sums on i and j have been made explicit. This establishes that eigenvectors $\psi^{(i)}$ and $\psi^{(j)}$ corresponding to distinct eigenvalues $\omega_{i}^{2} \neq \omega_{j}^{2}$ are orthogonal: $\left(\boldsymbol{\psi}^{(i)}\right)^{\mathrm{t}} \mathrm{T} \boldsymbol{\psi}^{(j)}=0$. For degenerate eigenvalues, the eigenvectors are not a priori orthogonal, but they may be orthogonalized via application of the Gram-Schmidt procedure. The remaining degrees of freedom - one for each eigenvector - are fixed by imposing the condition of normalization:

$$
\begin{equation*}
\psi_{\sigma}^{(i)} \rightarrow \psi_{\sigma}^{(i)} / \sqrt{\psi_{\mu}^{(i)} \mathrm{T}_{\mu \mu^{\prime}} \psi_{\mu^{\prime}}^{(i)}} \quad \Longrightarrow \quad \psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=\delta_{i j} \tag{5.32}
\end{equation*}
$$

The modal matrix is just the matrix of eigenvectors: $\mathrm{A}_{\sigma i}=\psi_{\sigma}^{(i)}$.
With the eigenvectors $\psi_{\sigma}^{(i)}$ thusly normalized, we have

$$
\begin{align*}
0 & =\psi_{\sigma}^{(i)}\left(\omega_{j}^{2} \mathrm{~T}_{\sigma \sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}}\right) \psi_{\sigma^{\prime}}^{(j)} \\
& =\omega_{j}^{2} \delta_{i j}-\psi_{\sigma}^{(i)} \mathrm{V}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)} \tag{5.33}
\end{align*}
$$

[^11]with no sum on j. This establishes the result
\[

$$
\begin{equation*}
\mathrm{A}^{\mathrm{t}} \mathrm{~V} \mathrm{~A}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right) \tag{5.34}
\end{equation*}
$$

\]

Recall the relation $\eta_{\sigma}=\mathrm{A}_{\sigma i} \xi_{i}$ between the generalized displacements η_{σ} and the normal coordinates ξ_{i}. We can invert this relation to obtain

$$
\begin{equation*}
\xi_{i}=\mathrm{A}_{i \sigma}^{-1} \eta_{\sigma}=\mathrm{A}_{i \sigma}^{\mathrm{t}} \mathrm{~T}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}} . \tag{5.35}
\end{equation*}
$$

Here we have used the result $\mathrm{A}^{\mathrm{t}} \mathrm{T} \mathrm{A}=1$ to write

$$
\begin{equation*}
\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{t}} \mathrm{~T} \tag{5.36}
\end{equation*}
$$

This is a convenient result, because it means that if we ever need to express the normal coordinates in terms of the generalized displacements, we don't have to invert any matrices - we just need to do one matrix multiplication.

5.3.2 Summary of the method

(i) Obtain the T and V matrices, defined in Eqn. 5.9. The quadratic form Lagrangian for small oscillations of the generalized displacements from equilibrium η_{σ} and their velocities is

$$
\begin{equation*}
L=\frac{1}{2} \dot{\eta}_{\sigma} \mathrm{T}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma^{\prime}}-\frac{1}{2} \eta_{\sigma} \mathrm{V}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}} \tag{5.37}
\end{equation*}
$$

(ii) Solve $\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right)=0$, which is an $n^{\text {th }}$ order polynomial in ω^{2}.
(iii) For each root ω_{i}^{2}, solve the defective linear system $\left(\omega_{i}^{2} \mathrm{~T}-\mathrm{V}\right) \boldsymbol{\psi}^{(i)}=0$.
(iv) Eigenvectors corresponding to different eigenfrequencies will necessarily be orthogonal, i.e.

$$
\begin{equation*}
\left\langle\boldsymbol{\psi}^{(i)} \mid \psi^{(j)}\right\rangle \equiv \psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=0 \quad \text { if } \quad \omega_{i}^{2} \neq \omega_{j}^{2} \tag{5.38}
\end{equation*}
$$

In the case of degenerate eigenvalues, use the Gram-Schmidt method to find an orthogonal basis for the degenerate subspace. Then normalize each eigenvector such that $\left\langle\boldsymbol{\psi}^{(i)} \mid \boldsymbol{\psi}^{(j)}\right\rangle=\delta_{i j}$ for all i and j.
(v) The modal matrix $\mathrm{A}_{\sigma j}=\psi_{\sigma}^{(j)}$ then satisfies

$$
\begin{equation*}
\mathrm{A}^{\mathrm{t}} \mathrm{TA}=\mathbb{I} \quad, \quad \mathrm{A}^{\mathrm{t}} \mathrm{VA}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{n}^{2}\right) . \tag{5.39}
\end{equation*}
$$

Note that $\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{t}} \mathrm{T}$. The relation between the generalized displacements η_{σ} and the normal modes ξ_{j} is $\eta_{\sigma}=\mathrm{A}_{\sigma j} \xi_{j}$, which entails $\xi_{j}=\mathrm{A}_{\sigma j} \mathrm{~T}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}}$. In terms of the normal mode coordinates and their velocities,

$$
\begin{equation*}
L=\sum_{i} \frac{1}{2}\left(\dot{\xi}_{i}^{2}-\omega_{i}^{2} \xi_{i}^{2}\right) \tag{5.40}
\end{equation*}
$$

and the equations of motion are those of decoupled oscillators: $\ddot{\xi}_{i}=-\omega_{i}^{2} \xi_{i}$.

5.4 Example: Masses and Springs

Two blocks and three springs are configured as in fig. 5.1. All motion is horizontal. When the blocks are at rest, all springs are unstretched.
(a) Choose as generalized coordinates the displacement of each block from its equilibrium position, and write the Lagrangian.
(b) Find the T and V matrices.
(c) Suppose

$$
\begin{equation*}
m_{1}=2 m \quad, \quad m_{2}=m \quad, \quad k_{1}=4 k \quad, \quad k_{2}=k \quad, \quad k_{3}=2 k \tag{5.41}
\end{equation*}
$$

Find the frequencies of small oscillations.
(d) Find the normal modes of oscillation.
(e) At time $t=0$, mass $\# 1$ is displaced by a distance b relative to its equilibrium position. I.e. $x_{1}(0)=b$. The other initial conditions are $x_{2}(0)=0, \dot{x}_{1}(0)=0$, and $\dot{x}_{2}(0)=0$. Find t^{*}, the next time at which x_{2} vanishes.

Solution
(a) The Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}-\frac{1}{2} k_{1} x_{1}^{2}-\frac{1}{2} k_{2}\left(x_{2}-x_{1}\right)^{2}-\frac{1}{2} k_{3} x_{2}^{2} . \tag{5.42}
\end{equation*}
$$

(b) The T and V matrices are

$$
\mathrm{T}_{i j}=\frac{\partial^{2} T}{\partial \dot{x}_{i} \partial \dot{x}_{j}}=\left(\begin{array}{cc}
m_{1} & 0 \tag{5.43}\\
0 & m_{2}
\end{array}\right) \quad, \quad \mathrm{V}_{i j}=\frac{\partial^{2} U}{\partial x_{i} \partial x_{j}}=\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right)
$$

Figure 5.1: A system of masses and springs.
(c) We have $m_{1}=2 m, m_{2}=m, k_{1}=4 k, k_{2}=k$, and $k_{3}=2 k$. Let us write $\omega^{2} \equiv \lambda \omega_{0}^{2}$, where $\omega_{0} \equiv \sqrt{k / m}$. Then

$$
\omega^{2} \mathrm{~T}-\mathrm{V}=k\left(\begin{array}{cc}
2 \lambda-5 & 1 \tag{5.44}\\
1 & \lambda-3
\end{array}\right)
$$

The determinant is

$$
\begin{align*}
\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right) & =\left(2 \lambda^{2}-11 \lambda+14\right) k^{2} \tag{5.45}\\
& =(2 \lambda-7)(\lambda-2) k^{2} .
\end{align*}
$$

There are two roots: $\lambda_{-}=2$ and $\lambda_{+}=\frac{7}{2}$, corresponding to the eigenfrequencies

$$
\begin{equation*}
\omega_{-}=\sqrt{\frac{2 k}{m}} \quad, \quad \omega_{+}=\sqrt{\frac{7 k}{2 m}} \tag{5.46}
\end{equation*}
$$

(d) The normal modes are determined from $\left(\omega_{a}^{2} \mathrm{~T}-\mathrm{V}\right) \overrightarrow{\psi^{(a)}}=0$. Plugging in $\lambda=2$ we have for the normal mode $\vec{\psi}^{(-)}$

$$
\left(\begin{array}{cc}
-1 & 1 \tag{5.47}\\
1 & -1
\end{array}\right)\binom{\psi_{1}^{(-)}}{\psi_{2}^{(-)}}=0 \quad \Rightarrow \quad \vec{\psi}^{(-)}=\mathcal{C}_{-}\binom{1}{1}
$$

Plugging in $\lambda=\frac{7}{2}$ we have for the normal mode $\vec{\psi}^{(+)}$

$$
\left(\begin{array}{cc}
2 & 1 \tag{5.48}\\
1 & \frac{1}{2}
\end{array}\right)\binom{\psi_{1}^{(+)}}{\psi_{2}^{(+)}}=0 \quad \Rightarrow \quad \vec{\psi}^{(+)}=\mathcal{C}_{+}\binom{1}{-2}
$$

The standard normalization $\psi_{i}^{(a)} \mathrm{T}_{i j} \psi_{j}^{(b)}=\delta_{a b}$ gives

$$
\begin{equation*}
\mathcal{C}_{-}=\frac{1}{\sqrt{3 m}} \quad, \quad \mathcal{C}_{+}=\frac{1}{\sqrt{6 m}} \tag{5.49}
\end{equation*}
$$

(e) The general solution is

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=A\binom{1}{1} \cos \left(\omega_{-} t\right)+B\binom{1}{-2} \cos \left(\omega_{+} t\right)+C\binom{1}{1} \sin \left(\omega_{-} t\right)+D\binom{1}{-2} \sin \left(\omega_{+} t\right) \tag{5.50}
\end{equation*}
$$

The initial conditions $x_{1}(0)=b, x_{2}(0)=\dot{x}_{1}(0)=\dot{x}_{2}(0)=0$ yield

$$
\begin{equation*}
A=\frac{2}{3} b \quad, \quad B=\frac{1}{3} b \quad, \quad C=0 \quad, \quad D=0 . \tag{5.51}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& x_{1}(t)=\frac{1}{3} b \cdot\left(2 \cos \left(\omega_{-} t\right)+\cos \left(\omega_{+} t\right)\right) \\
& x_{2}(t)=\frac{2}{3} b \cdot\left(\cos \left(\omega_{-} t\right)-\cos \left(\omega_{+} t\right)\right) . \tag{5.52}
\end{align*}
$$

Setting $x_{2}\left(t^{*}\right)=0$, we find

$$
\begin{equation*}
\cos \left(\omega_{-} t^{*}\right)=\cos \left(\omega_{+} t^{*}\right) \quad \Rightarrow \quad \pi-\omega_{-} t=\omega_{+} t-\pi \quad \Rightarrow \quad t^{*}=\frac{2 \pi}{\omega_{-}+\omega_{+}} \tag{5.53}
\end{equation*}
$$

5.5 Example: Double Pendulum

As a second example, consider the double pendulum, with $m_{1}=m_{2}=m$ and $\ell_{1}=\ell_{2}=\ell$. The kinetic and potential energies are

$$
\begin{align*}
& T=m \ell^{2} \dot{\theta}_{1}^{2}+m \ell^{2} \cos \left(\theta_{1}-\theta_{1}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\frac{1}{2} m \ell^{2} \dot{\theta}_{2}^{2} \tag{5.54}\\
& V=-2 m g \ell \cos \theta_{1}-m g \ell \cos \theta_{2},
\end{align*}
$$

leading to

$$
\mathrm{T}=\left(\begin{array}{cc}
2 m \ell^{2} & m \ell^{2} \tag{5.55}\\
m \ell^{2} & m \ell^{2}
\end{array}\right) \quad, \quad \mathrm{V}=\left(\begin{array}{cc}
2 m g \ell & 0 \\
0 & m g \ell
\end{array}\right)
$$

Then

$$
\omega^{2} \mathrm{~T}-\mathrm{V}=m \ell^{2}\left(\begin{array}{cc}
2 \omega^{2}-2 \omega_{0}^{2} & \omega^{2} \tag{5.56}\\
\omega^{2} & \omega^{2}-\omega_{0}^{2}
\end{array}\right)
$$

with $\omega_{0}=\sqrt{g / \ell}$. Setting the determinant to zero gives

$$
\begin{equation*}
2\left(\omega^{2}-\omega_{0}^{2}\right)^{2}-\omega^{4}=0 \quad \Rightarrow \quad \omega^{2}=(2 \pm \sqrt{2}) \omega_{0}^{2} \tag{5.57}
\end{equation*}
$$

We find the unnormalized eigenvectors by setting $\left(\omega_{i}^{2} \mathrm{~T}-V\right) \psi^{(i)}=0$. This gives

$$
\begin{equation*}
\psi^{+}=C_{+}\binom{1}{-\sqrt{2}} \quad, \quad \psi^{-}=C_{-}\binom{1}{+\sqrt{2}} \tag{5.58}
\end{equation*}
$$

where $C_{ \pm}$are constants. One can check $\mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma}^{(i)} \psi_{\sigma^{\prime}}^{(j)}$ vanishes for $i \neq j$. We then normalize by demanding $\mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma}^{(i)} \psi_{\sigma^{\prime}}^{(i)}=1$ (no sum on i), which determines the coefficients $C_{ \pm}=\frac{1}{2} \sqrt{(2 \pm \sqrt{2}) / m \ell^{2}}$. Thus, the

Figure 5.2: The double pendulum (again).
modal matrix is

$$
\mathrm{A}=\left(\begin{array}{cc}
\psi_{1}^{+} & \psi_{1}^{-} \tag{5.59}\\
\psi_{2}^{+} & \psi_{2}^{-}
\end{array}\right)=\frac{1}{2 \sqrt{m \ell^{2}}}\left(\begin{array}{cc}
\sqrt{2+\sqrt{2}} & \sqrt{2-\sqrt{2}} \\
-\sqrt{4+2 \sqrt{2}} & +\sqrt{4-2 \sqrt{2}}
\end{array}\right) .
$$

5.6 Zero Modes

5.6.1 Noether's theorem and zero modes

Recall Noether's theorem, which says that for every continuous one-parameter family of coordinate transformations,

$$
\begin{equation*}
q_{\sigma} \longrightarrow \tilde{q}_{\sigma}(q, \zeta) \quad, \quad \tilde{q}_{\sigma}(q, \zeta=0)=q_{\sigma} \tag{5.60}
\end{equation*}
$$

which leaves the Lagrangian invariant, i.e. $d L / d \zeta=0$, there is an associated conserved quantity,

$$
\begin{equation*}
\Lambda=\left.\sum_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0} \quad \text { satisfies } \quad \frac{d \Lambda}{d t}=0 \tag{5.61}
\end{equation*}
$$

For small oscillations, we write $q_{\sigma}=\bar{q}_{\sigma}+\eta_{\sigma}$, hence

$$
\begin{equation*}
\Lambda_{k}=\sum_{\sigma} C_{k \sigma} \dot{\eta}_{\sigma} \tag{5.62}
\end{equation*}
$$

where k labels the one-parameter families (in the event there is more than one continuous symmetry), and where

$$
\begin{equation*}
C_{k \sigma}=\left.\sum_{\sigma^{\prime}} \mathrm{T}_{\sigma \sigma^{\prime}} \frac{\partial \tilde{q}_{\sigma^{\prime}}}{\partial \zeta_{k}}\right|_{\zeta=0} . \tag{5.63}
\end{equation*}
$$

Therefore, we can define the (unnormalized) normal mode

$$
\begin{equation*}
\xi_{k}=\sum_{\sigma} C_{k \sigma} \eta_{\sigma} \tag{5.64}
\end{equation*}
$$

which satisfies $\ddot{\xi}_{k}=0$. Thus, in systems with continuous symmetries, to each such continuous symmetry there is an associated zero mode of the small oscillations problem, i.e. a mode with $\omega_{k}^{2}=0$.

5.6.2 Examples of zero modes

The simplest example of a zero mode would be a pair of masses m_{1} and m_{2} moving frictionlessly along a line and connected by a spring of force constant k and unstretched length a. We know from our study of central forces that the Lagrangian may be written

$$
\begin{align*}
L & =\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}-\frac{1}{2} k\left(x_{1}-x_{2}-a\right)^{2} \tag{5.65}\\
& =\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} \mu \dot{x}^{2}-\frac{1}{2} k(x-a)^{2},
\end{align*}
$$

Figure 5.3: Coupled oscillations of three masses on a frictionless hoop of radius R. All three springs have the same force constant k, but the masses are all distinct.
where $X=\left(m_{1} x_{1}+m_{2} x_{2}\right) /\left(m_{1}+m_{2}\right)$ is the center of mass position, $x=x_{1}-x_{2}$ is the relative coordinate, $M=m_{1}+m_{2}$ is the total mass, and $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass. The relative coordinate obeys $\ddot{x}=-\omega_{0}^{2} x$, where the oscillation frequency is $\omega_{0}=\sqrt{k / \mu}$. The center of mass coordinate obeys $\ddot{X}=0$, i.e. its oscillation frequency is zero. The center of mass motion is a zero mode.

Another example is furnished by the system depicted in fig. 5.3, where three distinct masses m_{1}, m_{2}, and m_{3} move around a frictionless hoop of radius R. The masses are connected to their neighbors by identical springs of force constant k. We choose as generalized coordinates the angles $\phi_{\sigma}(\sigma=1,2,3)$, with the convention that

$$
\begin{equation*}
\phi_{3}-2 \pi<\phi_{1} \leq \phi_{2} \leq \phi_{3} \leq 2 \pi+\phi_{1} \tag{5.66}
\end{equation*}
$$

The kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} R^{2}\left(m_{1} \dot{\phi}_{1}^{2}+m_{2} \dot{\phi}_{2}^{2}+m_{3} \dot{\phi}_{3}^{3}\right) \tag{5.67}
\end{equation*}
$$

Let $R \chi$ be the equilibrium length for each of the springs. Then the potential energy is

$$
\begin{align*}
U & =\frac{1}{2} k R^{2}\left\{\left(\phi_{2}-\phi_{1}-\chi\right)^{2}+\left(\phi_{3}-\phi_{2}-\chi\right)^{2}+\left(2 \pi+\phi_{1}-\phi_{3}-\chi\right)^{2}\right\} \tag{5.68}\\
& =\frac{1}{2} k R^{2}\left\{\left(\phi_{2}-\phi_{1}\right)^{2}+\left(\phi_{3}-\phi_{2}\right)^{2}+\left(2 \pi+\phi_{1}-\phi_{3}\right)^{2}+3 \chi^{2}-4 \pi \chi\right\}
\end{align*}
$$

Note that the equilibrium angle χ enters only in an additive constant to the potential energy. Thus, for the calculation of the equations of motion, it is irrelevant. It doesn't matter whether or not the equilibrium configuration is unstretched $(\chi=2 \pi / 3)$ or not $(\chi \neq 2 \pi / 3)$.

The equilibrium configuration is

$$
\begin{equation*}
\bar{\phi}_{1}=\zeta \quad, \quad \bar{\phi}_{1}=\zeta+\frac{2 \pi}{3} \quad, \quad \bar{\phi}_{1}=\zeta+\frac{4 \pi}{3} \tag{5.69}
\end{equation*}
$$

where ζ is an arbitrary real number, corresponding to continuous translational invariance of the entire system around the ring. The T and V matrices are then

$$
\mathrm{T}=\left(\begin{array}{ccc}
m_{1} R^{2} & 0 & 0 \tag{5.70}\\
0 & m_{2} R^{2} & 0 \\
0 & 0 & m_{3} R^{2}
\end{array}\right) \quad, \quad \mathrm{V}=\left(\begin{array}{ccc}
2 k R^{2} & -k R^{2} & -k R^{2} \\
-k R^{2} & 2 k R^{2} & -k R^{2} \\
-k R^{2} & -k R^{2} & 2 k R^{2}
\end{array}\right)
$$

We then have

$$
\omega^{2} \mathrm{~T}-\mathrm{V}=k R^{2}\left(\begin{array}{ccc}
\frac{\omega^{2}}{\Omega_{1}^{2}}-2 & 1 & 1 \tag{5.71}\\
1 & \frac{\omega^{2}}{\Omega_{2}^{2}}-2 & 1 \\
1 & 1 & \frac{\omega^{2}}{\Omega_{3}^{2}}-2
\end{array}\right)
$$

where $\Omega_{j}^{2} \equiv k / m_{j}$. We compute the determinant to find the characteristic polynomial:

$$
\begin{align*}
& P(\omega)=\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right) \equiv\left(k R^{2}\right)^{3} \widetilde{P}(\omega) \\
& \widetilde{P}(\omega)=\frac{\omega^{6}}{\Omega_{1}^{2} \Omega_{2}^{2} \Omega_{3}^{2}}-2\left(\frac{1}{\Omega_{1}^{2} \Omega_{2}^{2}}+\frac{1}{\Omega_{2}^{2} \Omega_{3}^{2}}+\frac{1}{\Omega_{1}^{2} \Omega_{3}^{2}}\right) \omega^{4}+3\left(\frac{1}{\Omega_{1}^{2}}+\frac{1}{\Omega_{2}^{2}}+\frac{1}{\Omega_{3}^{2}}\right) \omega^{2} . \tag{5.72}
\end{align*}
$$

The equation $\widetilde{P}(\omega)=0$ yields a cubic equation in ω^{2}, but clearly ω^{2} is a factor, and when we divide this out we obtain a quadratic equation. One root obviously is $\omega_{1}^{2}=0$. The other two roots are solutions to the quadratic equation:

$$
\begin{equation*}
\omega_{2,3}^{2}=\Omega_{1}^{2}+\Omega_{2}^{2}+\Omega_{3}^{2} \pm \sqrt{\frac{1}{2}\left(\Omega_{1}^{2}-\Omega_{2}^{2}\right)^{2}+\frac{1}{2}\left(\Omega_{2}^{2}-\Omega_{3}^{2}\right)^{2}+\frac{1}{2}\left(\Omega_{1}^{2}-\Omega_{3}^{2}\right)^{2}} \tag{5.73}
\end{equation*}
$$

To find the eigenvectors and the modal matrix, we set

$$
\left(\begin{array}{ccc}
\frac{\omega_{j}^{2}}{\Omega_{1}^{2}}-2 & 1 & 1 \tag{5.74}\\
1 & \frac{\omega_{j}^{2}}{\Omega_{2}^{2}}-2 & 1 \\
1 & 1 & \frac{\omega_{j}^{2}}{\Omega_{3}^{2}}-2
\end{array}\right)\left(\begin{array}{l}
\psi_{1}^{(j)} \\
\psi_{2}^{(j)} \\
\psi_{3}^{(j)}
\end{array}\right)=0
$$

Writing down the three coupled equations for the components of $\psi^{(j)}$, we find

$$
\begin{equation*}
\left(\frac{\omega_{j}^{2}}{\Omega_{1}^{2}}-3\right) \psi_{1}^{(j)}=\left(\frac{\omega_{j}^{2}}{\Omega_{2}^{2}}-3\right) \psi_{2}^{(j)}=\left(\frac{\omega_{j}^{2}}{\Omega_{3}^{2}}-3\right) \psi_{3}^{(j)} . \tag{5.75}
\end{equation*}
$$

We therefore conclude

$$
\boldsymbol{\psi}^{(j)}=\mathcal{C}_{j}\left(\begin{array}{l}
\left(\frac{\omega_{j}^{2}}{\Omega_{1}^{2}}-3\right)^{-1} \tag{5.76}\\
\left(\frac{\omega_{j}^{2}}{\Omega_{2}^{2}}-3\right)^{-1} \\
\left(\frac{\omega_{j}^{j}}{\Omega_{3}^{2}}-3\right)^{-1}
\end{array}\right) .
$$

The normalization condition $\psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=\delta_{i j}$ then fixes the constants \mathcal{C}_{j} :

$$
\begin{equation*}
\left[m_{1}\left(\frac{\omega_{j}^{2}}{\Omega_{1}^{2}}-3\right)^{-2}+m_{2}\left(\frac{\omega_{j}^{2}}{\Omega_{2}^{2}}-3\right)^{-2}+m_{3}\left(\frac{\omega_{j}^{2}}{\Omega_{3}^{2}}-3\right)^{-2}\right]\left|\mathcal{C}_{j}\right|^{2}=1 \tag{5.77}
\end{equation*}
$$

The Lagrangian is invariant under the one-parameter family of transformations

$$
\begin{equation*}
\phi_{\sigma} \longrightarrow \phi_{\sigma}+\zeta \tag{5.78}
\end{equation*}
$$

for all $\sigma=1,2,3$. The associated conserved quantity is

$$
\begin{align*}
\Lambda & =\sum_{\sigma} \frac{\partial L}{\partial \dot{\phi}_{\sigma}} \frac{\partial \tilde{\phi}_{\sigma}}{\partial \zeta} \tag{5.79}\\
& =R^{2}\left(m_{1} \dot{\phi}_{1}+m_{2} \dot{\phi}_{2}+m_{3} \dot{\phi}_{3}\right)
\end{align*}
$$

which is, of course, the total angular momentum relative to the center of the ring. We stress that Λ is a constant in general, and not only in the limit of small deviations from static equilibrium. From

$$
\begin{equation*}
\xi_{1}=\mathcal{C}\left(m_{1} \eta_{1}+m_{2} \eta_{2}+m_{3} \eta_{3}\right) \tag{5.80}
\end{equation*}
$$

where \mathcal{C} is a constant. Recall the relation $\eta_{\sigma}=\mathrm{A}_{\sigma i} \xi_{i}$ between the generalized displacements η_{σ} and the normal coordinates ξ_{i}, which may be inverted to yield $\xi_{i}=\mathrm{A}_{i \sigma}^{-1} \eta_{\sigma}=\mathrm{A}_{i \sigma}^{\mathrm{t}}$. In our case here, the T matrix is diagonal, so the multiplication is trivial. From eqns. 5.80 and 5.35 , we conclude that the matrix $\mathrm{A}^{\mathrm{t}} \mathrm{T}$ must have a first row which is proportional to $\left(m_{1}, m_{2}, m_{3}\right)$. Since these are the very diagonal entries of T, we conclude that A^{t} itself must have a first row which is proportional to $(1,1,1)$, which means that the first column of A is proportional to $(1,1,1)$. But this is confirmed by eqn. 5.75 when we take $j=1$, since $\omega_{j=1}^{2}=0: \psi_{1}^{(1)}=\psi_{2}^{(1)}=\psi_{3}^{(1)}$.

5.7 Chain of Mass Points

5.7.1 Lagrangian and equations of motion

Next consider an infinite chain of identical masses, connected by identical springs of spring constant k and equilibrium length a. The Lagrangian is

$$
\begin{align*}
L & =\frac{1}{2} m \sum_{n} \dot{x}_{n}^{2}-\frac{1}{2} k \sum_{n}\left(x_{n+1}-x_{n}-a\right)^{2} \tag{5.81}\\
& =\frac{1}{2} m \sum_{n} \dot{u}_{n}^{2}-\frac{1}{2} k \sum_{n}\left(u_{n+1}-u_{n}\right)^{2}
\end{align*}
$$

where $u_{n} \equiv x_{n}-n a+\zeta$ is the displacement from equilibrium of the $n^{\text {th }}$ mass. The constant ζ is arbitrary and is cyclic in L, reflecting overall translational invariance with a consequent zero mode according to Noether's theorem. The Euler-Lagrange equations are

$$
\begin{align*}
m \ddot{u}_{n} & =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}_{n}}\right)=\frac{\partial L}{\partial u_{n}} \tag{5.82}\\
& =k\left(u_{n+1}-u_{n}\right)-k\left(u_{n}-u_{n-1}\right)=k\left(u_{n+1}+u_{n-1}-2 u_{n}\right) .
\end{align*}
$$

Now let us assume that the system is placed on a large ring of circumference $N a$, where $N \gg 1$. Then $u_{n+N}=u_{n}$ and we may shift to Fourier coefficients,

$$
\begin{equation*}
u_{n}=\frac{1}{\sqrt{N}} \sum_{q} e^{i q a n} \hat{u}_{q} \quad, \quad \hat{u}_{q}=\frac{1}{\sqrt{N}} \sum_{n} e^{-i q a n} u_{n} \tag{5.83}
\end{equation*}
$$

where $q_{j}=2 \pi j / N a$, and both sums are over the set $j, n \in\{1, \ldots, N\}$. Expressed in terms of the $\left\{\hat{u}_{q}\right\}$, the equations of motion become

$$
\begin{align*}
\ddot{\hat{u}}_{q} & =\frac{1}{\sqrt{N}} \sum_{n} e^{-i q n a} \ddot{u}_{n}=\frac{k}{m} \frac{1}{\sqrt{N}} \sum_{n} e^{-i q a n}\left(u_{n+1}+u_{n-1}-2 u_{n}\right) \tag{5.84}\\
& =\frac{k}{m} \frac{1}{\sqrt{N}} \sum_{n} e^{-i q a n}\left(e^{-i q a}+e^{+i q a}-2\right) u_{n}=-\frac{4 k}{m} \sin ^{2}\left(\frac{1}{2} q a\right) \hat{u}_{q}
\end{align*}
$$

Thus, the $\left\{\hat{u}_{q}\right\}$ are the normal modes of the system (up to a normalization constant), and the eigenfrequencies are

$$
\begin{equation*}
\omega_{q}=2 \sqrt{\frac{k}{m}}\left|\sin \left(\frac{1}{2} q a\right)\right| . \tag{5.85}
\end{equation*}
$$

This means that the modal matrix is

$$
\begin{equation*}
\mathrm{A}_{n q}=\frac{1}{\sqrt{N m}} e^{i q a n} \tag{5.86}
\end{equation*}
$$

where we've included the $\frac{1}{\sqrt{m}}$ factor for a proper normalization. The normal modes themselves are then $\xi_{q}=\mathrm{A}_{q n}^{\dagger} \mathrm{T}_{n n^{\prime}} u_{n^{\prime}}=\sqrt{m} \hat{u}_{q}$. For complex A, we have $\mathrm{A}^{\dagger} \mathrm{TA}=\mathbb{I}$ and $\mathrm{A}^{\dagger} \mathrm{VA}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{N}^{2}\right)$.
Note that

$$
\begin{align*}
& \mathrm{T}_{n n^{\prime}}=m \delta_{n, n^{\prime}} \tag{5.87}\\
& \mathrm{V}_{n n^{\prime}}=2 k \delta_{n, n^{\prime}}-k \delta_{n, n^{\prime}+1}-k \delta_{n, n^{\prime}-1}
\end{align*}
$$

and that

$$
\begin{align*}
\left(\mathrm{A}^{\dagger} \mathrm{TA}\right)_{q q^{\prime}} & =\sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N} \mathrm{~A}_{n q}^{*} \mathrm{~T}_{n n^{\prime}} \mathrm{A}_{n^{\prime} q^{\prime}} \\
& =\frac{1}{N m} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N} e^{-i q a n} m \delta_{n n^{\prime}} e^{i q^{\prime} a n^{\prime}}=\frac{1}{N} \sum_{n=1}^{N} e^{i\left(q^{\prime}-q\right) a n}=\delta_{q q^{\prime}} \tag{5.88}
\end{align*}
$$

and

$$
\begin{align*}
\left(\mathrm{A}^{\dagger} \mathrm{VA}\right)_{q q^{\prime}} & =\sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N} \mathrm{~A}_{n q}^{*} \mathrm{~T}_{n n^{\prime}} \mathrm{A}_{n^{\prime} q^{\prime}} \\
& =\frac{1}{N m} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N} e^{-i q a n}\left(2 k \delta_{n, n^{\prime}}-k \delta_{n, n^{\prime}+1}-k \delta_{n, n^{\prime}-1}\right) e^{i q^{\prime} a n^{\prime}} \tag{5.89}\\
& =\frac{k}{m} \frac{1}{N} \sum_{n=1}^{N} e^{i\left(q^{\prime}-q\right) a n}\left(2-e^{-i q^{\prime} a}-e^{i q^{\prime} a}\right)=\frac{4 k}{m} \sin ^{2}\left(\frac{1}{2} q a\right) \delta_{q q^{\prime}}=\omega_{q}^{2} \delta_{q q^{\prime}}
\end{align*}
$$

Since $\hat{x}_{q+G}=\hat{x}_{q}$, where $G=2 \pi / a$, we may choose any set of q values such that no two are separated by an integer multiple of G. The set of points $\{j G\}$ with $j \in \mathbb{Z}$ is called the reciprocal lattice. For a linear chain, the reciprocal lattice is itself a linear chain ${ }^{2}$. One natural set to choose is $q \in\left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$. This is known as the first Brillouin zone of the reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the $\left\{u_{q}\right\}$. One easily finds

$$
\begin{equation*}
L=\frac{1}{2} m \sum_{q} \dot{\hat{u}}_{q}^{*} \dot{\hat{u}}_{q}-k \sum_{q}(1-\cos q a) \hat{u}_{q}^{*} \hat{u}_{q} \tag{5.90}
\end{equation*}
$$

where the sum is over q in the first Brillouin zone. Note that

$$
\begin{equation*}
\hat{u}_{-q}=\hat{u}_{-q+G}=\hat{u}_{q}^{*} . \tag{5.91}
\end{equation*}
$$

This means that we can restrict the sum to half the Brillouin zone:

$$
\begin{equation*}
L=\sum_{q \in\left[0, \frac{\pi}{a}\right]}\left\{m \dot{\hat{u}}_{q}^{*} \dot{\hat{u}}_{q}-4 k \sin ^{2}\left(\frac{1}{2} q a\right) \hat{u}_{q}^{*} \hat{u}_{q}\right\} \tag{5.92}
\end{equation*}
$$

Now \hat{u}_{q} and \hat{u}_{q}^{*} may be regarded as linearly independent, as one regards complex variables z and z^{*}. The Euler-Lagrange equation for \hat{u}_{q}^{*} gives

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\hat{u}}_{q}^{*}}\right)=\frac{\partial L}{\partial \hat{u}_{q}^{*}} \quad \Rightarrow \quad \ddot{\hat{u}}_{q}=-\omega_{q}^{2} \hat{u}_{q} \tag{5.93}
\end{equation*}
$$

Extremizing with respect to \hat{u}_{q} gives the complex conjugate equation.

5.7.2 Continuum limit

Let us take $N \rightarrow \infty, a \rightarrow 0$, with $L_{0}=N a$ fixed. We'll write $u_{n}(t) \rightarrow u(x=n a, t)$, in which case

$$
\begin{align*}
& T=\frac{1}{2} m \sum_{n} \dot{u}_{n}^{2} \longrightarrow \frac{1}{2} m \int \frac{d x}{a}\left(\frac{\partial u}{\partial t}\right)^{2} \\
& V=\frac{1}{2} k \sum_{n}\left(u_{n+1}-u_{n}\right)^{2} \quad \longrightarrow \quad \frac{1}{2} k \int \frac{d x}{a}\left(\frac{u(x+a)-u(x)}{a}\right)^{2} a^{2} \tag{5.94}
\end{align*}
$$

Recognizing the spatial derivative above, we finally obtain

$$
\begin{align*}
L & =\int d x \mathcal{L}\left(u, \partial_{t} u, \partial_{x} u\right) \\
\mathcal{L} & =\frac{1}{2} \mu\left(\frac{\partial u}{\partial t}\right)^{2}-\frac{1}{2} \tau\left(\frac{\partial u}{\partial x}\right)^{2} \tag{5.95}
\end{align*}
$$

[^12]where $\mu=m / a$ is the linear mass density and $\tau=k a$ is the tension ${ }^{3}$. The quantity \mathcal{L} is the Lagrangian density; it depends on the field $u(x, t)$ as well as its partial derivatives $\partial_{t} u$ and $\partial_{x} u^{4}$. The action is
\[

$$
\begin{equation*}
S[u(x, t)]=\int_{t_{a}}^{t_{b}} d t \int_{x_{a}}^{x_{b}} d x \mathcal{L}\left(u, \partial_{t} u, \partial_{x} u\right) \tag{5.96}
\end{equation*}
$$

\]

where $\left\{x_{a}, x_{b}\right\}$ are the limits on the x coordinate. Setting $\delta S=0$ gives the Euler-Lagrange equations

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} u\right)}\right)-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} u\right)}\right)=0 . \tag{5.97}
\end{equation*}
$$

For our system, this yields the Helmholtz equation,

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \tag{5.98}
\end{equation*}
$$

where $c=\sqrt{\tau / \mu}$ is the velocity of wave propagation. This is a linear equation, solutions of which are of the form

$$
\begin{equation*}
u(x, t)=C e^{i q x} e^{-i \omega t} \tag{5.99}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=c q . \tag{5.100}
\end{equation*}
$$

Note that in the continuum limit $a \rightarrow 0$, the dispersion relation derived for the chain becomes

$$
\begin{equation*}
\omega_{q}^{2}=\frac{4 k}{m} \sin ^{2}\left(\frac{1}{2} q a\right) \longrightarrow \frac{k a^{2}}{m} q^{2}=c^{2} q^{2} \tag{5.101}
\end{equation*}
$$

and so the results agree.

5.8 General Formulation of Small Oscillations

In the development in section 5.1, we assumed that the kinetic energy T is a homogeneous function of degree 2 , and the potential energy U a homogeneous function of degree 0 , in the generalized velocities \dot{q}_{σ}. However, we've encountered situations where this is not so: problems with time-dependent holonomic constraints, such as the mass point on a rotating hoop, and problems involving charged particles moving in magnetic fields. The general Lagrangian is of the form

$$
\begin{equation*}
L=\frac{1}{2} T_{2 ; \sigma \sigma^{\prime}}(q) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}+T_{1 ; \sigma}(q) \dot{q}_{\sigma}+T_{0}(q)-U_{1 ; \sigma}(q) \dot{q}_{\sigma}-U_{0}(q) \tag{5.102}
\end{equation*}
$$

where the subscript 0,1 , or 2 labels the degree of homogeneity of each term in the generalized velocities. The generalized momenta are then

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}=T_{2 ; \sigma \sigma^{\prime}}{\dot{\sigma_{\sigma^{\prime}}}}+T_{1 ; \sigma}-U_{1 ; \sigma} \tag{5.103}
\end{equation*}
$$

[^13]and the generalized forces are
\[

$$
\begin{equation*}
F_{\sigma}=\frac{\partial L}{\partial q_{\sigma}}=\frac{\partial\left(T_{0}-U_{0}\right)}{\partial q_{\sigma}}+\frac{\partial\left(T_{1 ; \sigma^{\prime}}-U_{1 ; \sigma^{\prime}}\right)}{\partial q_{\sigma}} \dot{q}_{\sigma^{\prime}}+\frac{1}{2} \frac{\partial T_{2 ; \sigma^{\prime} \sigma^{\prime \prime}}}{\partial q_{\sigma}} \dot{q}_{\sigma^{\prime}} \dot{q}_{\sigma^{\prime \prime}} \tag{5.104}
\end{equation*}
$$

\]

and the equations of motion are again $\dot{p}_{\sigma}=F_{\sigma}$. Once we solve
In equilibrium, we seek a time-independent solution of the form $q_{\sigma}(t)=\bar{q}_{\sigma}$. This entails

$$
\begin{equation*}
\left.\frac{\partial}{\partial q_{\sigma}}\right|_{q=\bar{q}}\left[U_{0}(q)-T_{0}(q)\right]=0 \tag{5.105}
\end{equation*}
$$

which give us n equations in the n unknowns $\left(q_{1}, \ldots, q_{n}\right)$. We then write $q_{\sigma}=\bar{q}_{\sigma}+\eta_{\sigma}$ and expand in the notionally small quantities η_{σ}. It is important to understand that we assume η and all of its time derivatives as well are small. Thus, we can expand L to quadratic order in $(\eta, \dot{\eta})$ to obtain

$$
\begin{equation*}
L=\frac{1}{2} \mathrm{~T}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma} \dot{\eta}_{\sigma^{\prime}}-\frac{1}{2} \mathrm{~B}_{\sigma \sigma^{\prime}} \eta_{\sigma} \dot{\eta}_{\sigma^{\prime}}-\frac{1}{2} \mathrm{~V}_{\sigma \sigma^{\prime}} \eta_{\sigma} \eta_{\sigma^{\prime}} \tag{5.106}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}}=T_{2 ; \sigma \sigma^{\prime}}(\bar{q}) \quad, \quad \mathrm{V}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2}\left(U_{0}-T_{0}\right)}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}}\right|_{q=\bar{q}} \quad, \quad \mathrm{~B}_{\sigma \sigma^{\prime}}=\left.2 \frac{\partial\left(U_{1 ; \sigma^{\prime}}-T_{1 ; \sigma^{\prime}}\right)}{\partial q_{\sigma}}\right|_{q=\bar{q}} \tag{5.107}
\end{equation*}
$$

Note that the T and V matrices are symmetric. The $\mathrm{B}_{\sigma \sigma^{\prime}}$ term is new.
Now we can always write $B=\frac{1}{2}\left(B^{s}+B^{\text {a }}\right)$ as a sum over symmetric and antisymmetric parts, with $B^{s}=\frac{1}{2}\left(B+B^{t}\right)$ and $B^{a}=\frac{1}{2}\left(B-B^{2}\right)$. Since,

$$
\begin{equation*}
\mathrm{B}_{\sigma \sigma^{\prime}}^{\mathrm{s}} \eta_{\sigma} \dot{\eta}_{\sigma^{\prime}}=\frac{d}{d t}\left(\frac{1}{2} \mathrm{~B}_{\sigma \sigma^{\prime}}^{\mathrm{s}} \eta_{\sigma} \eta_{\sigma^{\prime}}\right) \tag{5.108}
\end{equation*}
$$

any symmetric part to B contributes a total time derivative to L, and thus has no effect on the equations of motion. Therefore, we can project B onto its antisymmetric part, writing

$$
\begin{equation*}
\mathrm{B}_{\sigma \sigma^{\prime}} \equiv \mathrm{B}_{\sigma \sigma^{\prime}}^{\mathrm{a}}=\left(\frac{\partial\left(U_{1 ; \sigma^{\prime}}-T_{1 ; \sigma^{\prime}}\right)}{\partial q_{\sigma}}-\frac{\partial\left(U_{1 ; \sigma}-T_{1 ; \sigma}\right)}{\partial q_{\sigma^{\prime}}}\right)_{q=\bar{q}} \tag{5.109}
\end{equation*}
$$

We now have

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{\eta}_{\sigma}}=\mathrm{T}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma^{\prime}}+\frac{1}{2} \mathrm{~B}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}} \tag{5.110}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\sigma}=\frac{\partial L}{\partial \eta_{\sigma}}=-\frac{1}{2} \mathrm{~B}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma^{\prime}}-\mathrm{V}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}} \tag{5.111}
\end{equation*}
$$

The equations of motion, $\dot{p}_{\sigma}=F_{\sigma}$, then yield

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}} \ddot{\eta}_{\sigma^{\prime}}+\mathrm{B}_{\sigma \sigma^{\prime}} \dot{\eta}_{\sigma^{\prime}}+\mathrm{V}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}}=0 \tag{5.112}
\end{equation*}
$$

Let us write $\boldsymbol{\eta}(t)=\boldsymbol{\eta} e^{-i \omega t}$. We then have

$$
\begin{equation*}
\left(\omega^{2} \mathrm{~T}+i \omega \mathrm{~B}-\mathrm{V}\right) \boldsymbol{\eta}=0 \tag{5.113}
\end{equation*}
$$

To solve eqn. 5.113 , we set $P(\omega)=0$, where $P(\omega)=\operatorname{det}[\mathrm{Q}(\omega)]$, with

$$
\begin{equation*}
\mathrm{Q}(\omega) \equiv \omega^{2} \mathrm{~T}+i \omega \mathrm{~B}-\mathrm{V} \tag{5.114}
\end{equation*}
$$

Since T, B, and V are real-valued matrices, and since $\operatorname{det}(M)=\operatorname{det}\left(M^{\mathrm{t}}\right)$ for any matrix M, we can use $\mathrm{B}^{\mathrm{t}}=-\mathrm{B}$ to obtain $P(-\omega)=P(\omega)$ and $P\left(\omega^{*}\right)=[P(\omega)]^{*}$. This establishes that if $P(\omega)=0$, i.e. if ω is an eigenfrequency, then $P(-\omega)=0$ and $P\left(\omega^{*}\right)=0$, i.e. $-\omega$ and ω^{*} and $-\omega^{*}$ are also eigenfrequencies. Furthermore, $P(\omega)$ must again be a polynomial of order n in ω^{2}.

Example

As an example, consider the following Lagrangian, which is a function of four generalized coordinates $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ and their corresponding velocities:

$$
\begin{align*}
L=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right)-\frac{1}{2} & \kappa\left(x_{1}-x_{2}\right)^{2}-\frac{1}{2} b\left(y_{1}^{2}+y_{2}^{2}\right) \\
& +\frac{1}{2} m \omega_{\mathrm{c}}\left(x_{1} \dot{y}_{1}-y_{1} \dot{x}_{1}+x_{2} \dot{y}_{2}-y_{2} \dot{x}_{2}\right) . \tag{5.115}
\end{align*}
$$

The last term, which is linear in the generalized velocities, arises if the masses are also equally charged and in the presence of a magnetic field $\boldsymbol{B}=B \hat{\boldsymbol{z}}$. The quantity $\omega_{\mathrm{c}}=q B / m c$, where q is the charge, is called the cyclotron frequency. We then have

$$
\begin{align*}
& p_{x, 1}=m \dot{x}_{1}-\frac{1}{2} m \omega_{\mathrm{c}} y_{1} \quad, \quad F_{x, 1}=-\kappa\left(x_{1}-x_{2}\right)+\frac{1}{2} m \omega_{\mathrm{c}} \dot{y}_{1} \tag{5.116}\\
& p_{y, 1}=m \dot{y}_{1}+\frac{1}{2} m \omega_{\mathrm{c}} x_{1} \quad, \quad F_{y, 1}=-b y_{1}-\frac{1}{2} m \omega_{\mathrm{c}} \dot{x}_{1} \\
& p_{x, 2}=m \dot{x}_{2}-\frac{1}{2} m \omega_{\mathrm{c}} y_{2} \quad, \quad F_{x, 2}=-\kappa\left(x_{2}-x_{1}\right)+\frac{1}{2} m \omega_{\mathrm{c}} \dot{y}_{2} \\
& p_{y, 2}=m \dot{y}_{2}+\frac{1}{2} m \omega_{\mathrm{c}} x_{2} \quad, \quad F_{y, 2}=-b y_{2}-\frac{1}{2} m \omega_{\mathrm{c}} \dot{x}_{2} .
\end{align*}
$$

Defining $\nu^{2} \equiv \kappa / m$ and $\Omega^{2} \equiv b / m$, we have the equations of motion

$$
\begin{align*}
& \ddot{x}_{1}-\omega_{\mathrm{c}} \dot{y}_{1}=-\nu^{2}\left(x_{1}-x_{2}\right) \\
& \ddot{y}_{1}+\omega_{\mathrm{c}} \dot{x}_{1}=-\Omega^{2} y_{1} \\
& \ddot{x}_{2}-\omega_{\mathrm{c}} \dot{y}_{2}=-\nu^{2}\left(x_{2}-x_{1}\right) \tag{5.117}\\
& \ddot{y}_{2}+\omega_{\mathrm{c}} \dot{x}_{2}=-\Omega^{2} y_{2} .
\end{align*}
$$

From these equations, we read off the matrices

$$
\mathrm{T}=\left(\begin{array}{cccc}
m & 0 & 0 & 0 \tag{5.118}\\
0 & m & 0 & 0 \\
0 & 0 & m & 0 \\
0 & 0 & 0 & m
\end{array}\right) \quad, \quad \mathrm{B}=\left(\begin{array}{cccc}
0 & -m \omega_{\mathrm{c}} & 0 & 0 \\
m \omega_{\mathrm{c}} & 0 & 0 & 0 \\
0 & 0 & 0 & m \omega_{\mathrm{c}} \\
0 & 0 & -m \omega_{\mathrm{c}} & 0
\end{array}\right)
$$

and

$$
\mathrm{V}=\left(\begin{array}{cccc}
m \nu^{2} & 0 & -m \nu^{2} & 0 \tag{5.119}\\
0 & m \Omega^{2} & 0 & 0 \\
-m \nu^{2} & 0 & m \nu^{2} & 0 \\
0 & 0 & 0 & m \Omega^{2}
\end{array}\right)
$$

where the rows and columns correspond to the coordinates $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$, respectively. If we define the CM and relative coordinates

$$
\begin{equation*}
X \equiv \frac{1}{2}\left(x_{1}+x_{2}\right) \quad, \quad Y \equiv \frac{1}{2}\left(y_{1}+y_{2}\right) \quad, \quad x \equiv x_{1}-x_{2} \quad, \quad y \equiv y_{1}-y_{2} \tag{5.120}
\end{equation*}
$$

the equations of motion decouple into two 2×2 systems, viz.

$$
\begin{array}{lll}
\ddot{X}-\omega_{\mathrm{c}} \dot{Y}=0 & , & \ddot{x}-\omega_{\mathrm{c}} \dot{y}=-2 \nu^{2} x \\
\ddot{Y}+\omega_{\mathrm{c}} \dot{X}=-\Omega^{2} Y & , & \ddot{y}+\omega_{\mathrm{c}} \dot{x}=-\Omega^{2} y \tag{5.122}
\end{array}
$$

Thus, for the (X, Y) system we have

$$
\operatorname{det}\left(\begin{array}{cc}
\omega^{2} & -i \omega \omega_{\mathrm{c}} \tag{5.123}\\
i \omega \omega_{\mathrm{c}} & \omega^{2}-\Omega^{2}
\end{array}\right)=0 \quad \Rightarrow \quad \omega_{1}^{2}=0 \quad, \quad \omega_{2}^{2}=\Omega^{2}+\omega_{\mathrm{c}}^{2}
$$

while for the (x, y) system we have

$$
\operatorname{det}\left(\begin{array}{cc}
\omega^{2}-2 \nu^{2} & -i \omega \omega_{\mathrm{c}} \tag{5.124}\\
i \omega \omega_{\mathrm{c}} & \omega^{2}-\Omega^{2}
\end{array}\right)=0 \quad \Rightarrow \quad \omega_{3,4}^{2}=\frac{1}{2}\left(2 \nu^{2}+\Omega^{2}+\omega_{\mathrm{c}}^{2}\right) \pm \frac{1}{2} \sqrt{\left(2 \nu^{2}+\Omega^{2}+\omega_{\mathrm{c}}^{2}\right)^{2}-8 \nu^{2} \Omega^{2}}
$$

When $\omega_{\mathrm{c}}=0$, we have the zero mode X with frequency $\omega_{1}=0$, the relative coordinate x with frequency $\omega_{4}=\sqrt{2} \nu$, and two independent y and Y oscillations with degenerate frequencies $\omega_{2}=\omega_{3}=\Omega$. Nonzero ω_{c} couples x to y and X to Y, and shifts the eigenfrequencies $\omega_{2,3,4}$ according to the above results.

Note that zero mode frequency is unaffected by a finite ω_{c}. If we write the Lagrangian in terms of the CM and relative coordinates, we obtain $L=L_{\mathrm{CM}}+L_{\mathrm{rel}}$, with

$$
\begin{align*}
L_{\mathrm{CM}} & =m\left(\dot{X}^{2}+\dot{Y}^{2}\right)+m \omega_{\mathrm{c}}(X \dot{Y}-Y \dot{X})-b Y^{2} \\
L_{\mathrm{rel}} & =\frac{1}{4} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{4} m \omega_{\mathrm{c}}(x \dot{y}-y \dot{x})-\frac{1}{2} \kappa x^{2}-\frac{1}{4} b y^{2} . \tag{5.125}
\end{align*}
$$

At first, it seems that the zero mode should be lifted by finite ω_{c} since the coordinate X is no longer cyclic in L. However, X may be made cyclic by a different choice of gauge for the electromagnetic vector potential. Our choice had been $\boldsymbol{A}(\boldsymbol{r})=\frac{1}{2} B \hat{\boldsymbol{z}} \times \boldsymbol{r}=\frac{1}{2} B(x \hat{\boldsymbol{y}}-y \hat{\boldsymbol{x}})$, but had we instead chosen $\boldsymbol{A}=-B y \hat{\boldsymbol{x}}$, we would have had $\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{r}}=-\frac{q B}{c} y \dot{x}$ and only the velocities $\dot{x}_{1,2}$ would have entered here for each particle, so X would have been cyclic. Equivalently, in L_{CM} we could write

$$
\begin{equation*}
m \omega_{\mathrm{c}}(X \dot{Y}-Y \dot{X})=\frac{d}{d t}\left(m \omega_{\mathrm{c}} X Y\right)-2 m \omega_{\mathrm{c}} Y \dot{X} \tag{5.126}
\end{equation*}
$$

and the total time derivative term may be dropped from L_{CM}. The resulting CM Lagrangian is then cyclic in X, so the zero mode survives!

5.9 Additional Examples

5.9.1 Right Triatomic Molecule

A molecule consists of three identical atoms located at the vertices of a 45° right triangle. Each pair of atoms interacts by an effective spring potential, with all spring constants equal to k. Consider only planar motion of this molecule.
(a) Find three 'zero modes' for this system (i.e. normal modes whose associated eigenfrequencies vanish).
(b) Find the remaining three normal modes.

Solution

It is useful to choose the following coordinates:

$$
\begin{align*}
& \left(X_{1}, Y_{1}\right)=\left(x_{1}, y_{1}\right) \\
& \left(X_{2}, Y_{2}\right)=\left(a+x_{2}, y_{2}\right) \tag{5.127}\\
& \left(X_{3}, Y_{3}\right)=\left(x_{3}, a+y_{3}\right) .
\end{align*}
$$

The three separations are then

$$
\begin{align*}
d_{12} & =\sqrt{\left(a+x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{5.128}\\
& =a+x_{2}-x_{1}+\ldots
\end{align*}
$$

and

$$
\begin{align*}
d_{23} & =\sqrt{\left(-a+x_{3}-x_{2}\right)^{2}+\left(a+y_{3}-y_{2}\right)^{2}} \tag{5.129}\\
& =\sqrt{2} a-\frac{1}{\sqrt{2}}\left(x_{3}-x_{2}\right)+\frac{1}{\sqrt{2}}\left(y_{3}-y_{2}\right)+\ldots
\end{align*}
$$

and

$$
\begin{align*}
d_{13} & =\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(a+y_{3}-y_{1}\right)^{2}} \tag{5.130}\\
& =a+y_{3}-y_{1}+\ldots
\end{align*}
$$

The potential is then

$$
\begin{gather*}
U=\frac{1}{2} k\left(d_{12}-a\right)^{2}+\frac{1}{2} k\left(d_{23}-\sqrt{2} a\right)^{2}+\frac{1}{2} k\left(d_{13}-a\right)^{2} \\
=\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}+\frac{1}{4} k\left(x_{3}-x_{2}\right)^{2}+\frac{1}{4} k\left(y_{3}-y_{2}\right)^{2} \tag{5.131}\\
\quad-\frac{1}{2} k\left(x_{3}-x_{2}\right)\left(y_{3}-y_{2}\right)+\frac{1}{2} k\left(y_{3}-y_{1}\right)^{2}
\end{gather*}
$$

Defining the row vector

$$
\begin{equation*}
\boldsymbol{\eta}^{\mathrm{t}} \equiv\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right) \tag{5.132}
\end{equation*}
$$

we have that U is a quadratic form:

$$
\begin{equation*}
U=\frac{1}{2} \eta_{\sigma} \mathrm{V}_{\sigma \sigma^{\prime}} \eta_{\sigma^{\prime}}=\frac{1}{2} \boldsymbol{\eta}^{\mathrm{t}} \mathrm{~V} \boldsymbol{\eta} \tag{5.133}
\end{equation*}
$$

with

$$
\mathrm{V}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} U}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}}\right|_{\mathrm{eq} .}=k\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & 0 & 0 \tag{5.134}\\
0 & 1 & 0 & 0 & 0 & -1 \\
-1 & 0 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & -1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right)
$$

The kinetic energy is simply

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{x}_{2}^{2}+\dot{y}_{2}^{2}+\dot{x}_{3}^{2}+\dot{y}_{3}^{2}\right) \tag{5.135}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}}=m \delta_{\sigma \sigma^{\prime}} \tag{5.136}
\end{equation*}
$$

(b) The three zero modes correspond to x-translation, y-translation, and rotation. Their eigenvectors, respectively, are

$$
\boldsymbol{\psi}_{1}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{l}
1 \tag{5.137}\\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right) \quad, \quad \boldsymbol{\psi}_{2}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right) \quad, \quad \psi_{3}=\frac{1}{2 \sqrt{3 m}}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
2 \\
-2 \\
-1
\end{array}\right)
$$

Thus $\omega_{1}=\omega_{2}=\omega_{3}=0$. To find the unnormalized rotation vector, we find the CM of the triangle, located at $\left(\frac{a}{3}, \frac{a}{3}\right)$, and sketch orthogonal displacements $\hat{\boldsymbol{z}} \times\left(\boldsymbol{R}_{a}-\boldsymbol{R}_{\mathrm{CM}}\right)$ at the position of mass point a.
(c) The remaining modes may be determined by symmetry, and are given by

$$
\boldsymbol{\psi}_{4}=\frac{1}{2 \sqrt{m}}\left(\begin{array}{c}
-1 \tag{5.138}\\
-1 \\
0 \\
1 \\
1 \\
0
\end{array}\right) \quad, \quad \boldsymbol{\psi}_{5}=\frac{1}{2 \sqrt{m}}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
0 \\
0 \\
1
\end{array}\right) \quad, \quad \boldsymbol{\psi}_{6}=\frac{1}{2 \sqrt{3 m}}\left(\begin{array}{c}
-1 \\
-1 \\
2 \\
-1 \\
-1 \\
2
\end{array}\right)
$$

Figure 5.4: Normal modes of the 45° right triangle. The yellow circle is the location of the CM of the triangle. The labels for the vertices are 1 (lower left), 2 (lower right), and 3 (upper left).
with

$$
\begin{equation*}
\omega_{4}=\sqrt{\frac{k}{m}} \quad, \quad \omega_{5}=\sqrt{\frac{2 k}{m}} \quad, \quad \omega_{6}=\sqrt{\frac{3 k}{m}} . \tag{5.139}
\end{equation*}
$$

Since $\mathrm{T}=m \cdot 1$ is a multiple of the unit matrix, the orthogonormality relation $\psi_{\sigma}^{(i)} \mathrm{T}_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}}^{(j)}=\delta^{i j}$ entails $\boldsymbol{\psi}^{(i)} \cdot \boldsymbol{\psi}^{(j)}=m^{-1} \delta_{i j}$, i.e.the eigenvectors are mutually orthogonal in the conventional dot product sense. One can check that the eigenvectors listed here satisfy this condition.

The simplest of the set $\left\{\boldsymbol{\psi}_{4}, \boldsymbol{\psi}_{5}, \boldsymbol{\psi}_{6}\right\}$ to find is the uniform dilation $\boldsymbol{\psi}_{6}$, sometimes called the breathing mode. This must keep the triangle in the same shape, which means that the deviations at each mass point are proportional to the distance to the CM. Next simplest to find is $\boldsymbol{\psi}_{4}$, in which the long and short sides of the triangle oscillate out of phase. Finally, the mode ψ_{5} must be orthogonal to all the remaining modes. No heavy lifting (e.g. Mathematica) is required!

5.9.2 Triple Pendulum

Consider a triple pendulum consisting of three identical masses m and three identical rigid massless rods of length ℓ, as depicted in fig. 5.5.
(a) Find the T and V matrices.
(b) Find the equation for the eigenfrequencies.
(c) Numerically solve the eigenvalue equation for ratios $\omega_{j}^{2} / \omega_{0}^{2}$, where $\omega_{0}=\sqrt{g / \ell}$. Find the three normal modes.

Figure 5.5: The triple pendulum.

Solution

The Cartesian coordinates for the three masses are

$$
\begin{array}{ll}
x_{1}=\ell \sin \theta_{1} & y_{1}=-\ell \cos \theta_{1} \\
x_{2}=\ell \sin \theta_{1}+\ell \sin \theta_{2} & y_{2}=-\ell \cos \theta_{1}-\ell \cos \theta_{2} \\
x_{3}=\ell \sin \theta_{1}+\ell \sin \theta_{2}+\ell \sin \theta_{3} & y_{3}=-\ell \cos \theta_{1}-\ell \cos \theta_{2}-\ell \cos \theta_{3} . \tag{5.142}
\end{array}
$$

By inspection, we can write down the kinetic energy:

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{x}_{2}^{2}+\dot{y}_{2}^{2}+\dot{x}_{3}^{2}+\dot{y}_{3}^{2}\right) \\
& =\frac{1}{2} m \ell^{2}\left\{3 \dot{\theta}_{1}^{2}+2 \dot{\theta}_{2}^{2}+\dot{\theta}_{3}^{2}+4 \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}+2 \cos \left(\theta_{1}-\theta_{3}\right) \dot{\theta}_{1} \dot{\theta}_{3}+2 \cos \left(\theta_{2}-\theta_{3}\right) \dot{\theta}_{2} \dot{\theta}_{3}\right\} \tag{5.143}
\end{align*}
$$

The potential energy is

$$
\begin{equation*}
U=-m g \ell\left\{3 \cos \theta_{1}+2 \cos \theta_{2}+\cos \theta_{3}\right\} \tag{5.144}
\end{equation*}
$$

and the Lagrangian is $L=T-U$:

$$
\begin{align*}
L=\frac{1}{2} m \ell^{2}\left\{3 \dot{\theta}_{1}^{2}+2 \dot{\theta}_{2}^{2}+\right. & \dot{\theta}_{3}^{2}+4 \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}+2 \cos \left(\theta_{1}-\theta_{3}\right) \dot{\theta}_{1} \dot{\theta}_{3} \\
& \left.+2 \cos \left(\theta_{2}-\theta_{3}\right) \dot{\theta}_{2} \dot{\theta}_{3}\right\}+m g \ell\left\{3 \cos \theta_{1}+2 \cos \theta_{2}+\cos \theta_{3}\right\} \tag{5.145}
\end{align*}
$$

The canonical momenta are given by

$$
\begin{align*}
& \pi_{1}=\frac{\partial L}{\partial \dot{\theta}_{1}}=m \ell^{2}\left\{3 \dot{\theta}_{1}+2 \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{2}+\cos \left(\theta_{1}-\theta_{3}\right) \dot{\theta}_{3}\right\} \\
& \pi_{2}=\frac{\partial L}{\partial \dot{\theta}_{2}}=m \ell^{2}\left\{2 \dot{\theta}_{2}+2 \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1}+\cos \left(\theta_{2}-\theta_{3}\right) \dot{\theta}_{3}\right\} \tag{5.146}\\
& \pi_{3}=\frac{\partial L}{\partial \dot{\theta}_{2}}=m \ell^{2}\left\{\dot{\theta}_{3}+\cos \left(\theta_{1}-\theta_{3}\right) \dot{\theta}_{1}+\cos \left(\theta_{2}-\theta_{3}\right) \dot{\theta}_{2}\right\}
\end{align*}
$$

The only conserved quantity is the total energy, $E=T+U$.
(a) As for the T and V matrices, we have

$$
\mathrm{T}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} T}{\partial \theta_{\sigma} \partial \theta_{\sigma^{\prime}}}\right|_{\theta=0}=m \ell^{2}\left(\begin{array}{lll}
3 & 2 & 1 \tag{5.147}\\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

and

$$
\mathrm{V}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} U}{\partial \theta_{\sigma} \partial \theta_{\sigma^{\prime}}}\right|_{\theta=0}=m g \ell\left(\begin{array}{lll}
3 & 0 & 0 \tag{5.148}\\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) The eigenfrequencies are roots of the equation $\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right)=0$. Defining $\omega_{0} \equiv \sqrt{g / \ell}$, we have

$$
\omega^{2} \mathrm{~T}-\mathrm{V}=m \ell^{2}\left(\begin{array}{ccc}
3\left(\omega^{2}-\omega_{0}^{2}\right) & 2 \omega^{2} & \omega^{2} \tag{5.149}\\
2 \omega^{2} & 2\left(\omega^{2}-\omega_{0}^{2}\right) & \omega^{2} \\
\omega^{2} & \omega^{2} & \left(\omega^{2}-\omega_{0}^{2}\right)
\end{array}\right)
$$

and hence

$$
\begin{align*}
\widetilde{P}(\omega) \equiv \operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right) /\left(m \ell^{2}\right)^{3}= & 3\left(\omega^{2}-\omega_{0}^{2}\right) \cdot\left[2\left(\omega^{2}-\omega_{0}^{2}\right)^{2}-\omega^{4}\right] \\
& -2 \omega^{2} \cdot\left[2 \omega^{2}\left(\omega^{2}-\omega_{0}^{2}\right)-\omega^{4}\right]+\omega^{2} \cdot\left[2 \omega^{4}-2 \omega^{2}\left(\omega^{2}-\omega_{0}^{2}\right)\right] \tag{5.150}\\
= & 6\left(\omega^{2}-\omega_{0}^{2}\right)^{3}-9 \omega^{4}\left(\omega^{2}-\omega_{0}^{2}\right)+4 \omega^{6} \\
= & \omega^{6}-9 \omega_{0}^{2} \omega^{4}+18 \omega_{0}^{4} \omega^{2}-6 \omega_{0}^{6} .
\end{align*}
$$

(c) The equation for the eigenfrequencies is

$$
\begin{equation*}
\lambda^{3}-9 \lambda^{2}+18 \lambda-6=0 \tag{5.151}
\end{equation*}
$$

where $\omega^{2}=\lambda \omega_{0}^{2}$. This is a cubic equation in λ. Numerically solving for the roots, one finds

$$
\begin{equation*}
\omega_{1}^{2}=0.415774 \omega_{0}^{2} \quad, \quad \omega_{2}^{2}=2.29428 \omega_{0}^{2} \quad, \quad \omega_{3}^{2}=6.28995 \omega_{0}^{2} . \tag{5.152}
\end{equation*}
$$

I find the (unnormalized) eigenvectors to be

$$
\boldsymbol{\psi}_{1}=\left(\begin{array}{c}
1 \tag{5.153}\\
1.2921 \\
1.6312
\end{array}\right) \quad, \quad \boldsymbol{\psi}_{2}=\left(\begin{array}{c}
1 \\
0.35286 \\
-2.3981
\end{array}\right) \quad, \quad \boldsymbol{\psi}_{3}=\left(\begin{array}{c}
1 \\
-1.6450 \\
0.76690
\end{array}\right)
$$

5.9.3 Equilateral Linear Triatomic Molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in figure 5.6. The system is confined to the (x, y) plane, and in equilibrium all the strings are unstretched and of length a.

Figure 5.6: An equilateral triangle of identical mass points and springs. We label the sites as 1 (lower left), 2 (lower right), and 3 (upper).
(a) Choose as generalized coordinates the Cartesian displacements $\left(x_{i}, y_{i}\right)$ with respect to equilibrium. Write down the exact potential energy.
(b) Find the T and V matrices.
(c) There are three normal modes of oscillation for which the corresponding eigenfrequencies all vanish: $\omega_{a}=0$. Write down these modes explicitly, and provide a physical interpretation for why $\omega_{a}=0$. Since this triplet is degenerate, there is no unique answer - any linear combination will also serve as a valid 'zero mode'. However, if you think physically, a natural set should emerge.
(d) The three remaining modes all have finite oscillation frequencies. They correspond to distortions of the triangular shape. One such mode is the "breathing mode" in which the triangle uniformly expands and contracts. Write down the eigenvector associated with this normal mode and compute its associated oscillation frequency.
(e) The fifth and sixth modes are degenerate. They must be orthogonal (with respect to the inner product defined by T) to all the other modes. See if you can figure out what these modes are, and compute their oscillation frequencies. As in (a), any linear combination of these modes will also be an eigenmode.
(f) Write down your full expression for the modal matrix $\mathrm{A}_{\sigma i}$, and check that it is correct by using Mathematica.

Figure 5.7: Zero modes of the mass-spring triangle.

Solution

Choosing as generalized coordinates the Cartesian displacements relative to equilibrium, we have the following:

$$
\begin{aligned}
& \# 1:\left(x_{1}, y_{1}\right) \\
& \# 2:\left(a+x_{2}, y_{2}\right) \\
& \# 3:\left(\frac{1}{2} a+x_{3}, \frac{\sqrt{3}}{2} a+y_{3}\right) .
\end{aligned}
$$

Let $d_{i j}$ be the separation of particles i and j. The potential energy of the spring connecting them is then $\frac{1}{2} k\left(d_{i j}-a\right)^{2}$.

$$
\begin{align*}
& d_{12}^{2}=\left(a+x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& d_{23}^{2}=\left(-\frac{1}{2} a+x_{3}-x_{2}\right)^{2}+\left(\frac{\sqrt{3}}{2} a+y_{3}-y_{2}\right)^{2} \tag{5.154}\\
& d_{13}^{2}=\left(\frac{1}{2} a+x_{3}-x_{1}\right)^{2}+\left(\frac{\sqrt{3}}{2} a+y_{3}-y_{1}\right)^{2} .
\end{align*}
$$

The full potential energy is

$$
\begin{equation*}
U=\frac{1}{2} k\left(d_{12}-a\right)^{2}+\frac{1}{2} k\left(d_{23}-a\right)^{2}+\frac{1}{2} k\left(d_{13}-a\right)^{2} \tag{5.155}
\end{equation*}
$$

This is a cumbersome expression, involving square roots.
To find T and V , we need to write T and V as quadratic forms, neglecting higher order terms. Therefore,

Figure 5.8: Finite oscillation frequency modes of the mass-spring triangle.
we must expand $d_{i j}-a$ to linear order in the generalized coordinates. This results in the following:

$$
\begin{align*}
d_{12} & =a+\left(x_{2}-x_{1}\right)+\ldots \\
d_{23} & =a-\frac{1}{2}\left(x_{3}-x_{2}\right)+\frac{\sqrt{3}}{2}\left(y_{3}-y_{2}\right)+\ldots \tag{5.156}\\
d_{13} & =a+\frac{1}{2}\left(x_{3}-x_{1}\right)+\frac{\sqrt{3}}{2}\left(y_{3}-y_{1}\right)+\ldots
\end{align*}
$$

Thus,

$$
\begin{align*}
U=\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}+\frac{1}{8} k & \left(x_{2}-x_{3}-\sqrt{3} y_{2}+\sqrt{3} y_{3}\right)^{2} \tag{5.157}\\
& +\frac{1}{8} k\left(x_{3}-x_{1}+\sqrt{3} y_{3}-\sqrt{3} y_{1}\right)^{2}+\text { higher order terms }
\end{align*}
$$

Defining

$$
\begin{equation*}
\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right)=\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right) \tag{5.158}
\end{equation*}
$$

we may now read off

$$
\mathrm{V}_{\sigma \sigma^{\prime}}=\left.\frac{\partial^{2} U}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}}\right|_{\bar{q}}=k\left(\begin{array}{cccccc}
5 / 4 & \sqrt{3} / 4 & -1 & 0 & -1 / 4 & -\sqrt{3} / 4 \tag{5.159}\\
\sqrt{3} / 4 & 3 / 4 & 0 & 0 & -\sqrt{3} / 4 & -3 / 4 \\
-1 & 0 & 5 / 4 & -\sqrt{3} / 4 & -1 / 4 & \sqrt{3} / 4 \\
0 & 0 & -\sqrt{3} / 4 & 3 / 4 & \sqrt{3} / 4 & -3 / 4 \\
-1 / 4 & -\sqrt{3} / 4 & -1 / 4 & \sqrt{3} / 4 & 1 / 2 & 0 \\
-\sqrt{3} / 4 & -3 / 4 & \sqrt{3} / 4 & -3 / 4 & 0 & 3 / 2
\end{array}\right)
$$

The T matrix is trivial. From

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{x}_{2}^{2}+\dot{y}_{2}^{2}+\dot{x}_{3}^{2}+\dot{y}_{3}^{2}\right) \tag{5.160}
\end{equation*}
$$

Figure 5.9: John Henry, statue by Charles O. Cooper (1972). "Now the man that invented the steam drill, he thought he was mighty fine. But John Henry drove fifteen feet, and the steam drill only made nine." - from The Ballad of John Henry.
we obtain

$$
\begin{equation*}
\mathrm{T}_{\sigma \sigma^{\prime}}=\frac{\partial^{2} T}{\partial \dot{q}_{\sigma} \partial \dot{q}_{\sigma^{\prime}}}=m \delta_{\sigma \sigma^{\prime}} \tag{5.161}
\end{equation*}
$$

and $\mathrm{T}=m \cdot \mathbb{I}$ is a multiple of the unit matrix.
The zero modes are depicted graphically in figure 5.7. Explicitly, we have

$$
\boldsymbol{\xi}^{x}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{l}
1 \tag{5.162}\\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right) \quad, \quad \boldsymbol{\xi}^{y}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right) \quad, \quad \boldsymbol{\xi}^{\mathrm{rot}}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{c}
1 / 2 \\
-\sqrt{3} / 2 \\
1 / 2 \\
\sqrt{3} / 2 \\
-1 \\
0
\end{array}\right)
$$

That these are indeed zero modes may be verified by direct multiplication:

$$
\begin{equation*}
\mathrm{V} \boldsymbol{\xi}^{x . y}=\mathrm{V} \boldsymbol{\xi}^{\mathrm{rot}}=0 \tag{5.163}
\end{equation*}
$$

The three modes with finite oscillation frequency are depicted graphically in figure 5.8. Explicitly, we
have

$$
\boldsymbol{\xi}^{\mathrm{A}}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{c}
-1 / 2 \tag{5.164}\\
-\sqrt{3} / 2 \\
-1 / 2 \\
\sqrt{3} / 2 \\
1 \\
0
\end{array}\right) \quad, \quad \boldsymbol{\xi}^{\mathrm{B}}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{c}
-\sqrt{3} / 2 \\
1 / 2 \\
\sqrt{3} / 2 \\
1 / 2 \\
0 \\
-1
\end{array}\right) \quad, \quad \boldsymbol{\xi}^{\mathrm{dil}}=\frac{1}{\sqrt{3 m}}\left(\begin{array}{c}
-\sqrt{3} / 2 \\
-1 / 2 \\
\sqrt{3} / 2 \\
-1 / 2 \\
0 \\
1
\end{array}\right)
$$

The oscillation frequencies of these modes are easily checked by multiplying the eigenvectors by the matrix V . Since $\mathrm{T}=m \cdot \mathbb{I}$ is diagonal, we have $\mathrm{V} \boldsymbol{\xi}^{(j)}=m \omega_{j}^{2} \boldsymbol{\xi}^{(j)}$. One finds

$$
\begin{equation*}
\omega_{\mathrm{A}}=\omega_{\mathrm{B}}=\sqrt{\frac{3 k}{2 m}} \quad, \quad \omega_{\mathrm{dil}}=\sqrt{\frac{3 k}{m}} . \tag{5.165}
\end{equation*}
$$

Mathematica? I don't need no stinking Mathematica.

5.10 Aside : Christoffel Symbols

The coupled equations in eqn. 5.5 may be written in the form

$$
\begin{equation*}
\ddot{q}_{\sigma}+\Gamma_{\mu \nu}^{\sigma} \dot{q}_{\mu} \dot{q}_{\nu}=F_{\sigma} \tag{5.166}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\sigma}=\frac{1}{2} T_{\sigma \alpha}^{-1}\left(\frac{\partial T_{\alpha \mu}}{\partial q_{\nu}}+\frac{\partial T_{\alpha \nu}}{\partial q_{\mu}}-\frac{\partial T_{\mu \nu}}{\partial q_{\alpha}}\right) \tag{5.167}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\sigma}=-T_{\sigma \alpha}^{-1} \frac{\partial U}{\partial q_{\alpha}} . \tag{5.168}
\end{equation*}
$$

The components of the rank-three tensor $\Gamma_{\alpha \beta}^{\sigma}$ are known as Christoffel symbols, in the case where $T_{\mu \nu}(q)$ defines a metric on the space of generalized coordinates.

Chapter 6

Elastic Collisions

6.1 Center of Mass Frame

A collision or 'scattering event' is said to be elastic if it results in no change in the internal state of any of the particles involved. Thus, no internal energy is liberated or captured in an elastic process.

Consider the elastic scattering of two particles. Recall the relation between laboratory coordinates $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}$ and the CM and relative coordinates $\{\boldsymbol{R}, \boldsymbol{r}\}$:

$$
\begin{align*}
\boldsymbol{R} & =\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{m_{1}+m_{2}} & \boldsymbol{r} & =\boldsymbol{r}_{1}-\boldsymbol{r}_{2} \tag{6.1}\\
\boldsymbol{r}_{1} & =\boldsymbol{R}+\frac{m_{2}}{m_{1}+m_{2}} \boldsymbol{r} & \boldsymbol{r}_{2} & =\boldsymbol{R}-\frac{m_{1}}{m_{1}+m_{2}} \boldsymbol{r} \tag{6.2}
\end{align*}
$$

If external forces are negligible, the CM momentum $\boldsymbol{P}=M \dot{\boldsymbol{R}}$ is constant, and therefore the frame of reference whose origin is tied to the CM position is an inertial frame of reference. In this frame,

$$
\begin{equation*}
\boldsymbol{v}_{1}^{\mathrm{CM}}=\frac{m_{2} \boldsymbol{v}}{m_{1}+m_{2}} \quad, \quad \boldsymbol{v}_{2}^{\mathrm{CM}}=-\frac{m_{1} \boldsymbol{v}}{m_{1}+m_{2}}, \tag{6.3}
\end{equation*}
$$

where $\boldsymbol{v}=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}=\boldsymbol{v}_{1}^{\mathrm{CM}}-\boldsymbol{v}_{2}^{\mathrm{CM}}$ is the relative velocity, which is the same in both L and CM frames. Note that the CM momenta satisfy

$$
\begin{align*}
& \boldsymbol{p}_{1}^{\mathrm{CM}}=m_{1} \boldsymbol{v}_{1}^{\mathrm{CM}}=\mu \boldsymbol{v} \\
& \boldsymbol{p}_{2}^{\mathrm{CM}}=m_{2} \boldsymbol{v}_{2}^{\mathrm{CM}}=-\mu \boldsymbol{v}, \tag{6.4}
\end{align*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass. Thus, $\boldsymbol{p}_{1}^{\mathrm{CM}}+\boldsymbol{p}_{2}^{\mathrm{CM}}=0$ and the total momentum in the CM frame is zero. We may then write

$$
\begin{equation*}
\boldsymbol{p}_{1}^{\mathrm{CM}} \equiv p_{0} \hat{\boldsymbol{n}} \quad, \quad \boldsymbol{p}_{2}^{\mathrm{CM}} \equiv-p_{0} \hat{\boldsymbol{n}} \quad \Rightarrow \quad E^{\mathrm{CM}}=\frac{p_{0}^{2}}{2 m_{1}}+\frac{p_{0}^{2}}{2 m_{2}}=\frac{p_{0}^{2}}{2 \mu} \tag{6.5}
\end{equation*}
$$

Figure 6.1: The scattering of two hard spheres of radii a and b. The scattering angle is χ.

The energy is evaluated when the particles are asymptotically far from each other, in which case the potential energy is assumed to be negligible. After the collision, energy and momentum conservation require

$$
\begin{equation*}
\boldsymbol{p}_{1}^{\prime \mathrm{CM}} \equiv p_{0} \hat{\boldsymbol{n}}^{\prime} \quad, \quad \boldsymbol{p}_{2}^{\prime \mathrm{CM}} \equiv-p_{0} \hat{\boldsymbol{n}}^{\prime} \quad \Rightarrow \quad E^{\prime \mathrm{CM}}=E^{\mathrm{CM}}=\frac{p_{0}^{2}}{2 \mu} \tag{6.6}
\end{equation*}
$$

The angle between \boldsymbol{n} and \boldsymbol{n}^{\prime} is the scattering angle χ :

$$
\begin{equation*}
\boldsymbol{n} \cdot \boldsymbol{n}^{\prime} \equiv \cos \chi \tag{6.7}
\end{equation*}
$$

The value of χ depends on the details of the scattering process, i.e. on the interaction potential $U(r)$. As an example, consider the scattering of two hard spheres, depicted in fig. 6.1. The potential is

$$
U(r)=\left\{\begin{array}{ll}
\infty & \text { if } r \leq a+b \tag{6.8}\\
0 & \text { if } r>a+b
\end{array} .\right.
$$

Clearly the scattering angle is $\chi=\pi-2 \phi_{0}$, where ϕ_{0} is the angle between the initial momentum of either sphere and a line containing their two centers at the moment of contact.

There is a simple geometric interpretation of these results, depicted in fig. 6.2. We have

$$
\begin{array}{ll}
\boldsymbol{p}_{1}=m_{1} \boldsymbol{V}+p_{0} \hat{\boldsymbol{n}} & \boldsymbol{p}_{1}^{\prime}=m_{1} \boldsymbol{V}+p_{0} \hat{\boldsymbol{n}}^{\prime} \\
\boldsymbol{p}_{2}=m_{2} \boldsymbol{V}-p_{0} \hat{\boldsymbol{n}} & \boldsymbol{p}_{2}^{\prime}=m_{2} \boldsymbol{V}-p_{0} \hat{\boldsymbol{n}}^{\prime}
\end{array}
$$

So draw a circle of radius p_{0} whose center is the origin. The vectors $p_{0} \hat{\boldsymbol{n}}$ and $p_{0} \hat{\boldsymbol{n}}^{\prime}$ must both lie along this circle. We define the angle ψ between \boldsymbol{V} and \boldsymbol{n} :

$$
\begin{equation*}
\hat{\boldsymbol{V}} \cdot \boldsymbol{n}=\cos \psi \tag{6.11}
\end{equation*}
$$

It is now an exercise in geometry, using the law of cosines, to determine everything of interest in terms

Figure 6.2: Scattering of two particles of masses m_{1} and m_{2}. The scattering angle χ is the angle between $\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}^{\prime}$.
of the quantities V, v, ψ, and χ. For example, the momenta are

$$
\begin{align*}
& p_{1}=\sqrt{m_{1}^{2} V^{2}+\mu^{2} v^{2}+2 m_{1} \mu V v \cos \psi} \\
& p_{1}^{\prime}=\sqrt{m_{1}^{2} V^{2}+\mu^{2} v^{2}+2 m_{1} \mu V v \cos (\chi-\psi)} \\
& p_{2}=\sqrt{m_{2}^{2} V^{2}+\mu^{2} v^{2}-2 m_{2} \mu V v \cos \psi} \tag{6.12}\\
& p_{2}^{\prime}=\sqrt{m_{2}^{2} V^{2}+\mu^{2} v^{2}-2 m_{2} \mu V v \cos (\chi-\psi)}
\end{align*}
$$

and the scattering angles are

$$
\begin{align*}
& \theta_{1}=\tan ^{-1}\left(\frac{\mu v \sin \psi}{\mu v \cos \psi+m_{1} V}\right)+\tan ^{-1}\left(\frac{\mu v \sin (\chi-\psi)}{\mu v \cos (\chi-\psi)+m_{1} V}\right) \\
& \theta_{2}=\tan ^{-1}\left(\frac{\mu v \sin \psi}{\mu v \cos \psi-m_{2} V}\right)+\tan ^{-1}\left(\frac{\mu v \sin (\chi-\psi)}{\mu v \cos (\chi-\psi)-m_{2} V}\right) \tag{6.13}
\end{align*}
$$

If particle 2, say, is initially at rest, the situation is somewhat simpler. In this case, $\boldsymbol{V}=m_{1} \boldsymbol{V} /\left(m_{1}+m_{2}\right)$ and $m_{2} \boldsymbol{V}=\mu \boldsymbol{v}$, which means the point B lies on the circle in fig. $6.3\left(m_{1} \neq m_{2}\right)$ and fig. $6.4\left(m_{1}=m_{2}\right)$.

Figure 6.3: Scattering when particle 2 is initially at rest.

Let $\vartheta_{1,2}$ be the angles between the directions of motion after the collision and the direction \boldsymbol{V} of impact. The scattering angle χ is the angle through which particle 1 turns in the CM frame. Clearly

$$
\begin{equation*}
\tan \vartheta_{1}=\frac{\sin \chi}{\frac{m_{1}}{m_{2}}+\cos \chi} \quad, \quad \vartheta_{2}=\frac{1}{2}(\pi-\chi) \tag{6.14}
\end{equation*}
$$

We can also find the speeds v_{1}^{\prime} and v_{2}^{\prime} in terms of v and χ, from

$$
\begin{equation*}
{p_{1}^{\prime}}^{2}=p_{0}^{2}+\left(\frac{m_{1}}{m_{2}} p_{0}\right)^{2}-2 \frac{m_{1}}{m_{2}} p_{0}^{2} \cos (\pi-\chi) \tag{6.15}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}^{2}=2 p_{0}^{2}(1-\cos \chi) \tag{6.16}
\end{equation*}
$$

These equations yield

$$
\begin{equation*}
v_{1}^{\prime}=\frac{\sqrt{m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \cos \chi}}{m_{1}+m_{2}} v \quad, \quad v_{2}^{\prime}=\frac{2 m_{1} v}{m_{1}+m_{2}} \sin \left(\frac{1}{2} \chi\right) \tag{6.17}
\end{equation*}
$$

The angle $\vartheta_{\max }$ from fig. 6.3(b) is given by $\sin \vartheta_{\max }=\frac{m_{2}}{m_{1}}$. Note that when $m_{1}=m_{2}$ we have $\vartheta_{1}+\vartheta_{2}=\pi$. A sketch of the orbits in the cases of both repulsive and attractive scattering, in both the laboratory and CM frames, in shown in fig. 6.5.

Figure 6.4: Scattering of identical mass particles when particle 2 is initially at rest.

Figure 6.5: Repulsive (A, C) and attractive (B, D) scattering in the lab (A, B) and $\mathrm{CM}(\mathrm{C}, \mathrm{D})$ frames, assuming particle 2 starts from rest in the lab frame. (From Barger and Olsson.)

6.2 Central Force Scattering

Consider a single particle of mass μ movng in a central potential $U(r)$, or a two body central force problem in which μ is the reduced mass. Recall that

$$
\begin{equation*}
\frac{d r}{d t}=\frac{d \phi}{d t} \cdot \frac{d r}{d \phi}=\frac{\ell}{\mu r^{2}} \cdot \frac{d r}{d \phi} \tag{6.18}
\end{equation*}
$$

and therefore

$$
\begin{align*}
E & =\frac{1}{2} \mu \dot{r}^{2}+\frac{\ell^{2}}{2 \mu r^{2}}+U(r) \\
& =\frac{\ell^{2}}{2 \mu r^{4}}\left(\frac{d r}{d \phi}\right)^{2}+\frac{\ell^{2}}{2 \mu r^{2}}+U(r) \tag{6.19}
\end{align*}
$$

Solving for $\frac{d r}{d \phi}$, we obtain

$$
\begin{equation*}
\frac{d r}{d \phi}= \pm \sqrt{\frac{2 \mu r^{4}}{\ell^{2}}(E-U(r))-r^{2}} \tag{6.20}
\end{equation*}
$$

Consulting fig. 6.6, we have that

$$
\begin{equation*}
\phi_{0}=\frac{\ell}{\sqrt{2 \mu}} \int_{r_{\mathrm{p}}}^{\infty} \frac{d r}{r^{2} \sqrt{E-U_{\mathrm{eff}}(r)}} \tag{6.21}
\end{equation*}
$$

Figure 6.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact parameter is b, and χ is the scattering angle. ϕ_{0} is the angle through which the relative coordinate moves between periapsis and infinity.
where r_{p} is the radial distance at periapsis, and where

$$
\begin{equation*}
U_{\mathrm{eff}}(r)=\frac{\ell^{2}}{2 \mu r^{2}}+U(r) \tag{6.22}
\end{equation*}
$$

is the effective potential, as before. From fig. 6.6, we conclude that the scattering angle is

$$
\begin{equation*}
\chi=\left|\pi-2 \phi_{0}\right| . \tag{6.23}
\end{equation*}
$$

It is convenient to define the impact parameter b as the distance of the asymptotic trajectory from a parallel line containing the force center. The geometry is shown again in fig. 6.6. Note that the energy and angular momentum, which are conserved, can be evaluated at infinity using the impact parameter:

$$
\begin{equation*}
E=\frac{1}{2} \mu v_{\infty}^{2} \quad, \quad \ell=\mu v_{\infty} b \tag{6.24}
\end{equation*}
$$

Substituting for $\ell(b)$, we have

$$
\begin{equation*}
\phi_{0}(E, b)=\int_{r_{\mathrm{p}}}^{\infty} \frac{d r}{r^{2}} \frac{b}{\sqrt{1-\frac{b^{2}}{r^{2}}-\frac{U(r)}{E}}} \tag{6.25}
\end{equation*}
$$

In physical applications, we are often interested in the deflection of a beam of incident particles by a scattering center. We define the differential scattering cross section $d \sigma$ by

$$
\begin{equation*}
d \sigma=\frac{\# \text { of particles scattered into solid angle } d \Omega \text { per unit time }}{\text { incident flux }} . \tag{6.26}
\end{equation*}
$$

Now for particles of a given energy E there is a unique relationship between the scattering angle χ and the impact parameter b, as we have just derived in eqn. 6.25. The differential solid angle is given by $d \Omega=2 \pi \sin \chi d \chi$, hence

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{b}{\sin \chi}\left|\frac{d b}{d \chi}\right|=\left|\frac{d\left(\frac{1}{2} b^{2}\right)}{d \cos \chi}\right| \tag{6.27}
\end{equation*}
$$

Figure 6.7: Geometry of hard sphere scattering.
Note that $\frac{d \sigma}{d \Omega}$ has dimensions of area. The integral of $\frac{d \sigma}{d \Omega}$ over all solid angle is the total scattering cross section,

$$
\begin{equation*}
\sigma_{\mathrm{T}}=2 \pi \int_{0}^{\pi} d \chi \sin \chi \frac{d \sigma}{d \Omega} \tag{6.28}
\end{equation*}
$$

6.2.1 Hard sphere scattering

Consider a point particle scattering off a hard sphere of radius a, or two hard spheres of radii a_{1} and a_{2} scattering off each other, with $a \equiv a_{1}+a_{2}$. From the geometry of fig. 6.7, we have $b=a \sin \phi_{0}$ and $\phi_{0}=\frac{1}{2}(\pi-\chi)$, so

$$
\begin{equation*}
b^{2}=a^{2} \sin ^{2}\left(\frac{1}{2} \pi-\frac{1}{2} \chi\right)=\frac{1}{2} a^{2}(1+\cos \chi) \tag{6.29}
\end{equation*}
$$

We therefore have

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{d\left(\frac{1}{2} b^{2}\right)}{d \cos \chi}=\frac{1}{4} a^{2} \tag{6.30}
\end{equation*}
$$

and $\sigma_{\mathrm{T}}=\pi a^{2}$. The total scattering cross section is simply the area of a sphere of radius a projected onto a plane perpendicular to the incident flux.

6.2.2 Rutherford scattering

Consider scattering by the Kepler potential $U(r)=-\frac{k}{r}$. We assume that the orbits are unbound, i.e. they are Keplerian hyperbolae with $E>0$, described by the equation

$$
\begin{equation*}
r(\phi)=\frac{a\left(\varepsilon^{2}-1\right)}{ \pm 1+\varepsilon \cos \phi} \Rightarrow \cos \phi_{0}= \pm \frac{1}{\varepsilon} . \tag{6.31}
\end{equation*}
$$

Recall that the eccentricity is given by

$$
\begin{equation*}
\varepsilon^{2}=1+\frac{2 E \ell^{2}}{\mu k^{2}}=1+\left(\frac{\mu b v_{\infty}}{k}\right)^{2} . \tag{6.32}
\end{equation*}
$$

We then have

$$
\begin{align*}
\left(\frac{\mu b v_{\infty}}{k}\right)^{2} & =\varepsilon^{2}-1 \tag{6.33}\\
& =\sec ^{2} \phi_{0}-1=\tan ^{2} \phi_{0}=\operatorname{ctn}^{2}\left(\frac{1}{2} \chi\right)
\end{align*}
$$

Therefore

$$
\begin{equation*}
b(\chi)=\frac{k}{\mu v_{\infty}^{2}} \operatorname{ctn}\left(\frac{1}{2} \chi\right) \tag{6.34}
\end{equation*}
$$

We finally obtain

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\frac{d\left(\frac{1}{2} b^{2}\right)}{d \cos \chi}=\frac{1}{2}\left(\frac{k}{\mu v_{\infty}^{2}}\right)^{2} \frac{d \operatorname{ctn}^{2}\left(\frac{1}{2} \chi\right)}{d \cos \chi} \\
& =\frac{1}{2}\left(\frac{k}{\mu v_{\infty}^{2}}\right)^{2} \frac{d}{d \cos \chi}\left(\frac{1+\cos \chi}{1-\cos \chi}\right) \tag{6.35}\\
& =\left(\frac{k}{2 \mu v_{\infty}^{2}}\right)^{2} \csc ^{4}\left(\frac{1}{2} \chi\right),
\end{align*}
$$

which is the same as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{k}{4 E}\right)^{2} \csc ^{4}\left(\frac{1}{2} \chi\right) \tag{6.36}
\end{equation*}
$$

Since $\frac{d \sigma}{d \Omega} \propto \chi^{-4}$ as $\chi \rightarrow 0$, the total cross section σ_{T} diverges! This is a consequence of the long-ranged nature of the Kepler/Coulomb potential. In electron-atom scattering, the Coulomb potential of the nucleus is screened by the electrons of the atom, and the $1 / r$ behavior is cut off at large distances.

6.2.3 Transformation to laboratory coordinates

We previously derived the relation

$$
\begin{equation*}
\tan \vartheta=\frac{\sin \chi}{\gamma+\cos \chi} \tag{6.37}
\end{equation*}
$$

where $\vartheta \equiv \vartheta_{1}$ is the scattering angle for particle 1 in the laboratory frame, and $\gamma=\frac{m_{1}}{m_{2}}$ is the ratio of the masses. We now derive the differential scattering cross section in the laboratory frame. To do so, we note that particle conservation requires

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{L}} \cdot 2 \pi \sin \vartheta d \vartheta=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{CM}} \cdot 2 \pi \sin \chi d \chi \tag{6.38}
\end{equation*}
$$

which says

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{L}}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{CM}} \cdot \frac{d \cos \chi}{d \cos \vartheta} \tag{6.39}
\end{equation*}
$$

From

$$
\begin{equation*}
\cos \vartheta=\frac{1}{\sqrt{1+\tan ^{2} \vartheta}}=\frac{\gamma+\cos \chi}{\sqrt{1+\gamma^{2}+2 \gamma \cos \chi}} \tag{6.40}
\end{equation*}
$$

we derive

$$
\begin{equation*}
\frac{d \cos \vartheta}{d \cos \chi}=\frac{1+\gamma \cos \chi}{\left(1+\gamma^{2}+2 \gamma \cos \chi\right)^{3 / 2}} \tag{6.41}
\end{equation*}
$$

and, accordingly,

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{L}}=\frac{\left(1+\gamma^{2}+2 \gamma \cos \chi\right)^{3 / 2}}{1+\gamma \cos \chi} \cdot\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{CM}} \tag{6.42}
\end{equation*}
$$

Chapter 7

Noninertial Reference Frames

7.1 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The parade example of this is an observer fixed on the surface of the earth. Due to the rotation of the earth, such an observer is in a noninertial frame, and there are corresponding corrections to Newton's laws of motion which must be accounted for in order to correctly describe mechanical motion in the observer's frame. As is well known, these corrections involve fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes $\hat{\mathbf{e}}_{\mu}$, where μ runs from 1 to d, the dimension of space, and a noninertial frame with axes $\hat{\mathbf{e}}_{\mu}^{\prime}$. Any vector \boldsymbol{A} may be written in either basis:

$$
\begin{equation*}
\boldsymbol{A}=\sum_{\mu} A_{\mu} \hat{\mathbf{e}}_{\mu}=\sum_{\mu} A_{\mu}^{\prime} \hat{\mathbf{e}}_{\mu}^{\prime} \tag{7.1}
\end{equation*}
$$

where $A_{\mu}=\boldsymbol{A} \cdot \hat{\mathbf{e}}_{\mu}$ and $A_{\mu}^{\prime}=\boldsymbol{A} \cdot \hat{\mathbf{e}}_{\mu}^{\prime}$ are projections onto the different coordinate axes. We may now write

$$
\begin{align*}
\left(\frac{d \boldsymbol{A}}{d t}\right)_{\text {inertial }} & =\sum_{\mu} \frac{d A_{\mu}}{d t} \hat{\mathbf{e}}_{\mu} \\
& =\sum_{i} \frac{d A_{\mu}^{\prime}}{d t} \hat{\mathbf{e}}_{\mu}^{\prime}+\sum_{\mu} A_{\mu}^{\prime} \frac{d \hat{\mathbf{e}}_{\mu}^{\prime}}{d t} . \tag{7.2}
\end{align*}
$$

The first term on the RHS is $(d \boldsymbol{A} / d t)_{\text {body }}$, the time derivative of \boldsymbol{A} along body-fixed axes, i.e. as seen by an observer rotating with the body. But what is $d \hat{\mathbf{e}}_{i}^{\prime} / d t$? Well, we can always expand it in the $\left\{\hat{\mathbf{e}}_{i}^{\prime}\right\}$ basis:

$$
\begin{equation*}
d \hat{\mathbf{e}}_{\mu}^{\prime}=\sum_{\nu} d \Omega_{\mu \nu} \hat{\mathbf{e}}_{\nu}^{\prime} \Longleftrightarrow d \Omega_{\mu \nu} \equiv d \hat{\mathbf{e}}_{\mu}^{\prime} \cdot \hat{\mathbf{e}}_{\nu}^{\prime} . \tag{7.3}
\end{equation*}
$$

Note that $d \Omega_{\mu \nu}=-d \Omega_{\nu \mu}$ is antisymmetric, because

$$
\begin{equation*}
0=d\left(\hat{\mathbf{e}}_{\mu}^{\prime} \cdot \hat{\mathbf{e}}_{\nu}^{\prime}\right)=d \Omega_{\nu \mu}+d \Omega_{\mu \nu} \tag{7.4}
\end{equation*}
$$

Figure 7.1: Reference frames related by both translation and rotation. Note $\hat{\mathbf{e}}_{\mu}=\hat{\mathbf{e}}_{\mu}^{0}$.
because $\hat{\mathbf{e}}_{\mu}^{\prime} \cdot \hat{\mathbf{e}}_{\nu}^{\prime}=\delta_{\mu \nu}$ is a constant. Now we may define $d \Omega_{12} \equiv d \Omega_{3}$, et cyc., so that

$$
\begin{equation*}
d \Omega_{\mu \nu}=\sum_{\sigma} \epsilon_{\mu \nu \sigma} d \Omega_{\sigma} \quad, \quad \omega_{\sigma} \equiv \frac{d \Omega_{\sigma}}{d t} \tag{7.5}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{d \hat{\mathbf{e}}_{\mu}^{\prime}}{d t}=\boldsymbol{\omega} \times \hat{\mathbf{e}}_{\mu}^{\prime} \tag{7.6}
\end{equation*}
$$

Finally, we obtain the important result

$$
\begin{equation*}
\left(\frac{d \boldsymbol{A}}{d t}\right)_{\mathrm{inertial}}=\left(\frac{d \boldsymbol{A}}{d t}\right)_{\mathrm{body}}+\boldsymbol{\omega} \times \boldsymbol{A}, \tag{7.7}
\end{equation*}
$$

which is valid for any vector \boldsymbol{A}.
Applying this result to the position vector r, we have

$$
\begin{equation*}
\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {inertial }}=\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times \boldsymbol{r} . \tag{7.8}
\end{equation*}
$$

Applying it twice,

$$
\begin{align*}
\left(\frac{d^{2} \boldsymbol{r}}{d t^{2}}\right)_{\text {inertial }} & =\left(\left.\frac{d}{d t}\right|_{\text {body }}+\boldsymbol{\omega} \times\right)\left(\left.\frac{d}{d t}\right|_{\text {body }}+\boldsymbol{\omega} \times\right) \boldsymbol{r} \tag{7.9}\\
& =\left(\frac{d^{2} \boldsymbol{r}}{d t^{2}}\right)_{\text {body }}+\frac{d \boldsymbol{\omega}}{d t} \times \boldsymbol{r}+2 \boldsymbol{\omega} \times\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) .
\end{align*}
$$

Note that $d \boldsymbol{\omega} / d t$ appears with no "inertial" or "body" label. This is because, upon invoking eq. 7.7,

$$
\begin{equation*}
\left(\frac{d \boldsymbol{\omega}}{d t}\right)_{\text {inertial }}=\left(\frac{d \boldsymbol{\omega}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times \boldsymbol{\omega} \tag{7.10}
\end{equation*}
$$

and since $\boldsymbol{\omega} \times \boldsymbol{\omega}=0$, inertial and body-fixed observers will agree on the value of $\dot{\omega}_{\text {inertial }}=\dot{\boldsymbol{\omega}}_{\text {body }} \equiv \dot{\boldsymbol{\omega}}$.

7.1.1 Translations

Suppose that frame K moves with respect to an inertial frame K^{0}, such that the origin of K lies at $\boldsymbol{R}(t)$. Suppose further that frame K^{\prime} rotates with respect to K, but shares the same origin (see fig. 7.1). Consider the motion of an object lying at position ρ relative to the origin of K^{0}, and r relative to the origin of K / K^{\prime}. Thus,

$$
\begin{equation*}
\rho=\boldsymbol{R}+\boldsymbol{r} \tag{7.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\frac{d \boldsymbol{\rho}}{d t}\right)_{\text {inertial }}=\left(\frac{d \boldsymbol{R}}{d t}\right)_{\text {inertial }}+\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times \boldsymbol{r} \\
& \left(\frac{d^{2} \boldsymbol{\rho}}{d t^{2}}\right)_{\text {inertial }}=\left(\frac{d^{2} \boldsymbol{R}}{d t^{2}}\right)_{\text {inertial }}+\left(\frac{d^{2} \boldsymbol{r}}{d t^{2}}\right)_{\text {body }}+\frac{d \boldsymbol{\omega}}{d t} \times \boldsymbol{r}+2 \boldsymbol{\omega} \times\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) \tag{7.12}
\end{align*}
$$

Here, $\boldsymbol{\omega}$ is the angular velocity in the frame K or K^{\prime}.

7.1.2 Motion on the surface of the earth

The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects of the two rotations,

$$
\begin{align*}
d \boldsymbol{r}_{1} & =\boldsymbol{\omega}_{1} \times \boldsymbol{r} d t \\
d \boldsymbol{r}_{2} & =\boldsymbol{\omega}_{2} \times\left(\boldsymbol{r}+d \boldsymbol{r}_{1}\right) d t \tag{7.13}\\
d \boldsymbol{r} & =d \boldsymbol{r}_{1}+d \boldsymbol{r}_{2}=\left(\boldsymbol{\omega}_{1}+\boldsymbol{\omega}_{2}\right) d t \times \boldsymbol{r}+\mathcal{O}\left((d t)^{2}\right) .
\end{align*}
$$

Thus, infinitesimal rotations add. Dividing by $d t$, this means that

$$
\begin{equation*}
\boldsymbol{\omega}=\sum_{i} \boldsymbol{\omega}_{i} \tag{7.14}
\end{equation*}
$$

where the sum is over all the rotations. For the earth, $\omega=\omega_{\text {rot }}+\omega_{\text {orb }}$.

- The rotation about earth's axis, $\boldsymbol{\omega}_{\text {rot }}$ has magnitude $\omega_{\text {rot }}=2 \pi /(1$ day $)=7.29 \times 10^{-5} \mathrm{~s}^{-1}$. The radius of the earth is $R_{\mathrm{e}}=6.37 \times 10^{3} \mathrm{~km}$.
- The orbital rotation about the Sun, $\boldsymbol{\omega}_{\text {orb }}$ has magnitude $\omega_{\text {orb }}=2 \pi /(1 \mathrm{yr})=1.99 \times 10^{-7} \mathrm{~s}^{-1}$. The radius of the earth's orbit is $a_{\mathrm{e}}=1.50 \times 10^{8} \mathrm{~km}$.

Thus, $\omega_{\text {rot }} / \omega_{\text {orb }}=T_{\text {orb }} / T_{\text {rot }}=365.25$, which is of course the number of days (i.e. rotational periods) in a year (i.e. orbital period). There is also a very slow precession of the earth's axis of rotation, the period of which is about 25,000 years, which we will ignore. Note $\dot{\boldsymbol{\omega}}=0$ for the earth. Thus, applying Newton's second law and then invoking eq. 7.12, we arrive at

$$
\begin{equation*}
m\left(\frac{d^{2} \boldsymbol{r}}{d t^{2}}\right)_{\text {earth }}=\boldsymbol{F}^{(\mathrm{tot})}-m\left(\frac{d^{2} \boldsymbol{R}}{d t^{2}}\right)_{\text {Sun }}-2 m \boldsymbol{\omega} \times\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {earth }}-m \boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) \tag{7.15}
\end{equation*}
$$

Figure 7.2: The locally orthonormal triad $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$.
where $\boldsymbol{\omega}=\boldsymbol{\omega}_{\text {rot }}+\omega_{\text {orb, }}$, and where $\ddot{\boldsymbol{R}}_{\text {Sun }}$ is the acceleration of the center of the earth around the Sun, assuming the Sun-fixed frame to be inertial. The force $\boldsymbol{F}_{\text {(tot) }}$ is the total force on the object, and arises from three parts: (i) gravitational pull of the Sun, (ii) gravitational pull of the earth, and (iii) other earthly forces, such as springs, rods, surfaces, electric fields, etc.

On the earth's surface, the ratio of the Sun's gravity to the earth's is

$$
\begin{equation*}
\frac{F_{\odot}}{F_{\mathrm{e}}}=\frac{G M_{\odot} m}{a_{\mathrm{e}}^{2}} / \frac{G M_{\mathrm{e}} m}{R_{\mathrm{e}}^{2}}=\frac{M_{\odot}}{M_{\mathrm{e}}}\left(\frac{R_{\mathrm{e}}}{a_{\mathrm{e}}}\right)^{2} \approx 6.02 \times 10^{-4} \tag{7.16}
\end{equation*}
$$

In fact, it is clear that the Sun's field precisely cancels with the term $m \ddot{\boldsymbol{R}}_{\text {Sun }}$ at the earth's center, leaving only gradient contributions of even lower order, i.e. multiplied by another factor of $R_{\mathrm{e}} / a_{\mathrm{e}} \approx 4.25 \times 10^{-5}$. Thus, to an excellent approximation, we may neglect the Sun entirely and write

$$
\begin{equation*}
\frac{d^{2} \boldsymbol{r}}{d t^{2}}=\frac{\boldsymbol{F}^{\prime}}{m}+\boldsymbol{g}-2 \boldsymbol{\omega} \times \frac{d \boldsymbol{r}}{d t}-\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) . \tag{7.17}
\end{equation*}
$$

Note that we've dropped the 'earth' label here and henceforth. We define $\boldsymbol{g}=-G M_{\mathrm{e}} \hat{\boldsymbol{r}} / r^{2}$, the acceleration due to gravity; \boldsymbol{F}^{\prime} is the sum of all earthly forces other than the earth's gravity. The last two terms on the RHS are corrections to $m \ddot{\boldsymbol{r}}=\boldsymbol{F}$ due to the noninertial frame of the earth, and are recognized as the Coriolis and centrifugal acceleration terms, respectively.

7.2 Spherical Polar Coordinates

The locally orthonormal triad $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ varies with position. In terms of the body-fixed triad $\{\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}\}$, we have

$$
\begin{align*}
& \hat{\boldsymbol{r}}=\sin \theta \cos \phi \hat{\boldsymbol{x}}+\sin \theta \sin \phi \hat{\boldsymbol{y}}+\cos \theta \hat{\boldsymbol{z}} \\
& \hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\boldsymbol{x}}+\cos \theta \sin \phi \hat{\boldsymbol{y}}-\sin \theta \hat{\boldsymbol{z}} \tag{7.18}\\
& \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\boldsymbol{x}}+\cos \phi \hat{\boldsymbol{y}}
\end{align*}
$$

where $\theta=\frac{\pi}{2}-\lambda$ is the colatitude (i.e. $\lambda \in\left[-\frac{\pi}{2},+\frac{\pi}{2}\right]$ is the latitude). Inverting the relation between the triads $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ and $\{\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}\}$, we obtain

$$
\begin{align*}
& \hat{\boldsymbol{x}}=\sin \theta \cos \phi \hat{\boldsymbol{r}}+\cos \theta \cos \phi \hat{\boldsymbol{\theta}}-\sin \phi \hat{\boldsymbol{\phi}} \\
& \hat{\boldsymbol{y}}=\sin \theta \sin \phi \hat{\boldsymbol{r}}+\cos \theta \sin \phi \hat{\boldsymbol{\theta}}+\cos \phi \hat{\boldsymbol{\phi}} \tag{7.19}\\
& \hat{\boldsymbol{z}}=\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}} .
\end{align*}
$$

The differentials of these unit vectors are

$$
\begin{align*}
d \hat{\boldsymbol{r}} & =\hat{\boldsymbol{\theta}} d \theta+\sin \theta \hat{\boldsymbol{\phi}} d \phi \\
d \hat{\boldsymbol{\theta}} & =-\hat{\boldsymbol{r}} d \theta+\cos \theta \hat{\boldsymbol{\phi}} d \phi \tag{7.20}\\
d \hat{\boldsymbol{\phi}} & =-\sin \theta \hat{\boldsymbol{r}} d \phi-\cos \theta \hat{\boldsymbol{\theta}} d \phi
\end{align*}
$$

Thus,

$$
\begin{align*}
\dot{\boldsymbol{r}} & =\frac{d}{d t}(r \hat{\boldsymbol{r}})=\dot{r} \hat{\boldsymbol{r}}+r \dot{\hat{\boldsymbol{r}}} \tag{7.21}\\
& =\dot{r} \hat{\boldsymbol{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}}+r \sin \theta \dot{\phi} \hat{\boldsymbol{\phi}}
\end{align*}
$$

If we differentiate a second time, we find, after some tedious accounting,

$$
\begin{align*}
\ddot{\boldsymbol{r}}=\left(\ddot{r}-r \dot{\theta}^{2}-r \sin ^{2} \theta \dot{\phi}^{2}\right) \hat{\boldsymbol{r}}+ & \left(2 \dot{r} \dot{\theta}+r \ddot{\theta}-r \sin \theta \cos \theta \dot{\phi}^{2}\right) \hat{\boldsymbol{\theta}} \tag{7.22}\\
& +(2 \dot{r} \dot{\phi} \sin \theta+2 r \dot{\theta} \dot{\phi} \cos \theta+r \sin \theta \ddot{\phi}) \hat{\boldsymbol{\phi}}
\end{align*}
$$

7.3 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force acts only on moving particles, whereas the centrifugal force is present even when $\dot{r}=0$. Thus, the equation for stationary equilibrium on the earth's surface is

$$
\begin{equation*}
m \boldsymbol{g}+\boldsymbol{F}^{\prime}-m \boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})=0 \tag{7.23}
\end{equation*}
$$

involves the centrifugal term. We can write this as $\boldsymbol{F}^{\prime}+m \widetilde{\boldsymbol{g}}=0$, where

$$
\begin{align*}
\widetilde{\boldsymbol{g}} & =-\frac{G M_{\mathrm{e}} \hat{\boldsymbol{r}}}{r^{2}}-\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) \tag{7.24}\\
& =-\left(g_{0}-\omega^{2} R_{\mathrm{e}} \sin ^{2} \theta\right) \hat{\boldsymbol{r}}+\omega^{2} R_{\mathrm{e}} \sin \theta \cos \theta \hat{\boldsymbol{\theta}}
\end{align*}
$$

where $g_{0}=G M_{\mathrm{e}} / R_{\mathrm{e}}^{2}=980 \mathrm{~cm} / \mathrm{s}^{2}$. Thus, on the equator, where $\theta=\frac{\pi}{2}$, we have $\tilde{\boldsymbol{g}}=-\left(g_{0}-\omega^{2} R_{\mathrm{e}}\right) \hat{\boldsymbol{r}}$, with $\omega^{2} R_{\mathrm{e}} \approx 3.39 \mathrm{~cm} / \mathrm{s}^{2}$, a small but significant correction. You therefore weigh less on the equator. Note also that $\widetilde{\boldsymbol{g}}$ has a component along $\hat{\boldsymbol{\theta}}$. This means that a plumb bob suspended from a general point above the earth's surface won't point exactly toward the earth's center. Moreover, if the earth were replaced by an equivalent mass of fluid, the fluid would rearrange itself so as to make its surface locally perpendicular to $\widetilde{\boldsymbol{g}}$. Indeed, the earth (and Sun) do exhibit quadrupolar distortions in their mass distributions - both are oblate spheroids. In fact, the observed difference $\tilde{g}(\theta=0)-\tilde{g}\left(\theta=\frac{\pi}{2}\right) \approx 5.2 \mathrm{~cm} / \mathrm{s}^{2}$, which is 53% greater than the naïvely expected value of $3.39 \mathrm{~cm} / \mathrm{s}^{2}$. The earth's oblateness enhances the effect.

7.3.1 Rotating cylinder of fluid

Consider a cylinder filled with a liquid, rotating with angular frequency ω about its symmetry axis \hat{z}. In steady state, the fluid is stationary in the rotating frame, and we may write, for any given element of fluid

$$
\begin{equation*}
0=\boldsymbol{f}^{\prime}+\boldsymbol{g}-\omega^{2} \hat{\boldsymbol{z}} \times(\hat{\boldsymbol{z}} \times \boldsymbol{r}) \tag{7.25}
\end{equation*}
$$

where f^{\prime} is the force per unit mass on the fluid element. Now consider a fluid element on the surface. Since there is no static friction to the fluid, any component of f^{\prime} parallel to the fluid's surface will cause the fluid to flow in that direction. This contradicts the steady state assumption. Therefore, we must have $\boldsymbol{f}^{\prime}=f^{\prime} \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is the local unit normal to the fluid surface. We write the equation for the fluid's surface as $z=z(\rho)$. Thus, with $\boldsymbol{r}=\rho \hat{\boldsymbol{\rho}}+z(\rho) \hat{\boldsymbol{z}}$, Newton's second law yields

$$
\begin{equation*}
f^{\prime} \hat{\boldsymbol{n}}=g \hat{\boldsymbol{z}}-\omega^{2} \rho \hat{\boldsymbol{\rho}} \tag{7.26}
\end{equation*}
$$

where $\boldsymbol{g}=-g \hat{z}$ is assumed. From this, we conclude that the unit normal to the fluid surface and the force per unit mass are given by

$$
\begin{equation*}
\hat{\boldsymbol{n}}(\rho)=\frac{g \hat{\boldsymbol{z}}-\omega^{2} \rho \hat{\boldsymbol{\rho}}}{\sqrt{g^{2}+\omega^{4} \rho^{2}}} \quad, \quad f^{\prime}(\rho)=\sqrt{g^{2}+\omega^{4} \rho^{2}} \tag{7.27}
\end{equation*}
$$

Figure 7.3: A rotating cylinder of fluid.

Now suppose $\boldsymbol{r}(\rho, \phi)=\rho \hat{\boldsymbol{\rho}}+z(\rho) \hat{\boldsymbol{z}}$ is a point on the surface of the fluid. We have that

$$
\begin{equation*}
d \boldsymbol{r}=\hat{\boldsymbol{\rho}} d \rho+z^{\prime}(\rho) \hat{\boldsymbol{z}} d \rho+\rho \hat{\boldsymbol{\phi}} d \phi, \tag{7.28}
\end{equation*}
$$

where $z^{\prime}=d z / d \rho$, and where we have used $d \hat{\boldsymbol{\rho}}=\hat{\boldsymbol{\phi}} d \phi$, which follows from the first of eqn. 7.20 after setting $\theta=\frac{\pi}{2}$. Now $d \boldsymbol{r}$ must lie along the surface, therefore $\hat{\boldsymbol{n}} \cdot d \boldsymbol{r}=0$, which says

$$
\begin{equation*}
g \frac{d z}{d \rho}=\omega^{2} \rho \tag{7.29}
\end{equation*}
$$

Integrating this equation, we obtain the shape of the surface:

$$
\begin{equation*}
z(\rho)=z_{0}+\frac{\omega^{2} \rho^{2}}{2 g} . \tag{7.30}
\end{equation*}
$$

7.4 The Coriolis Force

7.4.1 Projectile motion

The Coriolis force is given by $\boldsymbol{F}_{\text {Cor }}=-2 m \boldsymbol{\omega} \times \dot{\boldsymbol{r}}$. According to (7.17), the acceleration of a free particle $\left(\boldsymbol{F}^{\prime}=0\right)$ isn't along $\widetilde{\boldsymbol{g}}$ - an orthogonal component is generated by the Coriolis force. To actually solve the coupled equations of motion is difficult because the unit vectors $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ change with position, and hence with time. The following standard problem highlights some of the effects of the Coriolis and centrifugal forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly latitude of λ. Assuming the cannonball is initially at rest with respect to the tower, and neglecting air resistance, calculate its deflection (magnitude and direction) due to (a) centrifugal and (b) Coriolis forces by the time it hits the ground. Evaluate for the case $h=100 \mathrm{~m}, \lambda=45^{\circ}$. The radius of the earth is $R_{\mathrm{e}}=6.4 \times 10^{6} \mathrm{~m}$.

SOLUTION: The equation of motion for a particle near the earth's surface is

$$
\begin{equation*}
\ddot{\boldsymbol{r}}=-2 \boldsymbol{\omega} \times \dot{\boldsymbol{r}}-g_{0} \hat{\boldsymbol{r}}-\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}), \tag{7.31}
\end{equation*}
$$

where $\boldsymbol{\omega}=\omega \hat{\boldsymbol{z}}$, with $\omega=2 \pi /(24 \mathrm{hrs})=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$. Here, $g_{0}=G M_{\mathrm{e}} / R_{\mathrm{e}}^{2}=980 \mathrm{~cm} / \mathrm{s}^{2}$. We use a locally orthonormal coordinate system $\{\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ and write

$$
\begin{equation*}
\boldsymbol{r}=x \hat{\boldsymbol{\theta}}+y \hat{\boldsymbol{\phi}}+\left(R_{\mathrm{e}}+z\right) \hat{\boldsymbol{r}} \tag{7.32}
\end{equation*}
$$

where $R_{\mathrm{e}}=6.4 \times 10^{6} \mathrm{~m}$ is the radius of the earth. Expressing \hat{z} in terms of our chosen orthonormal triad,

$$
\begin{equation*}
\hat{\boldsymbol{z}}=\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}} \tag{7.33}
\end{equation*}
$$

where $\theta=\frac{\pi}{2}-\lambda$ is the polar angle, or 'colatitude'. Since the height of the tower and the deflections are all very small on the scale of R_{e}, we may regard the orthonormal triad as fixed and time-independent,
although, in general, these unit vectors change as a function of \boldsymbol{r}. Thus, we have $\dot{\boldsymbol{r}} \simeq \dot{x} \hat{\boldsymbol{\theta}}+\dot{y} \hat{\boldsymbol{\phi}}+\dot{z} \hat{\boldsymbol{r}}$, and we find

$$
\begin{align*}
\hat{\boldsymbol{z}} \times \dot{\boldsymbol{r}} & =(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}) \times(\dot{x} \hat{\boldsymbol{\theta}}+\dot{y} \hat{\boldsymbol{\phi}}+\dot{z} \hat{\boldsymbol{r}}) \\
& =-\dot{y} \cos \theta \hat{\boldsymbol{\theta}}+(\dot{x} \cos \theta+\dot{z} \sin \theta) \hat{\boldsymbol{\phi}}-\dot{y} \sin \theta \hat{\boldsymbol{r}} \tag{7.34}
\end{align*}
$$

and

$$
\begin{align*}
\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) & =\omega^{2}(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}) \times((\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}) \times(R_{\mathrm{e}} \hat{\boldsymbol{r}}+\overbrace{x \hat{\boldsymbol{\theta}}+y \hat{\boldsymbol{\phi}}+z \hat{\boldsymbol{r}}}^{\text {negligible }})) \tag{7.35}\\
& \approx \omega^{2}(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}) \times R_{\mathrm{e}} \sin \theta \hat{\boldsymbol{\phi}} \\
& =-\omega^{2} R_{\mathrm{e}} \sin \theta \cos \theta \hat{\boldsymbol{\theta}}-\omega^{2} R_{\mathrm{e}} \sin ^{2} \theta \hat{\boldsymbol{r}} .
\end{align*}
$$

Note that the distances x, y, and z are all extremely small in magnitude compared with R_{e}.
The equations of motion, written in components, are then

$$
\begin{align*}
& \dot{v}_{x}=g_{1} \sin \theta \cos \theta+2 \omega \cos \theta v_{y} \\
& \dot{v}_{y}=-2 \omega \cos \theta v_{x}-2 \omega \sin \theta v_{z} \tag{7.36}\\
& \dot{v}_{z}=-g_{0}+g_{1} \sin ^{2} \theta+2 \omega \sin \theta v_{y},
\end{align*}
$$

with $g_{1} \equiv \omega^{2} R_{\mathrm{e}}$. While these (inhomogeneous) equations are linear, they also are coupled, so an exact analytical solution is not trivial to obtain (but see below). Fortunately, the deflections are small, so we can solve this perturbatively. To do so, let us write $\boldsymbol{v}(t)$ as a power series in t. For each component, we write

$$
\begin{equation*}
v_{\alpha}(t)=\sum_{n=0}^{\infty} v_{\alpha, n} t^{n} \tag{7.37}
\end{equation*}
$$

with $v_{\alpha, 0}=v_{\alpha}(t=0) \equiv v_{\alpha}^{0}$. Eqns. 7.36 then may be written as the coupled hierarchy

$$
\begin{align*}
n v_{x, n} & =g_{1} \sin \theta \cos \theta \delta_{n, 1}+2 \omega \cos \theta v_{y, n-1} \\
n v_{y, n} & =-2 \omega \cos \theta v_{x, n-1}-2 \omega \sin \theta v_{z, n-1} \tag{7.38}\\
n v_{z, n} & =-\left(g_{0}-g_{1} \sin ^{2} \theta\right) \delta_{n, 1}+2 \omega \sin \theta v_{y, n-1} .
\end{align*}
$$

Integrating $\boldsymbol{v}(t)$, we obtain the displacements,

$$
\begin{equation*}
x_{\alpha}(t)=x_{\alpha}^{0}+\sum_{n=0}^{\infty} \frac{v_{\alpha, n}}{n+1} t^{n+1} . \tag{7.39}
\end{equation*}
$$

Now let's roll up our sleeves and solve for the coefficients $v_{\alpha, n}$ for $n=0,1,2$. This will give us the displacements up to terms of order t^{3}. For $n=0$ we already have $v_{\alpha, 0}=v_{\alpha}^{0}$. For $n=1$, we use Eqns. 7.38 with $n=1$ to obtain

$$
\begin{align*}
& v_{x, 1}=2 \omega \cos \theta v_{y}^{0}+g_{1} \sin \theta \cos \theta \\
& v_{y, 1}=-2 \omega \cos \theta v_{x}^{0}-2 \omega \sin \theta v_{z}^{0} \tag{7.40}\\
& v_{z, 1}=2 \omega \sin \theta v_{y}^{0}-g_{0}+g_{1} \sin ^{2} \theta .
\end{align*}
$$

Finally, at level $n=2$, we have

$$
\begin{align*}
& v_{x, 2}=\omega \cos \theta v_{y, 1}=-2 \omega^{2} \cos \theta\left(\cos \theta v_{x}^{0}+\sin \theta v_{z}^{0}\right) \\
& v_{y, 2}=-2 \omega \cos \theta v_{x, 1}-2 \omega \sin \theta v_{z, 1}=-2 \omega^{2} v_{y}^{0}+\omega \sin \theta\left(g_{0}-g_{1}\right) \tag{7.41}\\
& v_{z, 2}=\omega \sin \theta v_{y, 1}=-2 \omega^{2} \sin \theta\left(\cos \theta v_{x}^{0}+\sin \theta v_{z}^{0}\right) .
\end{align*}
$$

Thus, the displacements are given by

$$
\begin{align*}
& x(t)=x(0)+v_{x}^{0} t+\frac{1}{2}\left(2 \omega \cos \theta v_{y}^{0}+g_{1} \sin \theta \cos \theta\right) t^{2}-\frac{2}{3} \omega^{2} \cos \theta\left(\cos \theta v_{x}^{0}+\sin \theta v_{z}^{0}\right) t^{3}+\mathcal{O}\left(t^{4}\right) \\
& y(t)=y(0)+v_{y}^{0} t-\omega\left(\cos \theta v_{x}^{0}+\sin \theta v_{z}^{0}\right) t^{2}-\frac{2}{3} \omega^{2} v_{y}^{0} t^{3}+\frac{1}{3} \omega \sin \theta\left(g_{0}-g_{1}\right) t^{3}+\mathcal{O}\left(t^{4}\right) \tag{7.42}\\
& z(t)=z(0)+v_{z}^{0} t+\frac{1}{2}\left(2 \omega \sin \theta v_{y}^{0}-g_{0}+g_{1} \sin ^{2} \theta\right) t^{2}-\frac{2}{3} \omega^{2} \sin \theta\left(\cos \theta v_{x}^{0}+\sin \theta v_{z}^{0}\right) t^{3}+\mathcal{O}\left(t^{4}\right) .
\end{align*}
$$

When dropped from rest, with $x(0)=y(0)=0$ and $z(0)=h_{0}$, we have

$$
\begin{align*}
& x(t)=\frac{1}{2} g_{1} \sin \theta \cos \theta t^{2}+\mathcal{O}\left(t^{4}\right) \\
& y(t)=\frac{1}{3} \omega \sin \theta\left(g_{0}-g_{1}\right) t^{3}+\mathcal{O}\left(t^{4}\right) \tag{7.43}\\
& z(t)=h_{0}-\frac{1}{2}\left(g_{0}-g_{1} \sin ^{2} \theta\right) t^{2}+\mathcal{O}\left(t^{4}\right) .
\end{align*}
$$

Recall $g_{1}=\omega^{2} R_{\mathrm{e}}$, so if we neglect the rotation of the earth and set $\omega=0$, we have $\omega=g_{1}=0$, and $z(t)=h_{0}-\frac{1}{2} g_{0} t^{2}$ with $x(t)=y(t)=0$. This is the familiar high school physics result. As we see, in the noninertial reference frame of the rotating earth, there are deflections along $\hat{\boldsymbol{\theta}}$ given by $x(t)$, along $\hat{\phi}$ given by $y(t)$, and also a correction $\Delta z(t)=\frac{1}{2} g_{1} \sin ^{2} \theta t^{2}+\mathcal{O}\left(t^{4}\right)$ to the motion along \hat{r}. To find the deflection of an object dropped from a height h_{0}, solve $z\left(t^{*}\right)=0$ to obtain $t^{*}=\sqrt{2 h /\left(g_{0}-g_{1} \sin ^{2} \theta\right)}$ for the drop time, and substitute. For $h_{0}=100 \mathrm{~m}$ and $\lambda=\frac{\pi}{2}$, find $\delta x\left(t^{*}\right)=17 \mathrm{~cm}$ south (centrifugal) and $\delta y\left(t^{*}\right)=1.6 \mathrm{~cm}$ east (Coriolis). Note that the centrifugal term dominates the deflection in this example. Why is the Coriolis deflection always to the east? The earth rotates eastward, and an object starting from rest in the earth's frame has initial angular velocity equal to that of the earth. To conserve angular momentum, the object must speed up as it falls.

Exact solution for velocities

In fact, an exact solution to (7.36) is readily obtained, via the following analysis. The equations of motion may be written $\dot{\boldsymbol{v}}=2 i \omega \mathcal{J} \boldsymbol{v}+\boldsymbol{b}$, or

$$
\left(\begin{array}{c}
\dot{v}_{x} \tag{7.44}\\
\dot{v}_{y} \\
\dot{v}_{x}
\end{array}\right)=2 i \omega \overbrace{\left(\begin{array}{ccc}
0 & -i \cos \theta & 0 \\
i \cos \theta & 0 & i \sin \theta \\
0 & -i \sin \theta & 0
\end{array}\right)}^{\mathcal{J}}\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{x}
\end{array}\right)+\overbrace{\left(\begin{array}{c}
g_{1} \sin \theta \cos \theta \\
0 \\
-g_{0}+g_{1} \sin ^{2} \theta
\end{array}\right)}^{b} .
$$

Note that $\mathcal{J}^{\dagger}=\mathcal{J}$, i.e. \mathcal{J} is a Hermitian matrix. The formal solution is

$$
\begin{equation*}
\boldsymbol{v}(t)=e^{2 i \omega \mathcal{J} t} \boldsymbol{v}(0)+\left(\frac{e^{2 i \omega \mathcal{J} t}-1}{2 i \omega}\right) \mathcal{J}^{-1} \boldsymbol{b} \tag{7.45}
\end{equation*}
$$

When working with matrices, it is convenient to work in an eigenbasis. The characteristic polynomial for \mathcal{J} is $P(\lambda)=\operatorname{det}(\lambda \cdot 1-\mathcal{J})=\lambda\left(\lambda^{2}-1\right)$, hence the eigenvalues are $\lambda_{1}=0, \lambda_{2}=+1$, and $\lambda_{3}=-1$. The corresponding eigenvectors are easily found to be

$$
\boldsymbol{\psi}_{1}=\left(\begin{array}{c}
\sin \theta \tag{7.46}\\
0 \\
-\cos \theta
\end{array}\right) \quad, \quad \psi_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos \theta \\
i \\
\sin \theta
\end{array}\right) \quad, \quad \psi_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos \theta \\
-i \\
\sin \theta
\end{array}\right) .
$$

Note that $\boldsymbol{\psi}_{a}^{\dagger} \cdot \boldsymbol{\psi}_{a^{\prime}}=\delta_{a a^{\prime}}$.
Expanding \boldsymbol{v} and \boldsymbol{b} in this eigenbasis, we have $\dot{u}_{a}=2 i \omega \lambda_{a} u_{a}+b_{a}$, where $u_{a}=\psi_{i a}^{*} v_{i}$ and $b_{a}=\psi_{i a}^{*} b_{i}$. The solution is

$$
\begin{equation*}
u_{a}(t)=u_{a}(0) e^{2 i \lambda_{a} \omega t}+\left(\frac{e^{2 i \lambda_{a} \omega t}-1}{2 i \lambda_{a} \omega}\right) b_{a} . \tag{7.47}
\end{equation*}
$$

Since the eigenvectors of \mathcal{J} are orthonormal, $u_{a}=\psi_{i a}^{*} v_{i}$ entails $v_{i}=\psi_{i a} u_{a}$, hence

$$
\begin{equation*}
v_{i}(t)=\sum_{j}\left(\sum_{a} \psi_{i a} e^{2 i \lambda_{a} \omega t} \psi_{j a}^{*}\right) v_{j}(0)+\sum_{j}\left(\sum_{a} \psi_{i a}\left(\frac{e^{2 i \lambda_{a} \omega t}-1}{2 i \lambda_{a} \omega}\right) \psi_{j a}^{*}\right) b_{j} \tag{7.48}
\end{equation*}
$$

Doing the requisite matrix multiplications, and assuming $\boldsymbol{v}(0)=0$, we obtain

$$
\left(\begin{array}{l}
v_{x}(t) \tag{7.49}\\
v_{y}(t) \\
v_{z}(t)
\end{array}\right)=\left(\begin{array}{ccc}
t \sin ^{2} \theta+\frac{\sin 2 \omega t}{2 \omega} \cos ^{2} \theta & \frac{\sin ^{2} \omega t}{\omega} \cos \theta & -\frac{1}{2} t \sin 2 \theta+\frac{\sin 2 \omega t}{4 \omega} \sin 2 \theta \\
-\frac{\sin ^{2} \omega t}{\omega} \cos \theta & \frac{\sin 2 \omega t}{2 \omega} & -\frac{\sin ^{2} \omega t}{\omega} \sin \theta \\
-\frac{1}{2} t \sin 2 \theta+\frac{\sin 2 \omega t}{4 \omega} \sin 2 \theta & \frac{\sin ^{2} \omega t}{\omega} \sin \theta & t \cos ^{2} \theta+\frac{\sin 2 \omega t}{2 \omega} \sin ^{2} \theta
\end{array}\right)\left(\begin{array}{c}
g_{1} \sin \theta \cos \theta \\
0 \\
-g_{0}+g_{1} \sin ^{2} \theta
\end{array}\right)
$$

which says

$$
\begin{align*}
& v_{x}(t)=\left(\frac{\sin 2 \omega t}{2 \omega t}-1\right) g_{0} t \sin \theta \cos \theta+\frac{\sin 2 \omega t}{2 \omega t} g_{1} t \sin \theta \cos \theta \\
& v_{y}(t)=\frac{\sin ^{2} \omega t}{\omega t}\left(g_{0}-g_{1}\right) t \sin \theta \tag{7.50}\\
& v_{z}(t)=-\left(\cos ^{2} \theta+\frac{\sin 2 \omega t}{2 \omega t} \sin ^{2} \theta\right) g_{0} t+\frac{\sin ^{2} \omega t}{2 \omega t} g_{1} t \sin ^{2} \theta
\end{align*}
$$

One can check that by expanding in a power series in t we recover the results of the previous section.

7.4.2 Foucault's pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth rotates underneath. Relative to the earth, the plane of motion of the pendulum makes one revolution every day. What happens at a general latitude? Assume the pendulum is located at colatitude θ and longitude ϕ. Assuming the length scale of the pendulum is small compared to R_{e}, we can regard the local triad $\{\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}, \hat{\boldsymbol{r}}\}$ as fixed. The situation is depicted in fig. 7.4. We write

$$
\begin{equation*}
\boldsymbol{r}=x \hat{\boldsymbol{\theta}}+y \hat{\boldsymbol{\phi}}+z \hat{\boldsymbol{r}} \tag{7.51}
\end{equation*}
$$

with

$$
\begin{equation*}
x=\ell \sin \psi \cos \alpha \quad, \quad y=\ell \sin \psi \sin \alpha \quad, \quad z=\ell(1-\cos \psi) . \tag{7.52}
\end{equation*}
$$

In our analysis we will ignore centrifugal effects, which are of higher order in ω, and we take $\boldsymbol{g}=-g \hat{\boldsymbol{r}}$. We also idealize the pendulum, and consider the suspension rod to be of negligible mass.

The total force on the mass m is due to gravity and tension:

$$
\begin{align*}
\boldsymbol{F} & =m \boldsymbol{g}+\boldsymbol{T} \\
& =(-T \sin \psi \cos \alpha,-T \sin \psi \sin \alpha, T \cos \psi-m g) \tag{7.53}\\
& =(-T x / \ell,-T y / \ell, T-M g-T z / \ell) .
\end{align*}
$$

The Coriolis term is

$$
\begin{align*}
\boldsymbol{F}_{\text {Cor }} & =-2 m \boldsymbol{\omega} \times \dot{\boldsymbol{r}} \\
& =-2 m \omega(\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}) \times(\dot{x} \hat{\boldsymbol{\theta}}+\dot{y} \hat{\boldsymbol{\phi}}+\dot{z} \hat{\boldsymbol{r}}) \tag{7.54}\\
& =2 m \omega(\dot{y} \cos \theta,-\dot{x} \cos \theta-\dot{z} \sin \theta, \dot{y} \sin \theta) .
\end{align*}
$$

The equations of motion are $m \ddot{\boldsymbol{r}}=\boldsymbol{F}+\boldsymbol{F}_{\mathrm{Cor}}$:

$$
\begin{align*}
& m \ddot{x}=-T x / \ell+2 m \omega \cos \theta \dot{y} \\
& m \ddot{y}=-T y / \ell-2 m \omega \cos \theta \dot{x}-2 m \omega \sin \theta \dot{z} \tag{7.55}\\
& m \ddot{z}=T-m g-T z / \ell+2 m \omega \sin \theta \dot{y} .
\end{align*}
$$

These three equations are to be solved for the three unknowns x, y, and T. Note that

$$
\begin{equation*}
x^{2}+y^{2}+(\ell-z)^{2}=\ell^{2} \tag{7.56}
\end{equation*}
$$

so $z=z(x, y)$ is not an independent degree of freedom. This equation may be recast in the form $z=$ $\left(x^{2}+y^{2}+z^{2}\right) / 2 \ell$ which shows that if x and y are both small, then z is at least of second order in smallness. Therefore, we will approximate $z \simeq 0$, in which case \dot{z} may be neglected from the second equation of motion. The third equation is used to solve for T :

$$
\begin{equation*}
T \simeq m g-2 m \omega \sin \theta \dot{y} \tag{7.57}
\end{equation*}
$$

Adding the first plus i times the second then gives the complexified equation

$$
\begin{align*}
\ddot{\xi} & =-\frac{T}{m \ell} \xi-2 i \omega \cos \theta \dot{\xi} \tag{7.58}\\
& \approx-\omega_{0}^{2} \xi-2 i \omega \cos \theta \dot{\xi}
\end{align*}
$$

where $\xi \equiv x+i y$, and where $\omega_{0}=\sqrt{g / \ell}$. Note that we have approximated $T \approx m g$ in deriving the second line.

It is now a trivial matter to solve the homogeneous linear ODE of eq. 7.58. Writing

$$
\begin{equation*}
\xi=\xi_{0} e^{-i \Omega t} \tag{7.59}
\end{equation*}
$$

and plugging in to find Ω, we obtain

$$
\begin{equation*}
\Omega^{2}-2 \omega_{\perp} \Omega-\omega_{0}^{2}=0 \tag{7.60}
\end{equation*}
$$

Figure 7.4: Foucault's pendulum.
with $\omega_{\perp} \equiv \omega \cos \theta$. The roots are

$$
\begin{equation*}
\Omega_{ \pm}=\omega_{\perp} \pm \sqrt{\omega_{0}^{2}+\omega_{\perp}^{2}} \tag{7.61}
\end{equation*}
$$

hence the most general solution is

$$
\begin{equation*}
\xi(t)=A_{+} e^{-i \Omega_{+} t}+A_{-} e^{-i \Omega_{-} t} . \tag{7.62}
\end{equation*}
$$

Finally, if we take as initial conditions $x(0)=a, y(0)=0, \dot{x}(0)=0$, and $\dot{y}(0)=0$, we obtain

$$
\begin{align*}
& x(t)=\left(\frac{a}{\nu}\right) \cdot\left\{\omega_{\perp} \sin \left(\omega_{\perp} t\right) \sin (\nu t)+\nu \cos \left(\omega_{\perp} t\right) \cos (\nu t)\right\} \\
& y(t)=\left(\frac{a}{\nu}\right) \cdot\left\{\omega_{\perp} \cos \left(\omega_{\perp} t\right) \sin (\nu t)-\nu \sin \left(\omega_{\perp} t\right) \cos (\nu t)\right\} \tag{7.63}
\end{align*}
$$

with $\nu=\sqrt{\omega_{0}^{2}+\omega_{\perp}^{2}}$. Typically $\omega_{0} \gg \omega_{\perp}$, since $\omega=7.3 \times 10^{-5} \mathrm{~s}^{-1}$. In the limit $\omega_{\perp} \ll \omega_{0}$, then, we have $\nu \approx \omega_{0}$ and

$$
\begin{equation*}
x(t) \simeq a \cos \left(\omega_{\perp} t\right) \cos \left(\omega_{0} t\right) \quad, \quad y(t) \simeq-a \sin \left(\omega_{\perp} t\right) \cos \left(\omega_{0} t\right), \tag{7.64}
\end{equation*}
$$

and the plane of motion rotates with angular frequency $-\omega_{\perp}$, i.e. the period is $|\sec \theta|$ days. Viewed from above, the rotation is clockwise in the northern hemisphere, where $\cos \theta>0$ and counterclockwise in the southern hemisphere, where $\cos \theta<0$.

Chapter 8

Rigid Body Motion and Rotational Dynamics

8.1 Rigid Bodies

A rigid body consists of a group of particles whose separations are all fixed in magnitude. Six independent coordinates are required to completely specify the position and orientation of a rigid body. For example, the location of the first particle is specified by three coordinates. A second particle requires only two coordinates since the distance to the first is fixed. Finally, a third particle requires only one coordinate, since its distance to the first two particles is fixed (think about the intersection of two spheres). The positions of all the remaining particles are then determined by their distances from the first three. Usually, one takes these six coordinates to be the center-of-mass position $\boldsymbol{R}=(X, Y, Z)$ and three angles specifying the orientation of the body (e.g. the Euler angles).

As derived previously, the equations of motion are

$$
\begin{align*}
\boldsymbol{P}=\sum_{i} m_{i} \dot{\boldsymbol{r}}_{i} & , \quad \dot{\boldsymbol{P}}=\boldsymbol{F}^{(\mathrm{ext})} \\
\boldsymbol{L}=\sum_{i} m_{i} \boldsymbol{r}_{i} \times \dot{\boldsymbol{r}}_{i} & , \quad \dot{\boldsymbol{L}}=\boldsymbol{N}^{(\mathrm{ext})} \tag{8.1}
\end{align*}
$$

These equations determine the motion of a rigid body.

8.1.1 Examples of rigid bodies

Our first example of a rigid body is of a wheel rolling with constant angular velocity $\dot{\phi}=\omega$, and without slipping, This is shown in fig. 8.1. The no-slip condition is $d x=R d \phi$, so $\dot{x}=V_{\mathrm{CM}}=R \omega$. The velocity of a point within the wheel is

$$
\begin{equation*}
\boldsymbol{v}=\boldsymbol{V}_{\mathrm{CM}}+\boldsymbol{\omega} \times \boldsymbol{r} \tag{8.2}
\end{equation*}
$$

Figure 8.1: A wheel rolling to the right without slipping.
where r is measured from the center of the disk. The velocity of a point on the surface is then given by $\boldsymbol{v}=\omega R(\hat{\boldsymbol{x}}+\hat{\boldsymbol{\omega}} \times \hat{\boldsymbol{r}})$.
As a second example, consider a bicycle wheel of mass M and radius R affixed to a light, firm rod of length d, as shown in fig. 8.2. Assuming \boldsymbol{L} lies in the (x, y) plane, one computes the gravitational torque $\boldsymbol{N}=\boldsymbol{r} \times(M \boldsymbol{g})=M g d \hat{\boldsymbol{\phi}}$. The angular momentum vector then rotates with angular frequency $\dot{\phi}$. Thus,

$$
\begin{equation*}
d \phi=\frac{d L}{L} \quad \Longrightarrow \quad \dot{\phi}=\frac{M g d}{L} . \tag{8.3}
\end{equation*}
$$

But $L=M R^{2} \omega$, so the precession frequency is

$$
\begin{equation*}
\omega_{\mathrm{p}}=\dot{\phi}=\frac{g d}{\omega R^{2}} . \tag{8.4}
\end{equation*}
$$

For $R=d=30 \mathrm{~cm}$ and $\omega / 2 \pi=200 \mathrm{rpm}$, find $\omega_{\mathrm{p}} / 2 \pi \approx 15 \mathrm{rpm}$. Note that we have here ignored the contribution to L from the precession itself, which lies along $\hat{\boldsymbol{z}}$, resulting in the nutation of the wheel. This is justified if $L_{\mathrm{p}} / L=\left(d^{2} / R^{2}\right) \cdot\left(\omega_{\mathrm{p}} / \omega\right) \ll 1$.

8.2 The Inertia Tensor

Suppose first that a point within the body itself is fixed. This eliminates the translational degrees of freedom from consideration. We now have

$$
\begin{equation*}
\left(\frac{d \boldsymbol{r}}{d t}\right)_{\text {inertial }}=\boldsymbol{\omega} \times \boldsymbol{r} \tag{8.5}
\end{equation*}
$$

since $\dot{r}_{\text {body }}=0$. The kinetic energy is then

$$
\begin{align*}
T & =\frac{1}{2} \sum_{i} m_{i}\left(\frac{d \boldsymbol{r}_{i}}{d t}\right)_{\text {inertial }}^{2}=\frac{1}{2} \sum_{i} m_{i}\left(\boldsymbol{\omega} \times \boldsymbol{r}_{i}\right) \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{i}\right) \tag{8.6}\\
& =\frac{1}{2} \sum_{i} m_{i}\left[\omega^{2} \boldsymbol{r}_{i}^{2}-\left(\boldsymbol{\omega} \cdot \boldsymbol{r}_{i}\right)^{2}\right] \equiv \frac{1}{2} I_{\alpha \beta} \omega_{\alpha} \omega_{\beta},
\end{align*}
$$

Figure 8.2: Precession of a spinning bicycle wheel.
where ω_{α} is the component of $\boldsymbol{\omega}$ along the body-fixed axis \boldsymbol{e}_{α}. The quantity $I_{\alpha \beta}$ is the inertia tensor,

$$
\begin{align*}
I_{\alpha \beta} & =\sum_{i} m_{i}\left(\boldsymbol{r}_{i}^{2} \delta_{\alpha \beta}-r_{i, \alpha} r_{i, \beta}\right) \tag{8.7}\\
& =\int d^{d} r \varrho(\boldsymbol{r})\left(\boldsymbol{r}^{2} \delta_{\alpha \beta}-r_{\alpha} r_{\beta}\right) \quad \text { (continuous media) }
\end{align*}
$$

The angular momentum is

$$
\begin{align*}
\boldsymbol{L} & =\sum_{i} m_{i} \boldsymbol{r}_{i} \times\left(\frac{d \boldsymbol{r}_{i}}{d t}\right)_{\text {inertial }} \tag{8.8}\\
& =\sum_{i} m_{i} \boldsymbol{r}_{i} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{i}\right)=I_{\alpha \beta} \omega_{\beta}
\end{align*}
$$

The diagonal elements of $I_{\alpha \beta}$ are called the moments of inertia, while the off-diagonal elements are called the products of inertia.

8.2.1 Coordinate transformations

Consider the basis transformation

$$
\begin{equation*}
\hat{\mathbf{e}}_{\alpha}^{\prime}=\mathcal{R}_{\alpha \beta} \hat{\mathbf{e}}_{\beta} \tag{8.9}
\end{equation*}
$$

We demand $\hat{\mathbf{e}}_{\alpha}^{\prime} \cdot \hat{\mathbf{e}}_{\beta}^{\prime}=\delta_{\alpha \beta}$, which means $\mathcal{R} \in \mathrm{O}(d)$ is an orthogonal matrix, i.e. $\mathcal{R}^{\mathrm{t}}=\mathcal{R}^{-1}$. Thus the inverse transformation is $\boldsymbol{e}_{\alpha}=\mathcal{R}_{\alpha \beta}^{\mathrm{t}} \boldsymbol{e}_{\beta}^{\prime}$. Consider next a general vector $\boldsymbol{A}=A_{\beta} \hat{\mathbf{e}}_{\beta}$. Expressed in terms of the new basis $\left\{\hat{\mathbf{e}}_{\alpha}^{\prime}\right\}$, we have

$$
\begin{equation*}
\boldsymbol{A}=A_{\beta} \overbrace{\mathcal{R}_{\beta \alpha}^{\mathrm{t}} \hat{\mathbf{e}}_{\alpha}^{\prime}}^{\hat{\mathbf{e}}_{\beta}}=\overbrace{\mathcal{R}_{\alpha \beta} A_{\beta}}^{A_{\alpha}^{\prime}} \hat{\mathbf{e}}_{\alpha}^{\prime} \tag{8.10}
\end{equation*}
$$

Thus, the components of \boldsymbol{A} transform as $A_{\alpha}^{\prime}=\mathcal{R}_{\alpha \beta} A_{\beta}$. This is true for any vector.
Under a rotation, the density $\rho(\boldsymbol{r})$ must satisfy $\rho^{\prime}\left(\boldsymbol{r}^{\prime}\right)=\rho(\boldsymbol{r})$. This is the transformation rule for scalars. The inertia tensor therefore obeys

$$
\begin{align*}
I_{\alpha \beta}^{\prime} & =\int d^{3} r^{\prime} \rho^{\prime}\left(\boldsymbol{r}^{\prime}\right)\left[\boldsymbol{r}^{\prime 2} \delta_{\alpha \beta}-r_{\alpha}^{\prime} r_{\beta}^{\prime}\right] \\
& =\int d^{3} r \rho(\boldsymbol{r})\left[\boldsymbol{r}^{2} \delta_{\alpha \beta}-\left(\mathcal{R}_{\alpha \mu} r_{\mu}\right)\left(\mathcal{R}_{\beta \nu} r_{\nu}\right)\right] \tag{8.11}\\
& =\mathcal{R}_{\alpha \mu} I_{\mu \nu} \mathcal{R}_{\nu \beta}^{\mathrm{t}} .
\end{align*}
$$

I.e. $I^{\prime}=\mathcal{R} I \mathcal{R}^{\mathrm{t}}$, the transformation rule for tensors. The angular frequency $\boldsymbol{\omega}$ is a vector, so $\omega_{\alpha}^{\prime}=\mathcal{R}_{\alpha \mu} \omega_{\mu}$. The angular momentum \boldsymbol{L} also transforms as a vector. The kinetic energy is $T=\frac{1}{2} \boldsymbol{\omega}^{\mathrm{t}} \cdot I \cdot \boldsymbol{\omega}$, which transforms as a scalar.

8.2.2 The case of no fixed point

If there is no fixed point, we can let \boldsymbol{r}^{\prime} denote the distance from the center-of-mass (CM), which will serve as the instantaneous origin in the body-fixed frame. We then adopt the notation where \boldsymbol{R} is the CM position of the rotating body, as observed in an inertial frame, and is computed from the expression

$$
\begin{equation*}
\boldsymbol{R}=\frac{1}{M} \sum_{i} m_{i} \boldsymbol{\rho}_{i}=\frac{1}{M} \int d^{3} r \rho(\boldsymbol{r}) \boldsymbol{r} \tag{8.12}
\end{equation*}
$$

where the total mass is of course

$$
\begin{equation*}
M=\sum_{i} m_{i}=\int d^{3} r \rho(\boldsymbol{r}) . \tag{8.13}
\end{equation*}
$$

The kinetic energy and angular momentum are then

$$
\begin{align*}
T & =\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} I_{\alpha \beta} \omega_{\alpha} \omega_{\beta} \tag{8.14}\\
L_{\alpha} & =\epsilon_{\alpha \beta \gamma} M R_{\beta} \dot{R}_{\gamma}+I_{\alpha \beta} \omega_{\beta}
\end{align*}
$$

where $I_{\alpha \beta}$ is given in eqs. 8.7, where the origin is the CM.

8.3 Parallel Axis Theorem

Suppose $I_{\alpha \beta}$ is given in a body-fixed frame. If we displace the origin in the body-fixed frame by \boldsymbol{d}, then let $I_{\alpha \beta}(\boldsymbol{d})$ be the inertial tensor with respect to the new origin. If, relative to the origin at $\mathbf{0}$ a mass element lies at position \boldsymbol{r}, then relative to an origin at \boldsymbol{d} it will lie at $\boldsymbol{r}-\boldsymbol{d}$. We then have

$$
\begin{equation*}
I_{\alpha \beta}(\boldsymbol{d})=\sum_{i} m_{i}\left\{\left(\boldsymbol{r}_{i}^{2}-2 \boldsymbol{d} \cdot \boldsymbol{r}_{i}+\boldsymbol{d}^{2}\right) \delta_{\alpha \beta}-\left(r_{i, \alpha}-d_{\alpha}\right)\left(r_{i, \beta}-d_{\beta}\right)\right\} \tag{8.15}
\end{equation*}
$$

Figure 8.3: Application of the parallel axis theorem to a cylindrically symmetric mass distribution.

If \boldsymbol{r}_{i} is measured with respect to the CM , then

$$
\begin{equation*}
\sum_{i} m_{i} \boldsymbol{r}_{i}=0 \tag{8.16}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\alpha \beta}(\boldsymbol{d})=I_{\alpha \beta}(0)+M\left(\boldsymbol{d}^{2} \delta_{\alpha \beta}-d_{\alpha} d_{\beta}\right), \tag{8.17}
\end{equation*}
$$

a result known as the parallel axis theorem.
As an example of the theorem, consider the situation depicted in fig. 8.3, where a cylindrically symmetric mass distribution is rotated about is symmetry axis, and about an axis tangent to its side. The component $I_{z z}$ of the inertia tensor is easily computed when the origin lies along the symmetry axis:

$$
\begin{align*}
I_{z z} & =\int d^{3} r \rho(\boldsymbol{r})\left(\boldsymbol{r}^{2}-z^{2}\right)=\rho L \cdot 2 \pi \int_{0}^{a} d r_{\perp} r_{\perp}^{3} \tag{8.18}\\
& =\frac{\pi}{2} \rho L a^{4}=\frac{1}{2} M a^{2},
\end{align*}
$$

where $M=\pi a^{2} L \rho$ is the total mass. If we compute $I_{z z}$ about a vertical axis which is tangent to the cylinder, the parallel axis theorem tells us that

$$
\begin{equation*}
I_{z z}^{\prime}=I_{z z}+M a^{2}=\frac{3}{2} M a^{2} . \tag{8.19}
\end{equation*}
$$

Doing this calculation by explicit integration of $\int d m r_{\perp}^{2}$ would be tedious!

8.3.1 Example

Problem: Compute the CM and the inertia tensor for the planar right triangle of fig. 8.4, assuming it to be of uniform two-dimensional mass density ρ.

Solution: The total mass is $M=\frac{1}{2} \rho a b$. The x-coordinate of the CM is then

$$
\begin{align*}
X & =\frac{1}{M} \int_{0}^{a} d x \int_{0}^{b\left(1-\frac{x}{a}\right)} d y \rho x=\frac{\rho}{M} \int_{0}^{a} d x b\left(1-\frac{x}{a}\right) x \tag{8.20}\\
& =\frac{\rho a^{2} b}{M} \int_{0}^{1} d u u(1-u)=\frac{\rho a^{2} b}{6 M}=\frac{1}{3} a .
\end{align*}
$$

Clearly we must then have $Y=\frac{1}{3} b$, which may be verified by explicit integration.
We now compute the inertia tensor, with the origin at $(0,0,0)$. Since the figure is planar, $z=0$ everywhere, hence $I_{x z}=I_{z x}=0, I_{y z}=I_{z y}=0$, and also $I_{z z}=I_{x x}+I_{y y}$. We now compute the remaining independent elements:

$$
\begin{align*}
I_{x x} & =\rho \int_{0}^{a} d x \int_{0}^{b\left(1-\frac{x}{a}\right)} d y y^{2}=\rho \int_{0}^{a} d x \frac{1}{3} b^{3}\left(1-\frac{x}{a}\right)^{3} \tag{8.21}\\
& =\frac{1}{3} \rho a b^{3} \int_{0}^{1} d u(1-u)^{3}=\frac{1}{12} \rho a b^{3}=\frac{1}{6} M b^{2}
\end{align*}
$$

and

$$
\begin{align*}
I_{x y} & =-\rho \int_{0}^{a} d x \int_{0}^{b\left(1-\frac{x}{a}\right)} d y x y=-\frac{1}{2} \rho b^{2} \int_{0}^{a} d x x\left(1-\frac{x}{a}\right)^{2} \tag{8.22}\\
& =-\frac{1}{2} \rho a^{2} b^{2} \int_{0}^{1} d u u(1-u)^{2}=-\frac{1}{24} \rho a^{2} b^{2}=-\frac{1}{12} M a b .
\end{align*}
$$

Thus,

$$
I=\frac{M}{6}\left(\begin{array}{ccc}
b^{2} & -\frac{1}{2} a b & 0 \tag{8.23}\\
-\frac{1}{2} a b & a^{2} & 0 \\
0 & 0 & a^{2}+b^{2}
\end{array}\right)
$$

Suppose we wanted the inertia tensor relative in a coordinate system where the CM lies at the origin. What we computed in Eqn. 8.23 is $I(\boldsymbol{d})$, with $\boldsymbol{d}=-\frac{a}{3} \hat{\boldsymbol{x}}-\frac{b}{3} \hat{\boldsymbol{y}}$. Thus,

$$
\boldsymbol{d}^{2} \delta_{\alpha \beta}-d_{\alpha} d_{\beta}=\frac{1}{9}\left(\begin{array}{ccc}
b^{2} & -a b & 0 \tag{8.24}\\
-a b & a^{2} & 0 \\
0 & 0 & a^{2}+b^{2}
\end{array}\right)
$$

Since

$$
\begin{equation*}
I(\boldsymbol{d})=I^{\mathrm{CM}}+M\left(\boldsymbol{d}^{2} \delta_{\alpha \beta}-d_{\alpha} d_{\beta}\right) \tag{8.25}
\end{equation*}
$$

Figure 8.4: A planar mass distribution in the shape of a triangle.
we have that

$$
\begin{align*}
I^{\mathrm{CM}} & =I(\boldsymbol{d})-M\left(\boldsymbol{d}^{2} \delta_{\alpha \beta}-d_{\alpha} d_{\beta}\right) \\
& =\frac{M}{18}\left(\begin{array}{ccc}
b^{2} & \frac{1}{2} a b & 0 \\
\frac{1}{2} a b & a^{2} & 0 \\
0 & 0 & a^{2}+b^{2}
\end{array}\right) . \tag{8.26}
\end{align*}
$$

8.3.2 General planar mass distribution

For a general planar mass distribution,

$$
\begin{equation*}
\rho(x, y, z)=\sigma(x, y) \delta(z) \tag{8.27}
\end{equation*}
$$

which is confined to the plane $z=0$, we have $I_{x z}=I_{y z}=0$, and

$$
\begin{align*}
& I_{x x}=\int d x \int d y \sigma(x, y) y^{2} \\
& I_{y y}=\int d x \int d y \sigma(x, y) x^{2} \tag{8.28}\\
& I_{x y}=-\int d x \int d y \sigma(x, y) x y .
\end{align*}
$$

Furthermore, $I_{z z}=I_{x x}+I_{y y}$, regardless of the two-dimensional mass distribution $\sigma(x, y)$.

8.4 Principal Axes of Inertia

We found that an orthogonal transformation to a new set of axes $\hat{\mathbf{e}}_{\alpha}^{\prime}=\mathcal{R}_{\alpha \beta} \hat{\mathbf{e}}_{\beta}$ entails $I^{\prime}=\mathcal{R} I \mathcal{R}^{\mathrm{t}}$ for the inertia tensor. Since $I=I^{\mathrm{t}}$ is manifestly a symmetric matrix, it can be brought to diagonal form by such an orthogonal transformation. To find \mathcal{R}, follow this recipe:

1. Find the diagonal elements of I^{\prime} by setting $P(\lambda)=0$, where

$$
\begin{equation*}
P(\lambda)=\operatorname{det}(\lambda \cdot 1-I) \tag{8.29}
\end{equation*}
$$

is the characteristic polynomial for I, and 1 is the unit matrix.
2. For each eigenvalue λ_{a}, solve the d equations

$$
\begin{equation*}
\sum_{\nu} I_{\mu \nu} \psi_{\nu}^{a}=\lambda_{a} \psi_{\mu}^{a} \tag{8.30}
\end{equation*}
$$

Here, ψ_{μ}^{a} is the $\mu^{\text {th }}$ component of the $a^{\text {th }}$ eigenvector. Since $(\lambda \cdot 1-I)$ is degenerate, these equations are linearly dependent, which means that the first $d-1$ components may be determined in terms of the $d^{\text {th }}$ component.
3. Because $I=I^{\mathrm{t}}$, eigenvectors corresponding to different eigenvalues are orthogonal. In cases of degeneracy, the eigenvectors may be chosen to be orthogonal, e.g. via the Gram-Schmidt procedure.
4. Due to the underdetermined aspect to step 2 , we may choose an arbitrary normalization for each eigenvector. It is conventional to choose the eigenvectors to be orthonormal: $\sum_{\mu} \psi_{\mu}^{a} \psi_{\mu}^{b}=\delta^{a b}$.
5. The matrix \mathcal{R} is explicitly given by $\mathcal{R}_{a \mu}=\psi_{\mu}^{a}$, the matrix whose row vectors are the eigenvectors ψ^{a}. Of course \mathcal{R}^{t} is then the corresponding matrix of column vectors.
6. The eigenvectors form a complete basis. The resolution of unity may be expressed as

$$
\begin{equation*}
\sum_{a} \psi_{\mu}^{a} \psi_{\nu}^{a}=\delta_{\mu \nu} \tag{8.31}
\end{equation*}
$$

As an example, consider the inertia tensor for a general planar mass distribution, which is of the form

$$
I=\left(\begin{array}{ccc}
I_{x x} & I_{x y} & 0 \tag{8.32}\\
I_{y x} & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right)
$$

where $I_{y x}=I_{x y}$ and $I_{z z}=I_{x x}+I_{y y}$. Define

$$
\begin{align*}
A & =\frac{1}{2}\left(I_{x x}+I_{y y}\right) \\
B & =\sqrt{\frac{1}{4}\left(I_{x x}-I_{y y}\right)^{2}+I_{x y}^{2}} \tag{8.33}\\
\vartheta & =\tan ^{-1}\left(\frac{2 I_{x y}}{I_{x x}-I_{y y}}\right),
\end{align*}
$$

so that

$$
I=\left(\begin{array}{ccc}
A+B \cos \vartheta & B \sin \vartheta & 0 \tag{8.34}\\
B \sin \vartheta & A-B \cos \vartheta & 0 \\
0 & 0 & 2 A
\end{array}\right),
$$

The characteristic polynomial is found to be

$$
\begin{equation*}
P(\lambda)=(\lambda-2 A)\left[(\lambda-A)^{2}-B^{2}\right] \tag{8.35}
\end{equation*}
$$

which gives $\lambda_{1}=A+B, \lambda_{2}=A-B$, and $\lambda_{3}=2 A$. The corresponding normalized eigenvectors are

$$
\boldsymbol{\psi}^{1}=\left(\begin{array}{c}
\cos \frac{1}{2} \vartheta \tag{8.36}\\
\sin \frac{1}{2} \vartheta \\
0
\end{array}\right) \quad, \quad \boldsymbol{\psi}^{2}=\left(\begin{array}{c}
-\sin \frac{1}{2} \vartheta \\
\cos \frac{1}{2} \vartheta \\
0
\end{array}\right) \quad, \quad \boldsymbol{\psi}^{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and therefore

$$
\mathcal{R}=\left(\begin{array}{ccc}
\cos \frac{1}{2} \vartheta & \sin \frac{1}{2} \vartheta & 0 \tag{8.37}\\
-\sin \frac{1}{2} \vartheta & \cos \frac{1}{2} \vartheta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We then have

$$
I^{\prime}=\mathcal{R} I \mathcal{R}^{\mathrm{t}}=\left(\begin{array}{ccc}
A+B & 0 & 0 \tag{8.38}\\
0 & A-B & 0 \\
0 & 0 & 2 A
\end{array}\right)
$$

8.5 Euler's Equations

8.5.1 Derivation of Euler's equations

The equations of motion are

$$
\begin{align*}
\boldsymbol{N}^{\mathrm{ext}} & =\left(\frac{d \boldsymbol{L}}{d t}\right)_{\text {inertial }} \\
& =\left(\frac{d \boldsymbol{L}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times \boldsymbol{L}=I \dot{\boldsymbol{\omega}}+\boldsymbol{\omega} \times(I \boldsymbol{\omega}) . \tag{8.39}
\end{align*}
$$

Let us now choose our coordinate axes to be the principal axes of inertia, with the CM at the origin. We may then write

$$
\boldsymbol{\omega}=\left(\begin{array}{l}
\omega_{1} \tag{8.40}\\
\omega_{2} \\
\omega_{3}
\end{array}\right) \quad, \quad I=\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right) \quad \Longrightarrow \quad \boldsymbol{L}=\left(\begin{array}{c}
I_{1} \omega_{1} \\
I_{2} \omega_{2} \\
I_{3} \omega_{3}
\end{array}\right) .
$$

From $I \dot{\boldsymbol{\omega}}+\boldsymbol{\omega} \times(I \boldsymbol{\omega})=\boldsymbol{N}^{\text {ext }}$, we arrive at Euler's equations:

$$
\begin{align*}
I_{1} \dot{\omega}_{1} & =\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}+N_{1}^{\text {ext }} \\
I_{2} \dot{\omega}_{2} & =\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}+N_{2}^{\text {ext }} \tag{8.41}\\
I_{3} \dot{\omega}_{3} & =\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}+N_{3}^{\text {ext }}
\end{align*},
$$

where $N_{1,2,3}^{\text {ext }}$ are the components of $\boldsymbol{N}^{\text {ext }}$ along the body-fixed principal axes. These equations are coupled and nonlinear. We can however make progress in the case where $\boldsymbol{N}^{\text {ext }}=0$, i.e. when there are no

Figure 8.5: Wobbling of a torque-free symmetric top.
external torques. This is true for a body in free space, or in a uniform gravitational field. In the latter case,

$$
\begin{equation*}
\boldsymbol{N}^{\mathrm{ext}}=\sum_{i} \boldsymbol{r}_{i} \times\left(m_{i} \boldsymbol{g}\right)=\left(\sum_{i} m_{i} \boldsymbol{r}_{i}\right) \times \boldsymbol{g} \tag{8.42}
\end{equation*}
$$

where \boldsymbol{g} is the uniform gravitational acceleration. In a body-fixed frame whose origin is the CM, we have $\sum_{i} m_{i} \boldsymbol{r}_{i}=0$, and the external torque vanishes!

8.5.2 Precession of torque-free symmetric tops

Consider a body which has a symmetry axis $\hat{\mathbf{e}}_{3}$. This guarantees $I_{1}=I_{2}$, but in general we still have $I_{1} \neq I_{3}$. In the absence of external torques, the last of Euler's equations says $\dot{\omega}_{3}=0$, so ω_{3} is a constant. The remaining two equations are then

$$
\begin{equation*}
\dot{\omega}_{1}=\left(\frac{I_{1}-I_{3}}{I_{1}}\right) \omega_{3} \omega_{2} \quad, \quad \dot{\omega}_{2}=\left(\frac{I_{3}-I_{1}}{I_{1}}\right) \omega_{3} \omega_{1} \tag{8.43}
\end{equation*}
$$

I.e. $\dot{\omega}_{1}=-\Omega \omega_{2}$ and $\dot{\omega}_{2}=+\Omega \omega_{1}$, with

$$
\begin{equation*}
\Omega=\left(\frac{I_{3}-I_{1}}{I_{1}}\right) \omega_{3} \tag{8.44}
\end{equation*}
$$

which are the equations of a harmonic oscillator. The solution is easily obtained:

$$
\begin{equation*}
\omega_{1}(t)=\omega_{\perp} \cos (\Omega t+\delta) \quad, \quad \omega_{2}(t)=\omega_{\perp} \sin (\Omega t+\delta) \quad, \quad \omega_{3}(t)=\omega_{3} \tag{8.45}
\end{equation*}
$$

where ω_{\perp} and δ are constants of integration, and where $|\boldsymbol{\omega}|=\left(\omega_{\perp}^{2}+\omega_{3}^{2}\right)^{1 / 2}$. This motion is sketched in fig. 8.5. Note that the perpendicular components of $\boldsymbol{\omega}$ oscillate harmonically, and that the angle $\boldsymbol{\omega}$ makes with respect to $\hat{\mathbf{e}}_{3}$ is $\lambda=\tan ^{-1}\left(\omega_{\perp} / \omega_{3}\right)$.

For the earth, $\left(I_{3}-I_{1}\right) / I_{1} \approx \frac{1}{305}$ and $\omega_{\perp} \ll \omega_{3}$, so $\Omega \approx \omega / 305$, i.e. a precession period of 305 days, or roughly 10 months. Astronomical observations reveal such a precession, known as the Chandler wobble. The precession angle is $\lambda_{\text {Chandler }} \simeq 6 \times 10^{-7} \mathrm{rad}$, which means that the North Pole moves by about 4 meters during the wobble. The Chandler wobble has a period of about 14 months, so the naïve prediction of 305 days is off by a substantial amount. This discrepancy is attributed to the mechanical properties of the earth: elasticity and fluidity. The earth is not solid! ${ }^{1}$

8.5.3 Asymmetric tops

Next, consider the torque-free motion of an asymmetric top, where $I_{1} \neq I_{2} \neq I_{3} \neq I_{1}$. Unlike the symmetric case, there is no conserved component of ω. True, we can invoke conservation of energy and angular momentum,

$$
\begin{align*}
E & =\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}+\frac{1}{2} I_{3} \omega_{3}^{2} \tag{8.46}\\
\boldsymbol{L}^{2} & =I_{1}^{2} \omega_{1}^{2}+I_{2}^{2} \omega_{2}^{2}+I_{3}^{2} \omega_{3}^{2}
\end{align*}
$$

and, in principle, solve for ω_{1} and ω_{2} in terms of ω_{3}, and then invoke Euler's equations (which must honor these conservation laws). This results in a nonlinear first order ODE of the form $\dot{\omega}_{3}=f\left(\omega_{3}\right)$ which is fairly awkward.

We can, however, find a particular solution quite easily - one in which the rotation is about a single axis. Thus, $\omega_{1}=\omega_{2}=0$ and $\omega_{3}=\omega_{0}$ is indeed a solution for all time, according to Euler's equations. Let us now perturb about this solution, to explore its stability. We write

$$
\begin{equation*}
\boldsymbol{\omega}=\omega_{0} \hat{\mathbf{e}}_{3}+\delta \boldsymbol{\omega}, \tag{8.47}
\end{equation*}
$$

and we invoke Euler's equations, linearizing by dropping terms quadratic in $\delta \omega$. This yield

$$
\begin{align*}
I_{1} \delta \dot{\omega}_{1} & =\left(I_{2}-I_{3}\right) \omega_{0} \delta \omega_{2}+\mathcal{O}\left(\delta \omega_{2} \delta \omega_{3}\right) \\
I_{2} \delta \dot{\omega}_{2} & =\left(I_{3}-I_{1}\right) \omega_{0} \delta \omega_{1}+\mathcal{O}\left(\delta \omega_{3} \delta \omega_{1}\right) \tag{8.48}\\
I_{3} \delta \dot{\omega}_{3} & =0+\mathcal{O}\left(\delta \omega_{1} \delta \omega_{2}\right) .
\end{align*}
$$

Taking the time derivative of the first equation and invoking the second, and vice versa, yields

$$
\begin{equation*}
\delta \ddot{\omega}_{1}=-\Omega^{2} \delta \omega_{1} \quad, \quad \delta \ddot{\omega}_{2}=-\Omega^{2} \delta \omega_{2} \tag{8.49}
\end{equation*}
$$

with

$$
\begin{equation*}
\Omega^{2}=\frac{\left(I_{3}-I_{2}\right)\left(I_{3}-I_{1}\right)}{I_{1} I_{2}} \cdot \omega_{0}^{2} . \tag{8.50}
\end{equation*}
$$

The solution is then $\delta \omega_{1}(t)=C \cos (\Omega t+\delta)$.
If $\Omega^{2}>0$, then Ω is real, and the deviation results in a harmonic precession. This occurs if I_{3} is either the largest or the smallest of the moments of inertia. If, however, I_{3} is the middle moment, then $\Omega^{2}<0$, and Ω is purely imaginary. The perturbation will in general increase exponentially with time, which means that the initial solution to Euler's equations is unstable with respect to small perturbations. This result can be vividly realized using a tennis racket, and sometimes goes by the name of the "tennis racket theorem."

[^14]
8.5.4 Example: The giant asteroid

PROBLEM: A unsuspecting solid spherical planet of mass M_{0} rotates with angular velocity ω_{0}. Suddenly, a giant asteroid of mass αM_{0} smashes into and sticks to the planet at a location which is at polar angle θ relative to the initial rotational axis. The new mass distribution is no longer spherically symmetric, and the rotational axis will precess. Recall Euler's equation,

$$
\begin{equation*}
\frac{d \boldsymbol{L}}{d t}+\boldsymbol{\omega} \times \boldsymbol{L}=\boldsymbol{N}^{\mathrm{ext}} \tag{8.51}
\end{equation*}
$$

for rotations in a body-fixed frame.
(a) What is the new inertia tensor $I_{\alpha \beta}$ along principal center-of-mass frame axes? Don't forget that the CM is no longer at the center of the sphere! Recall $I=\frac{2}{5} M R^{2}$ for a solid sphere.
(b) What is the period of precession of the rotational axis in terms of the original length of the day $2 \pi / \omega_{0}$?
SOLUTION: Let's choose body-fixed axes with \hat{z} pointing from the center of the planet to the smoldering asteroid. The CM lies a distance

$$
\begin{equation*}
d=\frac{\alpha M_{0} \cdot R+M_{0} \cdot 0}{(1+\alpha) M_{0}}=\frac{\alpha}{1+\alpha} R \tag{8.52}
\end{equation*}
$$

from the center of the sphere. Thus, relative to the center of the sphere, we have

$$
I=\frac{2}{5} M_{0} R^{2}\left(\begin{array}{lll}
1 & 0 & 0 \tag{8.53}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\alpha M_{0} R^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now we shift to a frame with the CM at the origin, using the parallel axis theorem,

$$
\begin{equation*}
I_{\alpha \beta}(\boldsymbol{d})=I_{\alpha \beta}^{\mathrm{CM}}+M\left(\boldsymbol{d}^{2} \delta_{\alpha \beta}-d_{\alpha} d_{\beta}\right) \tag{8.54}
\end{equation*}
$$

Thus, with $\boldsymbol{d}=d \hat{\boldsymbol{z}}$,

$$
\begin{align*}
I_{\alpha \beta}^{\mathrm{CM}} & =\frac{2}{5} M_{0} R^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\alpha M_{0} R^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)-(1+\alpha) M_{0} d^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =M_{0} R^{2}\left(\begin{array}{ccc}
\frac{2}{5}+\frac{\alpha}{1+\alpha} & 0 & 0 \\
0 & \frac{2}{5}+\frac{\alpha}{1+\alpha} & 0 \\
0 & 0 & \frac{2}{5}
\end{array}\right) . \tag{8.55}
\end{align*}
$$

In the absence of external torques, Euler's equations along principal axes read

$$
\begin{align*}
& I_{1} \frac{d \omega_{1}}{d t}=\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3} \\
& I_{2} \frac{d \omega_{2}}{d t}=\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1} \tag{8.56}\\
& I_{3} \frac{d \omega_{3}}{d t}=\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}
\end{align*}
$$

Since $I_{1}=I_{2}, \omega_{3}(t)=\omega_{3}(0)=\omega_{0} \cos \theta$ is a constant. We then obtain $\dot{\omega}_{1}=\Omega \omega_{2}$, and $\dot{\omega}_{2}=-\Omega \omega_{1}$, with

$$
\begin{equation*}
\Omega=\frac{I_{2}-I_{3}}{I_{1}} \omega_{3}=\frac{5 \alpha}{7 \alpha+2} \omega_{3} . \tag{8.57}
\end{equation*}
$$

The period of precession τ in units of the pre-cataclysmic day is

$$
\begin{equation*}
\frac{\tau}{T}=\frac{\omega}{\Omega}=\frac{7 \alpha+2}{5 \alpha \cos \theta} \tag{8.58}
\end{equation*}
$$

8.6 Euler's Angles

8.6.1 Definition of the Euler angles

In d dimensions, an orthogonal matrix $\mathcal{R} \in \mathrm{O}(d)$ has $\frac{1}{2} d(d-1)$ independent parameters. To see this, consider the constraint $\mathcal{R}^{\mathrm{t}} \mathcal{R}=1$. The matrix $\mathcal{R}^{\mathrm{t}} \mathcal{R}$ is manifestly symmetric, so it has $\frac{1}{2} d(d+1)$ independent entries (e.g. on the diagonal and above the diagonal). This amounts to $\frac{1}{2} d(d+1)$ constraints on the d^{2} components of \mathcal{R}, resulting in $\frac{1}{2} d(d-1)$ freedoms. Thus, in $d=3$ rotations are specified by three parameters. The Euler angles $\{\phi, \theta, \psi\}$ provide one such convenient parameterization.

A general rotation $\mathcal{R}(\phi, \theta, \psi)$ is built up in three steps. We start with an orthonormal triad $\hat{\mathbf{e}}_{\mu}^{0}$ of bodyfixed axes. The first step is a rotation by an angle ϕ about $\hat{\mathbf{e}}_{3}^{0}$:

$$
\hat{\mathbf{e}}_{\mu}^{\prime}=\mathcal{R}_{\mu \nu}\left(\hat{\mathbf{e}}_{3}^{0}, \phi\right) \hat{\mathbf{e}}_{\nu}^{0} \quad, \quad \mathcal{R}\left(\hat{\mathbf{e}}_{3}^{0}, \phi\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \tag{8.59}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This step is shown in panel (a) of fig. 8.6. The second step is a rotation by θ about the new axis $\hat{\mathbf{e}}_{1}^{\prime}$:

$$
\hat{\mathbf{e}}_{\mu}^{\prime \prime}=\mathcal{R}_{\mu \nu}\left(\hat{\mathbf{e}}_{1}^{\prime}, \theta\right) \hat{\mathbf{e}}_{\nu}^{\prime} \quad, \quad \mathcal{R}\left(\hat{\mathbf{e}}_{1}^{\prime}, \theta\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{8.60}\\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) .
$$

This step is shown in panel (b). The third and final step is a rotation by ψ about the new axis $\hat{\mathbf{e}}_{3}^{\prime \prime}$:

$$
\hat{\mathbf{e}}_{\mu}^{\prime \prime \prime}=\mathcal{R}_{\mu \nu}\left(\hat{\mathbf{e}}_{3}^{\prime \prime}, \psi\right) \hat{\mathbf{e}}_{\nu}^{\prime \prime} \quad, \quad \mathcal{R}\left(\hat{\mathbf{e}}_{3}^{\prime \prime}, \psi\right)=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \tag{8.61}\\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Figure 8.6: A general rotation, defined in terms of the Euler angles $\{\phi, \theta, \psi\}$. Three successive steps of the transformation are shown.

This step is shown in panel (c). Putting this all together,

$$
\begin{align*}
\mathcal{R}(\phi, \theta, \psi) & =\mathcal{R}\left(\hat{\mathbf{e}}_{3}^{\prime \prime}, \psi\right) \mathcal{R}\left(\hat{\mathbf{e}}_{1}^{\prime}, \theta\right) \mathcal{R}\left(\hat{\mathbf{e}}_{3}^{0}, \phi\right) \tag{8.62}\\
& =\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \psi \cos \phi-\sin \psi \cos \theta \sin \phi & \cos \psi \sin \phi+\sin \psi \cos \theta \cos \phi & \sin \psi \sin \theta \\
-\sin \psi \cos \phi-\cos \psi \cos \theta \sin \phi & -\sin \psi \sin \phi+\cos \psi \cos \theta \cos \phi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right) .
\end{align*}
$$

Note that the order of our rotations was $Z X Z$. We could have chosen $Z Y Z$ instead, or any of $X Z X$, $X Y X, Y X Y$, and $Y Z Y$. Any such rotation protocol is referred to as based on proper Euler angles. An equivalent system is to adopt one of the following protocols: $X Y Z, X Z Y, Y Z X, Y X Z, Z X Y$, or $Z Y X$, corresponding to the so-called Tait-Bryan angles. The latter are used, inter alia, in aeronautics, where they are known respectively as roll, pitch, and yaw (see Fig. 8.7).

Gimbal locking

A gimbal is a ring which rotates about a fixed axis. In a gyroscope, the inner rotor typically rotates at a very high angular velocity such that its spin axis is fixed in an inertial frame. The orientation of the

Figure 8.7: Left: Roll, pitch, and yaw. Right: A gyroscope with two gimbals. If the gyroscope frame is free to rotate about its axis, this serves as a third gimbal. (Image credits: Wikipedia)
gimbal axes in an inertial measurement unit (IMU) may then be used to determine attitude and angular velocity. Replacing the rotor with a camera, the gimbals can be rotated to achieve a desired orientation, say for tracking an object as it moves in three-dimensional space.

A problem arises, though, when the orientation of an object is described using the Euler angles. This is illustrated in Eqn. 8.62 when the angle θ is set to zero, in which case

$$
\mathcal{R}(\phi, \theta=0, \psi)=\left(\begin{array}{ccc}
\cos (\phi+\psi) & \sin (\phi+\psi) & 0 \tag{8.63}\\
-\sin (\phi+\psi) & \cos (\phi+\psi) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We would expect that fixing one of the Euler angles would still allow us to independently rotate about two remaining axes, but we see above that when $\theta=0$, the space of rotation matrices becomes onedimensional! A similar problem occurs when $\theta=\pi$, where

$$
\mathcal{R}(\phi, \theta=\pi, \psi)=\left(\begin{array}{ccc}
\cos (\phi-\psi) & \sin (\phi-\psi) & 0 \tag{8.64}\\
\sin (\phi-\psi) & -\cos (\phi-\psi) & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Thus, the two-dimensional space of points (ϕ, ψ) maps to a one-dimensional subset of $\mathrm{SO}(3)$. You might wonder whether the problem goes away if we choose Tait-Bryan angles instead. It doesn't.

What we are encountering here is a coordinate singularity associated with the way we are coordinatizing the $\mathrm{SO}(3)$ manifold ${ }^{2}$. Something analogous happens when we coordinatize the two-sphere S^{2} using polar (θ) and azimuthal (ϕ) angles. Precisely at the poles $\theta=0$ and $\theta=\pi$, the all azimuthal angles ϕ map to the same point, and we have a zero-dimensional rather than a one-dimensional space. In the context of Euler angles, this coordinate singularity is referred to as gimbal lock. Navigational difficulties associated with gimbal lock can be avoided by adding a redundant fourth gimbal to an IMU^{3}, which can be cumbersome, or by using different coordinates on $\mathrm{SO}(3)$, such as unit quaternions.

[^15]
8.6.2 Precession, nutation, and axial rotation

Next, we'd like to relate the components $\omega_{\mu}=\boldsymbol{\omega} \cdot \hat{\mathbf{e}}_{\mu}$ (with $\hat{\mathbf{e}}_{\mu} \equiv \hat{\mathbf{e}}_{\mu}^{\prime \prime \prime}$) of the rotation in the body-fixed frame to the derivatives $\dot{\phi}, \dot{\theta}$, and $\dot{\psi}$. To do this, we write

$$
\begin{equation*}
\boldsymbol{\omega}=\dot{\phi} \hat{\mathbf{e}}_{\phi}+\dot{\theta} \hat{\mathbf{e}}_{\theta}+\dot{\psi} \hat{\mathbf{e}}_{\psi}, \tag{8.65}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{\mathbf{e}}_{3}^{0}=\hat{\mathbf{e}}_{\phi} & =\sin \theta \sin \psi \hat{\mathbf{e}}_{1}+\sin \theta \cos \psi \hat{\mathbf{e}}_{2}+\cos \theta \hat{\mathbf{e}}_{3} \\
\hat{\mathbf{e}}_{\theta} & =\cos \psi \hat{\mathbf{e}}_{1}-\sin \psi \hat{\mathbf{e}}_{2} \quad \text { ("line of nodes") } \tag{8.66}\\
\hat{\mathbf{e}}_{\psi} & =\hat{\mathbf{e}}_{3} .
\end{align*}
$$

The first of these follows from the relation $\hat{\mathbf{e}}_{\mu}=\mathcal{R}_{\mu \nu}(\phi, \theta, \psi) \hat{\mathbf{e}}_{\nu}^{0}$, whose inverse is $\hat{\mathbf{e}}_{\mu}^{0}=\mathcal{R}_{\mu \nu}^{\mathrm{t}}(\phi, \theta, \psi) \hat{\mathbf{e}}_{\nu}$, since $\mathcal{R}^{-1}=\mathcal{R}^{\mathrm{t}}$. Thus the coefficients of $\hat{\mathbf{e}}_{1,2,3}$ in $\hat{\mathbf{e}}_{3}^{0}$ are the elements of the rightmost $(\nu=3)$ column of $\mathcal{R}(\phi, \theta, \psi)$. We may now read off

$$
\begin{align*}
\omega_{1} & =\boldsymbol{\omega} \cdot \hat{\mathbf{e}}_{1}=\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi \\
\omega_{2} & =\boldsymbol{\omega} \cdot \hat{\mathbf{e}}_{2}=\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi \tag{8.67}\\
\omega_{3} & =\boldsymbol{\omega} \cdot \hat{\mathbf{e}}_{3}=\dot{\phi} \cos \theta+\dot{\psi} .
\end{align*}
$$

Note that

$$
\begin{equation*}
\dot{\phi} \leftrightarrow \text { precession } \quad, \quad \dot{\theta} \leftrightarrow \text { nutation } \quad, \quad \dot{\psi} \leftrightarrow \text { axial rotation } . \tag{8.68}
\end{equation*}
$$

The general form of the kinetic energy is then

$$
T=\frac{1}{2} I_{1}(\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi)^{2}+\frac{1}{2} I_{2}(\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi)^{2}+\frac{1}{2} I_{3}(\dot{\phi} \cos \theta+\dot{\psi})^{2} .
$$

Note that

$$
\begin{equation*}
\boldsymbol{L}=p_{\phi} \hat{\mathbf{e}}_{\phi}+p_{\theta} \hat{\mathbf{e}}_{\theta}+p_{\psi} \hat{\mathbf{e}}_{\psi}, \tag{8.69}
\end{equation*}
$$

which may be verified by explicit computation.

8.6.3 Torque-free symmetric top

A body falling in a gravitational field experiences no net torque about its CM :

$$
\begin{equation*}
\boldsymbol{N}^{\mathrm{ext}}=\sum_{i} \boldsymbol{r}_{i} \times\left(-m_{i} \boldsymbol{g}\right)=\boldsymbol{g} \times \sum_{i} m_{i} \boldsymbol{r}_{i}=0 \tag{8.70}
\end{equation*}
$$

For a symmetric top with $I_{1}=I_{2}$, we have

$$
\begin{equation*}
T=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\phi} \cos \theta+\dot{\psi})^{2} . \tag{8.71}
\end{equation*}
$$

The potential is cyclic in the Euler angles, hence the equations of motion are

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial(\dot{\phi}, \dot{\theta}, \dot{\psi})}=\frac{\partial T}{\partial(\phi, \theta, \psi)} . \tag{8.72}
\end{equation*}
$$

Figure 8.8: A dreidl is a symmetric top. The four-fold symmetry axis guarantees $I_{1}=I_{2}$. The blue diamond represents the center-of-mass and lies within the object.

Since ϕ and ψ are cyclic in T, their conjugate momenta are conserved:

$$
\begin{align*}
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=I_{1} \dot{\phi} \sin ^{2} \theta+I_{3}(\dot{\phi} \cos \theta+\dot{\psi}) \cos \theta \\
& p_{\psi}=\frac{\partial L}{\partial \dot{\psi}}=I_{3}(\dot{\phi} \cos \theta+\dot{\psi}) . \tag{8.73}
\end{align*}
$$

Note that $p_{\psi}=I_{3} \omega_{3}$, hence ω_{3} is constant, as we have already seen.
To solve for the motion, we first note that L is conserved in the inertial frame. We are therefore permitted to define $\hat{\boldsymbol{L}}=\hat{\mathbf{e}}_{3}^{0}=\hat{\mathbf{e}}_{\phi}$. Thus, $p_{\phi}=L$. Since $\hat{\mathbf{e}}_{\phi} \cdot \hat{\mathbf{e}}_{\psi}=\cos \theta$, we have that $p_{\psi}=\boldsymbol{L} \cdot \hat{\mathbf{e}}_{\psi}=L \cos \theta$. Finally, $\hat{\mathbf{e}}_{\phi} \cdot \hat{\mathbf{e}}_{\theta}=0$, which means $p_{\theta}=\boldsymbol{L} \cdot \hat{\mathbf{e}}_{\theta}=0$. From the equations of motion,

$$
\begin{equation*}
\dot{p}_{\theta}=I_{1} \ddot{\theta}=\left(I_{1} \dot{\phi} \cos \theta-p_{\psi}\right) \dot{\phi} \sin \theta, \tag{8.74}
\end{equation*}
$$

hence we must have

$$
\begin{equation*}
\dot{\theta}=0 \quad, \quad \dot{\phi}=\frac{p_{\psi}}{I_{1} \cos \theta} \tag{8.75}
\end{equation*}
$$

Note that $\dot{\theta}=0$ follows from conservation of $p_{\psi}=L \cos \theta$. From the equation for p_{ψ}, we may now conclude

$$
\begin{equation*}
\dot{\psi}=\frac{p_{\psi}}{I_{3}}-\frac{p_{\psi}}{I_{1}}=\left(\frac{I_{3}-I_{1}}{I_{3}}\right) \omega_{3} \tag{8.76}
\end{equation*}
$$

which recapitulates (8.44), with $\dot{\psi}=\Omega$.

Figure 8.9: The effective potential of eq. 8.85.

8.6.4 Symmetric top with one point fixed

Consider the case of a symmetric top with one point fixed, as depicted in fig. 8.8. The Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\phi} \cos \theta+\dot{\psi})^{2}-M g \ell \cos \theta . \tag{8.77}
\end{equation*}
$$

Here, ℓ is the distance from the fixed point to the CM, and the inertia tensor is defined along principal axes whose origin lies at the fixed point (not the CM!). Gravity now supplies a torque, but as in the torque-free case, the Lagrangian is still cyclic in ϕ and ψ, so

$$
\begin{align*}
p_{\phi} & =\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) \dot{\phi}+I_{3} \cos \theta \dot{\psi} \\
p_{\psi} & =I_{3} \cos \theta \dot{\phi}+I_{3} \dot{\psi} \tag{8.78}
\end{align*}
$$

are each conserved. We can invert these relations to obtain $\dot{\phi}$ and $\dot{\psi}$ in terms of $\left\{p_{\phi}, p_{\psi}, \theta\right\}$:

$$
\begin{equation*}
\dot{\phi}=\frac{p_{\phi}-p_{\psi} \cos \theta}{I_{1} \sin ^{2} \theta} \quad, \quad \dot{\psi}=\frac{p_{\psi}}{I_{3}}-\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right) \cos \theta}{I_{1} \sin ^{2} \theta} . \tag{8.79}
\end{equation*}
$$

In addition, since $\partial L / \partial t=0$, the total energy is conserved:

$$
\begin{equation*}
E=T+U=\frac{1}{2} I_{1} \dot{\theta}^{2}+\overbrace{\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}+M g \ell \cos \theta}^{U_{\text {eff }}(\theta)}, \tag{8.80}
\end{equation*}
$$

where the term under the brace is the effective potential $U_{\text {eff }}(\theta)$.
The problem thus reduces to the one-dimensional dynamics of $\theta(t)$, i.e.

$$
\begin{equation*}
I_{1} \ddot{\theta}=-\frac{\partial U_{\mathrm{eff}}}{\partial \theta} \tag{8.81}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{\mathrm{eff}}(\theta)=\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}+M g \ell \cos \theta \tag{8.82}
\end{equation*}
$$

Using energy conservation, we may write

$$
\begin{equation*}
d t= \pm \sqrt{\frac{I_{1}}{2}} \frac{d \theta}{\sqrt{E-U_{\mathrm{eff}}(\theta)}} \tag{8.83}
\end{equation*}
$$

and thus the problem is reduced to quadratures:

$$
\begin{equation*}
t(\theta)=t\left(\theta_{0}\right) \pm \sqrt{\frac{I_{1}}{2}} \int_{\theta_{0}}^{\theta} d \vartheta \frac{1}{\sqrt{E-U_{\text {eff }}(\vartheta)}} \tag{8.84}
\end{equation*}
$$

We can gain physical insight into the motion by examining the shape of the effective potential,

$$
\begin{equation*}
U_{\mathrm{eff}}(\theta)=\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+M g \ell \cos \theta+\frac{p_{\psi}^{2}}{2 I_{3}} \tag{8.85}
\end{equation*}
$$

over the interval $\theta \in[0, \pi]$. Clearly $U_{\text {eff }}(0)=U_{\text {eff }}(\pi)=\infty$, so the motion must be bounded. What is not yet clear, but what is nonetheless revealed by some additional analysis, is that $U_{\text {eff }}(\theta)$ has a single minimum on this interval, at $\theta=\theta_{0}$. The turning points for the θ motion are at $\theta=\theta_{\mathrm{a}}$ and $\theta=\theta_{\mathrm{b}}$, where $U_{\text {eff }}\left(\theta_{\mathrm{a}}\right)=U_{\text {eff }}\left(\theta_{\mathrm{b}}\right)=E$. Clearly if we expand about θ_{0} and write $\theta=\theta_{0}+\eta$, the η motion will be harmonic, with

$$
\begin{equation*}
\eta(t)=\eta_{0} \cos (\Omega t+\delta) \quad, \quad \Omega=\sqrt{\frac{U_{\mathrm{eff}}^{\prime \prime}\left(\theta_{0}\right)}{I_{1}}} \tag{8.86}
\end{equation*}
$$

To prove that $U_{\text {eff }}(\theta)$ has these features, let us define $u \equiv \cos \theta$. Then $\dot{u}=-\dot{\theta} \sin \theta$, and from $E=$ $\frac{1}{2} I_{1} \dot{\theta}^{2}+U_{\text {eff }}(\theta)$ we derive

$$
\begin{equation*}
\dot{u}^{2}=\left(\frac{2 E}{I_{1}}-\frac{p_{\psi}^{2}}{I_{1} I_{3}}\right)\left(1-u^{2}\right)-\frac{2 M g \ell}{I_{1}}\left(1-u^{2}\right) u-\left(\frac{p_{\phi}-p_{\psi} u}{I_{1}}\right)^{2} \equiv f(u) \tag{8.87}
\end{equation*}
$$

The turning points occur at $f(u)=0$. The function $f(u)$ is cubic, and the coefficient of the cubic term is $2 M g \ell / I_{1}$, which is positive. Clearly $f(u= \pm 1)=-\left(p_{\phi} \mp p_{\psi}\right)^{2} / I_{1}^{2}$ is negative, so there must be at least one solution to $f(u)=0$ on the interval $u \in(1, \infty)$. Clearly there can be at most three real roots for $f(u)$, since the function is cubic in u, hence there are at most two turning points on the interval $u \in[-1,1]$. Thus, $U_{\text {eff }}(\theta)$ has the form depicted in fig. 8.9.
To apprehend the full motion of the top in an inertial frame, let us follow the symmetry axis $\hat{\mathbf{e}}_{3}$:

$$
\begin{equation*}
\hat{\mathbf{e}}_{3}=\sin \theta \sin \phi \hat{\mathbf{e}}_{1}^{0}-\sin \theta \cos \phi \hat{\mathbf{e}}_{2}^{0}+\cos \theta \hat{\mathbf{e}}_{3}^{0} . \tag{8.88}
\end{equation*}
$$

Once we know $\theta(t)$ and $\phi(t)$ we're done. The motion $\theta(t)$ is described above: θ oscillates between turning points at θ_{a} and θ_{b}. As for $\phi(t)$, we have already derived the result

$$
\begin{equation*}
\dot{\phi}=\frac{p_{\phi}-p_{\psi} \cos \theta}{I_{1} \sin ^{2} \theta} . \tag{8.89}
\end{equation*}
$$

Figure 8.10: Precession and nutation of the symmetry axis of a symmetric top.

Thus, if $p_{\phi}>p_{\psi} \cos \theta_{\mathrm{a}}$, then $\dot{\phi}$ will remain positive throughout the motion. If, on the other hand, we have

$$
\begin{equation*}
p_{\psi} \cos \theta_{\mathrm{b}}<p_{\phi}<p_{\psi} \cos \theta_{\mathrm{a}} \tag{8.90}
\end{equation*}
$$

then $\dot{\phi}$ changes sign at an angle $\theta^{*}=\cos ^{-1}\left(p_{\phi} / p_{\psi}\right)$. The motion is depicted in fig. 8.10. An extensive discussion of this problem is given in H. Goldstein, Classical Mechanics.

8.7 Rolling and Skidding Motion of Real Tops

The material in this section is based on the corresponding sections from V. Barger and M. Olsson, Classical Mechanics: A Modern Perspective. This is an excellent book which contains many interesting applications and examples.

8.7.1 Rolling tops

In most tops, the point of contact rolls or skids along the surface. Consider the peg end top of fig. 8.11, executing a circular rolling motion, as sketched in fig. 8.12. There are three components to the force acting on the top: gravity, the normal force from the surface, and friction. The frictional force is perpendicular to the CM velocity, and results in centripetal acceleration of the top:

$$
\begin{equation*}
f=M \Omega^{2} \rho \leq \mu M g \tag{8.91}
\end{equation*}
$$

where Ω is the frequency of the CM motion and μ is the coefficient of friction. If the above inequality is violated, the top starts to slip.
The frictional and normal forces combine to produce a torque $N=M g \ell \sin \theta-f \ell \cos \theta$ about the CM^{4}. This torque is tangent to the circular path of the CM, and causes L to precess. We assume that the top is spinning rapidly, so that L very nearly points along the symmetry axis of the top itself. (As we'll see, this

[^16]

Figure 8.11: A top with a peg end. The frictional forces f and $f_{\text {skid }}$ are shown. When the top rolls without skidding, $\boldsymbol{f}_{\text {skid }}=0$.
is true for slow precession but not for fast precession, where the precession frequency is proportional to ω_{3}.) The precession is then governed by the equation

$$
\begin{align*}
N & =M g \ell \sin \theta-f \ell \cos \theta \\
& =|\dot{\boldsymbol{L}}|=|\boldsymbol{\Omega} \times \boldsymbol{L}| \approx \Omega I_{3} \omega_{3} \sin \theta \tag{8.92}
\end{align*}
$$

where $\hat{\mathbf{e}}_{3}$ is the instantaneous symmetry axis of the top. Substituting $f=M \Omega^{2} \rho$,

$$
\begin{equation*}
\frac{M g \ell}{I_{3} \omega_{3}}\left(1-\frac{\Omega^{2} \rho}{g} \operatorname{ctn} \theta\right)=\Omega, \tag{8.93}
\end{equation*}
$$

which is a quadratic equation for Ω. We supplement this with the 'no slip' condition,

$$
\begin{equation*}
\omega_{3} \delta=\Omega(\rho+\ell \sin \theta) \tag{8.94}
\end{equation*}
$$

resulting in two equations for the two unknowns Ω and ρ.
Substituting for $\rho(\Omega)$ and solving for Ω, we obtain

$$
\begin{equation*}
\Omega=\frac{I_{3} \omega_{3}}{2 M \ell^{2} \cos \theta}\left\{1+\frac{M g \ell \delta}{I_{3}} \operatorname{ctn} \theta \pm \sqrt{\left(1+\frac{M g \ell \delta}{I_{3}} \operatorname{ctn} \theta\right)^{2}-\frac{4 M \ell^{2}}{I_{3}} \cdot \frac{M g \ell}{I_{3} \omega_{3}^{2}}}\right\} . \tag{8.95}
\end{equation*}
$$

This in order to have a real solution we must have

$$
\begin{equation*}
\omega_{3} \geq \frac{2 M \ell^{2} \sin \theta}{I_{3} \sin \theta+M g \ell \delta \cos \theta} \sqrt{\frac{g}{\ell}} . \tag{8.96}
\end{equation*}
$$

If the inequality is satisfied, there are two possible solutions for Ω, corresponding to fast and slow precession. Usually one observes slow precession. Note that it is possible that $\rho<0$, in which case the CM and the peg end lie on opposite sides of a circle from each other.

Figure 8.12: Circular rolling motion of the peg top.

8.7.2 Skidding tops

A skidding top experiences a frictional force which opposes the skidding velocity, until $v_{\text {skid }}=0$ and a pure rolling motion sets in. This force provides a torque which makes the top rise:

$$
\begin{equation*}
\dot{\theta}=-\frac{N_{\text {skid }}}{L}=-\frac{\mu M g \ell}{I_{3} \omega_{3}} . \tag{8.97}
\end{equation*}
$$

Suppose $\delta \approx 0$, in which case $\rho+\ell \sin \theta=0$, from Eqn. 8.94, and the point of contact remains fixed. Now recall the effective potential for a symmetric top with one point fixed:

$$
\begin{equation*}
U_{\mathrm{eff}}(\theta)=\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}+M g \ell \cos \theta \tag{8.98}
\end{equation*}
$$

We demand $U_{\text {eff }}^{\prime}\left(\theta_{0}\right)=0$, which yields

$$
\begin{equation*}
\cos \theta_{0} \cdot \beta^{2}-p_{\psi} \sin ^{2} \theta_{0} \cdot \beta+M g \ell I_{1} \sin ^{4} \theta_{0}=0 \tag{8.99}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta \equiv p_{\phi}-p_{\psi} \cos \theta_{0}=I_{1} \sin ^{2} \theta_{0} \dot{\phi} \tag{8.100}
\end{equation*}
$$

Solving the quadratic equation for β, we find

$$
\begin{equation*}
\dot{\phi}=\frac{I_{3} \omega_{3}}{2 I_{1} \cos \theta_{0}}\left(1 \pm \sqrt{1-\frac{4 M g \ell I_{1} \cos \theta_{0}}{I_{3}^{2} \omega_{3}^{2}}}\right) \tag{8.101}
\end{equation*}
$$

This is simply a recapitulation of Eqn. 8.95 , with $\delta=0$ and with $M \ell^{2}$ replaced by I_{1}. Note $I_{1}=M \ell^{2}$ by the parallel axis theorem if $I_{1}^{\mathrm{CM}}=0$. But to the extent that $I_{1}^{\mathrm{CM}} \neq 0$, our treatment of the peg top was incorrect. It turns out to be OK, however, if the precession is slow, i.e. if $\Omega / \omega_{3} \ll 1$.

Figure 8.13: The tippie-top behaves in a counterintuitive way. Once started spinning with the peg end up, the peg axis rotates downward. Eventually the peg scrapes the surface and the top rises to the vertical in an inverted orientation.

On a level surface, $\cos \theta_{0}>0$, and therefore we must have

$$
\begin{equation*}
\omega_{3} \geq \frac{2}{I_{3}} \sqrt{M g \ell I_{1} \cos \theta_{0}} \tag{8.102}
\end{equation*}
$$

Thus, if the top spins too slowly, it cannot maintain precession. Eqn. 8.101 says that there are two possible precession frequencies. When ω_{3} is large, we have

$$
\begin{equation*}
\dot{\phi}_{\text {slow }}=\frac{M g \ell}{I_{3} \omega_{3}}+\mathcal{O}\left(\omega_{3}^{-1}\right) \quad, \quad \dot{\phi}_{\text {fast }}=\frac{I_{3} \omega_{3}}{I_{1} \cos \theta_{0}}+\mathcal{O}\left(\omega_{3}^{-3}\right) \tag{8.103}
\end{equation*}
$$

Again, one usually observes slow precession.
A top with $\omega_{3}>\frac{2}{I_{3}} \sqrt{M g \ell I_{1}}$ may 'sleep' in the vertical position with $\theta_{0}=0$. Due to the constant action of frictional forces, ω_{3} will eventually drop below this value, at which time the vertical position is no longer stable. The top continues to slow down and eventually falls.

8.7.3 Tippie-top

A particularly nice example from the Barger and Olsson book is that of the tippie-top, a truncated sphere with a peg end, sketched in fig. 8.13 The CM is close to the center of curvature, which means that there is almost no gravitational torque acting on the top. The frictional force f opposes slipping, but as the top spins \boldsymbol{f} rotates with it, and hence the time-averaged frictional force $\langle\boldsymbol{f}\rangle \approx 0$ has almost no effect on the motion of the CM. A similar argument shows that the frictional torque, which is nearly horizontal, also time averages to zero:

$$
\begin{equation*}
\left\langle\frac{d \boldsymbol{L}}{d t}\right\rangle_{\mathrm{inertial}} \approx 0 \tag{8.104}
\end{equation*}
$$

In the body-fixed frame, however, \boldsymbol{N} is roughly constant, with magnitude $N \approx \mu M g R$, where R is the radius of curvature and μ the coefficient of sliding friction. Now we invoke

$$
\begin{equation*}
\boldsymbol{N}=\left.\frac{d \boldsymbol{L}}{d t}\right|_{\text {body }}+\boldsymbol{\omega} \times \boldsymbol{L} \tag{8.105}
\end{equation*}
$$

The second term on the RHS is very small, because the tippie-top is almost spherical, hence inertia tensor is very nearly diagonal, and this means

$$
\begin{equation*}
\boldsymbol{\omega} \times \boldsymbol{L} \approx \boldsymbol{\omega} \times I \boldsymbol{\omega}=0 \tag{8.106}
\end{equation*}
$$

Thus, $\dot{\boldsymbol{L}}_{\text {body }} \approx \boldsymbol{N}$, and taking the dot product of this equation with the unit vector $\hat{\boldsymbol{k}}$, we obtain

$$
\begin{equation*}
-N \sin \theta=\hat{\boldsymbol{k}} \cdot \boldsymbol{N}=\frac{d}{d t}\left(\hat{\boldsymbol{k}} \cdot \boldsymbol{L}_{\mathrm{body}}\right)=-L \sin \theta \dot{\theta} \tag{8.107}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\dot{\theta}=\frac{N}{L} \approx \frac{\mu M g R}{I \omega} . \tag{8.108}
\end{equation*}
$$

Once the stem scrapes the table, the tippie-top rises to the vertical just like any other rising top.

Chapter 9

Continuum Mechanics

9.1 Continuum Mechanics of the String

9.1.1 Lagrangian formulation

Consider a string of linear mass density $\mu(x)$ under tension $\tau(x) .{ }^{1}$ Let the string move in a plane, such that its shape is described by a smooth function $y(x)$, the vertical displacement of the string at horizontal position x, as depicted in fig. 9.1. The action is a functional of the height $y(x, t)$, where the coordinate along the string, x, and time, t, are the two independent variables. Consider a differential element of the string extending from x to $x+d x$. The change in length relative to the unstretched $(y=0)$ configuration is

$$
\begin{equation*}
d \ell=\sqrt{d x^{2}+d y^{2}}-d x=\frac{1}{2}\left(\frac{\partial y}{\partial x}\right)^{2} d x+\mathcal{O}\left(d x^{2}\right) . \tag{9.1}
\end{equation*}
$$

The differential potential energy is then

$$
\begin{equation*}
d U=\tau(x) d \ell=\frac{1}{2} \tau(x)\left(\frac{\partial y}{\partial x}\right)^{2} d x \tag{9.2}
\end{equation*}
$$

The differential kinetic energy is simply

$$
\begin{equation*}
d T=\frac{1}{2} \mu(x)\left(\frac{\partial y}{\partial t}\right)^{2} d x \tag{9.3}
\end{equation*}
$$

We can then write

$$
\begin{equation*}
L=\int d x \mathcal{L} \tag{9.4}
\end{equation*}
$$

where the Lagrangian density \mathcal{L} is

$$
\begin{equation*}
\mathcal{L}\left(y, \dot{y}, y^{\prime} ; x, t\right)=\frac{1}{2} \mu(x)\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} \tau(x)\left(\frac{\partial y}{\partial x}\right)^{2} \tag{9.5}
\end{equation*}
$$

Figure 9.1: A string is described by the vertical displacement field $y(x, t)$.

The action for the string is now a double integral,

$$
\begin{equation*}
S=\int_{t_{a}}^{t_{b}} d t \int_{x_{a}}^{x_{b}} d x \mathcal{L}\left(y, \dot{y}, y^{\prime} ; x, t\right) \tag{9.6}
\end{equation*}
$$

where $y(x, t)$ is the vertical displacement field. Typically, we have $\mathcal{L}=\frac{1}{2} \mu \dot{y}^{2}-\frac{1}{2} \tau y^{\prime 2}$. The first variation of S is

$$
\begin{align*}
& \delta S=\int_{t_{a}}^{t_{b}} d t \int_{x_{a}}^{x_{b}} d x\left[\frac{\partial \mathcal{L}}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial y^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right)\right] \delta y \tag{9.7}\\
&+\int_{x_{a}}^{x_{b}} d x\left[\frac{\partial \mathcal{L}}{\partial \dot{y}} \delta y\right]_{t=t_{a}}^{t=t_{b}}+\int_{t_{a}}^{t_{b}} d t\left[\frac{\partial \mathcal{L}}{\partial y^{\prime}} \delta y\right]_{x=x_{a}}^{x=x_{b}}
\end{align*}
$$

which simply recapitulates the general result from eqn. 9.181. There are two boundary terms, one of which is an integral over time and the other an integral over space. The first boundary term vanishes provided $\delta y\left(x, t_{a}\right)=\delta y\left(x, t_{b}\right)=0$. The second boundary term vanishes provided $\tau(x) y^{\prime}(x) \delta y(x)=0$ at $x=x_{a}$ and $x=x_{b}$, for all t. Assuming $\tau(x)$ does not vanish, this can happen in one of two ways: at each endpoint either $y(x)$ is fixed or $y^{\prime}(x)$ vanishes.

Assuming that either $y(x)$ is fixed or $y^{\prime}(x)=0$ at the endpoints $x=x_{a}$ and $x=x_{b}$, the Euler-Lagrange equations for the string are obtained by setting $\delta S=0$:

$$
\begin{align*}
0=\frac{\delta S}{\delta y(x, t)} & =\frac{\partial \mathcal{L}}{\partial y}-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right)-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial y^{\prime}}\right) \\
& =\frac{\partial}{\partial x}\left[\tau(x) \frac{\partial y}{\partial x}\right]-\mu(x) \frac{\partial^{2} y}{\partial t^{2}} \tag{9.8}
\end{align*}
$$

where $y^{\prime}=\frac{\partial y}{\partial x}$ and $\dot{y}=\frac{\partial y}{\partial t}$. When $\tau(x)=\tau$ and $\mu(x)=\mu$ are both constants, we obtain the Helmholtz equation,

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}}=0 \tag{9.9}
\end{equation*}
$$

[^17]which is the wave equation for the string, where $c=\sqrt{\tau / \mu}$ has dimensions of velocity. We will now see that c is the speed of wave propagation on the string.

9.1.2 d'Alembert's Solution to the Wave Equation

Let us define two new variables,

$$
\begin{equation*}
u \equiv x-c t \quad, \quad v \equiv x+c t \tag{9.10}
\end{equation*}
$$

We then have

$$
\begin{align*}
\frac{\partial}{\partial x} & =\frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v}=\frac{\partial}{\partial u}+\frac{\partial}{\partial v} \\
\frac{1}{c} \frac{\partial}{\partial t} & =\frac{1}{c} \frac{\partial u}{\partial t} \frac{\partial}{\partial u}+\frac{1}{c} \frac{\partial v}{\partial t} \frac{\partial}{\partial v}=-\frac{\partial}{\partial u}+\frac{\partial}{\partial v} \tag{9.11}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}=-4 \frac{\partial^{2}}{\partial u \partial v} . \tag{9.12}
\end{equation*}
$$

Thus, the wave equation may be solved:

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial u \partial v}=0 \quad \Longrightarrow \quad y(u, v)=f(u)+g(v) \tag{9.13}
\end{equation*}
$$

where $f(u)$ and $g(v)$ are arbitrary functions. For the moment, we work with an infinite string, so we have no spatial boundary conditions to satisfy. Note that $f(u)$ describes a right-moving disturbance, and $g(v)$ describes a left-moving disturbance:

$$
\begin{equation*}
y(x, t)=f(x-c t)+g(x+c t) \tag{9.14}
\end{equation*}
$$

We do, however, have boundary conditions in time. At $t=0$, the configuration of the string is given by $y(x, 0)$, and its instantaneous vertical velocity is $\dot{y}(x, 0)$. We then have

$$
\begin{align*}
& y(x, 0)=f(x)+g(x) \tag{9.15}\\
& \dot{y}(x, 0)=-c f^{\prime}(x)+c g^{\prime}(x)
\end{align*}
$$

hence

$$
\begin{align*}
& f^{\prime}(x)=\frac{1}{2} y^{\prime}(x, 0)-\frac{1}{2 c} \dot{y}(x, 0) \tag{9.16}\\
& g^{\prime}(x)=\frac{1}{2} y^{\prime}(x, 0)+\frac{1}{2 c} \dot{y}(x, 0)
\end{align*}
$$

and integrating we obtain the right and left moving components

$$
\begin{align*}
& f(\xi)=\frac{1}{2} y(\xi, 0)-\frac{1}{2 c} \int_{0}^{\xi} d \xi^{\prime} \dot{y}\left(\xi^{\prime}, 0\right)-\mathcal{C} \tag{9.17}\\
& g(\xi)=\frac{1}{2} y(\xi, 0)+\frac{1}{2 c} \int_{0}^{\xi} d \xi^{\prime} \dot{y}\left(\xi^{\prime}, 0\right)+\mathcal{C}
\end{align*}
$$

where \mathcal{C} is an arbitrary constant. Adding these together, we obtain the full solution

$$
\begin{equation*}
y(x, t)=\frac{1}{2}[y(x-c t, 0)+y(x+c t, 0)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} d \xi \dot{y}(\xi, 0) \tag{9.18}
\end{equation*}
$$

valid for all times.

9.1.3 Energy density and energy current

The Hamiltonian density for a string is

$$
\begin{equation*}
\mathcal{H}=\wp \dot{y}-\mathcal{L}, \tag{9.19}
\end{equation*}
$$

where $\wp=\partial \mathcal{L} / \partial \dot{y}=\mu \dot{y}$ is the momentum density transverse to the string. Thus,

$$
\begin{equation*}
\mathcal{H}=\frac{\wp^{2}}{2 \mu}+\frac{1}{2} \tau y^{\prime 2} . \tag{9.20}
\end{equation*}
$$

Expressed in terms of \dot{y} rather than \wp, this is the energy density \mathcal{E},

$$
\begin{equation*}
\mathcal{E}=\frac{1}{2} \mu \dot{y}^{2}+\frac{1}{2} \tau y^{\prime 2} . \tag{9.21}
\end{equation*}
$$

We now evaluate $\dot{\mathcal{E}}$ for a solution to the equations of motion:

$$
\begin{align*}
\frac{\partial \mathcal{E}}{\partial t}=\mu \frac{\partial y}{\partial t} \frac{\partial^{2} y}{\partial t^{2}}+\tau \frac{\partial y}{\partial x} \frac{\partial^{2} y}{\partial t \partial x} & =\frac{\partial y}{\partial t} \frac{\partial}{\partial x}\left(\tau \frac{\partial y}{\partial x}\right)+\tau \frac{\partial y}{\partial x} \frac{\partial^{2} y}{\partial t \partial x} \tag{9.22}\\
& =\frac{\partial}{\partial x}\left[\tau \frac{\partial y}{\partial x} \frac{\partial y}{\partial t}\right] \equiv-\frac{\partial j_{\mathcal{E}}}{\partial x}
\end{align*}
$$

where the energy current density (or energy flux) along the string is

$$
\begin{equation*}
j_{\mathcal{E}}=-\tau \frac{\partial y}{\partial x} \frac{\partial y}{\partial t} . \tag{9.23}
\end{equation*}
$$

We therefore have that solutions of the equation of motion also obey the energy continuity equation

$$
\begin{equation*}
\frac{\partial \mathcal{E}}{\partial t}+\frac{\partial j_{\mathcal{E}}}{\partial x}=0 \tag{9.24}
\end{equation*}
$$

Let us integrate the above equation between points x_{1} and x_{2}. We obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{x_{1}}^{x_{2}} d x \mathcal{E}(x, t)=-\int_{x_{1}}^{x_{2}} d x \frac{\partial j_{\mathcal{E}}(x, t)}{\partial x}=j_{\mathcal{E}}\left(x_{1}, t\right)-j_{\mathcal{E}}\left(x_{2}, t\right) \tag{9.25}
\end{equation*}
$$

which says that the time rate of change of the energy contained in the interval $\left[x_{1}, x_{2}\right]$ is equal to the difference between the entering and exiting energy flux.

When $\tau(x)=\tau$ and $\mu(x)=\mu$, we have

$$
\begin{equation*}
y(x, t)=f(x-c t)+g(x+c t) \tag{9.26}
\end{equation*}
$$

and we find

$$
\begin{align*}
\mathcal{E}(x, t) & =\tau\left[f^{\prime}(x-c t)\right]^{2}+\tau\left[g^{\prime}(x+c t)\right]^{2} \tag{9.27}\\
j_{\mathcal{E}}(x, t) & =c \tau\left[f^{\prime}(x-c t)\right]^{2}-c \tau\left[g^{\prime}(x+c t)\right]^{2}
\end{align*}
$$

which are each sums over right-moving and left-moving contributions.
Another example is the Klein-Gordon system, for which the Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mu \dot{y}^{2}-\frac{1}{2} \tau \prime^{\prime 2}-\frac{1}{2} \beta y^{2} . \tag{9.28}
\end{equation*}
$$

One obtains the equation of motion $\mu \ddot{y}=\tau y^{\prime \prime}-\beta y$ and the energy density

$$
\begin{equation*}
\mathcal{E}=\frac{1}{2} \mu \dot{y}^{2}+\frac{1}{2} \tau y^{\prime 2}+\frac{1}{2} \beta y^{2} . \tag{9.29}
\end{equation*}
$$

It is left as an exercise to the student to check that the energy current, $j_{\mathcal{E}}$, is the same as in the Helmholtz case: $j_{\mathcal{E}}=-\tau \dot{y} y^{\prime}$. Energy continuity is again given by $\partial_{t} \mathcal{E}+\partial_{x} j_{\mathcal{E}}=0$. Note that solutions to the Klein-Gordon equation of motion are not of the D'Alembert form.

Momentum flux density and stress energy tensor

Let's now examine the spatial derivative \mathcal{E}^{\prime}. For the Helmholtz equation, $\mathcal{E}=\frac{1}{2} \mu \dot{y}^{2}+\frac{1}{2} \tau y^{\prime 2}$. We assume $\mu(x)=\mu$ and $\tau(x)=\tau$ are constant. Then

$$
\begin{equation*}
\frac{\partial \mathcal{E}}{\partial x}=\mu \dot{y} \dot{y}^{\prime}+\tau y^{\prime} y^{\prime \prime}=\frac{\partial}{\partial t}\left(\mu \dot{y} y^{\prime}\right) \tag{9.30}
\end{equation*}
$$

where we have invoked the equation of motion $\tau y^{\prime \prime}=\mu \ddot{y}$. Thus, we may write

$$
\begin{equation*}
\frac{\partial \Pi}{\partial t}+\frac{\partial j_{\Pi}}{\partial x}=0 \tag{9.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\Pi=-\mu \frac{\partial y}{\partial t} \frac{\partial y}{\partial x}=\frac{j_{\mathcal{E}}}{c^{2}} \quad, \quad j_{\Pi}=\mathcal{E} \tag{9.32}
\end{equation*}
$$

Π is the momentum flux density along the string. Eqn. 9.31 is thus a continuity equation for momentum, with the energy density playing the role of the momentum current. Note that Π and $\wp=\mu \dot{y}$ have the same dimensions, but the former is the momentum density along the string while the latter is the momentum density transverse to the string. We may now write

$$
\left(\begin{array}{ll}
\frac{\partial}{\partial t} & \frac{\partial}{\partial x}
\end{array}\right) \overbrace{\left(\begin{array}{ll}
\mathcal{E} & -\Pi \tag{9.33}\\
j_{\mathcal{E}} & -j_{\Pi}
\end{array}\right)}^{T_{\nu}^{\mu}}=0,
$$

where $\Pi=j_{\mathcal{E}} / c^{2}$ and $j_{\Pi}=\mathcal{E}$ for the Helmholtz model. In component notation this is neatly expressed as $\partial_{\mu} T^{\mu}{ }_{\nu}=0$, where $T^{\mu}{ }_{\nu}$ is the stress-energy tensor and $\partial_{\mu}=\left(\partial_{t}, \partial_{x}\right)$.
Below in eqn. 9.184, we will see how the general result for the stress-energy tensor is

$$
\begin{equation*}
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} y\right)} \partial_{\nu} y-\delta_{\nu}^{\mu} \mathcal{L}, \tag{9.34}
\end{equation*}
$$

where $\mu, \nu \in\{0,1\}$. For $\mathcal{L}=\frac{1}{2} \mu \dot{y}^{2}-\frac{1}{2} \tau y^{\prime 2}$, we recover the stress-energy tensor for the Helmholtz model in eqn. 9.33. For the Klein-Gordon model, $\mathcal{L}=\frac{1}{2} \mu \dot{y}^{2}-\frac{1}{2} \tau y^{\prime 2}-\frac{1}{2} \beta y^{2}$, we find once again $T_{1}^{0}=-\Pi$ but $T_{1}^{1}=-\frac{1}{2} \mu \dot{y}^{2}-\frac{1}{2} \tau y^{\prime 2}+\frac{1}{2} \beta y^{2}$ so $T_{1}{ }_{1} \neq-\mathcal{E}$.

Energy and momentum continuity in electrodynamics

A similar energy continuity equation pertains in electrodynamics. Recall $\mathcal{E}=\frac{1}{8 \pi}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right)$ is the energy density. We then have

$$
\begin{align*}
\frac{\partial \mathcal{E}}{\partial t} & =\frac{1}{4 \pi}\left(\boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t}+\boldsymbol{B} \cdot \frac{\partial \boldsymbol{B}}{\partial t}\right) \\
& =\frac{1}{4 \pi} \boldsymbol{E} \cdot(c \boldsymbol{\nabla} \times \boldsymbol{B}-4 \pi \boldsymbol{J})+\frac{1}{4 \pi} \boldsymbol{B} \cdot(-c \boldsymbol{\nabla} \times \boldsymbol{E}) \tag{9.35}\\
& =-\boldsymbol{E} \cdot \boldsymbol{J}-\boldsymbol{\nabla} \cdot \overbrace{\left(\frac{c}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}\right)}^{\text {Poynting vector } \boldsymbol{S}} .
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial \mathcal{E}}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{S}=-\boldsymbol{J} \cdot \boldsymbol{E} \tag{9.36}
\end{equation*}
$$

which resembles a continuity equation, but with a 'sink' term on the RHS to account for the local power dissipated. If $\boldsymbol{J}=\sigma \boldsymbol{E}$, where σ is the conductivity, then $\boldsymbol{J} \cdot \boldsymbol{E}=\sigma \boldsymbol{E}^{2}$, which accounts for Ohmic dissipation.
The stress-energy tensor for Maxwell theory is given by

$$
T^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\mathcal{E} & -S_{x} / c & -S_{y} / c & -S_{z} / c \tag{9.37}\\
S_{x} / c & \sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
S_{y} / c & \sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
S_{z} / c & \sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)
$$

where $\mathcal{E}=\frac{1}{8 \pi}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right)$ is the energy density, $\boldsymbol{S}=\frac{c}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}$ is the Poynting vector, and

$$
\begin{equation*}
\sigma_{i j}=\frac{1}{4 \pi}\left\{-E_{i} E_{j}-B_{i} B_{j}+\frac{1}{2} \delta_{i j}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right)\right\} \tag{9.38}
\end{equation*}
$$

is the Maxwell stress tensor. One again has $\partial_{\mu} T_{\nu}^{\mu}=0$, this time with $\partial_{\mu}=\left(\frac{1}{c} \partial_{t}, \partial_{x}, \partial_{y}, \partial_{z}\right)$.

9.1.4 Reflection at an interface

Consider a semi-infinite string on the interval $[0, \infty]$, with $y(0, t)=0$. We can still invoke d'Alembert's solution, $y(x, t)=f(x-c t)+g(x+c t)$, but we must demand

$$
\begin{equation*}
y(0, t)=f(-c t)+g(c t)=0 \quad \Rightarrow \quad f(\xi)=-g(-\xi) . \tag{9.39}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
y(x, t)=g(c t+x)-g(c t-x) . \tag{9.40}
\end{equation*}
$$

Now suppose $g(\xi)$ describes a pulse, and is nonzero only within a neighborhood of $\xi=0$. For large negative values of t, the right-moving part, $-g(c t-x)$, is negligible everywhere, since $x>0$ means that the argument $c t-x$ is always large and negative. On the other hand, the left moving part $g(c t+x)$ is nonzero for $x \approx-c t>0$. Thus, for $t<0$ we have a left-moving pulse incident from the right. For $t>0$, the situation is reversed, and the left-moving component is negligible, and we have a right moving reflected wave. However, the minus sign in eqn. 9.39 means that the reflected wave is inverted.

If instead of fixing the endpoint at $x=0$ we attach this end of the string to a massless ring which frictionlessly slides up and down a vertical post, then we must have $y^{\prime}(0, t)=0$, else there is a finite vertical force on the massless ring, resulting in infinite acceleration. We again write $y(x, t)=f(x-c t)+$ $g(x+c t)$, and we invoke

$$
\begin{equation*}
y^{\prime}(0, t)=f^{\prime}(-c t)+g^{\prime}(c t) \quad \Rightarrow \quad f^{\prime}(\xi)=-g^{\prime}(-\xi) \tag{9.41}
\end{equation*}
$$

which, upon integration, yields $f(\xi)=g(-\xi)$, and therefore

$$
\begin{equation*}
y(x, t)=g(c t+x)+g(c t-x) \tag{9.42}
\end{equation*}
$$

The reflected pulse is now 'right-side up', in contrast to the situation with a fixed endpoint.

Figure 9.2: Reflection of a pulse at an interface at $x=0$, with $y(0, t)=0$.

Figure 9.3: Reflection of a pulse at an interface at $x=0$, with $y^{\prime}(0, t)=0$.

9.1.5 Mass point on a string

Next, consider the case depicted in fig. 9.4, where a point mass m is affixed to an infinite string at $x=0$. Let us suppose that at large negative values of t, a right moving wave $f(c t-x)$ is incident from the left. The full solution may then be written as a sum of incident, reflected, and transmitted waves:

$$
\begin{array}{ll}
x<0 & : \quad y(x, t)=f(c t-x)+g(c t+x) \tag{9.43}\\
x>0 & : \quad y(x, t)=h(c t-x) .
\end{array}
$$

At $x=0$, we invoke Newton's second Law, $F=m a$:

$$
\begin{equation*}
m \ddot{y}(0, t)=\tau y^{\prime}\left(0^{+}, t\right)-\tau y^{\prime}\left(0^{-}, t\right) . \tag{9.44}
\end{equation*}
$$

Any discontinuity in the derivative $y^{\prime}(x, t)$ at $x=0$ results in an acceleration of the point mass. Note that

$$
\begin{equation*}
y^{\prime}\left(0^{-}, t\right)=-f^{\prime}(c t)+g^{\prime}(c t) \quad, \quad y^{\prime}\left(0^{+}, t\right)=-h^{\prime}(c t) . \tag{9.45}
\end{equation*}
$$

Further invoking continuity at $x=0$, i.e. $y\left(0^{-}, t\right)=y\left(0^{+}, t\right)$, we have

$$
\begin{equation*}
h(\xi)=f(\xi)+g(\xi), \tag{9.46}
\end{equation*}
$$

and eqn. 9.44 becomes

$$
\begin{equation*}
g^{\prime \prime}(\xi)+\frac{2 \tau}{m c^{2}} g^{\prime}(\xi)=-f^{\prime \prime}(\xi) \tag{9.47}
\end{equation*}
$$

We solve this equation by Fourier analysis:

$$
\begin{equation*}
f(\xi)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{f}(k) e^{i k \xi} \quad, \quad \hat{f}(k)=\int_{-\infty}^{\infty} d \xi f(\xi) e^{-i k \xi} \tag{9.48}
\end{equation*}
$$

Defining $Q \equiv 2 \tau / m c^{2}=2 \mu / m$, we have

$$
\begin{equation*}
\left[-k^{2}+i Q k\right] \hat{g}(k)=k^{2} \hat{f}(k) \tag{9.49}
\end{equation*}
$$

We may now write $\hat{g}(k)=\hat{r}(k) \hat{f}(k)$ and $\hat{h}(k)=\hat{t}(k) \hat{f}(k)$, where

$$
\begin{equation*}
\hat{r}(k)=-\frac{k}{k-i Q} \quad, \quad \hat{t}(k)=-\frac{i Q}{k-i Q} \tag{9.50}
\end{equation*}
$$

are the reflection and transmission amplitudes, respectively.

Figure 9.4: Reflection and transmission at an impurity. A point mass m is affixed to an infinite string at $x=0$.

Energy conservation

Note that $\hat{t}(k)=1+\hat{r}(k)$. This relation follows from continuity at $x=0$, which entails $h(\xi)=f(\xi)+g(\xi)$, hence $\hat{h}(k)=\hat{f}(k)+\hat{g}(k)$. What is also true - if there is no dissipation - is

$$
\begin{equation*}
|\hat{r}(k)|^{2}+|\hat{t}(k)|^{2}=1, \tag{9.51}
\end{equation*}
$$

which is a statement of energy conservation. Integrating the energy density of the string itself, one finds

$$
\begin{align*}
E_{\text {string }}(t) & =\int_{-\infty}^{\infty} d x\left(\frac{1}{2} \mu \dot{y}^{2}+\frac{1}{2} \tau y^{\prime 2}\right) \\
& =\tau \int_{c t}^{\infty} d \xi\left[f^{\prime}(\xi)\right]^{2}+\tau \int_{-\infty}^{c t} d \xi\left(\left[g^{\prime}(\xi)\right]^{2}+\left[h^{\prime}(\xi)\right]^{2}\right) \tag{9.52}
\end{align*}
$$

What is missing from this expression is the kinetic energy of the mass point. However, as $t \rightarrow \pm \infty$, the kinetic energy of the mass point vanishes; it starts from rest, and as $t \rightarrow \infty$ it shakes off all its energy into waves on the string. Therefore

$$
\begin{align*}
& E_{\text {string }}(-\infty)=\tau \int_{-\infty}^{\infty} d \xi\left[f^{\prime}(\xi)\right]^{2}=\tau \int_{-\infty}^{\infty} \frac{d k}{2 \pi} k^{2}|\hat{f}(k)|^{2} \\
& E_{\text {string }}(+\infty)=\tau \int_{-\infty}^{\infty} d \xi\left(\left[g^{\prime}(\xi)\right]^{2}+\left[h^{\prime}(\xi)\right]^{2}\right)=\tau \int_{-\infty}^{\infty} \frac{d k}{2 \pi} k^{2}\left(|\hat{r}(k)|^{2}+|\hat{t}(k)|^{2}\right)|\hat{f}(k)|^{2} \tag{9.53}
\end{align*}
$$

and since the profile $\hat{f}(k)$ is arbitrary we conclude that eqn. 9.51 must hold for every possible value of the wavevector k. It must be stressed energy conservation holds only if there is no dissipation. Dissipation could be modeled by adding a friction term $-\gamma \dot{y}(0, t)$ to the RHS of eqn. 9.44. In this case, $d E_{\text {string }}(t) / d t$ would be negative, corresponding to the energy loss due to friction.

Real space form of the solution

Getting back to our solution, in real space we have

$$
\begin{align*}
h(\xi) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{t}(k) \hat{f}(k) e^{i k \xi} \\
& =\int_{-\infty}^{\infty} d \xi^{\prime}\left[\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{t}(k) e^{i k\left(\xi-\xi^{\prime}\right)}\right] f\left(\xi^{\prime}\right) \equiv \int_{-\infty}^{\infty} d \xi^{\prime} t\left(\xi-\xi^{\prime}\right) f\left(\xi^{\prime}\right) \tag{9.54}
\end{align*}
$$

where

$$
\begin{equation*}
t\left(\xi-\xi^{\prime}\right)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{t}(k) e^{i k\left(\xi-\xi^{\prime}\right)} \tag{9.55}
\end{equation*}
$$

is the transmission kernel in real space. For our example with $\hat{t}(k)=-i Q /(k-i Q)$, the integral is done easily using the method of contour integration:

$$
\begin{equation*}
t\left(\xi-\xi^{\prime}\right)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \frac{-i Q}{k-i Q} e^{i k\left(\xi-\xi^{\prime}\right)}=Q e^{-Q\left(\xi-\xi^{\prime}\right)} \Theta\left(\xi-\xi^{\prime}\right) \tag{9.56}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
h(\xi)=Q \int_{-\infty}^{\xi} d \xi^{\prime} e^{-Q\left(\xi-\xi^{\prime}\right)} f\left(\xi^{\prime}\right) \tag{9.57}
\end{equation*}
$$

and of course $g(\xi)=h(\xi)-f(\xi)$. Note that $m=\infty$ means $Q=0$, in which case $\hat{r}(k)=-1$ and $\hat{t}(k)=0$. Thus we recover the inversion of the pulse shape under reflection found earlier.

For example, let the incident pulse shape be $f(\xi)=b \Theta(a-|\xi|)$. Then

$$
\begin{align*}
h(\xi) & =Q \int_{-\infty}^{\xi} d \xi^{\prime} e^{-Q\left(\xi-\xi^{\prime}\right)} b \Theta\left(a-\xi^{\prime}\right) \Theta\left(a+\xi^{\prime}\right) \tag{9.58}\\
& =b e^{-Q \xi}\left[e^{Q \min (a, \xi)}-e^{-Q a}\right] \Theta(\xi+a) .
\end{align*}
$$

Taking cases,

$$
h(\xi)= \begin{cases}0 & \text { if } \xi<-a \tag{9.59}\\ b\left(1-e^{-Q(a+\xi)}\right) & \text { if }-a<\xi<a \\ 2 b e^{-Q \xi} \sinh (Q a) & \text { if } \xi>a\end{cases}
$$

In fig. 9.5 we show the reflection and transmission of this square pulse for two different values of $Q a$.

Figure 9.5: Reflection and transmission of a square wave pulse by a point mass at $x=0$. The configuration of the string is shown for six different times, for $Q a=0.5$ (left panel; note $\kappa \equiv Q$) and $Q a=5.0$ (right panel). Note that the $Q a=0.5$ case, which corresponds to a large mass $m=2 \mu / Q$, results in strong reflection with inversion, and weak transmission. For large Q, corresponding to small mass m, the reflection is weak and the transmission is strong.

9.1.6 Interface between strings of different mass density

Consider the situation in fig. 9.6, where the string for $x<0$ is of density μ_{L} and for $x>0$ is of density μ_{R}. The d'Alembert solution in the two regions, with an incoming wave from the left, is

$$
\begin{array}{ll}
x<0: & y(x, t)=f\left(c_{\mathrm{L}} t-x\right)+g\left(c_{\mathrm{L}} t+x\right) \tag{9.60}\\
x>0: & y(x, t)=h\left(c_{\mathrm{R}} t-x\right) .
\end{array}
$$

At $x=0$ we have

$$
\begin{align*}
f\left(c_{\mathrm{L}} t\right)+g\left(c_{\mathrm{L}} t\right) & =h\left(c_{\mathrm{R}} t\right) \tag{9.61}\\
-f^{\prime}\left(c_{\mathrm{L}} t\right)+g^{\prime}\left(c_{\mathrm{L}} t\right) & =-h^{\prime}\left(c_{\mathrm{R}} t\right),
\end{align*}
$$

where the second equation follows from $\tau y^{\prime}\left(0^{+}, t\right)=\tau y^{\prime}\left(0^{-}, t\right)$, so there is no finite vertical force on the infinitesimal interval bounding $x=0$, which contains infinitesimal mass. Defining $\alpha \equiv c_{\mathrm{R}} / c_{\mathrm{L}}$, we integrate the second of these equations and have

$$
\begin{equation*}
f(\xi)+g(\xi)=h(\alpha \xi) \quad, \quad f(\xi)-g(\xi)=\alpha^{-1} h(\alpha \xi) \tag{9.62}
\end{equation*}
$$

Figure 9.6: A string formed from two semi-infinite regions of different densities.

Note that $y(\pm \infty, 0)=0$ fixes the constant of integration. The solution is then

$$
\begin{equation*}
g(\xi)=\frac{\alpha-1}{\alpha+1} f(\xi) \quad, \quad h(\xi)=\frac{2 \alpha}{\alpha+1} f(\xi / \alpha) \tag{9.63}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& x<0: \quad y(x, t)=f\left(c_{\mathrm{L}} t-x\right)+\left(\frac{\alpha-1}{\alpha+1}\right) f\left(c_{\mathrm{L}} t+x\right) \\
& x>0: \quad y(x, t)=\frac{2 \alpha}{\alpha+1} f\left(\left(c_{\mathrm{R}} t-x\right) / \alpha\right) . \tag{9.64}
\end{align*}
$$

It is instrutive to compute the total energy in the string. For large negative values of the time t, the entire disturbance is confined to the region $x<0$. The energy is

$$
\begin{equation*}
E(-\infty)=\tau \int_{-\infty}^{\infty} d \xi\left[f^{\prime}(\xi)\right]^{2} \tag{9.65}
\end{equation*}
$$

For large positive times, the wave consists of the left-moving reflected $g(\xi)$ component in the region $x<0$ and the right-moving transmitted component $h(\xi)$ in the region $x>0$. The energy in the reflected wave is

$$
\begin{equation*}
E_{\mathrm{L}}(+\infty)=\tau\left(\frac{\alpha-1}{\alpha+1}\right)^{2} \int_{-\infty}^{\infty} d \xi\left[f^{\prime}(\xi)\right]^{2} \tag{9.66}
\end{equation*}
$$

For the transmitted portion, we use

$$
\begin{equation*}
y^{\prime}(x>0, t)=\frac{2}{\alpha+1} f^{\prime}\left(\left(c_{\mathrm{R}} t-x\right) / \alpha\right) \tag{9.67}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
E_{\mathrm{R}}(\infty)=\frac{4 \tau}{(\alpha+1)^{2}} \int_{-\infty}^{\infty} d \xi\left[f^{\prime}(\xi / \alpha)\right]^{2}=\frac{4 \alpha \tau}{(\alpha+1)^{2}} \int_{-\infty}^{\infty} d \xi\left[f^{\prime}(\xi)\right]^{2} \tag{9.68}
\end{equation*}
$$

Thus, $E_{\mathrm{L}}(\infty)+E_{\mathrm{R}}(\infty)=E(-\infty)$, and energy is conserved.

9.1.7 Finite Strings : Bernoulli's Solution

Suppose $x_{a}=0$ and $x_{b}=L$ are the boundaries of the string, where $y(0, t)=y(L, t)=0$. Again we write

$$
\begin{equation*}
y(x, t)=f(x-c t)+g(x+c t) . \tag{9.69}
\end{equation*}
$$

Applying the boundary condition at $x_{a}=0$ gives, as earlier,

$$
\begin{equation*}
y(x, t)=g(c t+x)-g(c t-x) . \tag{9.70}
\end{equation*}
$$

Next, we apply the boundary condition at $x_{b}=L$, which results in

$$
\begin{equation*}
g(c t+L)-g(c t-L)=0 \quad \Longrightarrow \quad g(\xi)=g(\xi+2 L) . \tag{9.71}
\end{equation*}
$$

Thus, $g(\xi)$ is periodic, with period $2 L$. Any such function may be written as a Fourier sum,

$$
\begin{equation*}
g(\xi)=\sum_{n=1}^{\infty}\left\{\mathcal{A}_{n} \cos \left(\frac{n \pi \xi}{L}\right)+\mathcal{B}_{n} \sin \left(\frac{n \pi \xi}{L}\right)\right\} \tag{9.72}
\end{equation*}
$$

The full solution for $y(x, t)$ is then

$$
\begin{align*}
y(x, t) & =g(c t+x)-g(c t-x) \\
& =\left(\frac{2}{\mu L}\right)^{1 / 2} \sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cos \left(\frac{n \pi c t}{L}\right)+B_{n} \sin \left(\frac{n \pi c t}{L}\right)\right\}, \tag{9.73}
\end{align*}
$$

where $A_{n}=\sqrt{2 \mu L} \mathcal{B}_{n}$ and $B_{n}=-\sqrt{2 \mu L} \mathcal{A}_{n}$. This is known as Bernoulli's solution.
We define the functions

$$
\begin{equation*}
\psi_{n}(x) \equiv\left(\frac{2}{\mu L}\right)^{1 / 2} \sin \left(\frac{n \pi x}{L}\right) \tag{9.74}
\end{equation*}
$$

We also write

$$
\begin{equation*}
k_{n} \equiv \frac{n \pi}{L} \quad, \quad \omega_{n} \equiv \frac{n \pi c}{L} \quad, \quad n=1,2,3, \ldots, \infty . \tag{9.75}
\end{equation*}
$$

Thus, $\psi_{n}(x)=\sqrt{2 / \mu L} \sin \left(k_{n} x\right)$ has $(n+1)$ nodes at $x=j L / n$, for $j \in\{0, \ldots, n\}$. Note that

$$
\begin{equation*}
\left\langle\psi_{m} \mid \psi_{n}\right\rangle \equiv \int_{0}^{L} d x \mu \psi_{m}(x) \psi_{n}(x)=\delta_{m n} \tag{9.76}
\end{equation*}
$$

Furthermore, this basis is complete:

$$
\begin{equation*}
\mu \sum_{n=1}^{\infty} \psi_{n}(x) \psi_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.77}
\end{equation*}
$$

Our general solution is thus equivalent to

$$
\begin{equation*}
y(x, 0)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x) \quad, \quad \dot{y}(x, 0)=\sum_{n=1}^{\infty} \omega_{n} B_{n} \psi_{n}(x) . \tag{9.78}
\end{equation*}
$$

Figure 9.7: Evolution of a string with fixed ends starting from an isosceles triangle shape.

The Fourier coefficients $\left\{A_{n}, B_{n}\right\}$ may be extracted from the initial data using the orthonormality of the basis functions and their associated resolution of unity:

$$
\begin{equation*}
A_{n}=\int_{0}^{L} d x \mu \psi_{n}(x) y(x, 0) \quad, \quad B_{n}=\frac{1}{\omega_{n}} \int_{0}^{L} d x \mu \psi_{n}(x) \dot{y}(x, 0) . \tag{9.79}
\end{equation*}
$$

As an example, suppose our initial configuration is a triangle, with

$$
y(x, 0)= \begin{cases}2 b x / L & \text { if } 0 \leq x \leq \frac{1}{2} L \tag{9.80}\\ 2 b(L-x) / L & \text { if } \frac{1}{2} L \leq x \leq L\end{cases}
$$

and $\dot{y}(x, 0)=0$. Then $B_{n}=0$ for all n, while

$$
\begin{align*}
A_{n} & =\left(\frac{2 \mu}{L}\right)^{1 / 2} \cdot \frac{2 b}{L}\left\{\int_{0}^{L / 2} d x x \sin \left(\frac{n \pi x}{L}\right)+\int_{L / 2}^{L} d x(L-x) \sin \left(\frac{n \pi x}{L}\right)\right\} \tag{9.81}\\
& =(2 \mu L)^{1 / 2} \cdot \frac{4 b}{n^{2} \pi^{2}} \sin \left(\frac{1}{2} n \pi\right),
\end{align*}
$$

after changing variables to $x=L \theta / n \pi$ and using $\theta \sin \theta d \theta=d(\sin \theta-\theta \cos \theta)$. Another way to write this is to separately give the results for even and odd coefficients:

$$
\begin{equation*}
A_{2 k}=0 \quad, \quad A_{2 k+1}=\frac{4 b}{\pi^{2}}(2 \mu L)^{1 / 2} \cdot \frac{(-1)^{k}}{(2 k+1)^{2}} \tag{9.82}
\end{equation*}
$$

Note that each $\psi_{2 k}(x)=-\psi_{2 k}(L-x)$ is antisymmetric about the midpoint $x=\frac{1}{2} L$, for all k. Since our initial conditions are that $y(x, 0)$ is symmetric about $x=\frac{1}{2} L$, none of the even order eigenfunctions can enter into the expansion, precisely as we have found. The d'Alembert solution to this problem is particularly simple and is shown in fig. 9.7. Note that $g(x)=\frac{1}{2} y(x, 0)$ must be extended to the entire real line. We know that $g(x)=g(x+2 L)$ is periodic with spatial period $2 L$, but how do we extend $g(x)$ from the interval $[0, L]$ to the interval $[-L, 0]$? To do this, we use $y(x, 0)=g(x)-g(-x)$, which says that $g(x)$ must be antisymmetric, i.e. $g(x)=-g(-x)$. Equivalently, $\dot{y}(x, 0)=c g^{\prime}(x)-c g^{\prime}(-x)=0$, which integrates to $g(x)=-g(-x)$.

9.2 Sturm-Liouville Theory

9.2.1 Mathematical formalism

Consider the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mu(x) \dot{y}^{2}-\frac{1}{2} \tau(x) y^{\prime 2}-\frac{1}{2} v(x) y^{2} . \tag{9.83}
\end{equation*}
$$

The last term is new and has the physical interpretation of a harmonic potential which attracts the string to the line $y=0$. The Euler-Lagrange equations are then

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left[\tau(x) \frac{\partial y}{\partial x}\right]+v(x) y=-\mu(x) \frac{\partial^{2} y}{\partial t^{2}} . \tag{9.84}
\end{equation*}
$$

This equation is invariant under time translation. Thus, if $y(x, t)$ is a solution, then so is $y\left(x, t+t_{0}\right)$, for any t_{0}. This means that the solutions can be chosen to be eigenstates of the operator ∂_{t}, which is to say $y(x, t)=\psi(x) e^{-i \omega t}$. Because the coefficients are real, both y and y^{*} are solutions, and taking linear combinations we have

$$
\begin{equation*}
y(x, t)=\psi(x) \cos (\omega t+\phi) . \tag{9.85}
\end{equation*}
$$

Plugging this into eqn. 9.84, we obtain

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \psi^{\prime}(x)\right]+v(x) \psi(x)=\omega^{2} \mu(x) \psi(x) \tag{9.86}
\end{equation*}
$$

This is the Sturm-Liouville equation. There are four types of boundary conditions that we shall consider:

1. Fixed endpoint: $\psi(x)=0$, where $x=x_{a, b}$.
2. Natural: $\tau(x) \psi^{\prime}(x)=0$, where $x=x_{a, b}$.
3. Periodic: $\psi(x)=\psi(x+L)$, where $L=x_{b}-x_{a}$, with $\tau(x)=\tau(x+L)$ as well.
4. Mixed homogeneous: $\alpha \psi(x)+\beta \psi^{\prime}(x)=0$, where $x=x_{a, b}$.

The Sturm-Liouville equation is an eigenvalue equation. The eigenfunctions $\left\{\psi_{n}(x)\right\}$ satisfy

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \psi_{n}^{\prime}(x)\right]+v(x) \psi_{n}(x)=\omega_{n}^{2} \mu(x) \psi_{n}(x) \tag{9.87}
\end{equation*}
$$

Now suppose we have a second solution $\psi_{m}(x)$, satisfying

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \psi_{m}^{\prime}(x)\right]+v(x) \psi_{m}(x)=\omega_{m}^{2} \mu(x) \psi_{m}(x) \tag{9.88}
\end{equation*}
$$

Now multiply (9.87)* by $\psi_{m}(x)$ and (9.88) by $\psi_{n}^{*}(x)$ and subtract, yielding

$$
\begin{align*}
\psi_{n}^{*} \frac{d}{d x}\left[\tau \psi_{m}^{\prime}\right]-\psi_{m} \frac{d}{d x}\left[\tau \psi_{n}^{\prime *}\right] & =\left(\omega_{n}^{* 2}-\omega_{m}^{2}\right) \mu \psi_{m} \psi_{n}^{*} \\
& =\frac{d}{d x}\left[\tau \psi_{n}^{*} \psi_{m}^{\prime}-\tau \psi_{m} \psi_{n}^{\prime *}\right] . \tag{9.89}
\end{align*}
$$

We integrate this equation over the length of the string, to get

$$
\begin{equation*}
\left(\omega_{n}^{* 2}-\omega_{m}^{2}\right) \int_{x_{a}}^{x_{b}} d x \mu(x) \psi_{n}^{*}(x) \psi_{m}(x)=\left[\tau(x) \psi_{n}^{*}(x) \psi_{m}^{\prime}(x)-\tau(x) \psi_{m}(x) \psi_{n}^{\prime *}(x)\right]_{x_{a}}^{x_{b}}=0 \tag{9.90}
\end{equation*}
$$

The term in square brackets vanishes for any of the four types of boundary conditions articulated above. Thus, we have

$$
\begin{equation*}
\left(\omega_{n}^{* 2}-\omega_{m}^{2}\right)\left\langle\psi_{n} \mid \psi_{m}\right\rangle=0, \tag{9.91}
\end{equation*}
$$

where the inner product is defined as

$$
\begin{equation*}
\langle\psi \mid \phi\rangle \equiv \int_{x_{a}}^{x_{b}} d x \mu(x) \psi^{*}(x) \phi(x) \tag{9.92}
\end{equation*}
$$

The distribution $\mu(x)$ is non-negative definite. Setting $m=n$, we have $\left\langle\psi_{n} \mid \psi_{n}\right\rangle \geq 0$, and hence $\omega_{n}^{* 2}=\omega_{n}^{2}$, which says that $\omega_{n}^{2} \in \mathbb{R}$. When $\omega_{m}^{2} \neq \omega_{n}^{2}$, the eigenfunctions are orthogonal with respect to the above inner product. In the case of degeneracies, we may invoke the Gram-Schmidt procedure, which orthogonalizes the eigenfunctions within a given degenerate subspace. Since the Sturm-Liouville equation is linear, we may normalize the eigenfunctions, taking

$$
\begin{equation*}
\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\delta_{m n} \tag{9.93}
\end{equation*}
$$

Finally, since the coefficients in the Sturm-Liouville equation are all real, we can and henceforth do choose the eigenfunctions themselves to be real.
Another important result, which we will not prove here, is the completeness of the eigenfunction basis. Completeness means

$$
\begin{equation*}
\mu(x) \sum_{n} \psi_{n}^{*}(x) \psi_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.94}
\end{equation*}
$$

Thus, any function can be expanded in the eigenbasis, viz.

$$
\begin{equation*}
\phi(x)=\sum_{n} C_{n} \psi_{n}(x) \quad, \quad C_{n}=\left\langle\psi_{n} \mid \phi\right\rangle \tag{9.95}
\end{equation*}
$$

9.2.2 Variational method

Consider the functional

$$
\begin{equation*}
\omega^{2}[\psi(x)]=\frac{\frac{1}{2} \int_{x_{a}}^{x_{b}} d x\left\{\tau(x) \psi^{\prime 2}(x)+v(x) \psi^{2}(x)\right\}}{\frac{1}{2} \int_{x_{a}}^{x_{b}} d x \mu(x) \psi^{2}(x)} \equiv \frac{\mathcal{N}}{\mathcal{D}} \tag{9.96}
\end{equation*}
$$

The variation is

$$
\begin{equation*}
\delta \omega^{2}=\frac{\delta \mathcal{N}}{\mathcal{D}}-\frac{\mathcal{N} \delta \mathcal{D}}{\mathcal{D}^{2}}=\frac{\delta \mathcal{N}-\omega^{2} \delta \mathcal{D}}{\mathcal{D}} \tag{9.97}
\end{equation*}
$$

Thus, $\delta \omega^{2}=0$ requires $\delta \mathcal{N}=\omega^{2} \delta \mathcal{D}$, which says

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \frac{d \psi(x)}{d x}\right]+v(x) \psi(x)=\omega^{2} \mu(x) \psi(x) \tag{9.98}
\end{equation*}
$$

which is the Sturm-Lioiuville equation. In obtaining this equation, we have dropped a boundary term from $\delta \mathcal{N}$, given by

$$
\begin{equation*}
\left.\delta \mathcal{N}\right|_{\mathrm{bdry}}=\left[\tau(x) \psi^{\prime}(x) \delta \psi(x)\right]_{x=x_{a}}^{x=x_{b}} \tag{9.99}
\end{equation*}
$$

One can check that this expression vanishes for any of the first three classes of boundary conditions: (fixed endpoint, natural, and periodic). For the fourth class of boundary conditions, $\alpha \psi+\beta \psi^{\prime}=0$ (mixed homogeneous), the Sturm-Liouville equation may still be derived, provided one use a slightly different functional,

$$
\begin{equation*}
\omega^{2}[\psi(x)]=\frac{\widetilde{\mathcal{N}}}{\mathcal{D}} \quad \text { with } \quad \widetilde{\mathcal{N}}=\mathcal{N}+\frac{\alpha}{2 \beta}\left[\tau\left(x_{b}\right) \psi^{2}\left(x_{b}\right)-\tau\left(x_{a}\right) \psi^{2}\left(x_{a}\right)\right] \tag{9.100}
\end{equation*}
$$

since then

$$
\begin{align*}
\delta \widetilde{\mathcal{N}}-\widetilde{\mathcal{N}} \delta D=\int_{x_{a}}^{x_{b}} d x\{ & \left.-\frac{d}{d x}\left[\tau(x) \frac{d \psi(x)}{d x}\right]+v(x) \psi(x)-\omega^{2} \mu(x) \psi(x)\right\} \delta \psi(x) \\
& +\left[\tau(x)\left(\psi^{\prime}(x)+\frac{\alpha}{\beta} \psi(x)\right) \delta \psi(x)\right]_{x=x_{a}}^{x=x_{b}} \tag{9.101}
\end{align*}
$$

and the last term vanishes as a result of the boundary conditions.
For all four classes of boundary conditions we may write

$$
\begin{equation*}
\omega^{2}[\psi(x)]=\frac{\int_{x_{a}}^{x_{b}} d x \psi(x) \overbrace{\left[-\frac{d}{d x} \tau(x) \frac{d}{d x}+v(x)\right]}^{K} \psi(x)}{\int_{x_{a}}^{x_{b}} d x \mu(x) \psi^{2}(x)} \tag{9.102}
\end{equation*}
$$

If we expand $\psi(x)$ in the basis of eigenfunctions of the Sturm-Liouville operator K,

$$
\begin{equation*}
\psi(x)=\sum_{n=1}^{\infty} \mathcal{C}_{n} \psi_{n}(x) \tag{9.103}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\omega^{2}[\psi(x)]=\omega^{2}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{\infty}\right)=\frac{\sum_{j=1}^{\infty}\left|\mathcal{C}_{j}\right|^{2} \omega_{j}^{2}}{\sum_{k=1}^{\infty}\left|\mathcal{C}_{k}\right|^{2}} \tag{9.104}
\end{equation*}
$$

If $\omega_{1}^{2} \leq \omega_{2}^{2} \leq \ldots$, then we see that $\omega^{2} \geq \omega_{1}^{2}$, so an arbitrary function $\psi(x)$ will always yield an upper bound to the lowest eigenvalue.

Figure 9.8: One-parameter variational solution for a string with a point mass m at $x=\frac{1}{2} L$.

As an example, consider a violin string $(v=0)$ with a mass m affixed in the center. We write $\mu(x)=$ $\mu+m \delta\left(x-\frac{1}{2} L\right)$, hence

$$
\begin{equation*}
\omega^{2}[\psi(x)]=\frac{\tau \int_{0}^{L} d x \psi^{\prime 2}(x)}{m \psi^{2}\left(\frac{1}{2} L\right)+\mu \int_{0}^{L} d x \psi^{2}(x)} \tag{9.105}
\end{equation*}
$$

Now consider a trial function

$$
\psi(x)=\left\{\begin{array}{lll}
A x^{\alpha} & \text { if } & 0 \leq x \leq \frac{1}{2} L \tag{9.106}\\
A(L-x)^{\alpha} & \text { if } & \frac{1}{2} L \leq x \leq L
\end{array} .\right.
$$

The functional $\omega^{2}[\psi(x)]$ now becomes an ordinary function of the trial parameter α, with

$$
\begin{equation*}
\omega^{2}(\alpha)=\frac{2 \tau \int_{0}^{L / 2} d x \alpha^{2} x^{2 \alpha-2}}{m\left(\frac{1}{2} L\right)^{2 \alpha}+2 \mu \int_{0}^{L / 2} d x x^{2 \alpha}}=\left(\frac{2 c}{L}\right)^{2} \cdot \frac{\alpha^{2}(2 \alpha+1)}{(2 \alpha-1)\left[1+(2 \alpha+1) \frac{m}{M}\right]} \tag{9.107}
\end{equation*}
$$

where $M=\mu L$ is the mass of the string alone. We minimize $\omega^{2}(\alpha)$ to obtain the optimal solution of this form:

$$
\begin{equation*}
\frac{d}{d \alpha} \omega^{2}(\alpha)=0 \quad \Longrightarrow \quad 4 \alpha^{2}-2 \alpha-1+(2 \alpha+1)^{2}(\alpha-1) \frac{m}{M}=0 \tag{9.108}
\end{equation*}
$$

For $m / M \rightarrow 0$, we obtain $\alpha=\frac{1}{4}(1+\sqrt{5}) \approx 0.809$. The variational estimate for the eigenvalue is then 6.00% larger than the exact answer $\omega_{1}^{0}=\pi c / L$. In the opposite limit, $m / M \rightarrow \infty$, the inertia of the string may be neglected. The normal mode is then piecewise linear, in the shape of an isosceles triangle with base L and height y. The equation of motion is then $m \ddot{y}=-2 \tau \cdot\left(y / \frac{1}{2} L\right)$, assuming $|y / L| \ll 1$. Thus, $\omega_{1}=(2 c / L) \sqrt{M / m}$. This is reproduced exactly by the variational solution, for which $\alpha \rightarrow 1$ as $m / M \rightarrow \infty$.

9.3 Continua in Higher Dimensions

9.3.1 General formalism

In higher dimensions, we generalize the operator K as follows:

$$
\begin{equation*}
K=-\frac{\partial}{\partial x^{\alpha}} \tau_{\alpha \beta}(\boldsymbol{x}) \frac{\partial}{\partial x^{\beta}}+v(\boldsymbol{x}) . \tag{9.109}
\end{equation*}
$$

The eigenvalue equation is again

$$
\begin{equation*}
K \psi(\boldsymbol{x})=\omega^{2} \mu(\boldsymbol{x}) \psi(\boldsymbol{x}) \tag{9.110}
\end{equation*}
$$

and the Green's function (see §9.7) satisfies

$$
\begin{equation*}
\left[K-\omega^{2} \mu(\boldsymbol{x})\right] G_{\omega}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \tag{9.111}
\end{equation*}
$$

and has the eigenfunction expansion,

$$
\begin{equation*}
G_{\omega}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sum_{n=1}^{\infty} \frac{\psi_{n}(\boldsymbol{x}) \psi_{n}\left(\boldsymbol{x}^{\prime}\right)}{\omega_{n}^{2}-\omega^{2}} \tag{9.112}
\end{equation*}
$$

The eigenfunctions form a complete and orthonormal basis:

$$
\begin{align*}
& \mu(\boldsymbol{x}) \sum_{n=1}^{\infty} \psi_{n}(\boldsymbol{x}) \psi_{n}\left(\boldsymbol{x}^{\prime}\right)=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \\
& \int_{\Omega} d \boldsymbol{x} \mu(\boldsymbol{x}) \psi_{m}(\boldsymbol{x}) \psi_{n}(\boldsymbol{x})=\delta_{m n} \tag{9.113}
\end{align*}
$$

where Ω is the region of space in which the continuous medium exists. For purposes of simplicity, we consider here fixed boundary conditions $\left.u(\boldsymbol{x}, t)\right|_{\partial \Omega}=0$, where $\partial \Omega$ is the boundary of Ω. The general solution to the wave equation

$$
\begin{equation*}
\left[\mu(\boldsymbol{x}) \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial x^{\alpha}} \tau_{\alpha \beta}(\boldsymbol{x}) \frac{\partial}{\partial x^{\beta}}+v(\boldsymbol{x})\right] u(\boldsymbol{x}, t)=0 \tag{9.114}
\end{equation*}
$$

is

$$
\begin{equation*}
u(\boldsymbol{x}, t)=\sum_{n=1}^{\infty} \mathcal{C}_{n} \psi_{n}(\boldsymbol{x}) \cos \left(\omega_{n} t+\delta_{n}\right) \tag{9.115}
\end{equation*}
$$

The variational approach generalizes as well. We define

$$
\begin{align*}
& \mathcal{N}[\psi(\boldsymbol{x})]=\int_{\Omega} d \boldsymbol{x}\left[\tau_{\alpha \beta} \frac{\partial \psi}{\partial x^{\alpha}} \frac{\partial \psi}{\partial x^{\beta}}+v \psi^{2}\right] \tag{9.116}\\
& \mathcal{D}[\psi(\boldsymbol{x})]=\int_{\Omega} d \boldsymbol{x} \mu \psi^{2}, \tag{9.117}
\end{align*}
$$

and

$$
\begin{equation*}
\omega^{2}[\psi(\boldsymbol{x})]=\frac{\mathcal{N}[\psi(\boldsymbol{x})]}{\mathcal{D}[\psi(\boldsymbol{x})]} \tag{9.118}
\end{equation*}
$$

Setting the variation $\delta \omega^{2}=0$ recovers the eigenvalue equation $K \psi=\omega^{2} \mu \psi$.

9.3.2 Membranes

Consider a surface where the height z is a function of the lateral coordinates x and y :

$$
\begin{equation*}
z=u(x, y) \tag{9.119}
\end{equation*}
$$

The equation of the surface is then

$$
\begin{equation*}
F(x, y, z)=z-u(x, y)=0 \tag{9.120}
\end{equation*}
$$

Let the differential element of surface area be $d S$. The projection of this element onto the (x, y) plane is

$$
\begin{equation*}
d A=d x d y=\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{z}} d S \tag{9.121}
\end{equation*}
$$

The unit normal $\hat{\boldsymbol{n}}$ is given by

$$
\begin{equation*}
\hat{\boldsymbol{n}}=\frac{\boldsymbol{\nabla} F}{|\boldsymbol{\nabla} F|}=\frac{\hat{\boldsymbol{z}}-\boldsymbol{\nabla} u}{\sqrt{1+(\boldsymbol{\nabla} u)^{2}}} \tag{9.122}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
d S=\frac{d x d y}{\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{z}}}=\sqrt{1+(\boldsymbol{\nabla} u)^{2}} d x d y \tag{9.123}
\end{equation*}
$$

The potential energy for a deformed surface can take many forms. In the case we shall consider here, we consider only the effect of surface tension σ, and we write the potential energy functional as

$$
\begin{equation*}
U[u(x, y, t)]=\sigma \int d S=U_{0}+\frac{1}{2} \sigma \int d A(\nabla u)^{2}+\ldots \tag{9.124}
\end{equation*}
$$

The kinetic energy functional is

$$
\begin{equation*}
T[u(x, y, t)]=\frac{1}{2} \int d A \mu(\boldsymbol{x})\left(\partial_{t} u\right)^{2} \tag{9.125}
\end{equation*}
$$

Thus, the action is

$$
\begin{equation*}
S[u(\boldsymbol{x}, t)]=\int d^{2} x \mathcal{L}\left(u, \nabla u, \partial_{t} u, \boldsymbol{x}\right) \tag{9.126}
\end{equation*}
$$

where the Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \mu(\boldsymbol{x})\left(\partial_{t} u\right)^{2}-\frac{1}{2} \sigma(\boldsymbol{x})(\boldsymbol{\nabla} u)^{2} \tag{9.127}
\end{equation*}
$$

where here we have allowed both $\mu(\boldsymbol{x})$ and $\sigma(\boldsymbol{x})$ to depend on the spatial coordinates. The equations of motion are

$$
\begin{align*}
0 & =\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} u\right)}+\boldsymbol{\nabla} \cdot \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} u}-\frac{\partial \mathcal{L}}{\partial u} \tag{9.128}\\
& =\mu(\boldsymbol{x}) \frac{\partial^{2} u}{\partial t^{2}}-\boldsymbol{\nabla} \cdot\{\sigma(\boldsymbol{x}) \nabla u\} .
\end{align*}
$$

9.3.3 Helmholtz equation

When μ and σ are each constant, we obtain the Helmholtz equation:

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) u(\boldsymbol{x}, t)=0 \tag{9.129}
\end{equation*}
$$

with $c=\sqrt{\sigma / \mu}$. The d'Alembert solution still works - waves of arbitrary shape can propagate in a fixed direction $\hat{\boldsymbol{k}}$:

$$
\begin{equation*}
u(\boldsymbol{x}, t)=f(\hat{\boldsymbol{k}} \cdot \boldsymbol{x}-c t) \tag{9.130}
\end{equation*}
$$

This is called a plane wave because the three dimensional generalization of this wave has wavefronts which are planes. In our case, it might better be called a line wave, but people will look at you funny if you say that, so we'll stick with plane wave. Note that the locus of points of constant f satisfies

$$
\begin{equation*}
\phi(\boldsymbol{x}, t)=\hat{\boldsymbol{k}} \cdot \boldsymbol{x}-c t=\mathrm{constant} \tag{9.131}
\end{equation*}
$$

and setting $d \phi=0$ gives

$$
\begin{equation*}
\hat{\boldsymbol{k}} \cdot \frac{d \boldsymbol{x}}{d t}=c \tag{9.132}
\end{equation*}
$$

which means that the velocity along $\hat{\boldsymbol{k}}$ is c. The component of \boldsymbol{x} perpendicular to $\hat{\boldsymbol{k}}$ is arbitrary, hence the regions of constant ϕ correspond to lines which are orthogonal to $\hat{\boldsymbol{k}}$.

Owing to the linearity of the wave equation, we can construct arbitrary superpositions of plane waves. The most general solution is written

$$
\begin{equation*}
u(\boldsymbol{x}, t)=\int \frac{d^{2} k}{(2 \pi)^{2}}\left[A(\boldsymbol{k}) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-c k t)}+B(\boldsymbol{k}) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}+c k t)}\right] . \tag{9.133}
\end{equation*}
$$

The first term in the bracket on the RHS corresponds to a plane wave moving in the $+\hat{\boldsymbol{k}}$ direction, and the second term to a plane wave moving in the $-\hat{\boldsymbol{k}}$ direction.

9.3.4 Rectangles

Consider a rectangular membrane where $x \in[0, a]$ and $y \in[0, b]$, and subject to the boundary conditions $u(0, y)=u(a, y)=u(x, 0)=u(x, b)=0$. We try a solution of the form

$$
\begin{equation*}
u(x, y, t)=X(x) Y(y) T(t) \tag{9.134}
\end{equation*}
$$

This technique is known as separation of variables. Dividing the Helmholtz equation by u then gives

$$
\begin{equation*}
\frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}=\frac{1}{c^{2}} \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}} \tag{9.135}
\end{equation*}
$$

The first term on the LHS depends only on x. The second term on the LHS depends only on y. The RHS depends only on t. Therefore, each of these terms must individually be constant. We write

$$
\begin{equation*}
\frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}=-k_{x}^{2} \quad, \quad \frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}=-k_{y}^{2} \quad, \quad \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}}=-\omega^{2} \tag{9.136}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}=\frac{\omega^{2}}{c^{2}} . \tag{9.137}
\end{equation*}
$$

Thus, $\omega= \pm c|\boldsymbol{k}|$. The most general solution is then

$$
\begin{align*}
X(x) & =A \cos \left(k_{x} x\right)+B \sin \left(k_{x} x\right) \\
Y(y) & =C \cos \left(k_{y} y\right)+D \sin \left(k_{y} y\right) \tag{9.138}\\
T(t) & =E \cos (\omega t)+B \sin (\omega t) .
\end{align*}
$$

The boundary conditions now demand

$$
\begin{equation*}
A=0 \quad, \quad C=0 \quad, \quad \sin \left(k_{x} a\right)=0 \quad, \quad \sin \left(k_{y} b\right)=0 \tag{9.139}
\end{equation*}
$$

Thus, the most general solution subject to the boundary conditions is

$$
\begin{equation*}
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathcal{A}_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \cos \left(\omega_{m n} t+\delta_{m n}\right) \tag{9.140}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{m n}=\sqrt{\left(\frac{m \pi c}{a}\right)^{2}+\left(\frac{n \pi c}{b}\right)^{2}} \tag{9.141}
\end{equation*}
$$

9.3.5 Circles

For a circular membrane, such as a drumhead, it is convenient to work in two-dimensional polar coordinates (r, φ). The Laplacian is then

$$
\begin{equation*}
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} \tag{9.142}
\end{equation*}
$$

We seek a solution to the Helmholtz equation which satisfies the boundary conditions $u(r=a, \varphi, t)=0$. Once again, we invoke the separation of variables method, writing

$$
\begin{equation*}
u(r, \varphi, t)=R(r) \Phi(\varphi) T(t) \tag{9.143}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
\frac{1}{R} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{r^{2}} \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=\frac{1}{c^{2}} \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}} \tag{9.144}
\end{equation*}
$$

The azimuthal and temporal functions are

$$
\begin{equation*}
\Phi(\varphi)=e^{i m \varphi} \quad, \quad T(t)=\cos (\omega t+\delta) \tag{9.145}
\end{equation*}
$$

where m is an integer in order that the function $u(r, \varphi, t)$ be single-valued. The radial equation is then

$$
\begin{equation*}
\frac{\partial^{2} R}{\partial r^{2}}+\frac{1}{r} \frac{\partial R}{\partial r}+\left(\frac{\omega^{2}}{c^{2}}-\frac{m^{2}}{r^{2}}\right) R=0 \tag{9.146}
\end{equation*}
$$

This is Bessel's equation, with solution

$$
\begin{equation*}
R(r)=A J_{m}\left(\frac{\omega r}{c}\right)+B N_{m}\left(\frac{\omega r}{c}\right) \tag{9.147}
\end{equation*}
$$

where $J_{m}(z)$ and $N_{m}(z)$ are the Bessel and Neumann functions of order m, respectively. Since the Neumann functions diverge at $r=0$, we must exclude them, setting $B=0$ for each m.

We now invoke the boundary condition $u(r=a, \varphi, t)=0$. This requires

$$
\begin{equation*}
J_{m}\left(\frac{\omega a}{c}\right)=0 \quad \Longrightarrow \quad \omega=\omega_{m \ell}=x_{m \ell} \frac{c}{a} \tag{9.148}
\end{equation*}
$$

where $J_{m}\left(x_{m \ell}\right)=0$, i.e. $x_{m \ell}$ is the $\ell^{\text {th }}$ zero of $J_{m}(x)$. The mose general solution is therefore

$$
\begin{equation*}
u(r, \varphi, t)=\sum_{m=0}^{\infty} \sum_{\ell=1}^{\infty} \mathcal{A}_{m \ell} J_{m}\left(x_{m \ell} r / a\right) \cos \left(m \varphi+\beta_{m \ell}\right) \cos \left(\omega_{m \ell} t+\delta_{m \ell}\right) \tag{9.149}
\end{equation*}
$$

9.3.6 Sound in fluids

Let $\varrho(\boldsymbol{x}, t)$ and $\boldsymbol{v}(\boldsymbol{x}, t)$ be the density and velocity fields in a fluid. Mass conservation requires

$$
\begin{equation*}
\frac{\partial \varrho}{\partial t}+\boldsymbol{\nabla} \cdot(\varrho \boldsymbol{v})=0 \tag{9.150}
\end{equation*}
$$

This is the continuity equation for mass.
Focus now on a small packet of fluid of infinitesimal volume $d V$. The total force on this fluid element is $d \boldsymbol{F}=(-\boldsymbol{\nabla} p+\varrho \boldsymbol{g}) d V$. By Newton's Second Law,

$$
\begin{equation*}
d \boldsymbol{F}=(\varrho d V) \frac{d \boldsymbol{v}}{d t} \tag{9.151}
\end{equation*}
$$

Note that the chain rule gives

$$
\begin{equation*}
\frac{d \boldsymbol{v}}{d t}=\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \tag{9.152}
\end{equation*}
$$

Thus, dividing eqn, 9.151 by $d V$, we obtain

$$
\begin{equation*}
\varrho\left(\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}\right)=-\boldsymbol{\nabla} p+\varrho \boldsymbol{g} . \tag{9.153}
\end{equation*}
$$

This is the inviscid (i.e. zero viscosity) form of the Navier-Stokes equation.
Locally the fluid can also be described in terms of thermodynamic variables $p(\boldsymbol{x}, t)$ (pressure) and $T(\boldsymbol{x}, t)$ (temperature). For a one-component fluid there is necessarily an equation of state of the form $p=$ $p(\varrho, T)$. Thus, we may write

$$
\begin{equation*}
d p=\left.\frac{\partial p}{\partial \varrho}\right|_{T} d \varrho+\left.\frac{\partial p}{\partial T}\right|_{\varrho} d T \tag{9.154}
\end{equation*}
$$

We now make the following approximations. First, we assume that the fluid is close to equilibrium at $\boldsymbol{v}=0$, meaning we write $p=\bar{p}+\delta p$ and $\varrho=\bar{\varrho}+\delta \varrho$, and assume that $\delta p, \delta \varrho$, and \boldsymbol{v} are small. The smallness of \boldsymbol{v} means we can neglect the nonlinear term $(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}$ in eqn. 9.153. Second, we neglect gravity (more on this later). The continuity equation then takes the form

$$
\begin{equation*}
\frac{\partial \delta \varrho}{\partial t}+\bar{\varrho} \boldsymbol{\nabla} \cdot \boldsymbol{v}=0 \tag{9.155}
\end{equation*}
$$

and the Navier-Stokes equation becomes

$$
\begin{equation*}
\varrho \bar{\varrho} \frac{\partial \boldsymbol{v}}{\partial t}=-\boldsymbol{\nabla} \delta p . \tag{9.156}
\end{equation*}
$$

Taking the time derivative of the former, and then invoking the latter of these equations yields

$$
\begin{equation*}
\frac{\partial^{2} \delta \varrho}{\partial t^{2}}=\nabla^{2} p=\left(\frac{\partial p}{\partial \varrho}\right) \nabla^{2} \delta \varrho \equiv c^{2} \nabla^{2} \delta \varrho . \tag{9.157}
\end{equation*}
$$

The speed of wave propagation, i.e. the speed of sound, is given by

$$
\begin{equation*}
c=\sqrt{\frac{\partial p}{\partial \varrho}} . \tag{9.158}
\end{equation*}
$$

Finally, we must make an assumption regarding the conditions under which the derivative $\partial p / \partial \varrho$ is computed. If the fluid is an excellent conductor of heat, then the temperature will equilibrate quickly and it is a good approximation to take the derivative at fixed temperature. The resulting value of c is called the isothermal sound speed c_{T}. If, on the other hand, the fluid is a poor conductor of heat, as is the case for air, then it is more appropriate to take the derivative at constant entropy, yielding the adiabatic sound speed. Thus,

$$
\begin{equation*}
c_{T}=\sqrt{\left(\frac{\partial p}{\partial \varrho}\right)_{T}} \quad, \quad c_{S}=\sqrt{\left(\frac{\partial p}{\partial \varrho}\right)_{S}} . \tag{9.159}
\end{equation*}
$$

In an ideal gas, $c_{S} / c_{T}=\sqrt{\gamma}$, where $\gamma=c_{p} / c_{V}$ is the ratio of the specific heat at constant pressure to that at constant volume. For a (mostly) diatomic gas like air (comprised of N_{2} and O_{2} and just a little Ar), $\gamma=\frac{7}{5}$. Note that one can write $c^{2}=1 / \varrho \kappa$, where

$$
\begin{equation*}
\kappa=\frac{1}{\varrho}\left(\frac{\partial \varrho}{\partial p}\right) \tag{9.160}
\end{equation*}
$$

is the compressibility, which is the inverse of the bulk modulus. Again, one must specify whether one is talking about κ_{T} or κ_{S}. For reference in air at $T=293 \mathrm{~K}$, using $M=28.8 \mathrm{~g} / \mathrm{mol}$, one obtains $c_{T}=$ $290.8 \mathrm{~m} / \mathrm{s}$ and $c_{S}=344.0 \mathrm{~m} / \mathrm{s}$. In $\mathrm{H}_{2} \mathrm{O}$ at $293 \mathrm{~K}, c=1482 \mathrm{~m} / \mathrm{s}$. In Al at $273 \mathrm{~K}, c=6420 \mathrm{~m} / \mathrm{s}$.
If we retain gravity, the wave equation becomes

$$
\begin{equation*}
\frac{\partial^{2} \delta \varrho}{\partial t^{2}}=c^{2} \nabla^{2} \delta \varrho-\boldsymbol{g} \cdot \nabla \delta \varrho . \tag{9.161}
\end{equation*}
$$

The dispersion relation is then

$$
\begin{equation*}
\omega(\boldsymbol{k})=\sqrt{c^{2} k^{2}+i \boldsymbol{g} \cdot \boldsymbol{k}} . \tag{9.162}
\end{equation*}
$$

We are permitted to ignore the effects of gravity so long as $c^{2} k^{2} \gg g k$. In terms of the wavelength $\lambda=2 \pi / k$, this requires

$$
\begin{equation*}
\lambda \ll \frac{2 \pi c^{2}}{g}=75.9 \mathrm{~km}(\text { at } T=293 \mathrm{~K}) . \tag{9.163}
\end{equation*}
$$

9.4 Dispersion

9.4.1 Helmholtz versus Klein-Gordon equations

The one-dimensional Helmholtz equation $\ddot{y}=c^{2} y^{\prime \prime}$ is solved by a plane wave

$$
\begin{equation*}
y(x, t)=A e^{i k x} e^{-i \omega t} \tag{9.164}
\end{equation*}
$$

provided $\omega= \pm c k$. We say that there are two branches to the dispersion relation $\omega(k)$ for this equation. In general, we may add solutions, due to the linearity of the Helmholtz equation. The most general solution is then

$$
\begin{align*}
y(x, t) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi}\left[\hat{f}(k) e^{i k(x-c t)}+\hat{g}(k) e^{i k(x+c t)}\right] \tag{9.165}\\
& =f(x-c t)+g(x+c t)
\end{align*}
$$

which is consistent with d'Alembert's solution.
The Klein-Gordon equation, $\ddot{\phi}=c^{2} \phi^{\prime \prime}-\gamma^{2} \phi$, also has a plane wave solution as in eqn. 9.164, but with dispersion branches $\omega= \pm W(k)$ with $W(k)= \pm\left(\gamma^{2}+c^{2} k^{2}\right)^{1 / 2}$. The general solution is then

$$
\begin{equation*}
\phi(x, t)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi}\left[\hat{A}(k) e^{i k x} e^{-i W(k) t}+\hat{B}(k) e^{i k x} e^{i W(k) t}\right] \tag{9.166}
\end{equation*}
$$

which is not of the D'Alembert form.

9.4.2 Schrödinger's equation

Consider now the free particle Schrödinger equation in one space dimension,

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} . \tag{9.167}
\end{equation*}
$$

The function $\psi(x, t)$ is the quantum mechanical wavefunction for a particle of mass m moving freely along a one-dimensional line. The probability density for finding the particle at position x at time t is

$$
\begin{equation*}
\rho(x, t)=|\psi(x, t)|^{2} \tag{9.168}
\end{equation*}
$$

Conservation of probability therefore requires

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x|\psi(x, t)|^{2}=1 \tag{9.169}
\end{equation*}
$$

This condition must hold at all times t.
As is the case with the Helmholtz and Klein-Gordon equations, the Schrödinger equation is solved by a plane wave of the form

$$
\begin{equation*}
\psi(x, t)=A e^{i k x} e^{-i \omega t} \tag{9.170}
\end{equation*}
$$

where the dispersion relation now only has one branch, and is given by

$$
\begin{equation*}
\omega(k)=\frac{\hbar k^{2}}{2 m} \tag{9.171}
\end{equation*}
$$

The most general solution is then

$$
\begin{equation*}
\psi(x, t)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{\psi}(k) e^{i k x} e^{-i \hbar k^{2} t / 2 m} \tag{9.172}
\end{equation*}
$$

Let's suppose we start at time $t=0$ with a Gaussian wavepacket,

$$
\begin{equation*}
\psi(x, 0)=\left(\pi \ell_{0}^{2}\right)^{-1 / 4} e^{-x^{2} / 2 \ell_{0}^{2}} e^{i k_{0} x} \tag{9.173}
\end{equation*}
$$

To find the amplitude $\hat{\psi}(k)$, we perform the Fourier transform:

$$
\begin{equation*}
\hat{\psi}(k)=\int_{-\infty}^{\infty} d x \psi(x, 0) e^{-i k x}=\sqrt{2}\left(\pi \ell_{0}^{2}\right)^{-1 / 4} e^{-\left(k-k_{0}\right)^{2} \ell_{0}^{2} / 2} \tag{9.174}
\end{equation*}
$$

We now compute $\psi(x, t)$ valid for all times t :

$$
\begin{align*}
& \psi(x, t)= \sqrt{2}\left(\pi \ell_{0}^{2}\right)^{-1 / 4} \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} e^{-\left(k-k_{0}\right)^{2} \ell_{0}^{2} / 2} e^{i k x} e^{-i \hbar k^{2} t / 2 m} \\
&=\left(\pi \ell_{0}^{2}\right)^{-1 / 4}(1+i t / \tau)^{-1 / 2} \exp \left[-\frac{\left(x-\hbar k_{0} t / m\right)^{2}}{2 \ell_{0}^{2}\left(1+t^{2} / \tau^{2}\right)}\right] \tag{9.175}\\
& \quad \times \exp \left[\frac{i\left(2 k_{0} \ell_{0}^{2} x+x^{2} t / \tau-k_{0}^{2} \ell_{0}^{4} t / \tau\right)}{2 \ell_{0}^{2}\left(1+t^{2} / \tau^{2}\right)}\right]
\end{align*}
$$

Figure 9.9: Wavepacket spreading for $k_{0} \ell_{0}=2$ with $t / \tau=0,2,4,6$, and 8 .
where $\tau \equiv m \ell_{0}^{2} / \hbar$. The probability density is then the normalized Gaussian

$$
\begin{equation*}
\rho(x, t)=\frac{1}{\sqrt{\pi \ell^{2}(t)}} e^{-\left(x-v_{0} t\right)^{2} / \ell^{2}(t)} \tag{9.176}
\end{equation*}
$$

where $v_{0}=\hbar k_{0} / m$ and

$$
\begin{equation*}
\ell(t)=\ell_{0} \sqrt{1+t^{2} / \tau^{2}} . \tag{9.177}
\end{equation*}
$$

Note that $\ell(t)$ gives the width of the wavepacket, and that this width increases as a function of time, with $\ell(t \gg \tau) \simeq \ell_{0} t / \tau$.
Unlike the case of the Helmholtz equation, the solution to the Schrödinger equation does not retain its shape as it moves. This phenomenon is known as the spreading of the wavepacket. In fig. 9.9, we show the motion and spreading of the wavepacket.

For a given plane wave $e^{i k x} e^{-i \omega(k) t}$, the wavefronts move at the phase velocity

$$
\begin{equation*}
v_{\mathrm{p}}(k)=\frac{\omega(k)}{k} . \tag{9.178}
\end{equation*}
$$

The center of the wavepacket, however, travels at the group velocity

$$
\begin{equation*}
v_{\mathrm{g}}(k)=\left.\frac{d \omega}{d k}\right|_{k_{0}}, \tag{9.179}
\end{equation*}
$$

where $k=k_{0}$ is the maximum of $|\hat{\psi}(k)|^{2}$.

9.5 General Field Theoretic Formulation

Continuous systems possess an infinite number of degrees of freedom. They are described by a set of fields $\phi_{a}(\boldsymbol{x}, t)$ which depend on space and time. These fields may represent local displacement, pressure, velocity, etc. The equations of motion of the fields are again determined by extremizing the action, which, in turn, is an integral of the Lagrangian density over all space and time. Extremization yields a set of (generally coupled) partial differential equations.

9.5.1 Euler-Lagrange equations for classical field theories

Suppose $\phi_{a}(\boldsymbol{x})$ depends on n independent variables, $\left\{x^{1}, x^{2}, \ldots, x^{n}\right\}$. Consider the functional

$$
\begin{equation*}
S\left[\left\{\phi_{a}(\boldsymbol{x})\right]=\int_{\Omega} d \boldsymbol{x} \mathcal{L}\left(\phi_{a} \partial_{\mu} \phi_{a}, \boldsymbol{x}\right)\right. \tag{9.180}
\end{equation*}
$$

i.e. the Lagrangian density \mathcal{L} is a function of the fields ϕ_{a} and their partial derivatives $\partial \phi_{a} / \partial x^{\mu}$. Here Ω is a region in \mathbb{R}^{n}. Then the first variation of S is

$$
\begin{align*}
\delta S & =\int_{\Omega} d \boldsymbol{x}\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \delta \phi_{a}}{\partial x^{\mu}}\right\} \\
& =\oint_{\partial \Omega} d \Sigma n^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}+\int_{\Omega} d x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right\} \delta \phi_{a} \tag{9.181}
\end{align*}
$$

where $\partial \Omega$ is the $(n-1)$-dimensional boundary of $\Omega, d \Sigma$ is the differential surface area, and n^{μ} is the unit normal. If we demand either $\partial \mathcal{L} /\left.\partial\left(\partial_{\mu} \phi_{a}\right)\right|_{\partial \Omega}=0$ or $\left.\delta \phi_{a}\right|_{\partial \Omega}=0$, the surface term vanishes, and we conclude

$$
\begin{equation*}
\frac{\delta S}{\delta \phi_{a}(\boldsymbol{x})}=\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right]_{x} \tag{9.182}
\end{equation*}
$$

where the subscript means we are to evaluate the term in brackets at x. In a mechanical system, one of the n independent variables (usually x^{0}), is the time t. However, we may be interested in a timeindependent context in which we wish to extremize the energy functional, for example. In any case, setting the first variation of S to zero yields the Euler-Lagrange equations,

$$
\begin{equation*}
\delta S=0 \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)=0 \tag{9.183}
\end{equation*}
$$

The stress-energy tensor is defined as

$$
\begin{equation*}
T_{\nu}^{\mu}=\sum_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\nu} \phi_{a}-\delta_{\nu}^{\mu} \mathcal{L} \tag{9.184}
\end{equation*}
$$

When $\mathcal{L}=\mathcal{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$ is independent of the independent varlables \boldsymbol{x}, one has that the stress-energy tensor is conserved: $\partial_{\mu} T^{\mu}{ }_{\nu}=0$. (Students should check this result.)

Maxwell theory

The Lagrangian density for an electromagnetic field with sources is

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-J_{\nu} A^{\nu} . \tag{9.185}
\end{equation*}
$$

The equations of motion are then

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial A_{\nu}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)=0 \quad \Rightarrow \quad \partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu} \tag{9.186}
\end{equation*}
$$

which are Maxwell's equations.

9.5.2 Conserved currents in field theory

Recall the result of Noether's theorem for mechanical systems:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right)_{\zeta=0}=0 \tag{9.187}
\end{equation*}
$$

where $\tilde{q}_{\sigma}=\tilde{q}_{\sigma}(q, \zeta)$ is a one-parameter (ζ) family of transformations of the generalized coordinates which leaves L invariant. We generalize to field theory by replacing

$$
\begin{equation*}
q_{\sigma}(t) \longrightarrow \phi_{a}(\boldsymbol{x}, t) \tag{9.188}
\end{equation*}
$$

where $\left\{\phi_{a}(\boldsymbol{x}, t)\right\}$ are a set of fields, which are functions of the independent variables $\{x, y, z, t\}$. We will adopt covariant relativistic notation and write for four-vector $x^{\mu}=(c t, x, y, z)$. The generalization of $d Q / d t=0$ is

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta}\right)_{\zeta=0}=0 \tag{9.189}
\end{equation*}
$$

where there is an implied sum on both μ and a. We can write this as $\partial_{\mu} J^{\mu}=0$, where

$$
\begin{equation*}
\left.J^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta}\right|_{\zeta=0} \tag{9.190}
\end{equation*}
$$

Let $x^{\mu}=\left\{x^{0}, x^{1}, \ldots, x^{d}\right\}$, with $n=d+1$ the number of independent variables and $x^{0} \equiv c t$ with c having dimensions of velocity. Here we are privileging one of the independent variables $\left(x^{0}\right)$ to be the time variable. We call $Q_{\Omega}=c^{-1} \int_{\Omega} d^{3} x J^{0}$ the total charge in a spatial region Ω. If we assume $\hat{\boldsymbol{n}} \cdot \boldsymbol{J}=0$ along the spatial boundary $\partial \Omega$, where $\hat{\boldsymbol{n}}$ is the local unit normal to the surface, then integrating the conservation law $\partial_{\mu} J^{\mu}$ over the spatial region Ω yields

$$
\begin{equation*}
\frac{d Q_{\Omega}}{d t}=\int_{\Omega} d^{3} x \partial_{0} J^{0}=-\int_{\Omega} d^{3} x \boldsymbol{\nabla} \cdot \boldsymbol{J}=-\oint_{\partial \Omega} d \Sigma \hat{\boldsymbol{n}} \cdot \boldsymbol{J}=0 . \tag{9.191}
\end{equation*}
$$

This tells us that the rate of change of the charge Q_{Ω} in spatial region Ω is the negative of the integral over the surface $\partial \Omega$ of $\hat{\boldsymbol{n}} \cdot \boldsymbol{J}$, i.e. \dot{Q}_{Ω} is minus the total integrated flux leaving the region Ω.
As an example, consider the case of a complex scalar field, with Lagrangian density ${ }^{2}$

$$
\begin{equation*}
\mathcal{L}\left(\psi,, \psi^{*}, \partial_{\mu} \psi, \partial_{\mu} \psi^{*}\right)=\frac{1}{2} K\left(\partial_{\mu} \psi^{*}\right)\left(\partial^{\mu} \psi\right)-U\left(\psi^{*} \psi\right) \tag{9.192}
\end{equation*}
$$

This is invariant under the transformation $\psi \rightarrow e^{i \zeta} \psi, \psi^{*} \rightarrow e^{-i \zeta} \psi^{*}$. Thus,

$$
\begin{equation*}
\frac{\partial \tilde{\psi}}{\partial \zeta}=i e^{i \zeta} \psi \quad, \quad \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}=-i e^{-i \zeta} \psi^{*} \tag{9.193}
\end{equation*}
$$

and, summing over both ψ and ψ^{*} fields, we have

$$
\begin{equation*}
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \cdot(i \psi)+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)} \cdot\left(-i \psi^{*}\right)=\frac{K}{2 i}\left(\psi^{*} \partial^{\mu} \psi-\psi \partial^{\mu} \psi^{*}\right) \tag{9.194}
\end{equation*}
$$

The potential, which depends on $|\psi|^{2}$, is independent of ζ. Hence, this form of conserved 4-current is valid for an entire class of potentials.

9.5.3 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

$$
\begin{equation*}
\mathcal{L}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \psi^{*} \cdot \boldsymbol{\nabla} \psi-g\left(|\psi|^{2}-n_{0}\right)^{2} . \tag{9.195}
\end{equation*}
$$

This describes a Bose fluid with repulsive short-ranged interactions. Here $\psi(\boldsymbol{x}, t)$ is again a complex scalar field, and ψ^{*} is its complex conjugate. Using the Leibniz rule, we have

$$
\begin{align*}
\delta S\left[\psi^{*}, \psi\right]= & S\left[\psi^{*}+\delta \psi^{*}, \psi+\delta \psi\right] \\
=\int d t \int d^{d} x\{ & i \hbar \psi^{*} \frac{\partial \delta \psi}{\partial t}+i \hbar \delta \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \cdot \nabla \delta \psi \\
& \left.-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \delta \psi^{*} \cdot \nabla \psi-2 g\left(|\psi|^{2}-n_{0}\right)\left(\psi^{*} \delta \psi+\psi \delta \psi^{*}\right)\right\} \tag{9.196}\\
=\int d t \int d^{d} x\{ & {\left[-i \hbar \frac{\partial \psi^{*}}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*}\right] \delta \psi } \\
& \left.+\left[i \hbar \frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi\right] \delta \psi^{*}\right\}
\end{align*}
$$

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing $S\left[\psi^{*}, \psi\right]$ therefore results in the nonlinear Schrödinger equation (NLSE),

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+2 g\left(|\psi|^{2}-n_{0}\right) \psi \tag{9.197}
\end{equation*}
$$

[^18]as well as its complex conjugate,
\[

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}+2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} . \tag{9.198}
\end{equation*}
$$

\]

Note that these equations are indeed the Euler-Lagrange equations:

$$
\begin{align*}
\frac{\delta S}{\delta \psi} & =\frac{\partial \mathcal{L}}{\partial \psi}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi}\right) \tag{9.199}\\
\frac{\delta S}{\delta \psi^{*}} & =\frac{\partial \mathcal{L}}{\partial \psi^{*}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}}\right)
\end{align*}
$$

with $x^{\mu}=(t, \boldsymbol{x})$ the space-time four-vector ${ }^{3}$. Plugging in

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi}=-2 g\left(|\psi|^{2}-n_{0}\right) \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi}=i \hbar \psi^{*} \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \tag{9.200}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi^{*}}=i \hbar \psi-2 g\left(|\psi|^{2}-n_{0}\right) \psi \quad, \quad \frac{\partial \mathcal{L}}{\partial \partial_{t} \psi^{*}}=0 \quad, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \nabla \psi \tag{9.201}
\end{equation*}
$$

we recover the NLSE and its conjugate.
The Gross-Pitaevskii model also possesses a U(1) invariance, under

$$
\begin{equation*}
\psi(\boldsymbol{x}, t) \rightarrow \tilde{\psi}(\boldsymbol{x}, t)=e^{i \zeta} \psi(\boldsymbol{x}, t) \quad, \quad \psi^{*}(\boldsymbol{x}, t) \rightarrow \tilde{\psi}^{*}(\boldsymbol{x}, t)=e^{-i \zeta} \psi^{*}(\boldsymbol{x}, t) \tag{9.202}
\end{equation*}
$$

Thus, the conserved Noether current is then

$$
\begin{equation*}
J^{\mu}=\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} \frac{\partial \tilde{\psi}}{\partial \zeta}\right|_{\zeta=0}+\left.\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}} \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}\right|_{\zeta=0} \tag{9.203}
\end{equation*}
$$

so that

$$
\begin{equation*}
J^{0}=-\hbar|\psi|^{2} \quad, \quad \boldsymbol{J}=-\frac{\hbar^{2}}{2 i m}\left(\psi^{*} \nabla \psi-\psi \boldsymbol{\nabla} \psi^{*}\right) . \tag{9.204}
\end{equation*}
$$

Dividing out by \hbar, taking $J^{0} \equiv-\hbar \rho$ and $\boldsymbol{J} \equiv-\hbar \boldsymbol{j}$, we obtain the continuity equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{j}=0 \tag{9.205}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=|\psi|^{2} \quad, \quad j=\frac{\hbar}{2 i m}\left(\psi^{*} \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \psi^{*}\right) . \tag{9.206}
\end{equation*}
$$

are the particle density and the particle current, respectively.

[^19]
9.6 Appendix : Three Strings

Problem: Three identical strings are connected to a ring of mass m as shown in fig. 9.10. The linear mass density of each string is σ and each string is under identical tension τ. In equilibrium, all strings are coplanar. All motion on the string is in the \hat{z}-direction, which is perpendicular to the equilibrium plane. The ring slides frictionlessly along a vertical pole.

It is convenient to describe each string as a half line $[-\infty, 0]$. We can choose coordinates x_{1}, x_{2}, and x_{3} for the three strings, respectively. For each string, the ring lies at $x_{i}=0$.
A pulse is sent down the first string. After a time, the pulse arrives at the ring. Transmitted waves are sent down the other two strings, and a reflected wave down the first string. The solution to the wave equation in the strings can be written as follows. In string \#1, we have

$$
\begin{equation*}
z=f\left(c t-x_{1}\right)+g\left(c t+x_{1}\right) . \tag{9.207}
\end{equation*}
$$

In the other two strings, we may write $z=h_{\mathrm{A}}\left(c t+x_{2}\right)$ and $z=h_{\mathrm{B}}\left(c t+x_{3}\right)$, as indicated in the figure.

Figure 9.10: Three identical strings arranged symmetrically in a plane, attached to a common end. All motion is in the direction perpendicular to this plane. The red ring, whose mass is m, slides frictionlessly in this direction along a pole.
(a) Write the wave equation in string \#1. Define all constants.
(b) Write the equation of motion for the ring.
(c) Solve for the reflected wave $g(\xi)$ in terms of the incident wave $f(\xi)$. You may write this relation in terms of the Fourier transforms $\hat{f}(k)$ and $\hat{g}(k)$.
(d) Suppose a very long wavelength pulse of maximum amplitude A is incident on the ring. What is the maximum amplitude of the reflected pulse? What do we mean by "very long wavelength"?

Solution:
(a) The wave equation is

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}} \tag{9.208}
\end{equation*}
$$

where x is the coordinate along the string, and $c=\sqrt{\tau / \sigma}$ is the speed of wave propagation.
(b) Let Z be the vertical coordinate of the ring. Newton's second law says $m \ddot{Z}=F$, where the force on the ring is the sum of the vertical components of the tension in the three strings at $x=0$:

$$
\begin{equation*}
F=-\tau\left[-f^{\prime}(c t)+g^{\prime}(c t)+h_{\mathrm{A}}^{\prime}(c t)+h_{\mathrm{B}}^{\prime}(c t)\right], \tag{9.209}
\end{equation*}
$$

where prime denotes differentiation with respect to argument.
(c) To solve for the reflected wave, we must eliminate the unknown functions $h_{\mathrm{A}, \mathrm{B}}$ and then obtain g in terms of f. This is much easier than it might at first seem. We start by demanding continuity at the ring. This means

$$
\begin{equation*}
Z(t)=f(c t)+g(c t)=h_{\mathrm{A}}(c t)=h_{\mathrm{B}}(c t) \tag{9.210}
\end{equation*}
$$

for all t. We can immediately eliminate $h_{\mathrm{A}, \mathrm{B}}$:

$$
\begin{equation*}
h_{\mathrm{A}}(\xi)=h_{\mathrm{B}}(\xi)=f(\xi)+g(\xi), \tag{9.211}
\end{equation*}
$$

for all ξ. Newton's second law from part (b) may now be written as

$$
\begin{equation*}
m c^{2}\left[f^{\prime \prime}(\xi)+g^{\prime \prime}(\xi)\right]=-\tau\left[f^{\prime}(\xi)+3 g^{\prime}(\xi)\right] . \tag{9.212}
\end{equation*}
$$

This linear ODE becomes a simple linear algebraic equation for the Fourier transforms,

$$
\begin{equation*}
f(\xi)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{f}(k) e^{i k \xi} \tag{9.213}
\end{equation*}
$$

etc. We readily obtain

$$
\begin{equation*}
\hat{g}(k)=-\left(\frac{k-i Q}{k-3 i Q}\right) \hat{f}(k), \tag{9.214}
\end{equation*}
$$

where $Q \equiv \tau / m c^{2}$ has dimensions of inverse length. Since $h_{\mathrm{A}, \mathrm{B}}=f+g$, we have

$$
\begin{equation*}
\hat{h}_{\mathrm{A}}(k)=\hat{h}_{\mathrm{B}}(k)=-\left(\frac{2 i Q}{k-3 i Q}\right) \hat{f}(k) . \tag{9.215}
\end{equation*}
$$

(d) For a very long wavelength pulse, composed of plane waves for which $|k| \ll Q$, we have $\hat{g}(k) \approx$ $-\frac{1}{3} \hat{f}(k)$. Thus, the reflected pulse is inverted, and is reduced by a factor $\frac{1}{3}$ in amplitude. Note that
for a very short wavelength pulse, for which $k \gg Q$, we have perfect reflection with inversion, and no transmission. This is due to the inertia of the ring.

It is straightforward to generalize this problem to one with n strings. The transmission into each of the $(n-1)$ channels is of course identical (by symmetry). One then finds the reflection and transmission amplitudes

$$
\begin{equation*}
\hat{r}(k)=-\left(\frac{k-i(n-2) Q}{k-i n Q}\right) \quad, \quad \hat{t}(k)=-\left(\frac{2 i Q}{k-i n Q}\right) \tag{9.216}
\end{equation*}
$$

Conservation of energy means that the sum of the squares of the reflection amplitude and all the ($n-1$) transmission amplitudes must be unity:

$$
\begin{equation*}
|\hat{r}(k)|^{2}+(n-1)|\hat{t}(k)|^{2}=1 \tag{9.217}
\end{equation*}
$$

9.7 Appendix : Green's Functions for Strings

9.7.1 Inhomogeneous Sturm-Liouville problem

Suppose we add a forcing term,

$$
\begin{equation*}
\mu(x) \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial}{\partial x}\left[\tau(x) \frac{\partial y}{\partial x}\right]+v(x) y=\operatorname{Re}\left[\mu(x) f(x) e^{-i \omega t}\right] \tag{9.218}
\end{equation*}
$$

We write the solution as

$$
\begin{equation*}
y(x, t)=\operatorname{Re}\left[y(x) e^{-i \omega t}\right] \tag{9.219}
\end{equation*}
$$

where

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \frac{d y(x)}{d x}\right]+v(x) y(x)-\omega^{2} \mu(x) y(x)=\mu(x) f(x) \tag{9.220}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[K-\omega^{2} \mu(x)\right] y(x)=\mu(x) f(x) \tag{9.221}
\end{equation*}
$$

where K is a differential operator,

$$
\begin{equation*}
K \equiv-\frac{d}{d x} \tau(x) \frac{d}{d x}+v(x) \tag{9.222}
\end{equation*}
$$

Note that the eigenfunctions of K are the $\left\{\psi_{n}(x)\right\}$:

$$
\begin{equation*}
K \psi_{n}(x)=\omega_{n}^{2} \mu(x) \psi_{n}(x) \tag{9.223}
\end{equation*}
$$

The formal solution to equation 9.221 is then

$$
\begin{equation*}
y(x)=\left[K-\omega^{2} \mu\right]_{x, x^{\prime}}^{-1} \mu\left(x^{\prime}\right) f\left(x^{\prime}\right)=\int_{x_{a}}^{x_{b}} d x^{\prime} \mu\left(x^{\prime}\right) G_{\omega}\left(x, x^{\prime}\right) f\left(x^{\prime}\right) . \tag{9.224}
\end{equation*}
$$

What do we mean by the term in brackets? If we define the Green's function

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right) \equiv\left[K-\omega^{2} \mu\right]_{x, x^{\prime}}^{-1} \tag{9.225}
\end{equation*}
$$

what this means is

$$
\begin{equation*}
\left[K-\omega^{2} \mu(x)\right] G_{\omega}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.226}
\end{equation*}
$$

Note that the Green's function may be expanded in terms of the (real) eigenfunctions, as

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=\sum_{n} \frac{\psi_{n}(x) \psi_{n}\left(x^{\prime}\right)}{\omega_{n}^{2}-\omega^{2}} \tag{9.227}
\end{equation*}
$$

which follows from completeness of the eigenfunctions:

$$
\begin{equation*}
\mu(x) \sum_{n=1}^{\infty} \psi_{n}(x) \psi_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.228}
\end{equation*}
$$

The expansion in eqn. 9.227 is formally exact, but difficult to implement, since it requires summing over an infinite set of eigenfunctions. It is more practical to construct the Green's function from solutions to the homogeneous Sturm Liouville equation, as follows. When $x \neq x^{\prime}$, we have that $\left(K-\omega^{2} \mu\right) G_{\omega}\left(x, x^{\prime}\right)=$ 0 , which is a homogeneous ODE of degree two. Consider first the interval $x \in\left[x_{a}, x^{\prime}\right]$. A second order homogeneous ODE has two solutions, and further invoking the boundary condition at $x=x_{a}$, there is a unique solution, up to a multiplicative constant. Call this solution $y_{1}(x)$. Next, consider the interval $x \in\left[x^{\prime}, x_{b}\right]$. Once again, there is a unique solution to the homogeneous Sturm-Liouville equation, up to a multiplicative constant, which satisfies the boundary condition at $x=x_{b}$. Call this solution $y_{2}(x)$. We then can write

$$
G_{\omega}\left(x, x^{\prime}\right)=\left\{\begin{array}{ll}
A\left(x^{\prime}\right) y_{1}(x) & \text { if } x_{a} \leq x<x^{\prime} \tag{9.229}\\
B\left(x^{\prime}\right) y_{2}(x) & \text { if } x^{\prime}<x \leq x_{b}
\end{array} .\right.
$$

Here, $A\left(x^{\prime}\right)$ and $B\left(x^{\prime}\right)$ are undetermined functions. We now invoke the inhomogeneous Sturm-Liouville equation,

$$
\begin{equation*}
-\frac{d}{d x}\left[\tau(x) \frac{d G_{\omega}\left(x, x^{\prime}\right)}{d x}\right]+v(x) G_{\omega}\left(x, x^{\prime}\right)-\omega^{2} \mu(x) G_{\omega}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) . \tag{9.230}
\end{equation*}
$$

We integrate this from $x=x^{\prime}-\epsilon$ to $x=x^{\prime}+\epsilon$, where ϵ is a positive infinitesimal. This yields

$$
\begin{equation*}
\tau\left(x^{\prime}\right)\left[A\left(x^{\prime}\right) y_{1}^{\prime}\left(x^{\prime}\right)-B\left(x^{\prime}\right) y_{2}^{\prime}\left(x^{\prime}\right)\right]=1 \tag{9.231}
\end{equation*}
$$

Continuity of $G_{\omega}\left(x, x^{\prime}\right)$ itself demands

$$
\begin{equation*}
A\left(x^{\prime}\right) y_{1}\left(x^{\prime}\right)=B\left(x^{\prime}\right) y_{2}\left(x^{\prime}\right) \tag{9.232}
\end{equation*}
$$

Solving these two equations for $A\left(x^{\prime}\right)$ and $B\left(x^{\prime}\right)$, we obtain

$$
\begin{equation*}
A\left(x^{\prime}\right)=-\frac{y_{2}\left(x^{\prime}\right)}{\tau\left(x^{\prime}\right) \mathcal{W}_{y_{1}, y_{2}}\left(x^{\prime}\right)} \quad, \quad B\left(x^{\prime}\right)=-\frac{y_{1}\left(x^{\prime}\right)}{\tau\left(x^{\prime}\right) \mathcal{W}_{y_{1}, y_{2}}\left(x^{\prime}\right)} \tag{9.233}
\end{equation*}
$$

where $\mathcal{W}_{y_{1}, y_{2}}(x)$ is the Wronskian

$$
\begin{align*}
\mathcal{W}_{y_{1}, y_{2}}(x) & =\operatorname{det}\left(\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right) \tag{9.234}\\
& =y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)
\end{align*}
$$

Now it is easy to show that $\mathcal{W}_{y_{1}, y_{2}}(x) \tau(x)=\mathcal{W} \tau$ is a constant. This follows from

$$
\begin{align*}
0 & =y_{2} K y_{1}-y_{2} K y_{1} \\
& =\frac{d}{d x}\left\{\tau(x)\left[y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right]\right\} . \tag{9.235}
\end{align*}
$$

Thus, we have

$$
G_{\omega}\left(x, x^{\prime}\right)=\left\{\begin{array}{lc}
-y_{1}(x) y_{2}\left(x^{\prime}\right) / \mathcal{W} & \text { if } x_{a} \leq x<x^{\prime} \tag{9.236}\\
-y_{1}\left(x^{\prime}\right) y_{2}(x) / \mathcal{W} & \text { if } x^{\prime}<x \leq x_{b}
\end{array}\right.
$$

or, in compact form,

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=-\frac{y_{1}\left(x_{<}\right) y_{2}\left(x_{>}\right)}{\mathcal{W} \tau}, \tag{9.237}
\end{equation*}
$$

where $x_{<}=\min \left(x, x^{\prime}\right)$ and $x_{>}=\max \left(x, x^{\prime}\right)$.
As an example, consider a uniform string (i.e. μ and τ constant, $v=0$) with fixed endpoints at $x_{a}=0$ and $x_{b}=L$. The normalized eigenfunctions are

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{\frac{2}{\mu L}} \sin \left(\frac{n \pi x}{L}\right) \tag{9.238}
\end{equation*}
$$

and the eigenvalues are $\omega_{n}=n \pi c / L$. The Green's function is

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=\frac{2}{\mu L} \sum_{n=1}^{\infty} \frac{\sin (n \pi x / L) \sin \left(n \pi x^{\prime} / L\right)}{(n \pi c / L)^{2}-\omega^{2}} . \tag{9.239}
\end{equation*}
$$

Now construct the homogeneous solutions:

$$
\begin{array}{llll}
\left(K-\omega^{2} \mu\right) y_{1}=0 & , & y_{1}(0)=0 & \Longrightarrow
\end{array} y_{1}(x)=\sin \left(\frac{\omega x}{c}\right) .
$$

The Wronskian is

$$
\begin{equation*}
\mathcal{W}=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=-\frac{\omega}{c} \sin \left(\frac{\omega L}{c}\right) \tag{9.242}
\end{equation*}
$$

Therefore, the Green's function is

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=\frac{\sin \left(\omega x_{<} / c\right) \sin \left(\omega\left(L-x_{>}\right) / c\right)}{(\omega \tau / c) \sin (\omega L / c)} . \tag{9.243}
\end{equation*}
$$

Figure 9.11: Diagrammatic representation of the perturbation expansion in eqn. 9.247.

9.7.2 Perturbation theory

Suppose we have solved for the Green's function for the linear operator K_{0} and mass density $\mu_{0}(x)$. I.e. we have

$$
\begin{equation*}
\left(K_{0}-\omega^{2} \mu_{0}(x)\right) G_{\omega}^{0}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.244}
\end{equation*}
$$

We now imagine perturbing $\tau_{0} \rightarrow \tau_{0}+\lambda \tau_{1}, v_{0} \rightarrow v_{0}+\lambda v_{2}, \mu_{0} \rightarrow \mu_{0}+\lambda \mu_{1}$. What is the new Green's function $G_{\omega}\left(x, x^{\prime}\right)$? We must solve

$$
\begin{equation*}
\left(L_{0}+\lambda L_{1}\right) G_{\omega}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{9.245}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\omega}^{0} \equiv K_{0}-\omega^{2} \mu_{0} \quad, \quad L_{\omega}^{1} \equiv K_{1}-\omega^{2} \mu_{1} \tag{9.246}
\end{equation*}
$$

Dropping the ω subscript for simplicity, the full Green's function is then given by

$$
\begin{align*}
G_{\omega} & =\left[L_{\omega}^{0}+\lambda L_{\omega}^{1}\right]^{-1}=\left[\left(G_{\omega}^{0}\right)^{-1}+\lambda L_{\omega}^{1}\right]^{-1}=\left[1+\lambda G_{\omega}^{0} L_{\omega}^{1}\right]^{-1} G_{\omega}^{0} \tag{9.247}\\
& =G_{\omega}^{0}-\lambda G_{\omega}^{0} L_{\omega}^{1} G_{\omega}^{0}+\lambda^{2} G_{\omega}^{0} L_{\omega}^{1} G_{\omega}^{0} L_{\omega}^{1} G_{\omega}^{0}+\ldots .
\end{align*}
$$

The 'matrix multiplication' is of course a convolution, i.e.

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=G_{\omega}^{0}\left(x, x^{\prime}\right)-\lambda \int_{x_{a}}^{x_{b}} d x_{1} G_{\omega}^{0}\left(x, x_{1}\right) L_{\omega}^{1}\left(x_{1}, \frac{d}{d x_{1}}\right) G_{\omega}^{0}\left(x_{1}, x^{\prime}\right)+\ldots \tag{9.248}
\end{equation*}
$$

Each term in the perturbation expansion of eqn. 9.247 may be represented by a diagram, as depicted in fig. 9.11.

As an example, consider a string with $x_{a}=0$ and $x_{b}=L$ with a mass point m affixed at the point $x=d$. Thus, $\mu_{1}(x)=m \delta(x-d)$, and $L_{\omega}^{1}=-m \omega^{2} \delta(x-d)$, with $\lambda=1$. The perturbation expansion gives

$$
\begin{align*}
G_{\omega}\left(x, x^{\prime}\right) & =G_{\omega}^{0}\left(x, x^{\prime}\right)+m \omega^{2} G_{\omega}^{0}(x, d) G_{\omega}^{0}\left(d, x^{\prime}\right)+m^{2} \omega^{4} G_{\omega}^{0}(x, d) G_{\omega}^{0}(d, d) G_{\omega}^{0}\left(d, x^{\prime}\right)+\ldots \\
& =G_{\omega}^{0}\left(x, x^{\prime}\right)+\frac{m \omega^{2} G_{\omega}^{0}(x, d) G_{\omega}^{0}\left(d, x^{\prime}\right)}{1-m \omega^{2} G_{\omega}^{0}(d, d)} \tag{9.249}
\end{align*}
$$

Note that the eigenfunction expansion,

$$
\begin{equation*}
G_{\omega}\left(x, x^{\prime}\right)=\sum_{n} \frac{\psi_{n}(x) \psi_{n}\left(x^{\prime}\right)}{\omega_{n}^{2}-\omega^{2}} \tag{9.250}
\end{equation*}
$$

says that the exact eigenfrequencies are poles of $G_{\omega}\left(x, x^{\prime}\right)$, and furthermore the residue at each pole is

$$
\begin{equation*}
\underset{\omega=\omega_{n}}{\operatorname{Res}} G_{\omega}\left(x, x^{\prime}\right)=-\frac{1}{2 \omega_{n}} \psi_{n}(x) \psi_{n}\left(x^{\prime}\right) . \tag{9.251}
\end{equation*}
$$

According to eqn. 9.249, the poles of $G_{\omega}\left(x, x^{\prime}\right)$ are located at solutions to ${ }^{4}$

$$
\begin{equation*}
m \omega^{2} G_{\omega}^{0}(d, d)=1 \tag{9.252}
\end{equation*}
$$

For simplicity let us set $d=\frac{1}{2} L$, so the mass point is in the middle of the string. Then according to eqn. 9.243,

$$
\begin{equation*}
G_{\omega}^{0}\left(\frac{1}{2} L, \frac{1}{2} L\right)=\frac{\sin ^{2}(\omega L / 2 c)}{(\omega \tau / c) \sin (\omega L / c)}=\frac{c}{2 \omega \tau} \tan \left(\frac{\omega L}{2 c}\right) . \tag{9.253}
\end{equation*}
$$

The eigenvalue equation is therefore

$$
\begin{equation*}
\tan \left(\frac{\omega L}{2 c}\right)=\frac{2 \tau}{m \omega c} \tag{9.254}
\end{equation*}
$$

which can be manipulated to yield

$$
\begin{equation*}
\frac{m}{M} \lambda=\operatorname{ctn} \lambda \tag{9.255}
\end{equation*}
$$

where $\lambda=\omega L / 2 c$ and $M=\mu L$ is the total mass of the string. When $m=0$, the LHS vanishes, and the roots lie at $\lambda=\left(n+\frac{1}{2}\right) \pi$, which gives $\omega=\omega_{2 n+1}$. Why don't we see the poles at the even mode eigenfrequencies $\omega_{2 n}$? The answer is that these poles are present in the Green's function. They do not cancel for $d=\frac{1}{2} L$ because the perturbation does not couple to the even modes, which all have $\psi_{2 n}\left(\frac{1}{2} L\right)=0$. The case of general d may be instructive in this regard. One finds the eigenvalue equation

$$
\begin{equation*}
\frac{\sin (2 \lambda)}{2 \lambda \sin (2 \epsilon \lambda) \sin (2(1-\epsilon) \lambda)}=\frac{m}{M} \tag{9.256}
\end{equation*}
$$

where $\epsilon=d / L$. Now setting $m=0$ we recover $2 \lambda=n \pi$, which says $\omega=\omega_{n}$, and all the modes are recovered.

9.7.3 Perturbation theory for eigenvalues and eigenfunctions

We wish to solve

$$
\begin{equation*}
\left(K_{0}+\lambda K_{1}\right) \psi=\omega^{2}\left(\mu_{0}+\lambda \mu_{1}\right) \psi \tag{9.257}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
L_{\omega}^{0} \psi=-\lambda L_{\omega}^{1} \psi \tag{9.258}
\end{equation*}
$$

[^20]Multiplying by $\left(L_{\omega}^{0}\right)^{-1}=G_{\omega}^{0}$ on the left, we have

$$
\begin{align*}
\psi(x) & =-\lambda \int_{x_{a}}^{x_{b}} d x^{\prime} G_{\omega}\left(x, x^{\prime}\right) L_{\omega}^{1} \psi\left(x^{\prime}\right) \\
& =\lambda \sum_{m=1}^{\infty} \frac{\psi_{m}(x)}{\omega^{2}-\omega_{m}^{2}} \int_{x_{a}}^{x_{b}} d x^{\prime} \psi_{m}\left(x^{\prime}\right) L_{\omega}^{1} \psi\left(x^{\prime}\right) \tag{9.259}
\end{align*}
$$

We are free to choose any normalization we like for $\psi(x)$. We choose

$$
\begin{equation*}
\left\langle\psi \mid \psi_{n}\right\rangle=\int_{x_{a}}^{x_{b}} d x \mu_{0}(x) \psi_{n}(x) \psi(x)=1 \tag{9.260}
\end{equation*}
$$

which entails

$$
\begin{equation*}
\omega^{2}-\omega_{n}^{2}=\lambda \int_{x_{a}}^{x_{b}} d x \psi_{n}(x) L_{\omega}^{1} \psi(x) \tag{9.261}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\psi(x)=\psi_{n}(x)+\lambda \sum_{\substack{k \\(k \neq n)}} \frac{\psi_{k}(x)}{\omega^{2}-\omega_{k}^{2}} \int_{x_{a}}^{x_{b}} d x^{\prime} \psi_{k}\left(x^{\prime}\right) L_{\omega}^{1} \psi\left(x^{\prime}\right) \tag{9.262}
\end{equation*}
$$

By expanding ψ and ω^{2} in powers of λ, we can develop an order by order perturbation series.
To lowest order, we have

$$
\begin{equation*}
\omega^{2}=\omega_{n}^{2}+\lambda \int_{x_{a}}^{x_{b}} d x \psi_{n}(x) L_{\omega_{n}}^{1} \psi_{n}(x) . \tag{9.263}
\end{equation*}
$$

For the case $L_{\omega}^{1}=-m \omega^{2} \delta(x-d)$, we have

$$
\begin{equation*}
\frac{\delta \omega_{n}}{\omega_{n}}=-\frac{1}{2} m\left[\psi_{n}(d)\right]^{2}=-\frac{m}{M} \sin ^{2}\left(\frac{n \pi d}{L}\right) \tag{9.264}
\end{equation*}
$$

For $d=\frac{1}{2} L$, only the odd n modes are affected, as the even n modes have a node at $x=\frac{1}{2} L$.
Carried out to second order, one obtains for the eigenvalues,

$$
\begin{align*}
\omega^{2}=\omega_{n}^{2}+\lambda \int_{x_{a}}^{x_{b}} d x & \psi_{n}(x) L_{\omega_{n}}^{1} \psi_{n}(x)+\lambda^{2} \sum_{\substack{k \\
(k \neq n)}} \frac{\left|\int_{x_{a}}^{x_{b}} d x \psi_{k}(x) L_{\omega_{n}}^{1} \psi_{n}(x)\right|^{2}}{\omega_{n}^{2}-\omega_{k}^{2}} \tag{9.265}\\
& -\lambda^{2} \int_{x_{a}}^{x_{b}} d x \psi_{n}(x) L_{\omega_{n}}^{1} \psi_{n}(x) \cdot \int_{x_{a}}^{x_{b}} d x^{\prime} \mu_{1}\left(x^{\prime}\right)\left[\psi_{n}\left(x^{\prime}\right)\right]^{2}+\mathcal{O}\left(\lambda^{3}\right)
\end{align*}
$$

Chapter 10

Special Relativity

For an extraordinarily lucid, if characteristically brief, discussion, see chs. 1 and 2 of L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics, vol. 2).

10.1 Introduction

All distances are relative in physics. They are measured with respect to a fixed frame of reference. Frames of reference in which free particles move with constant velocity are called inertial frames. The principle of relativity states that the laws of Nature are identical in all inertial frames.

10.1.1 Michelson-Morley experiment

We learned how sound waves in a fluid, such as air, obey the Helmholtz equation. Let us restrict our attention for the moment to solutions of the form $\phi(x, t)$ which do not depend on y or z. We then have a one-dimensional wave equation,

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} \tag{10.1}
\end{equation*}
$$

The fluid in which the sound propagates is assumed to be at rest. But suppose the fluid is not at rest. We can investigate this by shifting to a moving frame, defining $x^{\prime}=x-u t$, with $y^{\prime}=y, z^{\prime}=z$ and of course $t^{\prime}=t$. This is a Galilean transformation. In terms of the new variables, we have

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial x^{\prime}} \quad, \quad \frac{\partial}{\partial t}=-u \frac{\partial}{\partial x^{\prime}}+\frac{\partial}{\partial t^{\prime}} . \tag{10.2}
\end{equation*}
$$

The wave equation is then

$$
\begin{equation*}
\left(1-\frac{u^{2}}{c^{2}}\right) \frac{\partial^{2} \phi}{\partial x^{\prime 2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{\prime 2}}-\frac{2 u}{c^{2}} \frac{\partial^{2} \phi}{\partial x^{\prime} \partial t^{\prime}} . \tag{10.3}
\end{equation*}
$$

Clearly the wave equation acquires a different form when expressed in the new variables $\left(x^{\prime}, t^{\prime}\right)$, i.e. in a frame in which the fluid is not at rest. The general solution is then of the modified d'Alembert form,

$$
\begin{equation*}
\phi\left(x^{\prime}, t^{\prime}\right)=f\left(x^{\prime}-c_{\mathrm{R}} t^{\prime}\right)+g\left(x^{\prime}+c_{\mathrm{L}} t^{\prime}\right), \tag{10.4}
\end{equation*}
$$

where $c_{\mathrm{R}}=c-u$ and $c_{\mathrm{L}}=c+u$ are the speeds of rightward and leftward propagating disturbances, respectively. Thus, there is a preferred frame of reference - the frame in which the fluid is at rest. In the rest frame of the fluid, sound waves travel with velocity c in either direction.

Light, as we know, is a wave phenomenon in classical physics. The propagation of light is described by Maxwell's equations,

$$
\begin{array}{ll}
\boldsymbol{\nabla} \cdot \boldsymbol{E}=4 \pi \rho & \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \\
\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 & \nabla \times \boldsymbol{B}=\frac{4 \pi}{c} \boldsymbol{j}+\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}
\end{array}
$$

where ρ and \boldsymbol{j} are the local charge and current density, respectively. Taking the curl of Faraday's law, and restricting to free space where $\rho=j=0$, we once again have (using a Cartesian system for the fields) the wave equation,

$$
\begin{equation*}
\nabla^{2} \boldsymbol{E}=\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} \tag{10.7}
\end{equation*}
$$

(We shall discuss below, in section 10.8, the beautiful properties of Maxwell's equations under general coordinate transformations.)

In analogy with the theory of sound, it was assumed prior to Einstein that there was in fact a preferred reference frame for electromagnetic radiation - one in which the medium which was excited during the EM wave propagation was at rest. This notional medium was called the lumineferous ether. Indeed, it was generally assumed during the $19^{\text {th }}$ century that light, electricity, magnetism, and heat (which was not understood until Boltzmann's work in the late $19^{\text {th }}$ century) all had separate ethers. It was Maxwell who realized that light, electricity, and magnetism were all unified phenomena, and accordingly he proposed a single ether for electromagnetism. It was believed at the time that the earth's motion through the ether would result in a drag on the earth.

In 1887, Michelson and Morley set out to measure the changes in the speed of light on earth due to the earth's movement through the ether (which was generally assumed to be at rest in the frame of the Sun). The Michelson interferometer is shown in fig. 10.1, and works as follows. Suppose the apparatus is moving with velocity $u \hat{\boldsymbol{x}}$ through the ether. Then the time it takes a light ray to travel from the half-silvered mirror to the mirror on the right and back again is

$$
\begin{equation*}
t_{x}=\frac{\ell}{c+u}+\frac{\ell}{c-u}=\frac{2 \ell c}{c^{2}-u^{2}} . \tag{10.8}
\end{equation*}
$$

For motion along the other arm of the interferometer, the geometry in the inset of fig. 10.1 shows $\ell^{\prime}=$ $\sqrt{\ell^{2}+\frac{1}{4} u^{2} t_{y}^{2}}$, hence

$$
\begin{equation*}
t_{y}=\frac{2 \ell^{\prime}}{c}=\frac{2}{c} \sqrt{\ell^{2}+\frac{1}{4} u^{2} t_{y}^{2}} \quad \Rightarrow \quad t_{y}=\frac{2 \ell}{\sqrt{c^{2}-u^{2}}} . \tag{10.9}
\end{equation*}
$$

Figure 10.1: The Michelson-Morley experiment (1887) used an interferometer to effectively measure the time difference for light to travel along two different paths. Inset: analysis for the y-directed path.

Thus, the difference in times along these two paths is

$$
\begin{equation*}
\Delta t=t_{x}-t_{y}=\frac{2 \ell c}{c^{2}}-\frac{2 \ell}{\sqrt{c^{2}-u^{2}}} \approx \frac{\ell}{c} \cdot \frac{u^{2}}{c^{2}} \tag{10.10}
\end{equation*}
$$

Thus, the difference in phase between the two paths is

$$
\begin{equation*}
\frac{\Delta \phi}{2 \pi}=\nu \Delta t \approx \frac{\ell}{\lambda} \cdot \frac{u^{2}}{c^{2}} \tag{10.11}
\end{equation*}
$$

where λ is the wavelength of the light. We take $u \approx 30 \mathrm{~km} / \mathrm{s}$, which is the earth's orbital velocity, and $\lambda \approx 5000 \AA$. From this we find that $\Delta \phi \approx 0.02 \times 2 \pi$ if $\ell=1 \mathrm{~m}$. Michelson and Morley found that the observed fringe shift $\Delta \phi / 2 \pi$ was approximately 0.02 times the expected value. The inescapable conclusion was that the speed of light did not depend on the motion of the source. This was very counterintuitive!

The history of the development of special relativity is quite interesting, but we shall not have time to dwell here on the many streams of scientific thought during those exciting times. Suffice it to say that the Michelson-Morley experiment, while a landmark result, was not the last word. It had been proposed that the ether could be dragged, either entirely or partially, by moving bodies. If the earth dragged the ether along with it, then there would be no ground-level 'ether wind' for the MM experiment to detect. Other experiments, however, such as stellar aberration, in which the apparent position of a distant star

Figure 10.2: Experimental setup of Alvager et al. (1964), who used the decay of high energy neutral pions to test the source velocity dependence of the speed of light.
varies due to the earth's orbital velocity, rendered the "ether drag" theory untenable - the notional 'ether bubble' dragged by the earth could not reasonably be expected to extend to the distant stars.

A more recent test of the effect of a moving source on the speed of light was performed by T. Alvåger et al., Phys. Lett. 12, 260 (1964), who measured the velocity of γ-rays (photons) emitted from the decay of highly energetic neutral pions $\left(\pi^{0}\right)$. The pion energies were in excess of 6 GeV , which translates to a velocity of $v=0.99975 c$, according to special relativity. Thus, photons emitted in the direction of the pions should be traveling at close to $2 c$, if the source and photon velocities were to add. Instead, the velocity of the photons was found to be $c=2.9977 \pm 0.0004 \times 10^{10} \mathrm{~cm} / \mathrm{s}$, which is within experimental error of the best accepted value.

10.1.2 Einsteinian and Galilean relativity

The Principle of Relativity states that the laws of nature are the same when expressed in any inertial frame. This principle can further be refined into two classes, depending on whether one takes the velocity of the propagation of interactions to be finite or infinite.

The interaction of matter in classical mechanics is described by a potential function $U\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)$. Typically, one has two-body interactions in which case one writes $U=\sum_{i<j} U\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)$. These interactions are thus assumed to be instantaneous, which is unphysical. The interaction of particles is mediated by the exchange of gauge bosons, such as the photon (for electromagnetic interactions), gluons (for the strong interaction, at least on scales much smaller than the 'confinement length'), or the graviton (for gravity). Their velocity of propagation, according to the principle of relativity, is the same in all reference frames, and is given by the speed of light, $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Figure 10.3: Two reference frames.

Since c is so large in comparison with terrestrial velocities, and since d / c is much shorter than all other relevant time scales for typical interparticle separations d, the assumption of an instantaneous interaction is usually quite accurate. The combination of the principle of relativity with finiteness of c is known as Einsteinian relativity. When $c=\infty$, the combination comprises Galilean relativity:

$$
\begin{array}{lll}
c<\infty & : & \text { Einsteinian relativity } \\
c=\infty & : & \text { Galilean relativity } .
\end{array}
$$

Consider a train moving at speed u. In the rest frame of the train track, the speed of the light beam emanating from the train's headlight is $c+u$. This would contradict the principle of relativity. This leads to some very peculiar consequences, foremost among them being the fact that events which are simultaneous in one inertial frame will not in general be simultaneous in another. In Newtonian mechanics, on the other hand, time is absolute, and is independent of the frame of reference. If two events are simultaneous in one frame then they are simultaneous in all frames. This is not the case in Einsteinian relativity!

We can begin to apprehend this curious feature of simultaneity by the following Gedankenexperiment (a long German word meaning "thought experiment") ${ }^{1}$. Consider the case in fig. 10.3 in which frame K^{\prime} moves with velocity $u \hat{\boldsymbol{x}}$ with respect to frame K. Let a source at S emit a signal (a light pulse) at $t=0$. In the frame K^{\prime} the signal's arrival at equidistant locations A and B is simultaneous. In frame K, however, A moves toward left-propagating emitted wavefront, and B moves away from the rightpropagating wavefront. For classical sound, the speed of the left-moving and right-moving wavefronts is $c \mp u$, taking into account the motion of the source, and thus the relative velocities of the signal and the detectors remain at c. But according to the principle of relativity, the speed of light is c in all frames, and is so in frame K for both the left-propagating and right-propagating signals. Therefore, the relative velocity of A and the left-moving signal is $c+u$ and the relative velocity of B and the right-moving signal is $c-u$. Therefore, A 'closes in' on the signal and receives it before B , which is moving away from the signal. We might expect the arrival times to be $t_{\mathrm{A}}^{*}=d /(c+u)$ and $t_{\mathrm{B}}^{*}=d /(c-u)$, where d is the distance between the source S and either detector A or B in the K^{\prime} frame. Later on we shall analyze this problem and show that

$$
\begin{equation*}
t_{\mathrm{A}}^{*}=\sqrt{\frac{c-u}{c+u}} \cdot \frac{d}{c} \quad, \quad t_{\mathrm{B}}^{*}=\sqrt{\frac{c+u}{c-u}} \cdot \frac{d}{c} . \tag{10.12}
\end{equation*}
$$

[^21]Our naïve analysis has omitted an important detail - the Lorentz contraction of the distance d as seen by an observer in the K frame.

10.2 Intervals

Now let us express mathematically the constancy of c in all frames. An event is specified by the time and place where it occurs. Thus, an event is specified by four coordinates, (t, x, y, z). The four-dimensional space spanned by these coordinates is called spacetime. The interval between two events in spacetime at $\left(t_{1}, x_{1}, y_{1}, z_{1}\right)$ and $\left(t_{2}, x_{2}, y_{2}, z_{2}\right)$ is defined to be

$$
\begin{equation*}
s_{12}=\sqrt{c^{2}\left(t_{1}-t_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}-\left(z_{1}-z_{2}\right)^{2}} . \tag{10.13}
\end{equation*}
$$

For two events separated by an infinitesimal amount, the interval $d s$ is infinitesimal, with

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2} \tag{10.14}
\end{equation*}
$$

Now when the two events denote the emission and reception of an electromagnetic signal, we have $d s^{2}=0$. This must be true in any frame, owing to the invariance of c, hence since $d s$ and $d s^{\prime}$ are differentials of the same order, we must have $d s^{\prime 2}=d s^{2}$. This last result requires homogeneity and isotropy of space as well. Finally, if infinitesimal intervals are invariant, then integrating we obtain $s=s^{\prime}$, and we conclude that the interval between two space-time events is the same in all inertial frames.

When $s_{12}^{2}>0$, the interval is said to be time-like. For timelike intervals, we can always find a reference frame in which the two events occur at the same locations. As an example, consider a passenger sitting on a train. Event \#1 is the passenger yawning at time t_{1}. Event \#2 is the passenger yawning again at some later time t_{2}. To an observer sitting in the train station, the two events take place at different locations, but in the frame of the passenger, they occur at the same location.
When $s_{12}^{2}<0$, the interval is said to be space-like. Note that $s_{12}=\sqrt{s_{12}^{2}} \in i \mathbb{R}$ is pure imaginary, so one says that imaginary intervals are spacelike. As an example, at this moment, in the frame of the reader, the North and South poles of the earth are separated by a space-like interval. If the interval between two events is space-like, a reference frame can always be found in which the events are simultaneous.

An interval with $s_{12}=0$ is said to be light-like.
This leads to the concept of the light cone, depicted in fig. 10.4. Consider an event E. In the frame of an inertial observer, all events with $s^{2}>0$ and $\Delta t>0$ are in E's forward light cone and are part of his absolute future. Events with $s^{2}>0$ and $\Delta t<0$ lie in E's backward light cone are are part of his absolute past. Events with spacelike separations $s^{2}<0$ are causally disconnected from E. Two events which are causally disconnected can not possible influence each other. Uniform rectilinear motion is represented by a line $t=x / v$ with constant slope. If $v<c$, this line is contained within E 's light cone. E is potentially influenced by all events in its backward light cone, i.e. its absolute past. It is impossible to find a frame of reference which will transform past into future, or spacelike into timelike intervals.

Figure 10.4: $\mathrm{A}(1+1)$-dimensional light cone. The forward light cone consists of timelike events with $\Delta t>0$. The backward light cone consists of timelike events with $\Delta t<0$. The causally disconnected regions are time-like, and intervals connecting the origin to any point on the light cone itself are lightlike.

10.2.1 Proper time

Proper time is the time read on a clock traveling with a moving observer. Consider two observers, one at rest and one in motion. If $d t$ is the differential time elapsed in the rest frame, then

$$
\begin{align*}
d s^{2} & =c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2} \\
& =c^{2} d t^{\prime 2} \tag{10.15}
\end{align*}
$$

where $d t^{\prime}$ is the differential time elapsed on the moving clock. Thus,

$$
\begin{equation*}
d t^{\prime}=d t \sqrt{1-\frac{\boldsymbol{v}^{2}}{c^{2}}} \tag{10.16}
\end{equation*}
$$

and the time elapsed on the moving observer's clock is

$$
\begin{equation*}
t_{2}^{\prime}-t_{1}^{\prime}=\int_{t_{1}}^{t_{2}} d t \sqrt{1-\frac{\boldsymbol{v}^{2}(t)}{c^{2}}} \tag{10.17}
\end{equation*}
$$

Thus, moving clocks run slower. This is an essential feature which is key to understanding many important aspects of particle physics. A particle with a brief lifetime can, by moving at speeds close to c, appear to an observer in our frame to be long-lived. It is customary to define two dimensionless measures of a particle's velocity:

$$
\begin{equation*}
\boldsymbol{\beta} \equiv \frac{\boldsymbol{v}}{c} \quad, \quad \gamma \equiv \frac{1}{\sqrt{1-\boldsymbol{\beta}^{2}}} \tag{10.18}
\end{equation*}
$$

As $v \rightarrow c$, we have $\beta \rightarrow 1$ and $\gamma \rightarrow \infty$.
Suppose we wish to compare the elapsed time on two clocks. We keep one clock at rest in an inertial frame, while the other executes a closed path in space, returning to its initial location after some interval of time. When the clocks are compared, the moving clock will show a smaller elapsed time. This is often stated as the "twin paradox." The total elapsed time on a moving clock is given by

$$
\begin{equation*}
\tau=\frac{1}{c} \int_{a}^{b} d s \tag{10.19}
\end{equation*}
$$

where the integral is taken over the world line of the moving clock. The elapsed time τ takes on a minimum value when the path from a to b is a straight line. To see this, one can express $\tau[\boldsymbol{x}(t)]$ as a functional of the path $\boldsymbol{x}(t)$ and extremize. This results in $\ddot{\boldsymbol{x}}=0$.

10.2.2 Irreverent problem from Spring 2002 final exam

Flowers for Algernon - Bob's beloved hamster, Algernon, is very ill. He has only three hours to live. The veterinarian tells Bob that Algernon can be saved only through a gallbadder transplant. A suitable donor gallbladder is available from a hamster recently pronounced brain dead after a blender accident in New York (miraculously, the gallbladder was unscathed), but it will take Life Flight five hours to bring the precious rodent organ to San Diego.
Bob embarks on a bold plan to save Algernon's life. He places him in a cage, ties the cage to the end of a strong meter-long rope, and whirls the cage above his head while the Life Flight team is en route. Bob reasons that if he can make time pass more slowly for Algernon, the gallbladder will arrive in time to save his life.
(a) At how many revolutions per second must Bob rotate the cage in order that the gallbladder arrive in time for the life-saving surgery? What is Algernon's speed v_{0} ?

Solution : We have $\beta(t)=\omega_{0} R / c$ is constant, therefore, from eqn. 10.17,

$$
\begin{equation*}
\Delta t=\gamma \Delta t^{\prime} \tag{10.20}
\end{equation*}
$$

Setting $\Delta t^{\prime}=3 \mathrm{hr}$ and $\Delta t=5 \mathrm{hr}$, we have $\gamma=\frac{5}{3}$, which entails $\beta=\sqrt{1-\gamma^{-2}}=\frac{4}{5}$. Thus, $v_{0}=\frac{4}{5} c$, which requires a rotation frequency of $\omega_{0} / 2 \pi=38.2 \mathrm{MHz}$.
(b) Bob finds that he cannot keep up the pace! Assume Algernon's speed is given by

$$
\begin{equation*}
v(t)=v_{0} \sqrt{1-\frac{t}{T}} \tag{10.21}
\end{equation*}
$$

where v_{0} is the speed from part (a), and $T=5 \mathrm{~h}$. As the plane lands at the pet hospital's emergency runway, Bob peers into the cage to discover that Algernon is dead! In order to fill out his death report, the veterinarian needs to know: when did Algernon die? Assuming he died after his own hamster watch registered three hours, derive an expression for the elapsed time on the veterinarian's clock at the moment of Algernon's death.
Solution : \langle Sniffle \rangle. We have $\beta(t)=\frac{4}{5}\left(1-\frac{t}{T}\right)^{1 / 2}$. We set

$$
\begin{equation*}
T^{\prime}=\int_{0}^{T^{*}} d t \sqrt{1-\beta^{2}(t)} \tag{10.22}
\end{equation*}
$$

where $T^{\prime}=3 \mathrm{hr}$ and T^{*} is the time of death in Bob's frame. We write $\beta_{0}=\frac{4}{5}$ and $\gamma_{0}=\left(1-\beta_{0}^{2}\right)^{-1 / 2}=\frac{5}{3}$. Note that $T^{\prime} / T=\sqrt{1-\beta_{0}^{2}}=\gamma_{0}^{-1}$.

Rescaling by writing $\zeta=t / T$, we have

$$
\begin{align*}
\frac{T^{\prime}}{T}=\gamma_{0}^{-1} & =\int_{0}^{T^{*} / T} d \zeta \sqrt{1-\beta_{0}^{2}+\beta_{0}^{2} \zeta} \\
& =\frac{2}{3 \beta_{0}^{2}}\left[\left(1-\beta_{0}^{2}+\beta_{0}^{2} \frac{T^{*}}{T}\right)^{3 / 2}-\left(1-\beta_{0}^{2}\right)^{3 / 2}\right] \tag{10.23}\\
& =\frac{2}{3 \gamma_{0}} \cdot \frac{1}{\gamma_{0}^{2}-1}\left[\left(1+\left(\gamma_{0}^{2}-1\right) \frac{T^{*}}{T}\right)^{3 / 2}-1\right]
\end{align*}
$$

Solving for T^{*} / T we have

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{\left(\frac{3}{2} \gamma_{0}^{2}-\frac{1}{2}\right)^{2 / 3}-1}{\gamma_{0}^{2}-1} \tag{10.24}
\end{equation*}
$$

With $\gamma_{0}=\frac{5}{3}$ we obtain

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{9}{16}\left[\left(\frac{11}{3}\right)^{2 / 3}-1\right]=0.77502 \ldots \tag{10.25}
\end{equation*}
$$

Thus, $T^{*}=3.875 \mathrm{hr}=3 \mathrm{hr} 52 \mathrm{~min} 50.5 \mathrm{sec}$ after Bob starts swinging.
(c) Identify at least three practical problems with Bob's scheme.

Solution: As you can imagine, student responses to this part were varied and generally sarcastic. E.g. "the atmosphere would ignite," or "Bob's arm would fall off," or "Algernon's remains would be found on the inside of the far wall of the cage, squashed flatter than a coat of semi-gloss paint," etc.

10.3 Four-Vectors and Lorentz Transformations

We have spoken thus far about different reference frames. So how precisely do the coordinates (t, x, y, z) transform between frames K and K^{\prime} ? In classical mechanics, we have $t=t^{\prime}$ and $\boldsymbol{x}=\boldsymbol{x}^{\prime}+\boldsymbol{u} t$, according
to fig. 10.3. This yields the Galilean transformation,

$$
\left(\begin{array}{l}
t \tag{10.26}\\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
u_{x} & 1 & 0 & 0 \\
u_{y} & 0 & 1 & 0 \\
u_{z} & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) .
$$

Such a transformation does not leave intervals invariant.
Let us define the four-vector x^{μ} as

$$
x^{\mu}=\left(\begin{array}{c}
c t \tag{10.27}\\
x \\
y \\
z
\end{array}\right) \equiv\binom{c t}{\boldsymbol{x}}
$$

Thus, $x^{0}=c t, x^{1}=x, x^{2}=y$, and $x^{3}=z$. In order for intervals to be invariant, the transformation between x^{μ} in frame K and $x^{\prime \mu}$ in frame K^{\prime} must be linear:

$$
\begin{equation*}
x^{\mu}=L_{\nu}^{\mu} x^{\prime \nu}, \tag{10.28}
\end{equation*}
$$

where we are using the Einstein convention of summing over repeated indices. We define the Minkowski metric tensor $g_{\mu \nu}$ as follows:

$$
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{10.29}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

Clearly $g=g^{\mathrm{t}}$ is a symmetric matrix.
Note that the matrix L_{β}^{α} has one raised index and one lowered index. For the notation we are about to develop, it is very important to distinguish raised from lowered indices. To raise or lower an index, we use the metric tensor. For example,

$$
x_{\mu}=g_{\mu \nu} x^{\nu}=\left(\begin{array}{c}
c t \tag{10.30}\\
-x \\
-y \\
-z
\end{array}\right) .
$$

The act of summing over an identical raised and lowered index is called index contraction. Note that

$$
g^{\mu}{ }_{\nu}=g^{\mu \rho} g_{\rho \nu}=\delta^{\mu}{ }_{\nu}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{10.31}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Now let's investigate the invariance of the interval. We must have $x^{\prime \mu} x_{\mu}^{\prime}=x^{\mu} x_{\mu}$. Note that

$$
\begin{align*}
x^{\mu} x_{\mu} & =L_{\alpha}^{\mu}{ }_{\alpha}^{\prime{ }^{\alpha}} L_{\mu}^{\beta} x_{\beta}^{\prime} \\
& =\left(L_{\alpha}^{\mu}{ }_{\alpha} g_{\mu \nu} L^{\nu}{ }_{\beta}\right) x^{\prime \alpha} x^{\prime \beta}, \tag{10.32}
\end{align*}
$$

from which we conclude

$$
\begin{equation*}
L_{\alpha}^{\mu} g_{\mu \nu} L_{\beta}^{\nu}=g_{\alpha \beta} . \tag{10.33}
\end{equation*}
$$

This result also may be written in other ways:

$$
\begin{equation*}
L^{\mu \alpha} g_{\mu \nu} L^{\nu \beta}=g^{\alpha \beta} \quad, \quad L_{\alpha}^{\mathrm{t} \mu} g_{\mu \nu} L_{\beta}^{\nu}=g_{\alpha \beta} \tag{10.34}
\end{equation*}
$$

Another way to write this equation is $L^{\mathrm{t}} g L=g$. A rank-4 matrix which satisfies this constraint, with $g=\operatorname{diag}(+,-,-,-)$ is an element of the group $\mathrm{O}(3,1)$, known as the Lorentz group.

Let us now count the freedoms in L. As a 4×4 real matrix, it contains 16 elements. The matrix $L^{\mathrm{t}} g L$ is a symmetric 4×4 matrix, which contains 10 independent elements: 4 along the diagonal and 6 above the diagonal. Thus, there are 10 constraints on 16 elements of L, and we conclude that the group $O(3,1)$ is 6 -dimensional. This is also the dimension of the four-dimensional orthogonal group $\mathrm{O}(4)$, by the way. Three of these six parameters may be taken to be the Euler angles. That is, the group $\mathrm{O}(3)$ constitutes a three-dimensional subgroup of the Lorentz group $\mathrm{O}(3,1)$, with elements

$$
L_{\nu}^{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{10.35}\\
0 & R_{11} & R_{12} & R_{13} \\
0 & R_{21} & R_{22} & R_{23} \\
0 & R_{31} & R_{32} & R_{33}
\end{array}\right)
$$

where $R^{\mathrm{t}} R=M I$, i.e. $R \in \mathrm{O}(3)$ is a rank-3 orthogonal matrix, parameterized by the three Euler angles (ϕ, θ, ψ). The remaining three parameters form a vector $\boldsymbol{\beta}=\left(\beta_{x}, \beta_{y}, \beta_{z}\right)$ and define a second class of Lorentz transformations, called boosts: ${ }^{2}$

$$
L_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & \gamma \beta_{x} & \gamma \beta_{y} & \gamma \beta_{z} \tag{10.36}\\
\gamma \beta_{x} & 1+(\gamma-1) \hat{\beta}_{x} \hat{\beta}_{x} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} \\
\gamma \beta_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & 1+(\gamma-1) \hat{\beta}_{y} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} \\
\gamma \beta_{z} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} & 1+(\gamma-1) \hat{\beta}_{z} \hat{\beta}_{z}
\end{array}\right)
$$

where

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\frac{\boldsymbol{\beta}}{|\boldsymbol{\beta}|} \quad, \quad \gamma=\left(1-\boldsymbol{\beta}^{2}\right)^{-1 / 2} \tag{10.37}
\end{equation*}
$$

IMPORTANT : Since the components of $\boldsymbol{\beta}$ are not the spatial components of a four vector, we will only write these components with a lowered index, as β_{i}, with $i=1,2,3$. We will not write β^{i} with a raised index, but if we did, we'd mean the same thing, i.e. $\beta^{i}=\beta_{i}$. Note that for the spatial components of a 4 -vector like x^{μ}, we have $x_{i}=-x^{i}$.
Let's look at a simple example, where $\beta_{x}=\beta$ and $\beta_{y}=\beta_{z}=0$. Then

$$
L_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & \gamma \beta & 0 & 0 \tag{10.38}\\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

[^22]The effect of this Lorentz transformation $x^{\mu}=L_{\nu}^{\mu} x^{\prime \nu}$ is thus

$$
\begin{align*}
c t & =\gamma c t^{\prime}+\gamma \beta x^{\prime} \\
x & =\gamma \beta c t^{\prime}+\gamma x^{\prime} . \tag{10.39}
\end{align*}
$$

How fast is the origin of K^{\prime} moving in the K frame? We have $d x^{\prime}=0$ and thus

$$
\begin{equation*}
\frac{1}{c} \frac{d x}{d t}=\frac{\gamma \beta c d t^{\prime}}{\gamma c d t^{\prime}}=\beta \tag{10.40}
\end{equation*}
$$

Thus, $u=\beta$ c, i.e. $\beta=u / c$.
It is convenient to take advantage of the fact that $\mathrm{P}_{i j}^{\beta} \equiv \hat{\beta}_{i} \hat{\beta}_{j}$ is a projection operator, which satisfies $\left(\mathrm{P}^{\beta}\right)^{2}=\mathrm{P}^{\boldsymbol{\beta}}$. The action of $\mathrm{P}_{i j}^{\boldsymbol{\beta}}$ on any vector $\boldsymbol{\xi}$ is to project that vector onto the $\hat{\boldsymbol{\beta}}$ direction:

$$
\begin{equation*}
\mathrm{P}^{\boldsymbol{\beta}} \boldsymbol{\xi}=(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{\xi}) \hat{\boldsymbol{\beta}} . \tag{10.41}
\end{equation*}
$$

We may now write the general Lorentz boost, with $\boldsymbol{\beta}=\boldsymbol{u} / c$, as

$$
L=\left(\begin{array}{cc}
\gamma & \gamma \boldsymbol{\beta}^{\mathbf{t}} \tag{10.42}\\
\gamma \boldsymbol{\beta} & \mathrm{I}+(\gamma-1) \mathrm{P}^{\boldsymbol{\beta}}
\end{array}\right)
$$

where I is the 3×3 unit matrix, and where we write column and row vectors

$$
\boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{x} \tag{10.43}\\
\beta_{y} \\
\beta_{z}
\end{array}\right) \quad, \quad \boldsymbol{\beta}^{\mathbf{t}}=\left(\begin{array}{lll}
\beta_{x} & \beta_{y} & \beta_{z}
\end{array}\right)
$$

as a mnemonic to help with matrix multiplications. We now have

$$
\binom{c t}{\boldsymbol{x}}=\left(\begin{array}{cc}
\gamma & \gamma \boldsymbol{\beta}^{\mathrm{t}} \tag{10.44}\\
\gamma \boldsymbol{\beta} & \mathrm{I}+(\gamma-1) \mathrm{P}^{\boldsymbol{\beta}}
\end{array}\right)\binom{c t^{\prime}}{\boldsymbol{x}^{\prime}}=\binom{\gamma c t^{\prime}+\gamma \boldsymbol{\beta} \cdot \boldsymbol{x}^{\prime}}{\gamma \boldsymbol{\beta} c t^{\prime}+\boldsymbol{x}^{\prime}+(\gamma-1) \mathrm{P}^{\boldsymbol{\beta}} \boldsymbol{x}^{\prime}} .
$$

Thus,

$$
\begin{align*}
c t & =\gamma c t^{\prime}+\gamma \boldsymbol{\beta} \cdot \boldsymbol{x}^{\prime} \tag{10.45}\\
\boldsymbol{x} & =\gamma \boldsymbol{\beta} c t^{\prime}+\boldsymbol{x}^{\prime}+(\gamma-1)\left(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{x}^{\prime}\right) \hat{\boldsymbol{\beta}} .
\end{align*}
$$

If we resolve \boldsymbol{x} and \boldsymbol{x}^{\prime} into components parallel and perpendicular to $\boldsymbol{\beta}$, writing

$$
\begin{equation*}
x_{\|}=\hat{\boldsymbol{\beta}} \cdot \boldsymbol{x} \quad, \quad \boldsymbol{x}_{\perp}=\boldsymbol{x}-(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{x}) \hat{\boldsymbol{\beta}} \tag{10.46}
\end{equation*}
$$

with corresponding definitions for $x_{\|}^{\prime}$ and x_{\perp}^{\prime}, the general Lorentz boost may be written as

$$
\begin{align*}
c t & =\gamma c t^{\prime}+\gamma \beta x_{\|}^{\prime} \\
x_{\|} & =\gamma \beta c t^{\prime}+\gamma x_{\|}^{\prime} \tag{10.47}\\
\boldsymbol{x}_{\perp} & =\boldsymbol{x}_{\perp}^{\prime} .
\end{align*}
$$

Thus, the components of \boldsymbol{x} and \boldsymbol{x}^{\prime} which are parallel to $\boldsymbol{\beta}$ enter into a one-dimensional Lorentz boost along with t and t^{\prime}, as described by eqn. 10.39. The components of \boldsymbol{x} and \boldsymbol{x}^{\prime} which are perpendicular to $\boldsymbol{\beta}$ are unaffected by the boost.

Finally, the Lorentz group $\mathrm{O}(3,1)$ is a group under multiplication, which means that if L_{a} and L_{b} are elements, then so is the product $L_{\mathrm{a}} L_{\mathrm{b}}$. Explicitly, we have

$$
\begin{equation*}
\left(L_{\mathrm{a}} L_{\mathrm{b}}\right)^{\mathrm{t}} g L_{\mathrm{a}} L_{\mathrm{b}}=L_{\mathrm{b}}^{\mathrm{t}}\left(L_{\mathrm{a}}^{\mathrm{t}} g L_{\mathrm{a}}\right) L_{\mathrm{b}}=L_{\mathrm{b}}^{\mathrm{t}} g L_{\mathrm{b}}=g . \tag{10.48}
\end{equation*}
$$

10.3.1 Covariance and contravariance

Note that

$$
\begin{array}{rl}
L_{\alpha}^{\mathrm{t} \mu} g_{\mu \nu} L^{\nu}{ }_{\beta} & =\left(\begin{array}{cccc}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\gamma & \gamma \beta & 0 \\
0 \\
\gamma \beta & \gamma & 0 \\
0 \\
0 & 0 & 1
\end{array} 0\right. \\
0 & 0 \tag{10.49}
\end{array} 0
$$

since $\gamma^{2}\left(1-\beta^{2}\right)=1$. This is in fact the general way that tensors transform under a Lorentz transformation:

$$
\begin{align*}
& \text { covariant vectors : } x^{\mu}=L_{\nu}^{\mu} x^{\prime \nu} \\
& \text { covariant tensors : } F^{\mu \nu}=L_{\alpha}^{\mu} L^{\nu}{ }_{\beta} F^{\prime \alpha \beta}=L_{\alpha}^{\mu} F^{\prime \alpha \beta} L_{\beta}^{\mathrm{t} \mathrm{\nu}} \tag{10.50}
\end{align*}
$$

Note how index contractions always involve one raised index and one lowered index. Raised indices are called contravariant indices and lowered indiced are called covariant indices. The transformation rules for contravariant vectors and tensors are

$$
\begin{align*}
& \text { contravariant vectors : } x_{\mu}=L_{\mu}^{\nu} x_{\nu}^{\prime} \\
& \text { contravariant tensors : } F_{\mu \nu}=L_{\mu}^{\alpha} L_{\nu}^{\beta} F^{\prime}{ }_{\alpha \beta}=L_{\mu}^{\alpha} F^{\prime}{ }_{\alpha \beta} L^{\mathrm{t} \beta}{ }_{\nu} \tag{10.51}
\end{align*}
$$

A Lorentz scalar has no indices at all. For example,

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \tag{10.52}
\end{equation*}
$$

is a Lorentz scalar. In this case, we have contracted a tensor with two four-vectors. The dot product of two four-vectors is also a Lorentz scalar:

$$
\begin{align*}
a \cdot b & \equiv a^{\mu} b_{\mu}=g_{\mu \nu} a^{\mu} b^{\nu} \\
& =a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3} \tag{10.53}\\
& =a^{0} b^{0}-\boldsymbol{a} \cdot \boldsymbol{b} .
\end{align*}
$$

Note that the dot product $a \cdot b$ of four-vectors is invariant under a simultaneous Lorentz transformation of both a^{μ} and b^{μ}, i.e. $a \cdot b=a^{\prime} \cdot b^{\prime}$. Indeed, this invariance is the very definition of what it means for something to be a Lorentz scalar. Derivatives with respect to covariant vectors yield contravariant vectors:

$$
\begin{equation*}
\frac{\partial f}{\partial x^{\mu}} \equiv \partial_{\mu} f \quad, \quad \frac{\partial A^{\mu}}{\partial x^{\nu}}=\partial_{\nu} A^{\mu} \equiv B_{\nu}^{\mu} \quad, \quad \frac{\partial{B^{\mu}}_{\nu}}{\partial x^{\lambda}}=\partial_{\lambda}{B^{\mu}}_{\nu} \equiv C^{\mu}{ }_{\nu \lambda} \tag{10.54}
\end{equation*}
$$

et cetera. Note that differentiation with respect to the covariant vector x^{μ} is expressed by the contravariant differential operator ∂_{μ} :

$$
\begin{align*}
& \frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu} \\
&\left.\frac{\partial}{c} \frac{1}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \tag{10.55}\\
& \frac{\partial x_{\mu}}{} \equiv \partial^{\mu}
\end{align*}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right) . .
$$

The contraction $\square \equiv \partial^{\mu} \partial_{\mu}$ is a Lorentz scalar differential operator, called the D^{\prime} Alembertian:

$$
\begin{equation*}
\square=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}} \tag{10.56}
\end{equation*}
$$

The Helmholtz equation for scalar waves propagating with speed c can thus be written in compact form as $\square \phi=0$.

10.3.2 What to do if you hate raised and lowered indices

Admittedly, this covariant and contravariant business takes some getting used to. Ultimately, it helps to keep straight which indices transform according to L (covariantly) and which transform according to L^{t} (contravariantly). If you find all this irksome, the raising and lowering can be safely ignored. We define the position four-vector as before, but with no difference between raised and lowered indices. In fact, we can just represent all vectors and tensors with lowered indices exclusively, writing e.g. $\mathrm{x}_{\mu}=(c t, x, y, z)$. The metric tensor is $\mathrm{g}=\operatorname{diag}(+,-,-,-)$ as before. The dot product of two four-vectors is

$$
\begin{equation*}
\mathrm{x} \cdot \mathrm{y}=\mathrm{g}_{\mu \nu} \mathrm{x}_{\mu} \mathrm{y}_{\nu} \tag{10.57}
\end{equation*}
$$

The Lorentz transformation is

$$
\begin{equation*}
\mathrm{x}_{\mu}=\mathrm{L}_{\mu \nu} \mathrm{x}_{\nu}^{\prime} \tag{10.58}
\end{equation*}
$$

Since this preserves intervals, we must have

$$
\begin{align*}
\mathrm{g}_{\mu \nu} \mathrm{x}_{\mu} \mathrm{y}_{\nu} & =\mathrm{g}_{\mu \nu} \mathrm{L}_{\mu \alpha} \mathrm{x}_{\alpha}^{\prime} \mathrm{L}_{\nu \beta} \mathrm{y}_{\beta}^{\prime} \tag{10.59}\\
& =\left(\mathrm{L}_{\alpha \mu}^{\mathrm{t}} \mathrm{~g}_{\mu \nu} \mathrm{L}_{\nu \beta}\right) \mathrm{x}_{\alpha}^{\prime} \mathrm{y}_{\beta}^{\prime},
\end{align*}
$$

which entails

$$
\begin{equation*}
\mathrm{L}_{\alpha \mu}^{\mathrm{t}} \mathrm{~g}_{\mu \nu} \mathrm{L}_{\nu \beta}=\mathrm{g}_{\alpha \beta} \tag{10.60}
\end{equation*}
$$

In terms of the quantity L_{ν}^{μ} defined above, we have $\mathrm{L}_{\mu \nu}=L_{\nu}^{\mu}$. In this convention, we could completely avoid raised indices, or we could simply make no distinction, taking $\mathrm{x}^{\mu}=\mathrm{x}_{\mu}$ and $\mathrm{L}_{\mu \nu}=\mathrm{L}^{\mu}{ }_{\nu}=\mathrm{L}^{\mu \nu}$, etc.

10.3.3 Comparing frames

Suppose in the K frame we have a measuring rod which is at rest. What is its length as measured in the K^{\prime} frame? Recall K^{\prime} moves with velocity $\boldsymbol{u}=u \hat{\boldsymbol{x}}$ with respect to K. From the Lorentz transformation in eqn. 10.39, we have

$$
\begin{align*}
& x_{1}=\gamma\left(x_{1}^{\prime}+\beta c t_{1}^{\prime}\right) \tag{10.61}\\
& x_{2}=\gamma\left(x_{2}^{\prime}+\beta c t_{2}^{\prime}\right)
\end{align*}
$$

where $x_{1,2}$ are the positions of the ends of the rod in frame K. The rod's length in any frame is the instantaneous spatial separation of its ends. Thus, we set $t_{1}^{\prime}=t_{2}^{\prime}$ and compute the separation $\Delta x^{\prime}=$ $x_{2}^{\prime}-x_{1}^{\prime}$:

$$
\begin{equation*}
\Delta x=\gamma \Delta x^{\prime} \quad \Longrightarrow \quad \Delta x^{\prime}=\gamma^{-1} \Delta x=\left(1-\beta^{2}\right)^{1 / 2} \Delta x . \tag{10.62}
\end{equation*}
$$

The proper length ℓ_{0} of a rod is its instantaneous end-to-end separation in its rest frame. We see that

$$
\begin{equation*}
\ell(\beta)=\left(1-\beta^{2}\right)^{1 / 2} \ell_{0} \tag{10.63}
\end{equation*}
$$

so the length is always greatest in the rest frame. This is an example of a Lorentz-Fitzgerald contraction. Note that the transverse dimensions do not contract:

$$
\begin{equation*}
\Delta y^{\prime}=\Delta y \quad, \quad \Delta z^{\prime}=\Delta z \tag{10.64}
\end{equation*}
$$

Thus, the volume contraction of a bulk object is given by its length contraction: $\mathcal{V}^{\prime}=\gamma^{-1} \mathcal{V}$.
A striking example of relativistic issues of length, time, and simultaneity is the famous 'pole and the barn' paradox, described in the Appendix (section 10.9). Here we illustrate some essential features via two examples.

10.3.4 Example I

Next, let's analyze the situation depicted in fig. 10.3. In the K^{\prime} frame, we'll denote the following spacetime points:

$$
\begin{equation*}
A^{\prime}=\binom{c t^{\prime}}{-d} \quad, \quad B^{\prime}=\binom{c t^{\prime}}{+d} \quad, \quad S_{-}^{\prime}=\binom{c t^{\prime}}{-c t^{\prime}} \quad, \quad S_{+}^{\prime}=\binom{c t^{\prime}}{+c t^{\prime}} \tag{10.65}
\end{equation*}
$$

Note that the origin in K^{\prime} is given by $O^{\prime}=\left(c t^{\prime}, 0\right)$. Here we are setting $y=y^{\prime}=z=z^{\prime}=0$ and dealing only with one spatial dimension. The points $S_{ \pm}^{\prime}$ denote the left-moving (S_{-}^{\prime}) and right-moving (S_{+}^{\prime}) wavefronts. We see that the arrival of the signal S_{1}^{\prime} at A^{\prime} requires $S_{1}^{\prime}=A^{\prime}$, hence $c t^{\prime}=d$. The same result holds when we set $S_{2}^{\prime}=B^{\prime}$ for the arrival of the right-moving wavefront at B^{\prime}.

We now use the Lorentz transformation

$$
L_{\nu}^{\mu}=\left(\begin{array}{cc}
\gamma & \gamma \beta \tag{10.66}\\
\gamma \beta & \gamma
\end{array}\right)
$$

to transform to the K frame. Thus,

$$
\begin{align*}
A & =\binom{c t_{A}^{*}}{x_{A}^{*}}=L A^{\prime}=\gamma\left(\begin{array}{cc}
1 & \beta \\
\beta & 1
\end{array}\right)\binom{d}{-d}=\gamma(1-\beta) d\binom{1}{-1} \tag{10.67}\\
B & =\binom{c t_{B}^{*}}{x_{B}^{*}}=L B^{\prime}=\gamma\left(\begin{array}{cc}
1 & \beta \\
\beta & 1
\end{array}\right)\binom{d}{+d}=\gamma(1+\beta) d\binom{1}{1} .
\end{align*}
$$

Thus, $t_{A}^{*}=\gamma(1-\beta) d / c$ and $t_{B}^{*}=\gamma(1+\beta) d / c$. Thus, the two events are not simultaneous in K. The arrival at A is first.

10.3.5 Example II

Consider a rod of length ℓ_{0} extending from the origin to the point $\ell_{0} \hat{\boldsymbol{x}}$ at rest in frame K. In the frame K, the two ends of the rod are located at spacetime coordinates

$$
\begin{equation*}
A=\binom{c t}{0} \quad \text { and } \quad B=\binom{c t}{\ell_{0}} \tag{10.68}
\end{equation*}
$$

respectively. Now consider the origin in frame K^{\prime}. Its spacetime coordinates are

$$
\begin{equation*}
C^{\prime}=\binom{c t^{\prime}}{0} \tag{10.69}
\end{equation*}
$$

To an observer in the K frame, we have

$$
C=\left(\begin{array}{cc}
\gamma & \gamma \beta \tag{10.70}\\
\gamma \beta & \gamma
\end{array}\right)\binom{c t^{\prime}}{0}=\binom{\gamma c t^{\prime}}{\gamma \beta c t^{\prime}} .
$$

Now consider two events. The first event is the coincidence of A with C, i.e. the origin of K^{\prime} instantaneously coincides with the origin of K. Setting $A=C$ we obtain $t=t^{\prime}=0$. The second event is the coincidence of B with C. Setting $B=C$ we obtain $t=l_{0} / \beta c$ and $t^{\prime}=\ell_{0} / \gamma \beta c$. Note that $t=\ell(\beta) / \beta c$, i.e. due to the Lorentz-Fitzgerald contraction of the rod as seen in the K^{\prime} frame, where $\ell(\beta)=\ell_{0} / \gamma$.

10.3.6 Deformation of a rectangular plate

Problem: A rectangular plate of dimensions $a \times b$ moves at relativistic velocity $\boldsymbol{V}=V \hat{\boldsymbol{x}}$ as shown in fig. 10.5. In the rest frame of the rectangle, the a side makes an angle θ with respect to the $\hat{\boldsymbol{x}}$ axis. Describe in detail and sketch the shape of the plate as measured by an observer in the laboratory frame. Indicate the lengths of all sides and the values of all interior angles. Evaluate your expressions for the case $\theta=\frac{1}{4} \pi$ and $V=\sqrt{\frac{2}{3}} c$.
Solution: An observer in the laboratory frame will measure lengths parallel to $\hat{\boldsymbol{x}}$ to be Lorentz contracted by a factor γ^{-1}, where $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$ and $\beta=V / c$. Lengths perpendicular to $\hat{\boldsymbol{x}}$ remain unaffected. Thus, we have the situation depicted in fig. 10.6. Simple trigonometry then says

$$
\begin{equation*}
\tan \phi=\gamma \tan \theta \quad, \quad \tan \tilde{\phi}=\gamma^{-1} \tan \theta, \tag{10.71}
\end{equation*}
$$

Figure 10.5: A rectangular plate moving at velocity $\boldsymbol{V}=V \hat{\boldsymbol{x}}$.
as well as

$$
\begin{align*}
& a^{\prime}=a \sqrt{\gamma^{-2} \cos ^{2} \theta+\sin ^{2} \theta}=a \sqrt{1-\beta^{2} \cos ^{2} \theta} \\
& b^{\prime}=b \sqrt{\gamma^{-2} \sin ^{2} \theta+\cos ^{2} \theta}=b \sqrt{1-\beta^{2} \sin ^{2} \theta} . \tag{10.72}
\end{align*}
$$

The plate deforms to a parallelogram, with internal angles

$$
\begin{align*}
& \chi=\frac{1}{2} \pi+\tan ^{-1}(\gamma \tan \theta)-\tan ^{-1}\left(\gamma^{-1} \tan \theta\right) \\
& \tilde{\chi}=\frac{1}{2} \pi-\tan ^{-1}(\gamma \tan \theta)+\tan ^{-1}\left(\gamma^{-1} \tan \theta\right) . \tag{10.73}
\end{align*}
$$

Note that the area of the plate as measured in the laboratory frame is

$$
\begin{align*}
\Omega^{\prime} & =a^{\prime} b^{\prime} \sin \chi=a^{\prime} b^{\prime} \cos (\phi-\tilde{\phi}) \tag{10.74}\\
& =\gamma^{-1} \Omega,
\end{align*}
$$

where $\Omega=a b$ is the proper area. The area contraction factor is γ^{-1} and not γ^{-2} (or γ^{-3} in a threedimensional system) because only the parallel dimension gets contracted.

Setting $V=\sqrt{\frac{2}{3}} c$ gives $\gamma=\sqrt{3}$, and with $\theta=\frac{1}{4} \pi$ we have $\phi=\frac{1}{3} \pi$ and $\tilde{\phi}=\frac{1}{6} \pi$. The interior angles are then $\chi=\frac{2}{3} \pi$ and $\tilde{\chi}=\frac{1}{3} \pi$. The side lengths are $a^{\prime}=\sqrt{\frac{2}{3}} a$ and $b^{\prime}=\sqrt{\frac{2}{3}} b$.

10.3.7 Transformation of velocities

Let K^{\prime} move at velocity $\boldsymbol{u}=c \boldsymbol{\beta}$ relative to K. The transformation from K^{\prime} to K is given by the Lorentz boost,

$$
L_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & \gamma \beta_{x} & \gamma \beta_{y} & \gamma \beta_{z} \tag{10.75}\\
\gamma \beta_{x} & 1+(\gamma-1) \hat{\beta}_{x} \hat{\beta}_{x} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} \\
\gamma \beta_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & 1+(\gamma-1) \hat{\beta}_{y} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} \\
\gamma \beta_{z} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} & 1+(\gamma-1) \hat{\beta}_{z} \hat{\beta}_{z}
\end{array}\right) .
$$

Figure 10.6: Relativistic deformation of the rectangular plate.
Applying this, we have

$$
\begin{equation*}
d x^{\mu}=L_{\nu}^{\mu} d x^{\prime \nu} . \tag{10.76}
\end{equation*}
$$

This yields

$$
\begin{align*}
d x^{0} & =\gamma d x^{\prime 0}+\gamma \boldsymbol{\beta} \cdot d \boldsymbol{x}^{\prime} \\
d \boldsymbol{x} & =\gamma \boldsymbol{\beta} d x^{\prime 0}+d \boldsymbol{x}^{\prime}+(\gamma-1) \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}} \cdot d \boldsymbol{x}^{\prime} . \tag{10.77}
\end{align*}
$$

We then have

$$
\begin{align*}
\boldsymbol{V}=c \frac{d \boldsymbol{x}}{d x^{0}} & =\frac{c \gamma \boldsymbol{\beta} d x^{\prime 0}+c d \boldsymbol{x}^{\prime}+c(\gamma-1) \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}} \cdot d \boldsymbol{x}^{\prime}}{\gamma d x^{\prime 0}+\gamma \boldsymbol{\beta} \cdot d \boldsymbol{x}^{\prime}} \\
& =\frac{\boldsymbol{u}+\gamma^{-1} \boldsymbol{V}^{\prime}+\left(1-\gamma^{-1}\right) \hat{\boldsymbol{u}} \hat{\boldsymbol{u}} \cdot \boldsymbol{V}^{\prime}}{1+\boldsymbol{u} \cdot \boldsymbol{V}^{\prime} / c^{2}} . \tag{10.78}
\end{align*}
$$

The second line is obtained by dividing both numerator and denominator by $d x^{\prime 0}$, and then writing $\boldsymbol{V}^{\prime}=d \boldsymbol{x}^{\prime} / d x^{\prime 0}$. There are two special limiting cases:

$$
\begin{align*}
\text { velocities parallel }\left(\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{V}}^{\prime}=1\right) & \Longrightarrow \boldsymbol{V}=\frac{\left(u+V^{\prime}\right) \hat{\boldsymbol{u}}}{1+u V^{\prime} / c^{2}} \tag{10.79}\\
\text { velocities perpendicular }\left(\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{V}}^{\prime}=0\right) & \Longrightarrow \boldsymbol{V}=\boldsymbol{u}+\gamma^{-1} \boldsymbol{V}^{\prime} .
\end{align*}
$$

Note that if either u or V^{\prime} is equal to c, the resultant expression has $|\boldsymbol{V}|=c$ as well. One can't boost the speed of light!
Let's revisit briefly the example in section 10.3.4. For an observer, in the K frame, the relative velocity of S and A is $c+u$, because even though we must boost the velocity $-c \hat{\boldsymbol{x}}$ of the left-moving light wave
by $u \hat{\boldsymbol{x}}$, the result is still $-c \hat{\boldsymbol{x}}$, according to our velocity addition formula. The distance between the emission and detection points is $d(\beta)=d / \gamma$. Thus,

$$
\begin{equation*}
t_{A}^{*}=\frac{d(\beta)}{c+u}=\frac{d}{\gamma} \cdot \frac{1}{c+u}=\frac{d}{\gamma c} \cdot \frac{1-\beta}{1-\beta^{2}}=\gamma(1-\beta) \frac{d}{c} . \tag{10.80}
\end{equation*}
$$

This result is exactly as found in section 10.3 .4 by other means. A corresponding analysis yields $t_{B}^{*}=$ $\gamma(1+\beta) d / c$. again in agreement with the earlier result. Here, it is crucial to account for the Lorentz contraction of the distance between the source S and the observers A and B as measured in the K frame.

10.3.8 Four-velocity and four-acceleration

In nonrelativistic mechanics, the velocity $\boldsymbol{V}=\frac{d x}{d t}$ is locally tangent to a particle's trajectory. In relativistic mechanics, one defines the four-velocity,

$$
\begin{equation*}
u^{\alpha} \equiv \frac{d x^{\alpha}}{d s}=\frac{d x^{\alpha}}{\sqrt{1-\boldsymbol{\beta}^{2}} c d t}=\binom{\gamma}{\gamma \boldsymbol{\beta}} \tag{10.81}
\end{equation*}
$$

which is locally tangent to the world line of a particle. Note that

$$
\begin{equation*}
g_{\alpha \beta} u^{\alpha} u^{\beta}=1 \tag{10.82}
\end{equation*}
$$

The four-acceleration is defined as

$$
\begin{equation*}
w^{\nu} \equiv \frac{d u^{\nu}}{d s}=\frac{d^{2} x^{\nu}}{d s^{2}} . \tag{10.83}
\end{equation*}
$$

Note that $u \cdot w=0$, so the 4 -velocity and 4-acceleration are orthogonal with respect to the Minkowski metric.

10.4 Three Kinds of Relativistic Rockets

10.4.1 Constant acceleration model

Consider a rocket which undergoes constant acceleration along $\hat{\boldsymbol{x}}$. Clearly the rocket has no rest frame per se, because its velocity is changing. However, this poses no serious obstacle to discussing its relativistic motion. We consider a frame K^{\prime} in which the rocket is instantaneously at rest. In such a frame, the rocket's 4-acceleration is $w^{\alpha}=\left(0, a / c^{2}\right)$, where we suppress the transverse coordinates y and z. In an inertial frame K, we have

$$
\begin{equation*}
w^{\alpha}=\frac{d}{d s}\binom{\gamma}{\gamma \beta}=\frac{\gamma}{c}\binom{\dot{\gamma}}{\gamma \dot{\beta}+\dot{\gamma} \beta} . \tag{10.84}
\end{equation*}
$$

Transforming $w^{\prime \alpha}$ into the K frame, we have

$$
w^{\alpha}=\left(\begin{array}{cc}
\gamma & \gamma \beta \tag{10.85}\\
\gamma \beta & \gamma
\end{array}\right)\binom{0}{a / c^{2}}=\binom{\gamma \beta a / c^{2}}{\gamma a / c^{2}} .
$$

Taking the upper component, we obtain the equation

$$
\begin{equation*}
\dot{\gamma}=\frac{\beta a}{c} \quad \Longrightarrow \quad \frac{d}{d t}\left(\frac{\beta}{\sqrt{1-\beta^{2}}}\right)=\frac{a}{c} \tag{10.86}
\end{equation*}
$$

the solution of which, with $\beta(0)=0$, is

$$
\begin{equation*}
\beta(t)=\frac{a t}{\sqrt{c^{2}+a^{2} t^{2}}} \quad, \quad \gamma(t)=\sqrt{1+\left(\frac{a t}{c}\right)^{2}} \tag{10.87}
\end{equation*}
$$

The proper time for an observer moving with the rocket is thus

$$
\begin{equation*}
\tau=\int_{0}^{t} \frac{c d t_{1}}{\sqrt{c^{2}+a^{2} t_{1}^{2}}}=\frac{c}{a} \sinh ^{-1}\left(\frac{a t}{c}\right) \tag{10.88}
\end{equation*}
$$

For large times $t \gg c / a$, the proper time grows logarithmically in t, which is parametrically slower. To find the position of the rocket, we integrate $\dot{x}=c \beta$, and obtain, with $x(0)=0$,

$$
\begin{equation*}
x(t)=\int_{0}^{t} \frac{a c t_{1} d t_{1}}{\sqrt{c^{2}+a^{2} t_{1}^{2}}}=\frac{c}{a}\left(\sqrt{c^{2}+a^{2} t^{2}}-c\right) \tag{10.89}
\end{equation*}
$$

It is interesting to consider the situation in the frame K^{\prime}. We then have

$$
\begin{equation*}
\beta(\tau)=\tanh (a \tau / c) \quad, \quad \gamma(\tau)=\cosh (a \tau / c) \tag{10.90}
\end{equation*}
$$

For an observer in the frame K^{\prime}, the distance he has traveled is $\Delta x^{\prime}(\tau)=\Delta x(\tau) / \gamma(\tau)$, as we found in eqn. 10.62. Now $x(\tau)=\left(c^{2} / a\right)(\cosh (a \tau / c)-1)$, hence

$$
\begin{equation*}
\Delta x^{\prime}(\tau)=\frac{c^{2}}{a}(1-\operatorname{sech}(a \tau / c)) \tag{10.91}
\end{equation*}
$$

For $\tau \ll c / a$, we expand $\operatorname{sech}(a \tau / c) \approx 1-\frac{1}{2}(a \tau / c)^{2}$ and find $x^{\prime}(\tau)=\frac{1}{2} a \tau^{2}$, which clearly is the nonrelativistic limit. For $\tau \rightarrow \infty$, however, we have $\Delta x^{\prime}(\tau) \rightarrow c^{2} / a$ is finite! Thus, while the entire Universe is falling behind the accelerating observer, it all piles up at a horizon a distance c^{2} / a behind it, in the frame of the observer. The light from these receding objects is increasingly red-shifted (see section 10.6 below), until it is no longer visible. Thus, as John Baez describes it, the horizon is "a dark plane that appears to be swallowing the entire Universe!" In the frame of the inertial observer, however, nothing strange appears to be happening at all!

10.4.2 Constant force with decreasing mass

Suppose instead the rocket is subjected to a constant force F_{0} in its instantaneous rest frame, and furthermore that the rocket's mass satisfies $m(\tau)=m_{0}(1-\alpha \tau)$, where τ is the proper time for an observer
moving with the rocket. Then from eqn. 10.86, we have

$$
\begin{align*}
\frac{F_{0}}{m_{0}(1-\alpha \tau)}=\frac{d(\gamma \beta)}{d t} & =\gamma^{-1} \frac{d(\gamma \beta)}{d \tau} \tag{10.92}\\
& =\frac{1}{1-\beta^{2}} \frac{d \beta}{d \tau}=\frac{d}{d \tau} \frac{1}{2} \ln \left(\frac{1+\beta}{1-\beta}\right)
\end{align*}
$$

after using the chain rule, and with $d \tau / d t=\gamma^{-1}$. Integrating, we find

$$
\begin{equation*}
\ln \left(\frac{1+\beta}{1-\beta}\right)=\frac{2 F_{0}}{\alpha m_{0} c} \ln (1-\alpha \tau) \quad \Longrightarrow \quad \beta(\tau)=\frac{1-(1-\alpha \tau)^{r}}{1+(1-\alpha \tau)^{r}} \tag{10.93}
\end{equation*}
$$

with $r=2 F_{0} / \alpha m_{0} c$. As $\tau \rightarrow \alpha^{-1}$, the rocket loses all its mass, and it asymptotically approaches the speed of light.

It is convenient to write

$$
\begin{equation*}
\beta(\tau)=\tanh \left[\frac{r}{2} \ln \left(\frac{1}{1-\alpha \tau}\right)\right] \tag{10.94}
\end{equation*}
$$

in which case

$$
\begin{align*}
\gamma=\frac{d t}{d \tau} & =\cosh \left[\frac{r}{2} \ln \left(\frac{1}{1-\alpha \tau}\right)\right] \tag{10.95}\\
\frac{1}{c} \frac{d x}{d \tau} & =\sinh \left[\frac{r}{2} \ln \left(\frac{1}{1-\alpha \tau}\right)\right] .
\end{align*}
$$

Integrating the first of these from $\tau=0$ to $\tau=\alpha^{-1}$, we find $t^{*} \equiv t\left(\tau=\alpha^{-1}\right)$ is

$$
t^{*}=\frac{1}{2 \alpha} \int_{0}^{1} d \sigma\left(\sigma^{-r / 2}+\sigma^{r / 2}\right)= \begin{cases}{\left[\alpha^{2}-\left(\frac{F_{0}}{m c}\right)^{2}\right]^{-1} \alpha} & \text { if } \alpha>\frac{F_{0}}{m c} \tag{10.96}\\ \infty & \text { if } \alpha \leq \frac{F_{0}}{m c}\end{cases}
$$

Since $\beta\left(\tau=\alpha^{-1}\right)=1$, this is the time in the K frame when the rocket reaches the speed of light.

10.4.3 Constant ejecta velocity

Our third relativistic rocket model is a generalization of what is commonly known as the rocket equation in classical physics. The model is one of a rocket which is continually ejecting burnt fuel at a velocity $-u$ in the instantaneous rest frame of the rocket. The nonrelativistic rocket equation follows from overall momentum conservation:

$$
\begin{equation*}
d p_{\text {rocket }}+d p_{\text {fuel }}=d(m v)+(v-u)(-d m)=0, \tag{10.97}
\end{equation*}
$$

since if $d m<0$ is the differential change in rocket mass, the differential ejecta mass is $-d m$. This immediately gives

$$
\begin{equation*}
m d v+u d m=0 \quad \Longrightarrow \quad v=u \ln \left(\frac{m_{0}}{m}\right) \tag{10.98}
\end{equation*}
$$

where the rocket is assumed to begin at rest, and where m_{0} is the initial mass of the rocket. Note that as $m \rightarrow 0$ the rocket's speed increases without bound, which of course violates special relativity.
In relativistic mechanics, as we shall see in section 10.5 , the rocket's momentum, as described by an inertial observer, is $p=\gamma m v$, and its energy is $\gamma m c^{2}$. We now write two equations for overall conservation of momentum and energy:

$$
\begin{align*}
d(\gamma m v)+\gamma_{\mathrm{e}} v_{\mathrm{e}} d m_{\mathrm{e}} & =0 \\
d\left(\gamma m c^{2}\right)+\gamma_{\mathrm{e}}\left(d m_{\mathrm{e}} c^{2}\right) & =0, \tag{10.99}
\end{align*}
$$

where v_{e} is the velocity of the ejecta in the inertial frame, $d m_{\mathrm{e}}$ is the differential mass of the ejecta, and $\gamma_{\mathrm{e}}=\left(1-\frac{v_{\mathrm{e}}^{2}}{c^{2}}\right)^{-1 / 2}$. From the second of these equations, we have

$$
\begin{equation*}
\gamma_{\mathrm{e}} d m_{\mathrm{e}}=-d(\gamma m) \tag{10.100}
\end{equation*}
$$

which we can plug into the first equation to obtain

$$
\begin{equation*}
\left(v-v_{\mathrm{e}}\right) d(\gamma m)+\gamma m d v=0 \tag{10.101}
\end{equation*}
$$

Before solving this, we remark that eqn. 10.100 implies that $d m_{\mathrm{e}}<|d m|$ - the differential mass of the ejecta is less than the mass lost by the rocket! This is Einstein's famous equation $E=m c^{2}$ at work - more on this later.
To proceed, we need to use the parallel velocity addition formula of eqn. 10.79 to find v_{e} :

$$
\begin{equation*}
v_{\mathrm{e}}=\frac{v-u}{1-\frac{u v}{c^{2}}} \quad \Longrightarrow \quad v-v_{\mathrm{e}}=\frac{u\left(1-\frac{v^{2}}{c^{2}}\right)}{\left(1-\frac{u v}{c^{2}}\right)} \tag{10.102}
\end{equation*}
$$

We now define $\beta_{u}=u / c$, in which case eqn, 10.101 becomes

$$
\begin{equation*}
\beta_{u}\left(1-\beta^{2}\right) d(\gamma m)+\left(1-\beta \beta_{u}\right) \gamma m d \beta=0 . \tag{10.103}
\end{equation*}
$$

Using $d \gamma=\gamma^{3} \beta d \beta$, we observe a felicitous cancellation of terms, leaving

$$
\begin{equation*}
\beta_{u} \frac{d m}{m}+\frac{d \beta}{1-\beta^{2}}=0 \tag{10.104}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
\beta=\tanh \left(\beta_{u} \ln \frac{m_{0}}{m}\right) \tag{10.105}
\end{equation*}
$$

Note that this agrees with the result of eqn. 10.94, if we take $\beta_{u}=F_{0} / \alpha m c$.

10.5 Relativistic Mechanics

Relativistic particle dynamics follows from an appropriately extended version of Hamilton's principle $\delta S=0$. The action S must be a Lorentz scalar. The action for a free particle is

$$
\begin{equation*}
S[\boldsymbol{x}(t)]=-m c \int_{a}^{b} d s=-m c^{2} \int_{t_{a}}^{t_{b}} d t \sqrt{1-\frac{\boldsymbol{v}^{2}}{c^{2}}} \tag{10.106}
\end{equation*}
$$

Thus, the free particle Lagrangian is

$$
\begin{equation*}
L=-m c^{2} \sqrt{1-\frac{\boldsymbol{v}^{2}}{c^{2}}}=-m c^{2}+\frac{1}{2} m \boldsymbol{v}^{2}+\frac{1}{8} m c^{2}\left(\frac{\boldsymbol{v}^{2}}{c^{2}}\right)^{2}+\ldots . \tag{10.107}
\end{equation*}
$$

Thus, L can be written as an expansion in powers of $\boldsymbol{v}^{2} / c^{2}$. Note that $L(\boldsymbol{v}=0)=-m c^{2}$. We interpret this as $-U_{0}$, where $U_{0}=m c^{2}$ is the rest energy of the particle. As a constant, it has no consequence for the equations of motion. The next term in L is the familiar nonrelativistic kinetic energy, $\frac{1}{2} m \boldsymbol{v}^{2}$. Higher order terms are smaller by increasing factors of $\beta^{2}=v^{2} / c^{2}$.
We can add a potential $U(\boldsymbol{x}, t)$ to obtain

$$
\begin{equation*}
L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)=-m c^{2} \sqrt{1-\frac{\dot{\boldsymbol{x}}^{2}}{c^{2}}}-U(\boldsymbol{x}, t) \tag{10.108}
\end{equation*}
$$

The momentum of the particle is

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial \dot{\boldsymbol{x}}}=\gamma m \dot{\boldsymbol{x}} \tag{10.109}
\end{equation*}
$$

The force is $\boldsymbol{F}=-\boldsymbol{\nabla} U$ as usual, and Newton's Second Law still reads $\dot{\boldsymbol{p}}=\boldsymbol{F}$. Note that

$$
\begin{equation*}
\dot{\boldsymbol{p}}=\gamma m\left(\dot{\boldsymbol{v}}+\frac{v \dot{v}}{c^{2}} \gamma^{2} \boldsymbol{v}\right) \tag{10.110}
\end{equation*}
$$

Thus, the force \boldsymbol{F} is not necessarily in the direction of the acceleration $\boldsymbol{a}=\boldsymbol{v}$. The Hamiltonian, recall, is a function of coordinates and momenta, and is given by

$$
\begin{equation*}
H=\boldsymbol{p} \cdot \dot{\boldsymbol{x}}-L=\sqrt{m^{2} c^{4}+\boldsymbol{p}^{2} c^{2}}+U(\boldsymbol{x}, t) . \tag{10.111}
\end{equation*}
$$

Since $\partial L / \partial t=0$ for our case, H is conserved by the motion of the particle. There are two limits of note:

$$
\begin{array}{rrll}
|\boldsymbol{p}| \ll m c & \text { (non-relativistic) } & : & H=m c^{2}+\frac{\boldsymbol{p}^{2}}{2 m}+U+\mathcal{O}\left(p^{4} / m^{4} c^{4}\right) \tag{10.112}\\
|\boldsymbol{p}| \gg m c \quad \text { (ultra-relativistic) } & : & H=c|\boldsymbol{p}|+U+\mathcal{O}(m c / p)
\end{array}
$$

Expressed in terms of the coordinates and velocities, we have $H=E$, the total energy, with

$$
\begin{equation*}
E=\gamma m c^{2}+U \tag{10.113}
\end{equation*}
$$

In particle physics applications, one often defines the kinetic energy T as

$$
\begin{equation*}
T=E-U-m c^{2}=(\gamma-1) m c^{2} \tag{10.114}
\end{equation*}
$$

When electromagnetic fields are included,

$$
\begin{align*}
L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) & =-m c^{2} \sqrt{1-\frac{\dot{\boldsymbol{x}}^{2}}{c^{2}}}-q \phi+\frac{q}{c} \boldsymbol{A} \cdot \dot{\boldsymbol{x}} \tag{10.115}\\
& =-\gamma m c^{2}-\frac{q}{c} A_{\mu} \frac{d x^{\mu}}{d t},
\end{align*}
$$

where the electromagnetic 4-potential is $A^{\mu}=(\phi, \boldsymbol{A})$. Recall $A_{\mu}=g_{\mu \nu} A^{\nu}$ has the sign of its spatial components reversed. One the has

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial \dot{\boldsymbol{x}}}=\gamma m \dot{\boldsymbol{x}}+\frac{q}{c} \boldsymbol{A} \tag{10.116}
\end{equation*}
$$

and the Hamiltonian is

$$
\begin{equation*}
H=\sqrt{m^{2} c^{4}+\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}\right)^{2}}+q \phi \tag{10.117}
\end{equation*}
$$

10.5.1 Relativistic harmonic oscillator

From $E=\gamma m c^{2}+U$, we have

$$
\begin{equation*}
\dot{x}^{2}=c^{2}\left[1-\left(\frac{m c^{2}}{E-U(x)}\right)^{2}\right] \tag{10.118}
\end{equation*}
$$

Consider the one-dimensional harmonic oscillator potential $U(x)=\frac{1}{2} k x^{2}$. We define the turning points as $x= \pm b$, satisfying

$$
\begin{equation*}
E-m c^{2}=U(\pm b)=\frac{1}{2} k b^{2} \tag{10.119}
\end{equation*}
$$

Now define the angle θ via $x \equiv b \cos \theta$, and further define the dimensionless parameter $\epsilon=k b^{2} / 4 m c^{2}$. Then, after some manipulations, one obtains

$$
\begin{equation*}
\dot{\theta}=\omega_{0} \frac{\sqrt{1+\epsilon \sin ^{2} \theta}}{1+2 \epsilon \sin ^{2} \theta} \tag{10.120}
\end{equation*}
$$

with $\omega_{0}=\sqrt{k / m}$ as in the nonrelativistic case. Hence, the problem is reduced to quadratures (a quaint way of saying 'doing an an integral'):

$$
\begin{equation*}
t(\theta)-t_{0}=\omega_{0}^{-1} \int_{\theta_{0}}^{\theta} d \vartheta \frac{1+2 \epsilon \sin ^{2} \vartheta}{\sqrt{1+\epsilon \sin ^{2} \vartheta}} \tag{10.121}
\end{equation*}
$$

While the result can be expressed in terms of elliptic integrals, such an expression is not particularly illuminating. Here we will content ourselves with computing the period $T(\epsilon)$:

$$
\begin{align*}
T(\epsilon) & =\frac{4}{\omega_{0}} \int_{0}^{\frac{\pi}{2}} d \vartheta \frac{1+2 \epsilon \sin ^{2} \vartheta}{\sqrt{1+\epsilon \sin ^{2} \vartheta}} \\
& =\frac{4}{\omega_{0}} \int_{0}^{\frac{\pi}{2}} d \vartheta\left(1+\frac{3}{2} \epsilon \sin ^{2} \vartheta-\frac{5}{8} \epsilon^{2} \sin ^{4} \vartheta+\ldots\right) \tag{10.122}\\
& =\frac{2 \pi}{\omega_{0}} \cdot\left\{1+\frac{3}{4} \epsilon-\frac{15}{64} \epsilon^{2}+\ldots\right\}
\end{align*}
$$

Thus, for the relativistic harmonic oscillator, the period does depend on the amplitude, unlike the nonrelativistic case.

10.5.2 Energy-momentum 4-vector

Let's focus on the case where $U(\boldsymbol{x})=0$. This is in fact a realistic assumption for subatomic particles, which propagate freely between collision events.
The differential proper time for a particle is given by

$$
\begin{equation*}
d \tau=\frac{d s}{c}=\gamma^{-1} d t \tag{10.123}
\end{equation*}
$$

where $x^{\mu}=(c t, \boldsymbol{x})$ are coordinates for the particle in an inertial frame. Thus,

$$
\begin{equation*}
\boldsymbol{p}=\gamma m \dot{\boldsymbol{x}}=m \frac{d \boldsymbol{x}}{d \tau} \quad, \quad \frac{E}{c}=m c \gamma=m \frac{d x^{0}}{d \tau} \tag{10.124}
\end{equation*}
$$

with $x^{0}=c t$. Thus, we can write the energy-momentum 4-vector as

$$
p^{\mu}=m \frac{d x^{\mu}}{d \tau}=\left(\begin{array}{c}
E / c \tag{10.125}\\
p^{x} \\
p^{y} \\
p^{z}
\end{array}\right)
$$

Note that $p^{\nu}=m c u^{\nu}$, where u^{ν} is the 4 -velocity of eqn. 10.81. The four-momentum satisfies the relation

$$
\begin{equation*}
p^{\mu} p_{\mu}=\frac{E^{2}}{c^{2}}-\boldsymbol{p}^{2}=m^{2} c^{2} \tag{10.126}
\end{equation*}
$$

The relativistic generalization of force is

$$
\begin{equation*}
f^{\mu}=\frac{d p^{\mu}}{d \tau}=(\gamma \boldsymbol{F} \cdot \boldsymbol{v} / c, \gamma \boldsymbol{F}) \tag{10.127}
\end{equation*}
$$

where $\boldsymbol{F}=d \boldsymbol{p} / d t$ as usual.

The energy-momentum four-vector transforms covariantly under a Lorentz transformation. This means

$$
\begin{equation*}
p^{\mu}=L_{\nu}^{\mu} p^{\prime \nu} . \tag{10.128}
\end{equation*}
$$

If frame K^{\prime} moves with velocity $\boldsymbol{u}=c \beta \hat{\boldsymbol{x}}$ relative to frame K, then

$$
\begin{equation*}
\frac{E}{c}=\frac{c^{-1} E^{\prime}+\beta p^{\prime x}}{\sqrt{1-\beta^{2}}} \quad, \quad p^{x}=\frac{p^{\prime x}+\beta c^{-1} E^{\prime}}{\sqrt{1-\beta^{2}}} \quad, \quad p^{y}=p^{y} \quad, \quad p^{z}=p^{\prime z} . \tag{10.129}
\end{equation*}
$$

In general, from eqns. 10.47, we have

$$
\begin{align*}
& \frac{E}{c}=\gamma \frac{E^{\prime}}{c}+\gamma \beta p_{\|}^{\prime} \\
& p_{\|}=\gamma \beta \frac{E}{c}+\gamma p_{\|}^{\prime} \tag{10.130}\\
& \boldsymbol{p}_{\perp}=\boldsymbol{p}_{\perp}^{\prime}
\end{align*}
$$

where $p_{\|}=\hat{\boldsymbol{\beta}} \cdot \boldsymbol{p}$ and $\boldsymbol{p}_{\perp}=\boldsymbol{p}-(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{p}) \hat{\boldsymbol{\beta}}$.

10.5.3 4-momentum for massless particles

For a massless particle, such as a photon, we have $p^{\mu} p_{\mu}=0$, which means $E^{2}=\boldsymbol{p}^{2} c^{2}$. The 4 -momentum may then be written $p^{\mu}=(|\boldsymbol{p}|, \boldsymbol{p})$. We define the 4 -wavevector k^{μ} by the relation $p^{\mu}=\hbar k^{\mu}$, where $\hbar=h / 2 \pi$ and h is Planck's constant. We also write $\omega=c k$, with $E=\hbar \omega$.

10.6 Relativistic Doppler Effect

The 4-wavevector $k^{\mu}=(\omega / c, \boldsymbol{k})$ for electromagnetic radiation satisfies $k^{\mu} k_{\mu}=0$. The energy-momentum 4 -vector is $p^{\mu}=\hbar k^{\mu}$. The phase $\phi\left(x^{\mu}\right)=-k_{\mu} x^{\mu}=\boldsymbol{k} \cdot \boldsymbol{x}-\omega t$ of a plane wave is a Lorentz scalar. This means that the total number of wave crests (i.e. $\phi=2 \pi n$) emitted by a source will be the total number observed by a detector.

Suppose a moving source emits radiation of angular frequency ω^{\prime} in its rest frame. Then

$$
\begin{align*}
k^{\prime \mu} & =L_{\nu}^{\mu}(-\boldsymbol{\beta}) k^{\nu} \\
& =\left(\begin{array}{cccc}
\gamma & -\gamma \beta_{x} & -\gamma \beta_{y} & -\gamma \hat{\beta}_{z} \\
-\gamma \beta_{x} & 1+(\gamma-1) \hat{\beta}_{x} \hat{\beta}_{x} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} \\
-\gamma \beta_{y} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{y} & 1+(\gamma-1) \hat{\beta}_{y} \hat{\beta}_{y} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} \\
-\gamma \beta_{z} & (\gamma-1) \hat{\beta}_{x} \hat{\beta}_{z} & (\gamma-1) \hat{\beta}_{y} \hat{\beta}_{z} & 1+(\gamma-1) \hat{\beta}_{z} \hat{\beta}_{z}
\end{array}\right)\left(\begin{array}{c}
\omega / c \\
k^{x} \\
k^{y} \\
k^{z}
\end{array}\right) . \tag{10.131}
\end{align*}
$$

This gives

$$
\begin{equation*}
\frac{\omega^{\prime}}{c}=\gamma \frac{\omega}{c}-\gamma \boldsymbol{\beta} \cdot \boldsymbol{k}=\gamma \frac{\omega}{c}(1-\beta \cos \theta) \tag{10.132}
\end{equation*}
$$

where $\theta=\cos ^{-1}(\hat{\boldsymbol{\beta}} \cdot \hat{\boldsymbol{k}})$ is the angle measured in K between $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{k}}$. Solving for ω, we have

$$
\begin{equation*}
\omega=\frac{\sqrt{1-\beta^{2}}}{1-\beta \cos \theta} \omega_{0} \tag{10.133}
\end{equation*}
$$

where $\omega_{0}=\omega^{\prime}$ is the angular frequency in the rest frame of the moving source. Thus,

$$
\begin{align*}
\theta=0 & \Rightarrow \\
\text { source approaching } & \Rightarrow \omega=\sqrt{\frac{1+\beta}{1-\beta}} \omega_{0} \tag{10.134}\\
\theta=\frac{1}{2} \pi \quad \Rightarrow & \text { source perpendicular }
\end{align*} \quad \Rightarrow \omega=\sqrt{1-\beta^{2}} \omega_{0} . \quad . \quad \text { source receding } \quad \Rightarrow \quad \omega=\sqrt{\frac{1-\beta}{1+\beta}} \omega_{0} .
$$

Recall the non-relativistic Doppler effect:

$$
\begin{equation*}
\omega=\frac{\omega_{0}}{1-(V / c) \cos \theta} \tag{10.135}
\end{equation*}
$$

We see that approaching sources have their frequencies shifted higher; this is called the blue shift, since blue light is on the high frequency (short wavelength) end of the optical spectrum. By the same token, receding sources are red-shifted to lower frequencies.

10.6.1 Romantic example

Alice and Bob have a "May-December" thang going on. Bob is May and Alice December, if you get my drift. The social stigma is too much to bear! To rectify this, they decide that Alice should take a ride in a space ship. Alice's itinerary takes her along a sector of a circle of radius R and angular span of $\Theta=1$ radian, as depicted in fig. 10.7. Define $\mathrm{O} \equiv(r=0), \mathrm{P} \equiv\left(r=R, \phi=-\frac{1}{2} \Theta\right)$, and $\mathrm{Q} \equiv\left(r=R, \phi=\frac{1}{2} \Theta\right)$. Alice's speed along the first leg (straight from O to P) is $v_{\mathrm{a}}=\frac{3}{5} c$. Her speed along the second leg (an arc from P to Q) is $v_{\mathrm{b}}=\frac{12}{13} c$. The final leg (straight from Q to O) she travels at speed $v_{\mathrm{c}}=\frac{4}{5} c$. Remember that the length of an circular arc of radius R and angular spread α (radians) is $\ell=\alpha R$.
(a) Alice and Bob synchronize watches at the moment of Alice's departure. What is the elapsed time on Bob's watch when Alice returns? What is the elapsed time on Alice's watch? What must R be in order for them to erase their initial 30 year age difference?

Solution : In Bob's frame, Alice's trip takes a time

$$
\begin{align*}
\Delta t & =\frac{R}{c \beta_{\mathrm{a}}}+\frac{R \Theta}{c \beta_{\mathrm{b}}}+\frac{R}{c \beta_{\mathrm{c}}} \tag{10.136}\\
& =\frac{R}{c}\left(\frac{5}{3}+\frac{13}{12}+\frac{5}{4}\right)=\frac{4 R}{c} .
\end{align*}
$$

The elapsed time on Alice's watch is

$$
\begin{align*}
\Delta t^{\prime} & =\frac{R}{c \gamma_{\mathrm{a}} \beta_{\mathrm{a}}}+\frac{R \Theta}{c \gamma_{\mathrm{b}} \beta_{\mathrm{b}}}+\frac{R}{c \gamma_{\mathrm{c}} \beta_{\mathrm{c}}} \tag{10.137}\\
& =\frac{R}{c}\left(\frac{5}{3} \cdot \frac{4}{5}+\frac{13}{12} \cdot \frac{5}{13}+\frac{5}{4} \cdot \frac{3}{5}\right)=\frac{5 R}{2 c} .
\end{align*}
$$

Figure 10.7: Alice's big adventure.

Thus, $\Delta T=\Delta t-\Delta t^{\prime}=3 R / 2 c$ and setting $\Delta T=30 \mathrm{yr}$, we find $R=20 \mathrm{ly}$. So Bob will have aged 80 years and Alice 50 years upon her return. (Maybe this isn't such a good plan after all.)
(b) As a signal of her undying love for Bob, Alice continually shines a beacon throughout her trip. The beacon produces monochromatic light at wavelength $\lambda_{0}=6000 \AA$ (frequency $f_{0}=c / \lambda_{0}=5 \times 10^{14} \mathrm{~Hz}$). Every night, Bob peers into the sky (with a radiotelescope), hopefully looking for Alice's signal. What frequencies $f_{\mathrm{a}}, f_{\mathrm{b}}$, and f_{c} does Bob see?

Solution : Using the relativistic Doppler formula, we have

$$
\begin{align*}
& f_{\mathrm{a}}=\sqrt{\frac{1-\beta_{\mathrm{a}}}{1+\beta_{\mathrm{a}}}} \times f_{0}=\frac{1}{2} f_{0} \\
& f_{\mathrm{b}}=\sqrt{1-\beta_{\mathrm{b}}^{2}} \times f_{0}=\frac{5}{13} f_{0} \tag{10.138}\\
& f_{\mathrm{c}}=\sqrt{\frac{1+\beta_{\mathrm{c}}}{1-\beta_{\mathrm{c}}}} \times f_{0}=3 f_{0} .
\end{align*}
$$

(c) Show that the total number of wave crests counted by Bob is the same as the number emitted by Alice, over the entire trip.

Solution : Consider first the O-P leg of Alice's trip. The proper time elapsed on Alice's watch during this leg is $\Delta t_{a}^{\prime}=R / c \gamma_{a} \beta_{a}$, hence she emits $N_{a}^{\prime}=R f_{0} / c \gamma_{a} \beta_{a}$ wavefronts during this leg. Similar considerations hold for the $\mathrm{P}-\mathrm{Q}$ and $\mathrm{Q}-\mathrm{O}$ legs, so $N_{b}^{\prime}=R \Theta f_{0} / c \gamma_{b} \beta_{b}$ and $N_{c}^{\prime}=R f_{0} / c \gamma_{c} \beta_{c}$.

Although the duration of the O-P segment of Alice's trip takes a time $\Delta t_{\mathrm{a}}=R / c \beta_{\mathrm{a}}$ in Bob's frame, he keeps receiving the signal at the Doppler-shifted frequency f_{a} until the wavefront emitted when Alice arrives at P makes its way back to Bob. That takes an extra time R / c, hence the number of crests emitted for Alice's O-P leg is

$$
\begin{equation*}
N_{\mathrm{a}}=\left(\frac{R}{c \beta_{\mathrm{a}}}+\frac{R}{c}\right) \sqrt{\frac{1-\beta_{\mathrm{a}}}{1+\beta_{\mathrm{a}}}} \times f_{0}=\frac{R f_{0}}{c \gamma_{a} \beta_{a}}=N_{\mathrm{a}}^{\prime} \tag{10.139}
\end{equation*}
$$

since the source is receding from the observer.
During the $\mathrm{P}-\mathrm{Q}$ leg, we have $\theta=\frac{1}{2} \pi$, and Alice's velocity is orthogonal to the wavevector \boldsymbol{k}, which is directed radially inward. Bob's first signal at frequency f_{b} arrives a time R / c after Alice passes P , and his last signal at this frequency arrives a time R / c after Alice passes Q . Thus, the total time during which Bob receives the signal at the Doppler-shifted frequency f_{b} is $\Delta t_{\mathrm{b}}=R \Theta / c$, and

$$
\begin{equation*}
N_{\mathrm{b}}=\frac{R \Theta}{c \beta_{\mathrm{b}}} \cdot \sqrt{1-\beta_{\mathrm{b}}^{2}} \times f_{0}=\frac{R \Theta f_{0}}{c \gamma_{b} \beta_{b}}=N_{\mathrm{b}}^{\prime} . \tag{10.140}
\end{equation*}
$$

Finally, during the Q-O home stretch, Bob first starts to receive the signal at the Doppler-shifted frequency f_{c} a time R / c after Alice passes Q , and he continues to receive the signal until the moment Alice rushes into his open and very flabby old arms when she makes it back to O. Thus, Bob receives the frequency f_{c} signal for a duration $\Delta t_{\mathrm{c}}-R / c$, where $\Delta t_{\mathrm{c}}=R / c \beta_{\mathrm{c}}$. Thus,

$$
\begin{equation*}
N_{\mathrm{c}}=\left(\frac{R}{c \beta_{\mathrm{c}}}-\frac{R}{c}\right) \sqrt{\frac{1+\beta_{\mathrm{c}}}{1-\beta_{\mathrm{c}}}} \times f_{0}=\frac{R f_{0}}{c \gamma_{c} \beta_{c}}=N_{\mathrm{c}}^{\prime} \tag{10.141}
\end{equation*}
$$

since the source is approaching.
Therefore, the number of wavelengths emitted by Alice will be precisely equal to the number received by Bob - none of the waves gets lost.

10.7 Relativistic Kinematics of Particle Collisions

As should be expected, special relativity is essential toward the understanding of subatomic particle collisions, where the particles themselves are moving at close to the speed of light. In our analysis of the kinematics of collisions, we shall find it convenient to adopt the standard convention on units, where we set $c \equiv 1$. Energies will typically be given in GeV , where $1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.602 \times 10^{-10} R_{\mathrm{J}}$. Momenta will then be in units of GeV / c, and masses in units of GeV / c^{2}. With $c \equiv 1$, it is then customary to quote masses in energy units. For example, the mass of the proton in these units is $m_{\mathrm{p}}=938 \mathrm{MeV}$, and $m_{\pi^{-}}=140 \mathrm{MeV}$.

For a particle of mass M, its 4-momentum satisfies $P_{\mu} P^{\mu}=M^{2}$ (remember $c=1$). Consider now an observer with 4-velocity U^{μ}. The energy of the particle, in the rest frame of the observer is $E=P^{\mu} U_{\mu}$. For example, if $P^{\mu}=(M, 0,0,0)$ is its rest frame, and $U^{\mu}=(\gamma, \gamma \boldsymbol{\beta})$, then $E=\gamma M$, as we have already seen.

Consider next the emission of a photon of 4-momentum $P^{\mu}=(\hbar \omega / c, \hbar \boldsymbol{k})$ from an object with 4-velocity V^{μ}, and detected in a frame with 4 -velocity U^{μ}. In the frame of the detector, the photon energy is $E=P^{\mu} U_{\mu}$, while in the frame of the emitter its energy is $E^{\prime}=P^{\mu} V_{\mu}$. If $U^{\mu}=(1,0,0,0)$ and $V^{\mu}=$ $(\gamma, \gamma \boldsymbol{\beta})$, then $E=\hbar \omega$ and $E^{\prime}=\hbar \omega^{\prime}=\gamma \hbar(\omega-\boldsymbol{\beta} \cdot \boldsymbol{k})=\gamma \hbar \omega(1-\beta \cos \theta)$, where $\theta=\cos ^{-1}(\hat{\boldsymbol{\beta}} \cdot \hat{\boldsymbol{k}})$. Thus, $\omega=\gamma^{-1} \omega^{\prime} /(1-\beta \cos \theta)$. This recapitulates our earlier derivation in eqn. 10.132.

Consider next the interaction of several particles. If in a given frame the 4 -momenta of the reactants are P_{i}^{μ}, where n labels the reactant 'species', and the 4 -momenta of the products are Q_{j}^{μ}, then if the collision is elastic, we have that total 4 -momentum is conserved, i.e.

$$
\begin{equation*}
\sum_{i=1}^{N} P_{i}^{\mu}=\sum_{j=1}^{\bar{N}} Q_{j}^{\mu} \tag{10.142}
\end{equation*}
$$

where there are N reactants and \bar{N} products. For massive particles, we can write

$$
\begin{equation*}
P_{i}^{\mu}=\gamma_{i} m_{i}\left(1, \boldsymbol{v}_{i}\right) \quad, \quad Q_{j}^{\mu}=\bar{\gamma}_{j} \bar{m}_{j}\left(1, \bar{v}_{j}\right) \tag{10.143}
\end{equation*}
$$

while for massless particles,

$$
\begin{equation*}
P_{i}^{\mu}=\hbar k_{i}(1, \hat{\boldsymbol{k}}) \quad, \quad Q_{j}^{\mu}=\hbar \bar{k}_{j}(1, \hat{\overline{\boldsymbol{k}}}) \tag{10.144}
\end{equation*}
$$

10.7.1 Spontaneous particle decay into two products

Consider first the decay of a particle of mass M into two particles. We have $P^{\mu}=Q_{1}^{\mu}+Q_{2}^{\mu}$, hence in the rest frame of the (sole) reactant, which is also called the 'center of mass' (CM) frame since the total 3-momentum vanishes therein, we have $M=E_{1}+E_{2}$. Since $E_{i}^{\mathrm{CM}}=\gamma^{\mathrm{CM}} m_{i}$, and $\gamma_{i} \geq 1$, clearly we must have $M>m_{1}+m_{2}$, or else the decay cannot possibly conserve energy. To analyze further, write $P^{\mu}-Q_{1}^{\mu}=Q_{2}^{\mu}$. Squaring, we obtain

$$
\begin{equation*}
M^{2}+m_{1}^{2}-2 P_{\mu} Q_{1}^{\mu}=m_{2}^{2} \tag{10.145}
\end{equation*}
$$

The dot-product $P \cdot Q_{1}$ is a Lorentz scalar, and hence may be evaluated in any frame.
Let us first consider the CM frame, where $P^{\mu}=M(1,0,0,0)$, and $P_{\mu} Q_{1}^{\mu}=M E_{1}^{\mathrm{CM}}$, where E_{1}^{CM} is the energy of $n=1$ product in the rest frame of the reactant. Thus,

$$
\begin{equation*}
E_{1}^{\mathrm{CM}}=\frac{M^{2}+m_{1}^{2}-m_{2}^{2}}{2 M} \quad, \quad E_{2}^{\mathrm{CM}}=\frac{M^{2}+m_{2}^{2}-m_{1}^{2}}{2 M} \tag{10.146}
\end{equation*}
$$

where the second result follows merely from switching the product labels. We may now write $Q_{1}^{\mu}=$ $\left(E_{1}^{\mathrm{CM}}, \boldsymbol{p}^{\mathrm{CM}}\right)$ and $Q_{2}^{\mu}=\left(E_{2}^{\mathrm{CM}},-\boldsymbol{p}^{\mathrm{CM}}\right)$, with

$$
\begin{align*}
\left(\boldsymbol{p}^{\mathrm{CM}}\right)^{2} & =\left(E_{1}^{\mathrm{CM}}\right)^{2}-m_{1}^{2}=\left(E_{2}^{\mathrm{CM}}\right)^{2}-m_{2}^{2} \\
& =\left(\frac{M^{2}-m_{1}^{2}-m_{2}^{2}}{2 M}\right)^{2}-\left(\frac{m_{1} m_{2}}{M}\right)^{2} . \tag{10.147}
\end{align*}
$$

In the laboratory frame, we have $P^{\mu}=\gamma M(1, \boldsymbol{V})$ and $Q_{i}^{\mu}=\gamma_{i} m_{i}\left(1, \boldsymbol{V}_{i}\right)$. Energy and momentum conservation then provide four equations for the six unknowns V_{1} and V_{2}. Thus, there is a two-parameter family of solutions, assuming we regard the reactant velocity V^{K} as fixed, corresponding to the freedom to choose $\hat{\boldsymbol{p}}^{\mathrm{CM}}$ in the CM frame solution above. Clearly the three vectors $\boldsymbol{V}, \boldsymbol{V}_{1}$, and \boldsymbol{V}_{2} must lie in the same plane, and with \boldsymbol{V} fixed, only one additional parameter is required to fix this plane. The other free

Figure 10.8: Spontaneous decay of a single reactant into two products.
parameter may be taken to be the relative angle $\theta_{1}=\cos ^{-1}\left(\hat{\boldsymbol{V}} \cdot \hat{\boldsymbol{V}}_{1}\right)$ (see fig. 10.8). The angle θ_{2} as well as the speed V_{2} are then completely determined. We can use eqn. 10.145 to relate θ_{1} and V_{1} :

$$
\begin{equation*}
M^{2}+m_{1}^{2}-m_{2}^{2}=2 M m_{1} \gamma \gamma_{1}\left(1-V V_{1} \cos \theta_{1}\right) . \tag{10.148}
\end{equation*}
$$

It is convenient to express both γ_{1} and V_{1} in terms of the energy E_{1} :

$$
\begin{equation*}
\gamma_{1}=\frac{E_{1}}{m_{1}} \quad, \quad V_{1}=\sqrt{1-\gamma_{1}^{-2}}=\sqrt{1-\frac{m_{1}^{2}}{E_{1}^{2}}} . \tag{10.149}
\end{equation*}
$$

This results in a quadratic equation for E_{1}, which may be expressed as

$$
\begin{equation*}
\left(1-V^{2} \cos ^{2} \theta_{1}\right) E_{1}^{2}-2 \sqrt{1-V^{2}} E_{1}^{\mathrm{CM}} E_{1}+\left(1-V^{2}\right)\left(E_{1}^{\mathrm{CM}}\right)^{2}+m_{1}^{2} V^{2} \cos ^{2} \theta_{1}=0 \tag{10.150}
\end{equation*}
$$

the solutions of which are

$$
\begin{equation*}
E_{1}=\frac{\sqrt{1-V^{2}} E_{1}^{\mathrm{CM}} \pm V \cos \theta_{1} \sqrt{\left(1-V^{2}\right)\left(E_{1}^{\mathrm{CM}}\right)^{2}-\left(1-V^{2} \cos ^{2} \theta_{1}\right) m_{1}^{2}}}{1-V^{2} \cos ^{2} \theta_{1}} \tag{10.151}
\end{equation*}
$$

The discriminant is positive provided

$$
\begin{equation*}
\left(\frac{E_{1}^{\mathrm{CM}}}{m_{1}}\right)^{2}>\frac{1-V^{2} \cos ^{2} \theta_{1}}{1-V^{2}} \tag{10.152}
\end{equation*}
$$

which means

$$
\begin{equation*}
\sin ^{2} \theta_{1}<\frac{V^{-2}-1}{\left(V_{1}^{\mathrm{CM}}\right)^{-2}-1} \equiv \sin ^{2} \theta_{1}^{*} \tag{10.153}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{1}^{\mathrm{CM}}=\sqrt{1-\left(\frac{m_{1}}{E_{1}^{\mathrm{CM}}}\right)^{2}} \tag{10.154}
\end{equation*}
$$

is the speed of product 1 in the CM frame. Thus, for $V<V_{1}^{\mathrm{CM}}<1$, the scattering angle θ_{1} may take on any value, while for larger reactant speeds $V_{1}^{\mathrm{CM}}<V<1$ the quantity $\sin ^{2} \theta_{1}$ cannot exceed a critical value.

10.7.2 Miscellaneous examples of particle decays

Let us now consider some applications of the formulae in eqn. 10.146:

- Consider the decay $\pi^{0} \rightarrow \gamma \gamma$, for which $m_{1}=m_{2}=0$. We then have $E_{1}^{\mathrm{CM}}=E_{2}^{\mathrm{CM}}=\frac{1}{2} M$. Thus, with $M=m_{\pi^{0}}=135 \mathrm{MeV}$, we have $E_{1}^{\mathrm{CM}}=E_{2}^{\mathrm{CM}}=67.5 \mathrm{MeV}$ for the photon energies in the CM frame.
- For the reaction $K^{+} \longrightarrow \mu^{+}+\nu_{\mu}$ we have $M=m_{K^{+}}=494 \mathrm{MeV}$ and $m_{1}=m_{\mu^{-}}=106 \mathrm{MeV}$. The neutrino mass is $m_{2} \approx 0$, hence $E_{2}^{\mathrm{CM}}=236 \mathrm{MeV}$ is the emitted neutrino's energy in the CM frame.
- A Λ^{0} hyperon with a mass $M=m_{\Lambda^{0}}=1116 \mathrm{MeV}$ decays into a proton ($m_{1}=m_{\mathrm{p}}=938 \mathrm{MeV}$) and a pion $m_{2}=m_{\pi^{-}}=140 \mathrm{MeV}$). The CM energy of the emitted proton is $E_{1}^{\mathrm{CM}}=943 \mathrm{MeV}$ and that of the emitted pion is $E_{2}^{\mathrm{CM}}=173 \mathrm{MeV}$.

10.7.3 Threshold particle production with a stationary target

Consider now a particle of mass M_{1} moving with velocity $\boldsymbol{V}_{1}=V_{1} \hat{\boldsymbol{x}}$, incident upon a stationary target particle of mass M_{2}, as indicated in fig. 10.9. Let the product masses be $m_{1}, m_{2}, \ldots, m_{N^{\prime}}$. The 4-momenta of the reactants and products are

$$
\begin{equation*}
P_{1}^{\mu}=\left(E_{1}, \boldsymbol{P}_{1}\right) \quad, \quad P_{2}^{\mu}=M_{2}(1,0) \quad, \quad Q_{j}^{\mu}=\left(\varepsilon_{j}, \boldsymbol{p}_{j}\right) . \tag{10.155}
\end{equation*}
$$

Note that $E_{1}^{2}-\boldsymbol{P}_{1}^{2}=M_{1}^{2}$ and $\varepsilon_{j}^{2}-\boldsymbol{p}_{j}^{2}=m_{j}^{2}$, with $j \in\left\{1,2, \ldots, N^{\prime}\right\}$.
Conservation of momentum means that

$$
\begin{equation*}
P_{1}^{\mu}+P_{2}^{\mu}=\sum_{j=1}^{N^{\prime}} Q_{j}^{\mu} \tag{10.156}
\end{equation*}
$$

In particular, taking the $\mu=0$ component, we have

$$
\begin{equation*}
E_{1}+M_{2}=\sum_{j=1}^{N^{\prime}} \varepsilon_{j} \tag{10.157}
\end{equation*}
$$

which certainly entails

$$
\begin{equation*}
E_{1} \geq \sum_{j=1}^{N^{\prime}} m_{j}-M_{2} \tag{10.158}
\end{equation*}
$$

since $\varepsilon_{j}=\gamma_{j} m_{j} \geq m_{j}$. But can the equality ever be achieved? This would only be the case if $\gamma_{j}=1$ for all j, i.e. the final velocities are all zero. But this itself is quite impossible, since the initial state momentum is \boldsymbol{P}.

Figure 10.9: A two-particle initial state, with a stationary target in the LAB frame, and an N^{\prime}-particle final state.

To determine the threshold energy E_{1}^{thr}, we compare the length of the total momentum vector in the LAB and CM frames:

$$
\begin{align*}
\left(P_{1}+P_{2}\right)^{2} & =M_{1}^{2}+M_{2}^{2}+2 E_{1} M_{2} \tag{LAB}\\
& =\left(\sum_{j=1}^{N^{\prime}} \varepsilon_{j}^{\mathrm{CM}}\right)^{2} \tag{CM}
\end{align*}
$$

Thus,

$$
\begin{equation*}
E_{1}=\frac{\left(\sum_{j=1}^{N^{\prime}} \varepsilon_{j}^{\mathrm{CM}}\right)^{2}-M_{1}^{2}-M_{2}^{2}}{2 M_{2}} \tag{10.160}
\end{equation*}
$$

and we conclude

$$
\begin{equation*}
E_{1} \geq E_{1}^{\mathrm{THR}}=\frac{\left(\sum_{j=1}^{N^{\prime}} m_{j}\right)^{2}-M_{1}^{2}-M_{2}^{2}}{2 M_{2}} \tag{10.161}
\end{equation*}
$$

Note that in the CM frame it is possible for each $\varepsilon_{j}^{\mathrm{CM}}=m_{j}$.
Finally, we must have $E_{1}^{\mathrm{THR}} \geq \sum_{j=1}^{N^{\prime}} m_{j}-M_{2}$. This then requires

$$
\begin{equation*}
M_{1}+M_{2} \leq \sum_{j=1}^{N^{\prime}} m_{j} \tag{10.162}
\end{equation*}
$$

10.7.4 Transformation between frames

Consider a particle with 4 -velocity u^{μ} in frame K and consider a Lorentz transformation between this frame and a frame K^{\prime} moving relative to K with velocity \boldsymbol{V}. We may write

$$
\begin{equation*}
u^{\mu}=\left(\gamma, \gamma v \cos \theta, \gamma v \sin \theta \hat{\boldsymbol{n}}_{\perp}\right) \quad, \quad u^{\prime \mu}=\left(\gamma^{\prime}, \gamma^{\prime} v^{\prime} \cos \theta^{\prime}, \gamma^{\prime} v^{\prime} \sin \theta^{\prime} \hat{\boldsymbol{n}}_{\perp}^{\prime}\right) \tag{10.163}
\end{equation*}
$$

According to the general transformation rules of eqns. 10.47, we may write

$$
\begin{align*}
\gamma & =\Gamma \gamma^{\prime}+\Gamma V \gamma^{\prime} v^{\prime} \cos \theta^{\prime} \\
\gamma v \cos \theta & =\Gamma V \gamma^{\prime}+\Gamma \gamma^{\prime} v^{\prime} \cos \theta^{\prime} \\
\gamma v \sin \theta & =\gamma^{\prime} v^{\prime} \sin \theta^{\prime} \tag{10.164}\\
\hat{\boldsymbol{n}}_{\perp} & =\hat{\boldsymbol{n}}_{\perp}^{\prime} \quad,
\end{align*}
$$

where the $\hat{\boldsymbol{x}}$ axis is taken to be $\hat{\boldsymbol{V}}$, and where $\Gamma \equiv\left(1-V^{2}\right)^{-1 / 2}$. Note that the last two of these equations may be written as a single vector equation for the transverse components.
Dividing the third and second of eqns. 10.164, we obtain the result

$$
\begin{equation*}
\tan \theta=\frac{\sin \theta^{\prime}}{\Gamma\left(\frac{V}{v^{\prime}}+\cos \theta^{\prime}\right)} \tag{10.165}
\end{equation*}
$$

We can then use the first of eqns. 10.164 to relate v^{\prime} and $\cos \theta^{\prime}$:

$$
\begin{equation*}
\gamma^{\prime-1}=\sqrt{1-v^{\prime 2}}=\frac{\Gamma}{\gamma}\left(1+V v^{\prime} \cos \theta^{\prime}\right) \tag{10.166}
\end{equation*}
$$

Squaring both sides, we obtain a quadratic equation whose roots are

$$
\begin{equation*}
v^{\prime}=\frac{-\Gamma^{2} V \cos \theta^{\prime} \pm \sqrt{\gamma^{4}-\Gamma^{2} \gamma^{2}\left(1-V^{2} \cos ^{2} \theta^{\prime}\right)}}{\gamma^{2}+\Gamma^{2} V^{2} \cos ^{2} \theta^{\prime}} \tag{10.167}
\end{equation*}
$$

CM frame mass and velocity

To find the velocity of the CM frame, simply write

$$
\begin{align*}
P_{\mathrm{tot}}^{\mu}=\sum_{i=1}^{N} P_{i}^{\mu} & =\left(\sum_{i=1}^{N} \gamma_{i} m_{i}, \sum_{i=1}^{N} \gamma_{i} m_{i} \boldsymbol{v}_{i}\right) \tag{10.168}\\
& \equiv \Gamma M(1, \boldsymbol{V})
\end{align*}
$$

Then

$$
\begin{equation*}
M^{2}=\left(\sum_{i=1}^{N} \gamma_{i} m_{i}\right)^{2}-\left(\sum_{i=1}^{N} \gamma_{i} m_{i} \boldsymbol{v}_{i}\right)^{2} \tag{10.169}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{V}=\frac{\sum_{i=1}^{N} \gamma_{i} m_{i} \boldsymbol{v}_{i}}{\sum_{i=1}^{N} \gamma_{i} m_{i}} \tag{10.170}
\end{equation*}
$$

10.7.5 Compton scattering

An extremely important example of relativistic scattering occurs when a photon scatters off an electron: $e^{-}+\gamma \longrightarrow e^{-}+\gamma$ (see fig. 10.10). Let us work in the rest frame of the reactant electron. Then we have

$$
\begin{equation*}
P_{e}^{\mu}=m_{\mathrm{e}}(1,0) \quad, \quad \widetilde{P}_{e}^{\mu}=m_{\mathrm{e}}(\gamma, \gamma \boldsymbol{V}) \tag{10.171}
\end{equation*}
$$

Figure 10.10: Compton scattering of a photon and an electron.
for the initial and final 4-momenta of the electron. For the photon, we have

$$
\begin{equation*}
P_{\gamma}^{\mu}=(\omega, \boldsymbol{k}) \quad, \quad \widetilde{P}_{\gamma}^{\mu}=(\widetilde{\omega}, \widetilde{\boldsymbol{k}}) \tag{10.172}
\end{equation*}
$$

where we've set $\hbar=1$ as well. Conservation of 4 -momentum entails

$$
\begin{equation*}
P_{\gamma}^{\mu}-\widetilde{P}_{\gamma}^{\mu}=\widetilde{P}_{e}^{\mu}-P_{e}^{\mu} \tag{10.173}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
(\omega-\tilde{\omega}, \boldsymbol{k}-\tilde{\boldsymbol{k}})=m_{\mathrm{e}}(\gamma-1, \gamma \boldsymbol{V}) . \tag{10.174}
\end{equation*}
$$

Squaring each side, we obtain

$$
\begin{align*}
(\omega-\tilde{\omega})^{2}-(\boldsymbol{k}-\tilde{\boldsymbol{k}})^{2} & =2 \omega \tilde{\omega}(\cos \theta-1) \\
& =m_{\mathrm{e}}^{2}\left((\gamma-1)^{2}-\gamma^{2} \boldsymbol{V}^{2}\right) \tag{10.175}\\
& =2 m_{\mathrm{e}}^{2}(1-\gamma) \\
& =2 m_{\mathrm{e}}(\tilde{\omega}-\omega) .
\end{align*}
$$

Here we have used $|\boldsymbol{k}|=\omega$ for photons, and also $(\gamma-1) m_{\mathrm{e}}=\omega-\tilde{\omega}$, from eqn. 10.174.
Restoring the units \hbar and c, we find the Compton formula

$$
\begin{equation*}
\frac{1}{\tilde{\omega}}-\frac{1}{\omega}=\frac{\hbar}{m_{\mathrm{e}} c^{2}}(1-\cos \theta) \tag{10.176}
\end{equation*}
$$

This is often expressed in terms of the photon wavelengths, as

$$
\begin{equation*}
\tilde{\lambda}-\lambda=\frac{4 \pi \hbar}{m_{\mathrm{e}} c} \sin ^{2}\left(\frac{1}{2} \theta\right) \tag{10.177}
\end{equation*}
$$

showing that the wavelength of the scattered light increases with the scattering angle in the rest frame of the target electron.

10.8 Covariant Electrodynamics

We begin with the following expression for the Lagrangian density of charged particles coupled to an electromagnetic field, and then show that the Euler-Lagrange equations recapitulate Maxwell's equations. The Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-\frac{1}{c} j_{\mu} A^{\mu} \tag{10.178}
\end{equation*}
$$

Here, $A^{\mu}=(\phi, \boldsymbol{A})$ is the electromagnetic 4-potential, which combines the scalar field ϕ and the vector field \boldsymbol{A} into a single 4-vector. The quantity $F_{\mu \nu}$ is the electromagnetic field strength tensor and is given by

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{10.179}
\end{equation*}
$$

Note that as defined $F_{\mu \nu}=-F_{\nu \mu}$ is antisymmetric. Note that, if $i=1,2,3$ is a spatial index, then

$$
\begin{align*}
& F_{0 i}=-\frac{1}{c} \frac{\partial A^{i}}{\partial t}-\frac{\partial A^{0}}{\partial x^{i}}=E_{i} \\
& F_{i j}=\frac{\partial A^{i}}{\partial x^{j}}-\frac{\partial A^{j}}{\partial x^{i}}=-\epsilon_{i j k} B_{k} . \tag{10.180}
\end{align*}
$$

Here we have used $A^{\mu}=\left(A^{0}, \boldsymbol{A}\right)$ and $A_{\mu}=\left(A^{0},-\boldsymbol{A}\right)$, as well as $\partial_{\mu}=\left(c^{-1} \partial_{t}, \boldsymbol{\nabla}\right)$.
IMPORTANT : Since the electric and magnetic fields \boldsymbol{E} and \boldsymbol{B} are not part of a 4 -vector, we do not use covariant / contravariant notation for their components. Thus, E_{i} is the $i^{\text {th }}$ component of the vector \boldsymbol{E}. We will not write E^{i} with a raised index, but if we did, we'd mean the same thing: $E^{i}=E_{i}$. By contrast, for the spatial components of a four-vector like A^{μ}, we have $A_{i}=-A^{i}$.

Explicitly, then, we have

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \tag{10.181}\\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right) \quad, \quad F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

where $F^{\mu \nu}=g^{\mu \alpha} g^{\nu \beta} F_{\alpha \beta}$. Note that when comparing $F^{\mu \nu}$ and $F_{\mu \nu}$, the components with one space and one time index differ by a minus sign. Thus,

$$
\begin{equation*}
-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}=\frac{\boldsymbol{E}^{2}-\boldsymbol{B}^{2}}{8 \pi}, \tag{10.182}
\end{equation*}
$$

which is the electromagnetic Lagrangian density. The $j \cdot A$ term accounts for the interaction between matter and electromagnetic degrees of freedom. We have

$$
\begin{equation*}
\frac{1}{c} j_{\mu} A^{\mu}=\varrho \phi-\frac{1}{c} \boldsymbol{j} \cdot \boldsymbol{A}, \tag{10.183}
\end{equation*}
$$

where

$$
\begin{equation*}
j^{\mu}=\binom{c \varrho}{\boldsymbol{j}} \quad, \quad A^{\mu}=\binom{\phi}{\boldsymbol{A}}, \tag{10.184}
\end{equation*}
$$

where ϱ is the charge density and \boldsymbol{j} is the current density. Charge conservation requires

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=\frac{\partial \varrho}{\partial t}+\nabla \cdot \boldsymbol{j}=0 \tag{10.185}
\end{equation*}
$$

We shall have more to say about this further on below.
Let us now derive the Euler-Lagrange equations for the action functional,

$$
\begin{equation*}
S=-c^{-1} \int d^{4} x\left(\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}+c^{-1} j_{\mu} A^{\mu}\right) \tag{10.186}
\end{equation*}
$$

We first vary with respect to A_{μ}. Clearly

$$
\begin{equation*}
\delta F_{\mu \nu}=\partial_{\mu} \delta A_{\nu}-\partial_{\nu} \delta A_{\mu} . \tag{10.187}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\delta \mathcal{L}=\left(\frac{1}{4 \pi} \partial_{\mu} F^{\mu \nu}-c^{-1} j^{\nu}\right) \delta A_{\nu}-\partial_{\mu}\left(\frac{1}{4 \pi} F^{\mu \nu} \delta A_{\nu}\right) . \tag{10.188}
\end{equation*}
$$

Ignoring the boundary term, we obtain Maxwell's equations,

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=4 \pi c^{-1} j^{\nu} \tag{10.189}
\end{equation*}
$$

The $\nu=k$ component of these equations yields

$$
\begin{equation*}
\partial_{0} F^{0 k}+\partial_{i} F^{j k}=-\partial_{0} E_{k}-\epsilon_{j k l} \partial_{j} B_{l}=4 \pi c^{-1} j^{k} \tag{10.190}
\end{equation*}
$$

which is the k component of the Maxwell-Ampère law,

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{B}=\frac{4 \pi}{c} \boldsymbol{j}+\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} . \tag{10.191}
\end{equation*}
$$

The $\nu=0$ component reads

$$
\begin{equation*}
\partial_{i} F^{i 0}=\frac{4 \pi}{c} j^{0} \quad \Rightarrow \quad \nabla \cdot \boldsymbol{E}=4 \pi \varrho, \tag{10.192}
\end{equation*}
$$

which is Gauss's law. The remaining two Maxwell equations come 'for free' from the very definitions of \boldsymbol{E} and \boldsymbol{B} :

$$
\begin{align*}
\boldsymbol{E} & =-\boldsymbol{\nabla} A^{0}-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \tag{10.193}\\
\boldsymbol{B} & =\boldsymbol{\nabla} \times \boldsymbol{A},
\end{align*}
$$

which imply

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{E} & =-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \tag{10.194}\\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0
\end{align*}
$$

10.8.1 Lorentz force law

This has already been worked out in chapter 7. Here we reiterate our earlier derivation. The 4 -current may be written as

$$
\begin{equation*}
j^{\mu}(\boldsymbol{x}, t)=c \sum_{n} q_{n} \int d \tau \frac{d X_{n}^{\mu}}{d \tau} \delta^{(4)}(x-X) \tag{10.195}
\end{equation*}
$$

Thus, writing $X_{n}^{\mu}=\left(c t, \boldsymbol{X}_{n}(t)\right)$, we have

$$
\begin{align*}
j^{0}(\boldsymbol{x}, t) & =\sum_{n} q_{n} c \delta\left(\boldsymbol{x}-\boldsymbol{X}_{n}(t)\right) \tag{10.196}\\
\boldsymbol{j}(\boldsymbol{x}, t) & =\sum_{n} q_{n} \dot{\boldsymbol{X}}_{n}(t) \delta\left(\boldsymbol{x}-\boldsymbol{X}_{n}(t)\right)
\end{align*}
$$

The Lagrangian for the matter-field interaction term is then

$$
\begin{align*}
L & =-c^{-1} \int d^{3} x\left(j^{0} A^{0}-\boldsymbol{j} \cdot \boldsymbol{A}\right) \\
& =-\sum_{n}\left[q_{n} \phi\left(\boldsymbol{X}_{n}, t\right)-\frac{q_{n}}{c} \boldsymbol{A}\left(\boldsymbol{X}_{n}, t\right) \cdot \dot{\boldsymbol{X}}_{n}\right] \tag{10.197}
\end{align*}
$$

where $\phi=A^{0}$. For each charge q_{n}, this is equivalent to a particle with velocity-dependent potential energy

$$
\begin{equation*}
U(\boldsymbol{x}, t)=q \phi(\boldsymbol{x}, t)-\frac{q}{c} \boldsymbol{A}(\boldsymbol{r}, t) \cdot \dot{\boldsymbol{x}}, \tag{10.198}
\end{equation*}
$$

where $\boldsymbol{x}=\boldsymbol{X}_{n}$.
Let's work out the equations of motion. We assume a kinetic energy $T=\frac{1}{2} m \dot{\boldsymbol{x}}^{2}$ for the charge. We then have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{x}}}\right)=\frac{\partial L}{\partial \boldsymbol{x}} \tag{10.199}
\end{equation*}
$$

with $L=T-U$, which gives

$$
\begin{equation*}
m \ddot{\boldsymbol{x}}+\frac{q}{c} \frac{d \boldsymbol{A}}{d t}=-q \boldsymbol{\nabla} \phi+\frac{q}{c} \boldsymbol{\nabla}(\boldsymbol{A} \cdot \dot{\boldsymbol{x}}), \tag{10.200}
\end{equation*}
$$

or, in component notation,

$$
\begin{equation*}
m \ddot{x}^{i}+\frac{q}{c} \frac{\partial A^{i}}{\partial x^{j}} \dot{x}^{j}+\frac{q}{c} \frac{\partial A^{i}}{\partial t}=-q \frac{\partial \phi}{\partial x^{i}}+\frac{q}{c} \frac{\partial A^{j}}{\partial x^{i}} \dot{x}^{j} \tag{10.201}
\end{equation*}
$$

which is to say

$$
\begin{equation*}
m \ddot{x}^{i}=-q \frac{\partial \phi}{\partial x^{i}}-\frac{q}{c} \frac{\partial A^{i}}{\partial t}+\frac{q}{c}\left(\frac{\partial A^{j}}{\partial x^{i}}-\frac{\partial A^{i}}{\partial x^{j}}\right) \dot{x}^{j} . \tag{10.202}
\end{equation*}
$$

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank three, $\epsilon_{i j k}$:

$$
\begin{equation*}
B_{i}=\epsilon_{i j k} \frac{\partial A^{k}}{\partial x^{j}} \tag{10.203}
\end{equation*}
$$

and using the result

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}, \tag{10.204}
\end{equation*}
$$

we have $\epsilon_{i j k} B_{i}=\partial^{j} A^{k}-\partial^{k} A^{j}$, and

$$
\begin{equation*}
m \ddot{x}^{i}=-q \frac{\partial \phi}{\partial x^{i}}-\frac{q}{c} \frac{\partial A^{i}}{\partial t}+\frac{q}{c} \epsilon_{i j k} \dot{x}^{j} B_{k} \tag{10.205}
\end{equation*}
$$

or, in vector notation,

$$
\begin{align*}
m \ddot{\boldsymbol{x}} & =-q \boldsymbol{\nabla} \phi-\frac{q}{c} \frac{\partial \boldsymbol{A}}{\partial t}+\frac{q}{c} \dot{\boldsymbol{x}} \times(\boldsymbol{\nabla} \times \boldsymbol{A}) \tag{10.206}\\
& =q \boldsymbol{E}+\frac{q}{c} \dot{\boldsymbol{x}} \times \boldsymbol{B},
\end{align*}
$$

which is, of course, the Lorentz force law.

10.8.2 Gauge invariance

The action $S=c^{-1} \int d^{4} x \mathcal{L}$ admits a gauge invariance. Let $A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \Lambda$, where $\Lambda(\boldsymbol{x}, t)$ is an arbitrary scalar function of spacetime coordinates. Clearly

$$
\begin{equation*}
F_{\mu \nu} \rightarrow F_{\mu \nu}+\left(\partial_{\mu} \partial_{\nu} \Lambda-\partial_{\nu} \partial_{\mu} \Lambda\right)=F_{\mu \nu} \tag{10.207}
\end{equation*}
$$

and hence the fields \boldsymbol{E} and \boldsymbol{B} remain invariant under the gauge transformation, even though the 4potential itself changes. What about the matter term? Clearly

$$
\begin{align*}
-c^{-1} j^{\mu} A_{\mu} & \rightarrow-c^{-1} j^{\mu} A_{\mu}-c^{-1} j^{\mu} \partial_{\mu} \Lambda \tag{10.208}\\
& =-c^{-1} j^{\mu} A_{\mu}+c^{-1} \Lambda \partial_{\mu} j^{\mu}-\partial_{\mu}\left(c^{-1} \Lambda j^{\mu}\right)
\end{align*}
$$

Once again we ignore the boundary term. We may now invoke charge conservation to write $\partial_{\mu} j^{\mu}=0$, and we conclude that the action is invariant! Woo hoo! Note also the very deep connection

$$
\begin{equation*}
\text { gauge invariance } \longleftrightarrow \text { charge conservation } \tag{10.209}
\end{equation*}
$$

10.8.3 Transformations of fields

One last detail remains, and that is to exhibit explicitly the Lorentz transformation properties of the electromagnetic field. For the case of vectors like A^{μ}, we have

$$
\begin{equation*}
A^{\mu}=L_{\nu}^{\mu} A^{\prime \nu} \tag{10.210}
\end{equation*}
$$

The \boldsymbol{E} and \boldsymbol{B} fields, however, appear as elements in the field strength tensor $F^{\mu \nu}$. Clearly this must transform as a tensor:

$$
\begin{equation*}
F^{\mu \nu}=L_{\alpha}^{\mu} L^{\nu}{ }_{\beta} F^{\prime \alpha \beta}=L_{\alpha}^{\mu} F^{\prime \alpha \beta} L_{\beta}^{\mathrm{t} \nu} . \tag{10.211}
\end{equation*}
$$

Figure 10.11: Homer celebrates the manifest gauge invariance of classical electromagnetic theory.

We can write a general Lorentz transformation as a product of a rotation $L_{\text {rot }}$ and a boost $L_{\text {boost }}$. Let's first see how rotations act on the field strength tensor. We take

$$
L=L_{\mathrm{rot}}=\left(\begin{array}{cc}
1_{1 \times 1} & 0_{1 \times 3} \tag{10.212}\\
0_{3 \times 1} & R_{3 \times 3}
\end{array}\right)
$$

where $R^{\mathrm{t}} R=\mathbb{I}$, i.e. $R \in \mathrm{O}(3)$ is an orthogonal matrix. We must compute

$$
\begin{align*}
L_{\alpha}^{\mu} F^{\prime \alpha \beta} L_{\beta}^{\mathrm{t} \nu} & =\left(\begin{array}{cc}
1 & 0 \\
0 & R_{i j}
\end{array}\right)\left(\begin{array}{cc}
0 & -E_{k}^{\prime} \\
E_{j}^{\prime} & -\epsilon_{j k m} B_{m}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R_{k l}^{\mathrm{t}}
\end{array}\right) \tag{10.213}\\
& =\left(\begin{array}{cc}
0 & -E_{k}^{\prime} R_{k l}^{\mathrm{t}} \\
R_{i j} E_{j}^{\prime} & -\epsilon_{j k m} R_{i j} R_{l k} B_{m}^{\prime}
\end{array}\right) .
\end{align*}
$$

Thus, we conclude

$$
\begin{align*}
E_{l} & =R_{l k} E_{k}^{\prime} \tag{10.214}\\
\epsilon_{i l n} B_{n} & =\epsilon_{j k m} R_{i j} R_{l k} B_{m}^{\prime} .
\end{align*}
$$

Now for any 3×3 matrix R we have

$$
\begin{equation*}
\epsilon_{j k s} R_{i j} R_{l k} R_{r s}=\operatorname{det}(R) \epsilon_{i l r} \tag{10.215}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\epsilon_{j k m} R_{i j} R_{l k} B_{m}^{\prime} & =\epsilon_{j k m} R_{i j} R_{l k} R_{n m} R_{n s} B_{s}^{\prime} \tag{10.216}\\
& =\operatorname{det}(R) \epsilon_{i l n} R_{n s} B_{s}^{\prime}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
E_{i}=R_{i j} E_{j}^{\prime} \quad, \quad B_{i}=\operatorname{det}(R) \cdot R_{i j} B_{j}^{\prime} \tag{10.217}
\end{equation*}
$$

For any orthogonal matrix, $R^{\mathrm{t}} R=\mathbb{I}$ gives that $\operatorname{det}(R)= \pm 1$. The extra factor of $\operatorname{det}(R)$ in the transformation properties of \boldsymbol{B} is due to the fact that the electric field transforms as a vector, while the magnetic field transforms as a pseudovector. Under space inversion, for example, where $R=-\mathbb{I}$, the electric field is odd under this transformation $(\boldsymbol{E} \rightarrow-\boldsymbol{E})$ while the magnetic field is even $(\boldsymbol{B} \rightarrow+\boldsymbol{B})$. Similar considerations hold in particle mechanics for the linear momentum, \boldsymbol{p} (a vector) and the angular momentum $\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$ (a pseudovector). The analogy is not complete, however, because while both \boldsymbol{p} and \boldsymbol{L} are odd under the operation of time-reversal, \boldsymbol{E} is even while \boldsymbol{B} is odd.

OK, so how about boosts? We can write the general boost, from eqn. 10.36, as

$$
L=\left(\begin{array}{cc}
\gamma & \gamma \hat{\boldsymbol{\beta}} \tag{10.218}\\
\gamma \hat{\boldsymbol{\beta}} & \mathrm{I}+(\gamma-1) \mathrm{P}^{\beta}
\end{array}\right)
$$

where $\mathrm{P}_{i j}^{\boldsymbol{\beta}}=\hat{\beta}_{i} \hat{\beta}_{j}$ is the projector onto the direction of $\boldsymbol{\beta}$. We now compute

$$
L_{\alpha}^{\mu} F^{\prime \alpha \beta} L_{\beta}^{\mathrm{t} \nu}=\left(\begin{array}{cc}
\gamma & \gamma \boldsymbol{\beta}^{\mathrm{t}} \tag{10.219}\\
\gamma \boldsymbol{\beta} & \mathrm{I}+(\gamma-1) \mathrm{P}
\end{array}\right)\left(\begin{array}{cc}
0 & -\boldsymbol{E}^{\prime \mathrm{t}} \\
\boldsymbol{E}^{\prime} & -\epsilon_{j k m} B_{m}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\gamma & \gamma \boldsymbol{\beta}^{\mathrm{t}} \\
\gamma \boldsymbol{\beta} & \mathrm{I}+(\gamma-1) \mathrm{P}
\end{array}\right)
$$

Carrying out the matrix multiplications, we obtain

$$
\begin{align*}
& \boldsymbol{E}=\gamma\left(\boldsymbol{E}^{\prime}-\boldsymbol{\beta} \times \boldsymbol{B}^{\prime}\right)-(\gamma-1)\left(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{E}^{\prime}\right) \hat{\boldsymbol{\beta}} \\
& \boldsymbol{B}=\gamma\left(\boldsymbol{B}^{\prime}+\boldsymbol{\beta} \times \boldsymbol{E}^{\prime}\right)-(\gamma-1)\left(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{B}^{\prime}\right) \hat{\boldsymbol{\beta}} . \tag{10.220}
\end{align*}
$$

Expressed in terms of the components $E_{\|}, \boldsymbol{E}_{\perp}, B_{\|}$, and \boldsymbol{B}_{\perp}, one has

$$
\begin{array}{ll}
E_{\|}=E_{\|}^{\prime} & ,
\end{array} \quad \boldsymbol{E}_{\perp}=\gamma\left(\boldsymbol{E}_{\perp}^{\prime}-\boldsymbol{\beta} \times \boldsymbol{B}_{\perp}^{\prime}\right),
$$

Recall that for any vector $\boldsymbol{\xi}$, we write

$$
\begin{align*}
\xi_{\|} & =\hat{\boldsymbol{\beta}} \cdot \boldsymbol{\xi} \\
\boldsymbol{\xi}_{\perp} & =\boldsymbol{\xi}-(\hat{\boldsymbol{\beta}} \cdot \boldsymbol{\xi}) \hat{\boldsymbol{\beta}} \tag{10.222}
\end{align*}
$$

so that $\hat{\boldsymbol{\beta}} \cdot \boldsymbol{\xi}_{\perp}=0$.

10.8.4 Invariance versus covariance

We saw that the laws of electromagnetism were gauge invariant. That is, the solutions to the field equations did not change under a gauge transformation $A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \Lambda$. With respect to Lorentz transformations, however, the theory is Lorentz covariant. This means that Maxwell's equations in different inertial frames take the exact same form, $\partial_{\mu} F^{\mu \nu}=4 \pi c^{-1} j^{\nu}$, but that both the fields and the sources transform appropriately under a change in reference frames. The sources are described by the current 4 -vector
$j^{\mu}=(c \varrho, \boldsymbol{j})$ and transform as

$$
\begin{align*}
& c \varrho=\gamma c \varrho^{\prime}+\gamma \beta j_{\|}^{\prime} \\
& j_{\|}=\gamma \beta c \varrho^{\prime}+\gamma j_{\|}^{\prime} \tag{10.223}\\
& \boldsymbol{j}_{\perp}=\boldsymbol{j}_{\perp}^{\prime}
\end{align*}
$$

The fields transform according to eqns. 10.221.
Consider, for example, a static point charge q located at the origin in the frame K^{\prime}, which moves with velocity $u \hat{\boldsymbol{x}}$ with respect to K. An observer in K^{\prime} measures a charge density $\varrho^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=q \delta\left(\boldsymbol{x}^{\prime}\right)$. The electric and magnetic fields in the K^{\prime} frame are then $\boldsymbol{E}^{\prime}=q \hat{\boldsymbol{r}}^{\prime} / r^{\prime 2}$ and $\boldsymbol{B}^{\prime}=0$. For an observer in the K frame, the coordinates transform as

$$
\begin{align*}
c t & =\gamma c t^{\prime}+\gamma \beta x^{\prime} & & c t^{\prime}=\gamma c t-\gamma \beta x \\
x & =\gamma \beta c t^{\prime}+\gamma x^{\prime} & & x^{\prime}=-\gamma \beta c t+\gamma x \tag{10.224}
\end{align*}
$$

as well as $y=y^{\prime}$ and $z=z^{\prime}$. The observer in the K frame sees instead a charge at $x^{\mu}=(c t, u t, 0,0)$ and both a charge density as well as a current density:

$$
\begin{gather*}
\varrho(\boldsymbol{x}, t)=\gamma \varrho\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=q \delta(x-u t) \delta(y) \delta(z) \tag{10.225}\\
\boldsymbol{j}(\boldsymbol{x}, t)=\gamma \beta c \varrho\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) \hat{\boldsymbol{x}}=u q \delta(x-u t) \delta(y) \delta(z) \hat{\boldsymbol{x}} .
\end{gather*}
$$

OK, so much for the sources. How about the fields? Expressed in terms of Cartesian coordinates, the electric field in K^{\prime} is given by

$$
\begin{equation*}
\boldsymbol{E}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=q \frac{x^{\prime} \hat{\boldsymbol{x}}+y^{\prime} \hat{\boldsymbol{y}}+z^{\prime} \hat{\boldsymbol{z}}}{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{3 / 2}} \tag{10.226}
\end{equation*}
$$

From eqns. 10.221, we have $E_{x}=E_{x}^{\prime}$ and $B_{x}=B_{x}^{\prime}=0$. Furthermore, we have $E_{y}=\gamma E_{y}^{\prime}, E_{z}=\gamma E_{z}^{\prime}$, $B_{y}=-\gamma \beta E_{z}^{\prime}$, and $B_{z}=\gamma \beta E_{y}^{\prime}$. Thus,

$$
\begin{align*}
\boldsymbol{E}(\boldsymbol{x}, t) & =\gamma q \frac{(x-u t) \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}+z \hat{\boldsymbol{z}}}{\left[\gamma^{2}(x-u t)^{2}+y^{2}+z^{2}\right]^{3 / 2}} \\
\boldsymbol{B}(\boldsymbol{x}, t) & =\frac{\gamma u}{c} q \frac{y \hat{\boldsymbol{z}}-z \hat{\boldsymbol{y}}}{\left[\gamma^{2}(x-u t)^{2}+y^{2}+z^{2}\right]^{3 / 2}} \tag{10.227}
\end{align*}
$$

Let us define

$$
\begin{equation*}
\boldsymbol{R}(t)=(x-u t) \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}+z \hat{\boldsymbol{z}} . \tag{10.228}
\end{equation*}
$$

We further define the angle $\theta \equiv \cos ^{-1}(\hat{\boldsymbol{\beta}} \cdot \hat{\boldsymbol{R}})$. We may then write

$$
\begin{align*}
\boldsymbol{E}(x, t) & =\frac{q \boldsymbol{R}}{R^{3}} \cdot \frac{1-\beta^{2}}{\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}} \tag{10.229}\\
\boldsymbol{B}(x, t) & =\frac{q \hat{\boldsymbol{\beta}} \times \boldsymbol{R}}{R^{3}} \cdot \frac{1-\beta^{2}}{\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}}
\end{align*}
$$

The fields are therefore enhanced in the transverse directions: $E_{\perp} / E_{\|}=\gamma^{3}$.

Figure 10.12: A relativistic runner carries a pole of proper length ℓ into a barn of proper length ℓ.

10.9 Appendix I : The Pole, the Barn, and Rashoman

Akira Kurosawa's 1950 cinematic masterpiece, Rashoman, describes a rape, murder, and battle from four different and often contradictory points of view. It poses deep questions regarding the nature of truth. Psychologists sometimes refer to problems of subjective perception as the Rashoman effect. In literature, William Faulkner's 1929 novel, The Sound and the Fury, which describes the tormented incestuous life of a Mississippi family, also is told from four points of view. Perhaps Faulkner would be a more apt comparison with Einstein, since time plays an essential role in his novel. For example, Quentin's watch, given to him by his father, represents time and the sweep of life's arc ("Quentin, I give you the mausoleum of all hope and desire..."). By breaking the watch, Quentin symbolically attempts to escape time and fate. One could draw an analogy to Einstein, inheriting a watch from those who came before him, which he too broke - and refashioned. Did Faulkner know of Einstein? But I digress.

Consider a relativistic runner carrying a pole of proper length ℓ, as depicted in fig. 10.12. He runs toward a barn of proper length ℓ at velocity $u=c \beta$. Let the frame of the barn be K and the frame of the runner be K^{\prime}. Recall that the Lorentz transformations between frames K and K^{\prime} are given by

$$
\begin{align*}
c t & =\gamma c t^{\prime}+\gamma \beta x^{\prime} & & c t^{\prime}=\gamma c t-\gamma \beta x \tag{10.230}\\
x & =\gamma \beta c t^{\prime}+\gamma x^{\prime} & & x^{\prime}=-\gamma \beta c t+\gamma x .
\end{align*}
$$

We define the following points. Let A denote the left door of the barn and B the right door. Furthermore, let P denote the left end of the pole and Q its right end. The spacetime coordinates for these points in the two frames are clearly

$$
\begin{array}{ll}
A=(c t, 0) & P^{\prime}=\left(c t^{\prime}, 0\right) \tag{10.231}\\
B=(c t, \ell) & Q^{\prime}=\left(c t^{\prime}, \ell\right)
\end{array}
$$

We now compute A^{\prime} and B^{\prime} in frame K^{\prime}, as well as P and Q in frame K :

$$
\begin{align*}
A^{\prime}=(\gamma c t,-\gamma \beta c t) & B^{\prime} & =(\gamma c t-\gamma \beta \ell,-\gamma \beta c t+\gamma \ell) \\
\equiv\left(c t^{\prime},-\beta c t^{\prime}\right) & & \equiv\left(c t^{\prime},-\beta c t^{\prime}+\gamma^{-1} \ell\right) . \tag{10.232}
\end{align*}
$$

Similarly,

$$
\begin{array}{r}
P=\left(\gamma c t^{\prime}, \gamma \beta c t^{\prime}\right) \tag{10.233}\\
\equiv(c t, \beta c t)
\end{array}
$$

$$
\begin{aligned}
Q & =\left(\gamma c t^{\prime}+\gamma \beta \ell, \gamma \beta c t^{\prime}+\gamma \ell\right) \\
& \equiv\left(c t, \beta c t+\gamma^{-1} \ell\right) .
\end{aligned}
$$

We now define four events, by the coincidences of A and B with P and Q :

- Event I : The right end of the pole enters the left door of the barn. This is described by $Q=A$ in frame K and by $Q^{\prime}=A^{\prime}$ in frame K^{\prime}.
- Event II : The right end of the pole exits the right door of the barn. This is described by $Q=B$ in frame K and by $Q^{\prime}=B^{\prime}$ in frame K^{\prime}.
- Event III : The left end of the pole enters the left door of the barn. This is described by $P=A$ in frame K and by $P^{\prime}=A^{\prime}$ in frame K^{\prime}.
- Event IV : The left end of the pole exits the right door of the barn. This is described by $P=B$ in frame K and by $P^{\prime}=B^{\prime}$ in frame K^{\prime}.

Mathematically, we have in frame K that

$$
\begin{array}{rlll}
\text { I : } & Q=A & \Rightarrow & t_{\mathrm{I}}=-\frac{\ell}{\gamma u} \\
\text { II : } & Q=B & \Rightarrow & t_{\mathrm{II}}=(\gamma-1) \frac{\ell}{\gamma u} \tag{10.234}\\
\text { III : } & P=A & \Rightarrow & t_{\mathrm{III}}=0 \\
\text { IV : } & P=B & \Rightarrow & t_{\mathrm{IV}}=\frac{\ell}{u}
\end{array}
$$

In frame K^{\prime}, however

$$
\begin{array}{rlll}
\text { I : } & Q^{\prime}=A^{\prime} & \Rightarrow & t_{\mathrm{I}}^{\prime}=-\frac{\ell}{u} \\
\text { II : } & Q^{\prime}=B^{\prime} & \Rightarrow & t_{\mathrm{II}}^{\prime}=-(\gamma-1) \frac{\ell}{\gamma u} \tag{10.235}\\
\mathrm{III}: & P^{\prime}=A^{\prime} & \Rightarrow & t_{\mathrm{III}}^{\prime}=0 \\
\text { IV : } & P^{\prime}=B^{\prime} & \Rightarrow & t_{\mathrm{IV}}^{\prime}=\frac{\ell}{\gamma u}
\end{array}
$$

Thus, to an observer in frame K, the order of events is I, III, II, and IV, because

$$
\begin{equation*}
t_{\mathrm{I}}<t_{\mathrm{III}}<t_{\mathrm{II}}<t_{\mathrm{IV}} \tag{10.236}
\end{equation*}
$$

For $t_{\text {III }}<t<t_{\mathrm{II}}$, he observes that the pole is entirely in the barn. Indeed, the right door can start shut and the left door open, and sensors can automatically and, for the purposes of argument, instantaneously trigger the closing of the left door immediately following event III and the opening of the right door immediately prior to event II. So the pole can be inside the barn with both doors shut!
But now for the Rashoman effect: according to the runner, the order of events is I, II, III, and IV, because

$$
\begin{equation*}
t_{\mathrm{I}}^{\prime}<t_{\mathrm{II}}^{\prime}<t_{\mathrm{III}}^{\prime}<t_{\mathrm{IV}}^{\prime} \tag{10.237}
\end{equation*}
$$

At no time does the runner observe the pole to be entirely within the barn. Indeed, for $t_{\mathrm{II}}^{\prime}<t^{\prime}<t_{\mathrm{III}}^{\prime}$, both ends of the pole are sticking outside of the barn!

Figure 10.13: An object of proper length ℓ and moving with velocity \boldsymbol{u}, when photographed from an angle α, appears to have a length $\tilde{\ell}$.

10.10 Appendix II : Photographing a Moving Pole

What is the length ℓ of a moving pole of proper length ℓ_{0} as measured by an observer at rest? The answer would appear to be $\gamma^{-1} \ell_{0}$, as we computed in eqn. 10.63 . However, we should be more precise when we we speak of 'length'. The relation $\ell(\beta)=\gamma^{-1} \ell_{0}$ tells us the instantaneous end-to-end distance as measured in the observer's rest frame K. But an actual experiment might not measure this quantity.

For example, suppose a relativistic runner carrying a pole of proper length ℓ_{0} runs past a measuring rod which is at rest in the rest frame K of an observer. The observer takes a photograph of the moving pole as it passes by. Suppose further that the angle between the observer's line of sight and the velocity \boldsymbol{u} of the pole is α, as shown in fig. 10.13. What is the apparent length $\ell(\alpha, u)$ of the pole as observed in the photograph? (I.e. the pole will appear to cover a portion of the measuring rod which is of length ℓ.)

The point here is that the shutter of the camera is very fast (otherwise the image will appear blurry). In our analysis we will assume the shutter opens and closes instantaneously. Let's define two events:

- Event 1 : photon γ_{1} is emitted by the rear end of the pole.
- Event 2 : photon γ_{2} is emitted by the front end of the pole.

Both photons must arrive at the camera's lens simultaneously. Since, as shown in the figure, the path of photon \#1 is longer by a distance $\ell \cos \alpha$, where ℓ is the apparent length of the pole, γ_{2} must be emitted a time $\Delta t=c^{-1} \ell \cos \alpha$ after γ_{1}. Now if we Lorentz transform from frame K to frame K^{\prime}, we have

$$
\begin{equation*}
\Delta x^{\prime}=\gamma \Delta x-\gamma \beta \Delta t \tag{10.238}
\end{equation*}
$$

But $\Delta x^{\prime}=\ell_{0}$ is the proper length of the pole, and $\Delta x=\ell$ is the apparent length. With $c \Delta t=\ell \cos \alpha$, then, we have

$$
\begin{equation*}
\ell=\frac{\gamma^{-1} \ell_{0}}{1-\beta \cos \alpha} \tag{10.239}
\end{equation*}
$$

When $\alpha=90^{\circ}$, we recover the familiar Lorentz-Fitzgerald contraction $\ell(\beta)=\gamma^{-1} \ell_{0}$. This is because the photons γ_{1} and γ_{2} are then emitted simultaneously, and the photograph measures the instantaneous end-to-end distance of the pole as measured in the observer's rest frame K. When $\cos \alpha \neq 0$, however, the two photons are not emitted simultaneously, and the apparent length is given by eqn. 10.239.

Chapter 11

Dynamical Systems

11.1 Introduction

11.1.1 Phase space and phase curves

Dynamics is the study of motion through phase space. The phase space of a given dynamical system is described as an N-dimensional manifold, \mathcal{M}. A (differentiable) manifold \mathcal{M} is a topological space that is locally diffeomorphic to \mathbb{R}^{N}. ${ }^{1}$ Typically in this course \mathcal{M} will \mathbb{R}^{N} itself, but other common examples include the circle \mathbb{S}^{1}, the torus \mathbb{T}^{2}, the sphere \mathbb{S}^{2}, etc.

Let $g_{t}: \mathcal{M} \rightarrow \mathcal{M}$ be a one-parameter family of transformations from \mathcal{M} to itself, with $g_{t=0}=1$, the identity. We call g_{t} the t-advance mapping. It satisfies the composition rule

$$
\begin{equation*}
g_{t} g_{s}=g_{t+s} \tag{11.1}
\end{equation*}
$$

Let us choose a point $\varphi_{0} \in \mathcal{M}$. Then we write $\boldsymbol{\varphi}(t)=g_{t} \boldsymbol{\varphi}_{0}$, which also is in \mathcal{M}. The set $\left\{g_{t} \varphi_{0} \mid t \in\right.$ $\left.\mathbb{R}, \varphi_{0} \in \mathcal{M}\right\}$ is called a phase curve. A graph of the motion $\varphi(t)$ in the product space $\mathbb{R} \times \mathcal{M}$ is called an integral curve.

11.1.2 Vector fields

The velocity vector $\boldsymbol{V}(\boldsymbol{\varphi})$ is given by the derivative

$$
\begin{equation*}
\boldsymbol{V}(\boldsymbol{\varphi})=\left.\frac{d}{d t}\right|_{t=0} g_{t} \boldsymbol{\varphi} \tag{11.2}
\end{equation*}
$$

The velocity $\boldsymbol{V}(\varphi)$ is an element of the tangent space to \mathcal{M} at φ, abbreviated $\mathrm{T} \mathcal{M}_{\varphi}$. If \mathcal{M} is N-dimensional, then so is each $\mathrm{T} \mathcal{M}_{\varphi}$ (for all p). However, \mathcal{M} and $\mathrm{T} \mathcal{M}_{\varphi}$ may differ topologically. For example, if $\mathcal{M}=\mathbb{S}^{1}$, the circle, the tangent space at any point is isomorphic to \mathbb{R}.

[^23]

Figure 11.1: An example of a phase curve.
For our purposes, we will take $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right)$ to be an N-tuple, i.e. a point in \mathbb{R}^{N}. The equation of motion is then

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{\varphi}(t)=\boldsymbol{V}(\boldsymbol{\varphi}(t)) \tag{11.3}
\end{equation*}
$$

Note that any $N^{\text {th }}$ order ODE, of the general form

$$
\begin{equation*}
\frac{d^{N} x}{d t^{N}}=F\left(x, \frac{d x}{d t}, \ldots, \frac{d^{N-1} x}{d t^{N-1}}\right) \tag{11.4}
\end{equation*}
$$

may be represented by the first order system $\dot{\boldsymbol{\varphi}}=\boldsymbol{V}(\boldsymbol{\varphi})$. To see this, define $\varphi_{k}=d^{k-1} x / d t^{k-1}$, with $k=1, \ldots, N$. Thus, for $j<N$ we have $\dot{\varphi}_{j}=\varphi_{j+1}$, and $\dot{\varphi}_{N}=f$. In other words,

$$
\overbrace{\frac{d}{d t}\left(\begin{array}{c}
\varphi_{1} \tag{11.5}\\
\vdots \\
\varphi_{N-1} \\
\varphi_{N}
\end{array}\right)}^{\dot{\varphi}}=\overbrace{\left(\begin{array}{c}
\varphi_{2} \\
\vdots \\
\varphi_{N} \\
F\left(\varphi_{1}, \ldots, \varphi_{N}\right)
\end{array}\right)}^{V(\varphi)}
$$

11.1.3 Autonomous $v s$. non-autonomous ODEs

A dynamical system of the form $\dot{\varphi}_{j}=V_{j}\left(\varphi_{1}, \ldots, \varphi_{N}\right)$ is autonomous provided the N functions $V_{j}(\boldsymbol{\varphi})$ do not depend explicitly on the independent variable t. In the non-autonomous case, we have the coupled system $\dot{\varphi}_{j}=V_{j}\left(\varphi_{1}, \ldots, \varphi_{N}, t\right)$, which is equivalent to the $(N+1)$-dimensional dynamical system

$$
\frac{d}{d t}\left(\begin{array}{c}
\varphi_{1} \tag{11.6}\\
\vdots \\
\varphi_{N} \\
\varphi_{N+1}
\end{array}\right)=\left(\begin{array}{c}
V_{1}\left(\varphi_{1}, \ldots, \varphi_{N+1}\right) \\
\vdots \\
V_{N}\left(\varphi_{1}, \ldots, \varphi_{N+1}\right) \\
1
\end{array}\right)
$$

Note that one can integrate the last of these equations to get $\varphi_{N+1}(t)=t$, starting from $\varphi_{N+1}(0)=0$. Thus, we once again have $\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})$, now in $(N+1)$ dimensions, and with $V_{N+1}(\boldsymbol{\varphi})=1$.

11.1.4 Existence / uniqueness / extension theorems

Theorem : Given $\dot{\boldsymbol{\varphi}}=\boldsymbol{V}(\boldsymbol{\varphi})$ and $\boldsymbol{\varphi}(0)$, if each $\boldsymbol{V}(\boldsymbol{\varphi})$ is a smooth vector field over some open set $\mathcal{D} \in \mathcal{M}$, then for $\varphi(0) \in \mathcal{D}$ the initial value problem has a solution on some finite time interval $(-\tau,+\tau)$ and the solution is unique. Furthermore, the solution has a unique extension forward or backward in time, either indefinitely or until $\varphi(t)$ reaches the boundary of \mathcal{D}.

Corollary : Different trajectories never intersect!

11.1.5 Linear differential equations

A homogeneous linear $N^{\text {th }}$ order ODE,

$$
\begin{equation*}
\frac{d^{N} x}{d t^{N}}+c_{N-1} \frac{d^{N-1} x}{d t^{N-1}}+\ldots+c_{1} \frac{d x}{d t}+c_{0} x=0 \tag{11.7}
\end{equation*}
$$

may be written in matrix form, as

$$
\frac{d}{d t}\left(\begin{array}{c}
\varphi_{1} \tag{11.8}\\
\varphi_{2} \\
\vdots \\
\varphi_{N}
\end{array}\right)=\overbrace{\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-c_{0} & -c_{1} & -c_{2} & \cdots & -c_{N-1}
\end{array}\right)}^{M}\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{N}
\end{array}\right) .
$$

Thus,

$$
\begin{equation*}
\dot{\varphi}=M \varphi \tag{11.9}
\end{equation*}
$$

and if the coefficients c_{k} are time-independent, i.e. the ODE is autonomous, the solution is obtained by exponentiating the constant matrix Q :

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=\exp (M t) \boldsymbol{\varphi}(0) ; \tag{11.10}
\end{equation*}
$$

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous, then $M=M(t)$ is time-dependent, and the solution is given by the path-ordered exponential,

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=\mathcal{P} \exp \left\{\int_{0}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\} \boldsymbol{\varphi}(0) \tag{11.11}
\end{equation*}
$$

As defined, the equation $\dot{\boldsymbol{\varphi}}=\boldsymbol{V}(\boldsymbol{\varphi})$ is autonomous, since g_{t} depends only on t and on no other time variable. However, by extending the phase space from \mathcal{M} to $\mathbb{R} \times \mathcal{M}$, which is of dimension ($N+1$), one can describe arbitrary time-dependent ODEs.

Exercise: Write the formal solution to the inhomogeneous linear system $\dot{\varphi}=M \boldsymbol{\varphi}+\boldsymbol{b}$, where \boldsymbol{b} is a constant N-component vector.

11.1.6 Lyapunov functions

For a general dynamical system $\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})$, a Lyapunov function $L(\boldsymbol{\varphi})$ is a function which satisfies

$$
\begin{equation*}
\boldsymbol{\nabla} L(\boldsymbol{\varphi}) \cdot \boldsymbol{V}(\boldsymbol{\varphi}) \leq 0 \tag{11.12}
\end{equation*}
$$

There is no simple way to determine whether a Lyapunov function exists for a given dynamical system, or, if it does exist, what the Lyapunov function is. However, if a Lyapunov function can be found, then this severely limits the possible behavior of the system. This is because $L(\varphi(t))$ must be a monotonic function of time:

$$
\begin{equation*}
\frac{d}{d t} L(\boldsymbol{\varphi}(t))=\nabla L \cdot \frac{d \boldsymbol{\varphi}}{d t}=\nabla L(\boldsymbol{\varphi}) \cdot \boldsymbol{V}(\boldsymbol{\varphi}) \leq 0 \tag{11.13}
\end{equation*}
$$

Thus, the system evolves toward a local minimum of the Lyapunov function. In general this means that oscillations are impossible in systems for which a Lyapunov function exists. For example, the relaxational dynamics of the magnetization M of a system are sometimes modeled by the equation

$$
\begin{equation*}
\frac{d M}{d t}=-\Gamma \frac{\partial F}{\partial M} \tag{11.14}
\end{equation*}
$$

where $F(M, T)$ is the free energy of the system. In this model, assuming constant temperature $T, \dot{F}=$ $F^{\prime}(M) \dot{M}=-\Gamma\left[F^{\prime}(M)\right]^{2} \leq 0$. So the free energy $F(M)$ itself is a Lyapunov function, and it monotonically decreases during the evolution of the system. We shall meet up with this example again in the next chapter when we discuss imperfect bifurcations.

11.2 $N=1$ Systems

We now study phase flows in a one-dimensional phase space, governed by the equation

$$
\begin{equation*}
\frac{d u}{d t}=f(u) \tag{11.15}
\end{equation*}
$$

Again, the equation $\dot{u}=h(u, t)$ is first order, but not autonomous, and it corresponds to the $N=2$ system,

$$
\begin{equation*}
\frac{d}{d t}\binom{u}{t}=\binom{h(u, t)}{1} \tag{11.16}
\end{equation*}
$$

The equation 11.15 is easily integrated:

$$
\begin{equation*}
\frac{d u}{f(u)}=d t \quad \Longrightarrow \quad t-t_{0}=\int_{u_{0}}^{u} \frac{d u^{\prime}}{f\left(u^{\prime}\right)} \tag{11.17}
\end{equation*}
$$

This gives $t(u)$; we must then invert this relationship to obtain $u(t)$.
Example : Suppose $f(u)=a-b u$, with a and b constant. Then

$$
\begin{equation*}
d t=\frac{d u}{a-b u}=-b^{-1} d \ln (a-b u) \tag{11.18}
\end{equation*}
$$

Figure 11.2: Phase flow for an $N=1$ system.
whence

$$
\begin{equation*}
t=\frac{1}{b} \ln \left(\frac{a-b u(0)}{a-b u(t)}\right) \quad \Longrightarrow \quad u(t)=\frac{a}{b}+\left(u(0)-\frac{a}{b}\right) \exp (-b t) \tag{11.19}
\end{equation*}
$$

Even if one cannot analytically obtain $u(t)$, the behavior is very simple, and easily obtained by graphical analysis. Sketch the function $f(u)$. Then note that

$$
\dot{u}=f(u) \Longrightarrow\left\{\begin{array}{lll}
f(u)>0 & \dot{u}>0 & \Rightarrow
\end{array} \text { move to right } \quad \begin{array}{lll}
& & \text { move to left } \tag{11.20}\\
f(u)<0 & \dot{u}<0 & \Rightarrow
\end{array}\right.
$$

The behavior of $N=1$ systems is particularly simple: $u(t)$ flows to the first stable fixed point encountered, where it then (after a logarithmically infinite time) stops. The motion is monotonic - the velocity \dot{u} never changes sign. Thus, oscillations never occur for $N=1$ phase flows. ${ }^{2}$

11.2.1 Classification of fixed points $(N=1)$

A fixed point u^{*} satisfies $f\left(u^{*}\right)=0$. Generically, $f^{\prime}\left(u^{*}\right) \neq 0$ at a fixed point. ${ }^{3}$ Suppose $f^{\prime}\left(u^{*}\right)<0$. Then to the left of the fixed point, the function $f\left(u<u^{*}\right)$ is positive, and the flow is to the right, i.e. toward u^{*}. To the right of the fixed point, the function $f\left(u>u^{*}\right)$ is negative, and the flow is to the left, i.e. again toward u^{*}. Thus, when $f^{\prime}\left(u^{*}\right)<0$ the fixed point is said to be stable, since the flow in the vicinity of u^{*} is to u^{*}. Conversely, when $f^{\prime}\left(u^{*}\right)>0$, the flow is always away from u^{*}, and the fixed point is then said to be unstable. Indeed, if we linearize about the fixed point, and let $\epsilon \equiv u-u^{*}$, then

$$
\begin{equation*}
\dot{\epsilon}=f^{\prime}\left(u^{*}\right) \epsilon+\frac{1}{2} f^{\prime \prime}\left(u^{*}\right) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{11.21}
\end{equation*}
$$

and dropping all terms past the first on the RHS gives

$$
\begin{equation*}
\epsilon(t)=\exp \left[f^{\prime}\left(u^{*}\right) t\right] \epsilon(0) . \tag{11.22}
\end{equation*}
$$

[^24]

Figure 11.3: Flow diagram for the logistic equation.

The deviation decreases exponentially for $f^{\prime}\left(u^{*}\right)<0$ and increases exponentially for $f\left(u^{*}\right)>0$. Note that

$$
\begin{equation*}
t(\epsilon)=\frac{1}{f^{\prime}\left(u^{*}\right)} \ln \left(\frac{\epsilon}{\epsilon(0)}\right) \tag{11.23}
\end{equation*}
$$

so the approach to a stable fixed point takes a logarithmically infinite time. For the unstable case, the deviation grows exponentially, until eventually the linearization itself fails.

11.2.2 Logistic equation

This model for population growth was first proposed by Verhulst in 1838. Let N denote the population in question. The dynamics are modeled by the first order ODE,

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) \tag{11.24}
\end{equation*}
$$

where N, r, and K are all positive. For $N \ll K$ the growth rate is r, but as N increases a quadratic nonlinearity kicks in and the rate vanishes for $N=K$ and is negative for $N>K$. The nonlinearity models the effects of competition between the organisms for food, shelter, or other resources. Or maybe they crap all over each other and get sick. Whatever.

There are two fixed points, one at $N^{*}=0$, which is unstable $\left(f^{\prime}(0)=r>0\right)$. The other, at $N^{*}=K$, is stable $\left(f^{\prime}(K)=-r\right)$. The equation is adimensionalized by defining $\nu=N / K$ and $s=r t$, whence

$$
\begin{equation*}
\dot{\nu}=\nu(1-\nu) . \tag{11.25}
\end{equation*}
$$

Integrating,

$$
\begin{equation*}
\frac{d \nu}{\nu(1-\nu)}=d \ln \left(\frac{\nu}{1-\nu}\right)=d s \quad \Longrightarrow \quad \nu(s)=\frac{\nu_{0}}{\nu_{0}+\left(1-\nu_{0}\right) \exp (-s)} \tag{11.26}
\end{equation*}
$$

As $s \rightarrow \infty, \nu(s)=1-\left(\nu_{0}^{-1}-1\right) e^{-s}+\mathcal{O}\left(e^{-2 s}\right)$, and the relaxation to equilibrium $\left(\nu^{*}=1\right)$ is exponential, as usual.

Another application of this model is to a simple autocatalytic reaction, such as

$$
\begin{equation*}
A+X \rightleftharpoons 2 X \tag{11.27}
\end{equation*}
$$

i.e. X catalyses the reaction $A \longrightarrow X$. Assuming a fixed concentration of A, we have

$$
\begin{equation*}
\dot{x}=\kappa_{+} a x-\kappa_{-} x^{2}, \tag{11.28}
\end{equation*}
$$

where x is the concentration of X, and $\kappa_{ \pm}$are the forward and backward reaction rates.

11.2.3 Recommended exercises

It is instructive to sketch the phase flows for the following examples:

$$
\begin{aligned}
\dot{v} & =-g & & \dot{u}
\end{aligned}=A \sin (u), ~(u-b)(u-c) ~ 子 \begin{array}{ll}
m \dot{v} & =-m g-\gamma v \\
m \dot{v} & =-m g-c v^{2} \operatorname{sgn}(v)
\end{array}
$$

In each case, identify all the fixed points and assess their stability. Assume all constants A, a, b, c, γ, etc. are positive.

11.2.4 Nongeneric cases with singular $f(u)$

Suppose that in the vicinity of a fixed point we have $f(u)=A\left|u-u^{*}\right|^{\alpha}$, with $A>0$. We now analyze both sides of the fixed point.
$u<u^{*}$: Let $\epsilon=u^{*}-u$. Then

$$
\begin{equation*}
\dot{\epsilon}=-A \epsilon^{\alpha} \quad \Longrightarrow \quad \frac{\epsilon^{1-\alpha}}{1-\alpha}=\frac{\epsilon_{0}^{1-\alpha}}{1-\alpha}-A t \tag{11.29}
\end{equation*}
$$

hence

$$
\begin{equation*}
\epsilon(t)=\left[\epsilon_{0}^{1-\alpha}+(\alpha-1) A t\right]^{\frac{1}{1-\alpha}} \tag{11.30}
\end{equation*}
$$

This, for $\alpha<1$ the fixed point $\epsilon=0$ is reached in a finite time: $\epsilon\left(t_{\mathrm{c}}\right)=0$, with

$$
\begin{equation*}
t_{\mathrm{c}}=\frac{\epsilon_{0}^{1-\alpha}}{(1-\alpha) A} \tag{11.31}
\end{equation*}
$$

For $\alpha>1$, we have $\lim _{t \rightarrow \infty} \epsilon(t)=0$, but $\epsilon(t)>0 \forall t<\infty$.
The fixed point $u=u^{*}$ is now half-stable - the flow from the left is toward u^{*} but from the right is away from u^{*}. Let's analyze the flow on either side of u^{*}.
$u>u^{*}$: Let $\epsilon=u-u^{*}$. Then $\dot{\epsilon}=A \epsilon^{\alpha}$, and

$$
\begin{equation*}
\epsilon(t)=\left[\epsilon_{0}^{1-\alpha}+(1-\alpha) A t\right]^{\frac{1}{1-\alpha}} \tag{11.32}
\end{equation*}
$$

Figure 11.4: $f(u)=A\left|u-u^{*}\right|^{\alpha}$, for $\alpha>1$ and $\alpha<1$.

Figure 11.5: Solutions to $\dot{\epsilon}=\mp A \epsilon^{\alpha}$. Left panel: $\epsilon=u^{*}-u$, with $\alpha=1.5$ (solid red) and $\alpha=0.5$ (dotdashed blue); $A=1$ in both cases. Right panel: $\epsilon=u-u^{*}, \alpha=1.5$ (solid red) and $\alpha=0.5$ (dot-dashed blue); $A=4$ in both cases

For $\alpha<1, \epsilon(t)$ escapes to $\epsilon=\infty$ only after an infinite time. For $\alpha>1$, the escape to infinity takes a finite time: $\epsilon\left(t_{\mathrm{c}}\right)=\infty$, with

$$
\begin{equation*}
t_{\mathrm{c}}=\frac{\epsilon_{0}^{1-\alpha}}{(\alpha-1) A} \tag{11.33}
\end{equation*}
$$

In both cases, higher order terms in the (nonanalytic) expansion of $f(u)$ about $u=u^{*}$ will eventually come into play.

11.2.5 Non-autonomous ODEs

Non-autonomous ODEs of the form $\dot{u}=h(u, t)$ are in general impossible to solve by quadratures. One can always go to the computer, but it is worth noting that in the separable case, $h(u, t)=f(u) g(t)$, one can obtain the solution

$$
\begin{equation*}
\frac{d u}{f(u)}=g(t) d t \quad \Longrightarrow \quad \int_{u_{0}}^{u} \frac{d u^{\prime}}{f\left(u^{\prime}\right)}=\int_{0}^{t} d t^{\prime} g\left(t^{\prime}\right) \tag{11.34}
\end{equation*}
$$

which implicitly gives $u(t)$. Note that \dot{u} may now change sign, and $u(t)$ may even oscillate. For an explicit example, consider the equation

$$
\begin{equation*}
\dot{u}=A(u+1) \sin (\beta t), \tag{11.35}
\end{equation*}
$$

the solution of which is

$$
\begin{equation*}
u(t)=-1+\left(u_{0}+1\right) \exp \left\{\frac{A}{\beta}[1-\cos (\beta t)]\right\} . \tag{11.36}
\end{equation*}
$$

In general, the non-autonomous case defies analytic solution. Many have been studied, such as the Riccati equation,

$$
\begin{equation*}
\frac{d u}{d t}=P(t) u^{2}+Q(t) u+R(t) \tag{11.37}
\end{equation*}
$$

Riccati equations have the special and remarkable property that one can generate all solutions (i.e. with arbitrary boundary condition $u(0)=u_{0}$) from any given solution (i.e. with any boundary condition).

11.3 Flows on the Circle

We had remarked that oscillations are impossible for the equation $\dot{u}=f(u)$ because the flow is to the first stable fixed point encountered. If there are no stable fixed points, the flow is unbounded. However, suppose phase space itself is bounded, e.g. a circle \mathbb{S}^{1} rather than the real line \mathbb{R}. Thus,

$$
\begin{equation*}
\dot{\theta}=f(\theta), \tag{11.38}
\end{equation*}
$$

with $f(\theta+2 \pi)=f(\theta)$. Now if there are no fixed points, $\theta(t)$ endlessly winds around the circle, and in this sense we can have oscillations.

11.3.1 Nonuniform oscillator

A particularly common example is that of the nonuniform oscillator,

$$
\begin{equation*}
\dot{\theta}=\omega-\sin \theta, \tag{11.39}
\end{equation*}
$$

which has applications to electronics, biology, classical mechanics, and condensed matter physics. Note that the general equation $\dot{\theta}=\omega-A \sin \theta$ may be rescaled to the above form. A simple application is to the dynamics of a driven, overdamped pendulum. The equation of motion is

$$
\begin{equation*}
I \ddot{\theta}+b \dot{\theta}+I \omega_{0}^{2} \sin \theta=N, \tag{11.40}
\end{equation*}
$$

where I is the moment of inertia, b is the damping parameter, N is the external torque (presumed constant), and ω_{0} is the frequency of small oscillations when $b=N=0$. When b is large, the inertial term $I \ddot{\theta}$ may be neglected, and after rescaling we arrive at eqn. 11.39.

The book by Strogatz provides a biological example of the nonuniform oscillator: fireflies. An individual firefly will on its own flash at some frequency f. This can be modeled by the equation $\dot{\phi}=\beta$, where

Figure 11.6: Flow for the nonuniform oscillator $\dot{\theta}=\omega-\sin \theta$ for three characteristic values of ω.
$\beta=2 \pi f$ is the angular frequency. A flash occurs when $\phi=2 \pi n$ for $n \in \mathbb{Z}$. When subjected to a periodic stimulus, fireflies will attempt to synchronize their flash to the flash of the stimulus. Suppose the stimulus is periodic with angular frequency Ω. The firefly synchronization is then modeled by the equation

$$
\begin{equation*}
\dot{\phi}=\beta-A \sin (\phi-\Omega t) \tag{11.41}
\end{equation*}
$$

Here, A is a measure of the firefly's ability to modify its natural frequency in response to the stimulus. Note that when $0<\phi-\Omega t<\pi$, i.e. when the firefly is leading the stimulus, the dynamics tell the firefly to slow down. Conversely, when $-\pi<\phi-\Omega t<0$, the firefly is lagging the stimulus, the the dynamics tell it to speed up. Now focus on the difference $\theta \equiv \phi-\Omega t$. We have

$$
\begin{equation*}
\dot{\theta}=\beta-\Omega-A \sin \theta, \tag{11.42}
\end{equation*}
$$

which is the nonuniform oscillator. We can adimensionalize by defining

$$
\begin{equation*}
s \equiv A t \quad, \quad \omega \equiv \frac{\beta-\Omega}{A}, \tag{11.43}
\end{equation*}
$$

yielding $\frac{d \theta}{d s}=f(\theta)=\omega-\sin \theta$.
Fixed points θ^{*} occur only for $|\omega|<1$, at $\sin \theta^{*}=\omega$, in which case $f^{\prime}(\theta)=-\cos \theta^{*}$. As we have seen above, stability requires $f^{\prime}\left(\theta^{*}\right)<0$, which means $\theta^{*} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, i.e. θ^{*} must lie on the right half of the circle. For $|\omega|>1$, the angular velocity never vanishes anywhere along the circle, and there are no fixed points. In this case the motion is eternally clockwise $(\omega<-1)$ or counterclockwise $(\omega>+1)$. The situation is depicted in fig. 11.6.

To integrate, set $z=\exp (i \theta)$, in which case

$$
\begin{equation*}
\frac{d z}{d s}=-\frac{1}{2}\left(z^{2}-2 i \omega z-1\right)=-\frac{1}{2}\left(z-z_{-}\right)\left(z-z_{+}\right) \tag{11.44}
\end{equation*}
$$

where $z_{ \pm}=i \omega \pm \sqrt{1-\omega^{2}} \equiv \pm e^{ \pm i \alpha}$, with $e^{i \alpha}=\sqrt{1-\omega^{2}}+i \omega$. This yields

$$
\begin{equation*}
d \ln \left(\frac{z-e^{i \alpha}}{z+e^{-i \alpha}}\right)=-\cos \alpha d s \tag{11.45}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\frac{e^{i \theta(s)}-e^{i \alpha}}{e^{i \theta(s)}+e^{-i \alpha}}=\left(\frac{e^{i \theta(0)}-e^{i \alpha}}{e^{i \theta(0)}+e^{-i \alpha}}\right) \exp (-s \cos \alpha) \tag{11.46}
\end{equation*}
$$

Note that $e^{i \theta(\pm \infty)}= \pm e^{ \pm i \alpha}$, which lie on the appropriate halves of the circle.
For $|\omega|>1$, the motion is periodic, with period

$$
\begin{equation*}
T=\int_{0}^{2 \pi} \frac{d \theta}{|\omega|-\sin \theta}=\frac{2 \pi}{\sqrt{\omega^{2}-1}} \tag{11.47}
\end{equation*}
$$

11.4 Appendix I : Evolution of Phase Space Volumes

Recall the general form of a dynamical system, $\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})$. Usually we are interested in finding integral curves $\varphi(t)$. However, consider for the moment a collection of points in phase space comprising a region \mathcal{R}. As the dynamical system evolves, this region will also evolve, so that $\mathcal{R}=\mathcal{R}(t)$. We now ask: how does the volume of $\mathcal{R}(t)$,

$$
\begin{equation*}
\operatorname{vol}[\mathcal{R}(t)]=\int_{\mathcal{R}(t)} d \mu \tag{11.48}
\end{equation*}
$$

where $d \mu=d \varphi_{1} d \varphi_{2} \cdots d \varphi_{N}$ is the phase space measure, change with time. We have, explicitly,

$$
\begin{align*}
\operatorname{vol}[\mathcal{R}(t+d t)] & =\int_{\mathcal{R}(t+d t)} d \mu=\int_{\mathcal{R}(t)} d \mu\left\|\frac{\partial \varphi_{i}(t+d t)}{\partial \varphi_{j}(t)}\right\| \tag{11.49}\\
& =\int_{\mathcal{R}(t)} d \mu\left\{1+\boldsymbol{\nabla} \cdot \boldsymbol{V} d t+\mathcal{O}\left((d t)^{2}\right)\right\}
\end{align*}
$$

since

$$
\begin{equation*}
\frac{\partial \varphi_{i}(t+d t)}{\partial \varphi_{j}(t)}=\delta_{i j}+\left.\frac{\partial V_{i}}{\partial \varphi_{j}}\right|_{\varphi(t)} d t+\mathcal{O}\left((d t)^{2}\right) \tag{11.50}
\end{equation*}
$$

and, using $\ln \operatorname{det} M=\operatorname{Tr} \ln M$,

$$
\begin{equation*}
\operatorname{det}(1+\epsilon A)=1+\epsilon \operatorname{Tr} A+\mathcal{O}\left(\epsilon^{2}\right) \tag{11.51}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{d}{d t} \operatorname{vol}[\mathcal{R}(t)]=\int_{\mathcal{R}(t)} d \mu \boldsymbol{\nabla} \cdot \boldsymbol{V}=\int_{\partial \mathcal{R}(t)} d \Sigma \hat{\boldsymbol{n}} \cdot \boldsymbol{V}, \tag{11.52}
\end{equation*}
$$

where in the last line we have used Stokes' theorem to convert the volume integral over \mathcal{R} to a surface integral over its boundary $\partial \mathcal{R}$.

11.5 Appendix II : Lyapunov Characteristic Exponents

Suppose $\boldsymbol{\varphi}(t)$ is an integral curve - i.e. a solution of $\dot{\boldsymbol{\varphi}}=\boldsymbol{V}(\boldsymbol{\varphi})$. We now ask: how do nearby trajectories behave? Do they always remain close to $\boldsymbol{\varphi}(t)$ for all t ? To answer this, we write $\widetilde{\boldsymbol{\varphi}}(t) \equiv \boldsymbol{\varphi}(t)+\boldsymbol{\eta}(t)$, in which case

$$
\begin{equation*}
\frac{d}{d t} \eta_{i}(t)=M_{i j}(t) \eta_{j}(t)+\mathcal{O}\left(\eta^{2}\right) \tag{11.53}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i j}(t)=\left.\frac{\partial V_{i}}{\partial \varphi_{j}}\right|_{\varphi(t)} \tag{11.54}
\end{equation*}
$$

The solution, valid to first order in $\delta \varphi$, is

$$
\begin{equation*}
\eta_{i}(t)=Q_{i j}\left(t, t_{0}\right) \eta_{j}\left(t_{0}\right) \tag{11.55}
\end{equation*}
$$

where the matrix $Q\left(t, t_{0}\right)$ is given by the path ordered exponential,

$$
\begin{align*}
Q\left(t, t_{0}\right) & =\mathcal{P} \exp \left\{\int_{t_{0}}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\} \tag{11.56}\\
& \equiv \lim _{N \rightarrow \infty}\left(1+\frac{\Delta t}{N} M\left(t_{N-1}\right)\right) \cdots\left(1+\frac{\Delta t}{N} M\left(t_{1}\right)\right)\left(1+\frac{\Delta t}{N} M\left(t_{0}\right)\right)
\end{align*}
$$

with $\Delta t=t-t_{0}$ and $t_{j}=t_{0}+(j / N) \Delta t . \mathcal{P}$ is the path ordering operator, which places earlier times to the right:

$$
\mathcal{P} A(t) B\left(t^{\prime}\right)= \begin{cases}A(t) B\left(t^{\prime}\right) & \text { if } t>t^{\prime} \tag{11.57}\\ B\left(t^{\prime}\right) A(t) & \text { if } t<t^{\prime}\end{cases}
$$

The distinction is important if $\left[A(t), B\left(t^{\prime}\right)\right] \neq 0$. Note that Q satisfies the composition property,

$$
\begin{equation*}
Q\left(t, t_{0}\right)=Q\left(t, t_{1}\right) Q\left(t_{1}, t_{0}\right) \tag{11.58}
\end{equation*}
$$

for any $t_{1} \in\left[t_{0}, t\right]$. When M is time-independent, as in the case of a fixed point where $\boldsymbol{V}\left(\boldsymbol{\varphi}^{*}\right)=0$, the path ordered exponential reduces to the ordinary exponential, and $Q\left(t, t_{0}\right)=\exp \left(M\left(t-t_{0}\right)\right)$.

Generally it is impossible to analytically compute path-ordered exponentials. However, the following example may be instructive. Suppose

$$
M(t)= \begin{cases}M_{1} & \text { if } t / T \in[2 j, 2 j+1] \tag{11.59}\\ M_{2} & \text { if } t / T \in[2 j+1,2 j+2]\end{cases}
$$

for all integer $j . M(t)$ is a 'matrix-valued square wave', with period $2 T$. Then, integrating over one
period, from $t=0$ to $t=2 T$, we have

$$
\begin{align*}
A & \equiv \exp \left\{\int_{0}^{2 T} d t M(t)\right\}=e^{\left(M_{1}+M_{2}\right) T} \tag{11.60}\\
A_{\mathcal{P}} & \equiv \mathcal{P} \exp \left\{\int_{0}^{2 T} d t M(t)\right\}=e^{M_{2} T} e^{M_{1} T}
\end{align*}
$$

In general, $A \neq A_{\mathcal{P}}$, so the path ordering has a nontrivial effect ${ }^{4}$.
The Lyapunov exponents are defined in the following manner. Let \hat{e} be an N-dimensional unit vector. Define

$$
\begin{equation*}
\Lambda\left(\boldsymbol{\varphi}_{0}, \hat{\boldsymbol{e}}\right) \equiv \lim _{t \rightarrow \infty} \lim _{b \rightarrow 0} \frac{1}{t-t_{0}} \ln \left(\frac{\|\boldsymbol{\eta}(t)\|}{\left\|\boldsymbol{\eta}\left(t_{0}\right)\right\|}\right)_{\boldsymbol{\eta}\left(t_{0}\right)=b \hat{\boldsymbol{e}}} \tag{11.61}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Euclidean norm of a vector, and where $\varphi_{0}=\varphi\left(t_{0}\right)$. A theorem due to Oseledec guarantees that there are N such values $\Lambda_{i}\left(\varphi_{0}\right)$, depending on the choice of \hat{e}, for a given φ_{0}. Specifically, the theorem guarantees that the matrix

$$
\begin{equation*}
W \equiv\left(Q^{\mathrm{t}} Q\right)^{1 /\left(t-t_{0}\right)} \tag{11.62}
\end{equation*}
$$

converges in the limit $t \rightarrow \infty$ for almost all φ_{0}. The eigenvalues Λ_{i} correspond to the different eigenspaces of W. Oseledec's theorem (also called the 'multiplicative ergodic theorem') guarantees that the eigenspaces of W either grow $\left(\Lambda_{i}>1\right)$ or shrink $\left(\Lambda_{i}<1\right)$ exponentially fast. That is, the norm any vector lying in the $i^{\text {th }}$ eigenspace of W will behave as $\Lambda_{i}^{t}=\exp \left(t \ln \Lambda_{i}\right)$ as $t \rightarrow \infty$.

Note that while $W=W^{\mathrm{t}}$ is symmetric by construction, Q is simply a general real-valued $N \times N$ matrix. The left and right eigenvectors of a matrix $M \in \operatorname{GL}(N, \mathbb{R})$ will in general be different. The set of eigenvalues λ_{α} is, however, common to both sets of eigenvectors. Let $\left\{\psi_{\alpha}\right\}$ be the right eigenvectors and $\left\{\chi_{\alpha}^{*}\right\}$ the left eigenvectors, such that

$$
\begin{align*}
& M_{i j} \psi_{\alpha, j}=\lambda_{\alpha} \psi_{\alpha, i} \tag{11.63}\\
& \chi_{\alpha, i}^{*} M_{i j}=\lambda_{\alpha} \chi_{\alpha, j}^{*} .
\end{align*}
$$

We can always choose the left and right eigenvectors to be orthonormal, viz.

$$
\begin{equation*}
\left\langle\chi_{\alpha} \mid \psi_{\beta}\right\rangle=\chi_{\alpha, i}^{*} \psi_{\beta, j}=\delta_{\alpha \beta} \tag{11.64}
\end{equation*}
$$

Indeed, we can define the matrix $S_{i \alpha}=\psi_{\alpha, i}$, in which case $S_{\alpha j}^{-1}=\chi_{\alpha, j}^{*}$, and

$$
\begin{equation*}
S^{-1} M S=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \tag{11.65}
\end{equation*}
$$

The matrix M can always be decomposed into its eigenvectors, as

$$
\begin{equation*}
M_{i j}=\sum_{\alpha} \lambda_{\alpha} \psi_{\alpha, i} \chi_{\alpha, j}^{*} \tag{11.66}
\end{equation*}
$$

[^25]If we expand u in terms of the right eigenvectors,

$$
\begin{equation*}
\boldsymbol{\eta}(t)=\sum_{\beta} C_{\beta}(t) \boldsymbol{\psi}_{\beta}(t) \tag{11.67}
\end{equation*}
$$

then upon taking the inner product with χ_{α}, we find that C_{α} obeys

$$
\begin{equation*}
\dot{C}_{\alpha}+\left\langle\chi_{\alpha} \mid \dot{\psi}_{\beta}\right\rangle C_{\beta}=\lambda_{\alpha} C_{\alpha} \tag{11.68}
\end{equation*}
$$

If $\dot{\boldsymbol{\psi}}_{\beta}=0$, e.g. if M is time-independent, then $C_{\alpha}(t)=C_{\alpha}(0) e^{\lambda_{\alpha} t}$, and

$$
\begin{equation*}
\eta_{i}(t)=\sum_{\alpha} \overbrace{\sum_{j} \eta_{j}(0) \chi_{\alpha, j}^{*}}^{C_{\alpha}(0)} e^{\lambda_{\alpha} t} \psi_{\alpha, i} . \tag{11.69}
\end{equation*}
$$

Thus, the component of $\boldsymbol{\eta}(t)$ along $\boldsymbol{\psi}_{\alpha}$ increases exponentially with time if $\operatorname{Re}\left(\lambda_{\alpha}\right)>0$, and decreases exponentially if $\operatorname{Re}\left(\lambda_{\alpha}\right)<0$.

Chapter 12

Bifurcations

12.1 Types of Bifurcations

12.1.1 Saddle-node bifurcation

We remarked above how $f^{\prime}(u)$ is in general nonzero when $f(u)$ itself vanishes, since two equations in a single unknown is an overdetermined set. However, consider the function $F(x, \alpha)$, where α is a control parameter. If we demand $F(x, \alpha)=0$ and $\partial_{x} F(x, \alpha)=0$, we have two equations in two unknowns, and in general there will be a zero-dimensional solution set consisting of points $\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)$. The situation is depicted in fig. 12.1.

Let's expand $F(x, \alpha)$ in the vicinity of such a point $\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)$:

$$
\begin{align*}
& F(x, \alpha)=F\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)+\left.\frac{\partial F}{\partial x}\right|_{\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)}\left(x-x_{\mathrm{c}}\right)+\left.\frac{\partial F}{\partial \alpha}\right|_{\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)} ^{\left(\alpha-\alpha_{\mathrm{c}}\right)+\left.\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}\right|_{\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)}\left(x-x_{\mathrm{c}}\right)^{2}} \\
& +\left.\frac{\partial^{2} F}{\partial x \partial \alpha}\right|_{\left(x_{c}, \alpha_{c}\right)} ^{\left(x-x_{\mathrm{c}}\right)}\left(\alpha-\alpha_{\mathrm{c}}\right)+\left.\frac{1}{2} \frac{\partial^{2} F}{\partial \alpha^{2}}\right|_{\left(x_{\mathrm{c}}, \alpha_{\mathrm{c}}\right)}\left(\alpha-\alpha_{\mathrm{c}}\right)^{2}+\ldots \tag{12.1}\\
& =A\left(\alpha-\alpha_{\mathrm{c}}\right)+B\left(x-x_{\mathrm{c}}\right)^{2}+\ldots, \tag{12.2}
\end{align*}
$$

where we keep terms of lowest order in the deviations δx and $\delta \alpha$. Note that we can separately change the signs of A and B by redefining $\alpha \rightarrow-\alpha$ and/or $x \rightarrow-x$, so without loss of generality we may assume both A and B are positive. If we now rescale $u \equiv \sqrt{B / A}\left(x-x_{\mathrm{c}}\right), r \equiv \alpha-\alpha_{\mathrm{c}}$, and $\tau=\sqrt{A B} t$, we have, neglecting the higher order terms, we obtain the 'normal form' of the saddle-node bifurcation,

$$
\begin{equation*}
\frac{d u}{d \tau}=r+u^{2} \tag{12.3}
\end{equation*}
$$

The evolution of the flow is depicted in fig. 12.2. For $r<0$ there are two fixed points - one stable ($u^{*}=-\sqrt{-r}$) and one unstable ($u=+\sqrt{-r}$). At $r=0$ these two nodes coalesce and annihilate each other. (The point $u^{*}=0$ is half-stable precisely at $r=0$.) For $r>0$ there are no longer any fixed points

Figure 12.1: Evolution of $F(x, \alpha)$ as a function of the control parameter α.
in the vicinity of $u=0$. In the left panel of fig. 12.3 we show the flow in the extended (r, u) plane. The unstable and stable nodes annihilate at $r=0$.

12.1.2 Transcritical bifurcation

Another situation which arises frequently is the transcritical bifurcation. Consider the equation $\dot{x}=f(x)$ in the vicinity of a fixed point x^{*}.

$$
\begin{equation*}
\frac{d x}{d t}=f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2}+\ldots \tag{12.4}
\end{equation*}
$$

We rescale $u \equiv \beta\left(x-x^{*}\right)$ with $\beta=-\frac{1}{2} f^{\prime \prime}\left(x^{*}\right)$ and define $r \equiv f^{\prime}\left(x^{*}\right)$ as the control parameter, to obtain, to order u^{2},

$$
\begin{equation*}
\frac{d u}{d t}=r u-u^{2} \tag{12.5}
\end{equation*}
$$

Note that the sign of the u^{2} term can be reversed relative to the others by sending $u \rightarrow-u$.
Consider a crude model of a laser threshold. Let n be the number of photons in the laser cavity, and N the number of excited atoms in the cavity. The dynamics of the laser are approximated by the equations

$$
\begin{align*}
\dot{n} & =G N n-k n \\
N & =N_{0}-\alpha n . \tag{12.6}
\end{align*}
$$

Here G is the gain coefficient and k the photon decay rate. N_{0} is the pump strength, and α is a numerical factor. The first equation tells us that the number of photons in the cavity grows with a rate $G N-k$; gain is proportional to the number of excited atoms, and the loss rate is a constant cavity-dependent quantity (typically through the ends, which are semi-transparent). The second equation says that the number of

$$
r<0
$$

$r=0$

$r>0$

Figure 12.2: Flow diagrams for the saddle-node bifurcation $\dot{u}=r+u^{2}$ (top) and the transcritical bifurcation $\dot{u}=r u-u^{2}$ (bottom).
excited atoms is equal to the pump strength minus a term proportional to the number of photons (since the presence of a photon means an excited atom has decayed). Putting them together,

$$
\begin{equation*}
\dot{n}=\left(G N_{0}-k\right) n-\alpha G n^{2} \tag{12.7}
\end{equation*}
$$

which exhibits a transcritical bifurcation at pump strength $N_{0}=k / G$. For $N_{0}<k / G$ the system acts as a lamp; for $N_{0}>k / G$ the system acts as a laser.

Figure 12.3: Extended phase space (r, u) flow diagrams for the saddle-node bifurcation $\dot{u}=r+u^{2}$ (left) and the transcritical bifurcation $\dot{u}=r u-u^{2}$ (right).

Figure 12.4: Top: supercritical pitchfork bifurcation $\dot{u}=r u-u^{3}$. Bottom: subcritical pitchfork bifurcation $\dot{u}=r u+u^{3}$.

What happens in the transcritical bifurcation is an exchange of stability of the fixed points at $u^{*}=0$ and $u^{*}=r$ as r passes through zero. This is depicted graphically in the bottom panel of fig. 12.2.

12.1.3 Pitchfork bifurcation

The pitchfork bifurcation is commonly encountered in systems in which there is an overall parity symmetry $(u \rightarrow-u)$. There are two classes of pitchfork: supercritical and subcritical. The normal form of the supercritical bifurcation is

$$
\begin{equation*}
\dot{u}=r u-u^{3} \tag{12.8}
\end{equation*}
$$

which has fixed points at $u^{*}=0$ and $u^{*}= \pm \sqrt{r}$. Thus, the situation is as depicted in fig. 12.4 (top panel). For $r<0$ there is a single stable fixed point at $u^{*}=0$. For $r>0, u^{*}=0$ is unstable, and flanked by two stable fixed points at $u^{*}= \pm \sqrt{r}$.
If we send $u \rightarrow-u, r \rightarrow-r$, and $t \rightarrow-t$, we obtain the subcritical pitchfork, depicted in the bottom panel of fig. 12.4. The normal form of the subcritical pitchfork bifurcation is

$$
\begin{equation*}
\dot{u}=r u+u^{3} . \tag{12.9}
\end{equation*}
$$

The fixed point structure in both supercritical and subcritical cases is shown in fig. 12.5.

Figure 12.5: Extended phase space (r, u) flow diagrams for the supercritical pitchfork bifurcation $\dot{u}=$ $r u-u^{3}$ (left), and subcritical pitchfork bifurcation $\dot{u}=r u+u^{3}$ (right).

12.1.4 Imperfect bifurcation

The imperfect bifurcation occurs when a symmetry-breaking term is added to the pitchfork. The normal form contains two control parameters:

$$
\begin{equation*}
\dot{u}=h+r u-u^{3} . \tag{12.10}
\end{equation*}
$$

Here, the constant h breaks the parity symmetry if $u \rightarrow-u$.
This equation arises from a crude model of magnetization dynamics. Let M be the magnetization of a sample, and $F(M)$ the free energy. Assuming M is small, we can expand $F(M)$ as

$$
\begin{equation*}
F(M)=-H M+\frac{1}{2} a M^{2}+\frac{1}{4} b M^{4}+\ldots, \tag{12.11}
\end{equation*}
$$

where H is the external magnetic field, and a and b are temperature-dependent constants. This is called the Landau expansion of the free energy. We assume $b>0$ in order that the minimum of $F(M)$ not lie at infinity. The dynamics of $M(t)$ are modeled by

$$
\begin{equation*}
\frac{d M}{d t}=-\Gamma \frac{\partial F}{\partial M} \tag{12.12}
\end{equation*}
$$

with $\Gamma>0$. Thus, the magnetization evolves toward a local minimum in the free energy. Note that the free energy is a decreasing function of time:

$$
\begin{equation*}
\frac{d F}{d t}=\frac{\partial F}{\partial M} \frac{d M}{d t}=-\Gamma\left(\frac{\partial F}{\partial M}\right)^{2} \tag{12.13}
\end{equation*}
$$

By rescaling $M \equiv u M_{0}$ with $M_{0}=(b \Gamma)^{-1 / 2}$ and defining $r \equiv-a \Gamma$ and $h \equiv\left(\Gamma^{3} b\right)^{1 / 2} H$, we obtain the normal form

$$
\begin{align*}
\dot{u} & =h+r u-u^{3}=-\frac{\partial f}{\partial u} \tag{12.14}\\
f(u) & =-\frac{1}{2} r u^{2}+\frac{1}{4} u^{4}-h u .
\end{align*}
$$

Figure 12.6: Left: scaled free energy $f(u)=-\frac{1}{2} r u^{2}+\frac{1}{4} u^{4}-h u$, with $h=0$ (blue), $h=h_{\mathrm{c}}$ (green), and $h=2 h_{\mathrm{c}}$ (red), where $h_{\mathrm{c}}=\frac{2}{3 \sqrt{3}} r^{3 / 2}$. Right: phase diagram for the imperfect bifurcation $\dot{u}=-f^{\prime}(u)=$ $h+r u-u^{3}$ in the (r, h) plane.

Here, $f(u)$ is a scaled version of the free energy.
Fixed points satisfy the equation

$$
\begin{equation*}
u^{3}-r u-h=0 \tag{12.15}
\end{equation*}
$$

and correspond to extrema in $f(u)$. By the fundamental theorem of algebra, this cubic polynomial may be uniquely factorized over the complex plane. Since the coefficients are real, the complex conjugate \bar{u} satisfies the same equation as u, hence there are two possibilities for the roots: either (i) all three roots are real, or (ii) one root is real and the other two are a complex conjugate pair. Clearly for $r<0$ we are in situation (ii) since $u^{3}-r u$ is then monotonically increasing for $u \in \mathbb{R}$, and therefore takes the value h precisely once for u real. For $r>0$, there is a region $h \in\left[-h_{\mathrm{c}}(r), h_{\mathrm{c}}(r)\right]$ over which there are three real roots. To find $h_{\mathrm{c}}(r)$, we demand $f^{\prime \prime}(u)=0$ as well as $f^{\prime}(u)=0$, which says that two roots have merged, forming an inflection point. One easily finds $h_{\mathrm{c}}(r)=\frac{2}{3 \sqrt{3}} r^{3 / 2}$.

Examples of the function $f(u)$ for $r>0$ are shown in the left panel of fig. 12.6 for three different values of h. For $|h|<h_{\mathrm{c}}(r)$ there are three extrema satisfying $f^{\prime}\left(u^{*}\right)=0$: $u_{1}^{*}<u_{2}^{*}<0<u_{3}^{*}$, assuming (without loss of generality) that $h>0$. Clearly u_{1}^{*} is a local minimum, u_{2}^{*} a local maximum, and u_{3}^{*} the global minimum of the function $f(u)$. The 'phase diagram' for this system, plotted in the (r, h) control parameter space, is shown in the right panel of fig. 12.6.
In fig. 12.7 we plot the fixed points $u^{*}(r)$ for fixed h. A saddle-node bifurcation occurs at $r=r_{\mathrm{c}}(h)=$ $\frac{3}{2^{2 / 3}}|h|^{2 / 3}$. For $h=0$ this reduces to the supercritical pitchfork; for finite h the pitchfork is deformed and even changed topologically. Finally, in fig. 12.7 we show the behavior of $u^{*}(h)$ for fixed r. When $r<0$ the curve retraces itself as h is ramped up and down, but for $r>0$ the system exhibits the phenomenon of hysteresis, i.e. there is an irreversible aspect to the behavior. Fig, 12.7 shows a hysteresis loop when $r>0$.

Figure 12.7: Top: extended phase space (r, u) flow diagram for the imperfect pitchfork bifurcation $\dot{u}=h+r u-u^{3}$ for $h=1$. This is in a sense a deformed supercritical pitchfork. Bottom: extended phase space (h, u) flow diagram for the imperfect pitchfork bifurcation $r=-0.2$ (left panel) and $r=1$ (right panel). For $r<0$ the behavior is completely reversible. For $r>0$, a regime of irreversibility sets in between $-h_{\mathrm{c}}$ and $+h_{\mathrm{c}}$, where $h_{\mathrm{c}}=2(r / 3)^{3 / 2}$. The system then exhibits the phenomenon of hysteresis. The dotted vertical lines show the boundaries of the hysteresis loop.

12.2 Examples

12.2.1 Population dynamics

Consider the dynamics of a harvested population,

$$
\begin{equation*}
\dot{N}=r N\left(1-\frac{N}{K}\right)-H(N) \tag{12.16}
\end{equation*}
$$

where $r, K>0$, and where $H(N)$ is the harvesting rate.
(a) Suppose $H(N)=H_{0}$ is a constant. Sketch the phase flow, and identify and classify all fixed points.

Solution: We examing $\dot{N}=f(N)$ with

$$
\begin{equation*}
f(N)=r N-\frac{r}{K} N^{2}-H_{0} . \tag{12.17}
\end{equation*}
$$

Figure 12.8: Phase flow for the constantly harvested population, $\dot{\nu}=\nu(1-\nu)-h$, for $h=0.30$ (left), $h=0.25$ (center), and $h=0.20$ (right). The critical harvesting rate is $h_{\mathrm{c}}=\frac{1}{4}$.

Setting $f^{\prime}(N)=0$ yields $N=\frac{1}{2} K . f(N)$ is a downward-opening parabola whose maximum value is $f\left(\frac{1}{2} K\right)=\frac{1}{4} r K-H_{0}$. Thus, if $H_{0}>\frac{1}{4} r K$, the harvesting rate is too large and the population always shrinks. A saddle-node bifurcation occurs at this value of H_{0}, and for larger harvesting rates, there are fixed points at

$$
\begin{equation*}
N_{ \pm}=\frac{1}{2} K \pm \frac{1}{2} K \sqrt{1-\frac{4 H_{0}}{r K}} \tag{12.18}
\end{equation*}
$$

with N_{-}unstable and N_{+}stable. By rescaling the population $\nu=N / K$, time $\tau=r t$ and harvesting rate $h=H_{0} / r K$, we arrive at the equation

$$
\begin{equation*}
\dot{\nu}=\nu(1-\nu)-h . \tag{12.19}
\end{equation*}
$$

The critical harvesting rate is then $h_{\mathrm{c}}=\frac{1}{4}$. See fig. 12.8.
(b) One defect of the constant harvesting rate model is that $N=0$ is not a fixed point. To remedy this, consider the following model for $H(N)^{1}$:

$$
\begin{equation*}
H(N)=\frac{B N^{2}}{N^{2}+A^{2}} \tag{12.20}
\end{equation*}
$$

where A and B are (positive) constants. Show that one can rescale (N, t) to (n, τ), such that

$$
\begin{equation*}
\frac{d n}{d \tau}=\gamma n\left(1-\frac{n}{c}\right)-\frac{n^{2}}{n^{2}+1} \tag{12.21}
\end{equation*}
$$

where γ and c are positive constants. Provide expressions for n, τ, γ, and c.
Solution : Examining the denominator of $H(N)$, we must take $N=A n$. Dividing both sides of $\dot{N}=$ $f(N)$ by B, we obtain

$$
\frac{A}{B} \frac{d N}{d t}=\frac{r A}{B} n\left(1-\frac{A}{K} n\right)-\frac{n^{2}}{n^{2}+1}
$$

[^26]

Figure 12.9: Plot of $h(n)=n /\left(n^{2}+1\right)$ (thick black curve). Straight lines show the function $y(n)=\gamma\left(1-\frac{n}{c}\right)$ for different values of c and γ. The red line is tangent to the inflection point of $h(n)$ and determines the minimum value $c^{*}=3 \sqrt{3}$ for a bifurcation. The blue lines show the construction for determining the location of the two bifurcations for $c>c^{*}$ (in this case, $c=9$). See the analysis in the text.
from which we glean $\tau=B t / A, \gamma=r A / B$, and $c=K / A$.
(c) Show that for c sufficiently small that there is a unique asymptotic ($\tau \rightarrow \infty$) value for the (scaled) population n, for any given value of γ. Thus, there are no bifurcations as a function of the control parameter γ for c fixed and $c<c^{*}$.
(d) Show that for $c>c^{*}$, there are two bifurcations as a function of γ, and that for $\gamma_{1}^{*}<\gamma<\gamma_{2}^{*}$ the asymptotic solution is bistable, i.e. there are two stable values for $n(\tau \rightarrow \infty)$. Sketch the solution set 'phase diagram' in the (c, γ) plane. Hint: Sketch the functions $\gamma(1-n / c)$ and $n /\left(n^{2}+1\right)$. The $n \neq 0$ fixed points are given by the intersections of these two curves. Determine the boundary of the bistable region in the (c, γ) plane parametrically in terms of n. Find c^{*} and $\gamma_{1}^{*}(c)=\gamma_{2}^{*}(c)$.

Solution (c) and (d) : We examine

$$
\begin{equation*}
\frac{d n}{d \tau}=g(n)=\left\{\gamma\left(1-\frac{n}{c}\right)-\frac{n}{n^{2}+1}\right\} n \tag{12.22}
\end{equation*}
$$

There is an unstable fixed point at $n=0$, where $g^{\prime}(0)=\gamma>0$. The other fixed points occur when the term in the curvy brackets vanishes. In fig. 12.9 we plot the function $h(n) \equiv n /\left(n^{2}+1\right)$ versus n. We seek the intersection of this function with a two-parameter family of straight lines, given by $y(n)=\gamma(1-n / c)$. The n-intercept is c and the y-intercept is γ. Provided $c>c^{*}$ is large enough, there are two bifurcations as a function of γ, which we call $\gamma_{ \pm}(c)$. These are shown as the dashed blue lines in figure 12.9 for $c=9$.

Both bifurcations are of the saddle-node type. We determine the curves $\gamma_{ \pm}(c)$ by requiring that $h(n)$ is

Figure 12.10: Phase diagram for the equation $\dot{n}=\gamma(1-n / c) n-n^{2} /\left(n^{2}+1\right)$, labeling $n \neq 0$ fixed points. (The point $n=0$ is always unstable.)
tangent to $y(n)$, which gives two equations:

$$
\begin{align*}
h(n) & =\frac{n}{n^{2}+1}=\gamma\left(1-\frac{n}{c}\right)=y(n) \\
h^{\prime}(n) & =\frac{1-n^{2}}{\left(n^{2}+1\right)^{2}}=-\frac{\gamma}{c}=y^{\prime}(n) . \tag{12.23}
\end{align*}
$$

Together, these give $\gamma(c)$ parametrically, i.e. as $\gamma(n)$ and $c(n)$:

$$
\begin{equation*}
\gamma(n)=\frac{2 n^{3}}{\left(n^{2}+1\right)^{2}} \quad, \quad c(n)=\frac{2 n^{3}}{\left(n^{2}-1\right)} . \tag{12.24}
\end{equation*}
$$

Since $h(n)$ is maximized for $n=1$, where $h(1)=\frac{1}{2}$, there is no bifurcation occurring at values $n<1$. If we plot $\gamma(n)$ versus $c(n)$ over the allowed range of n, we obtain the phase diagram in fig. 12.10. The cusp occurs at $\left(c^{*}, \gamma^{*}\right)$, and is determined by the requirement that the two bifurcations coincide. This supplies a third condition, namely that $h^{\prime \prime}(n)=0$, where

$$
\begin{equation*}
h^{\prime \prime}(n)=\frac{2 n\left(n^{2}-3\right)}{\left(n^{2}+1\right)^{3}} \tag{12.25}
\end{equation*}
$$

Thus $n=\sqrt{3}$, whence $c^{*}=3 \sqrt{3}$ and $\gamma^{*}=\frac{3 \sqrt{3}}{8}$. For $c<c^{*}$, there are no bifurcations at any value of γ.

12.2.2 The Bletch

Problem: The bletch is a disgusting animal native to the Forest of Jkroo on the planet Barney. The bletch population obeys the equation

$$
\begin{equation*}
\frac{d N}{d t}=a N^{2}-b N^{3} \tag{12.26}
\end{equation*}
$$

Figure 12.11: Phase flow for the scaled bletch population, $\dot{n}=n^{2}-n^{3}$.
where N is the number of bletches, and a and b are constants. (Bletches reproduce asexually, but only when another bletch is watching. However, when there are three bletches around, they beat the @!!*\$\&* out of each other.)
(a) Sketch the phase flow for N. (Strange as the bletch is, you can still rule out $N<0$.) Identify and classify all fixed points.
(b) The bletch population is now harvested (they make nice shoes). To model this, we add an extra term to the dynamics:

$$
\begin{equation*}
\frac{d N}{d t}=-h N+a N^{2}-b N^{3} \tag{12.27}
\end{equation*}
$$

where h is the harvesting rate. Show that the phase flow now depends crucially on h, in that there are two qualitatively different flows, depending on whether $h<h_{\mathrm{c}}(a, b)$ or $h>h_{\mathrm{c}}(a, b)$. Find the critical harvesting rate $h_{\mathrm{c}}(a, b)$ and sketch the phase flows for the two different regimes.
(c) In equilibrium, the rate at which bletches are harvested is $R=h N^{*}$, where N^{*} is the equilibrium bletch population. Suppose we start with $h=0$, in which case N^{*} is given by the value of N at the stable fixed point you found in part (a). Now let h be increased very slowly from zero. As h is increased, the equilibrium population changes. Sketch R versus h. What value of h achieves the biggest bletch harvest? What is the corresponding value of $R_{\max }$?

Solution:

(a) Setting the RHS of eqn. 12.26 to zero suggests the rescaling

$$
\begin{equation*}
N=\frac{a}{b} n \quad, \quad t=\frac{b}{a^{2}} \tau . \tag{12.28}
\end{equation*}
$$

This results in

$$
\begin{equation*}
\frac{d n}{d \tau}=n^{2}-n^{3} \tag{12.29}
\end{equation*}
$$

The point $n=0$ is a (nonlinearly) repulsive fixed point, and $n=1$, corresponding to $N=a / b$, is attractive. The flow is shown in fig. 12.11.
By the way, the dynamics can be integrated, using the method of partial fractions, to yield

$$
\begin{equation*}
\frac{1}{n_{0}}-\frac{1}{n}+\ln \left(\frac{n}{n_{0}} \cdot \frac{1-n_{0}}{1-n}\right)=\tau \tag{12.30}
\end{equation*}
$$

(b) Upon rescaling, the harvested bletch dynamics obeys the equation

$$
\begin{equation*}
\frac{d n}{d \tau}=-\nu n+n^{2}-n^{3} \tag{12.31}
\end{equation*}
$$

where $\nu=b h / a^{2}$ is the dimensionless harvesting rate. Setting the RHS to zero yields $n\left(n^{2}-n+\nu\right)=$ 0 , with solutions $n^{*}=0$ and

$$
\begin{equation*}
n_{ \pm}^{*}=\frac{1}{2} \pm \sqrt{\frac{1}{4}-\nu} . \tag{12.32}
\end{equation*}
$$

At $\nu=\frac{1}{4}$ there is a saddle-node bifurcation, and for $\nu>\frac{1}{4}$ the only fixed point (for real n) is at $n^{*}=0$ (stable) - the bletch population is then overharvested. For $\nu>\frac{1}{4}$, there are three solutions: a stable fixed point at $n^{*}=0$, an unstable fixed point at $n^{*}=\frac{1}{2}-\sqrt{\frac{1}{4}-\nu}$, and a stable fixed point at $n^{*}=\frac{1}{2}+\sqrt{\frac{1}{4}-\nu}$. The critical harvesting rate is $\nu_{\mathrm{c}}=\frac{1}{4}$, which means $h_{\mathrm{c}}=a^{2} / 4 b$.

Figure 12.12: Phase flow for the harvested bletch population, $\dot{n}=-\nu n+n^{2}-n^{3}$.
(c) The scaled bletch harvest is given by $r=\nu n_{+}^{*}(\nu)$. Note $R=h N_{+}^{*}=\frac{a^{3}}{b^{2}} r$. The optimal harvest occurs when νn^{*} is a maximum, which means we set

$$
\begin{equation*}
\frac{d}{d \nu}\left\{\frac{1}{2} \nu+\nu \sqrt{\frac{1}{4}-\nu}\right\}=0 \quad \Longrightarrow \quad \nu_{\mathrm{opt}}=\frac{2}{9} \tag{12.33}
\end{equation*}
$$

Thus, $n_{+}^{*}\left(\nu_{\text {opt }}\right)=\frac{2}{3}$ and $r_{\text {opt }}=\frac{4}{27}$, meaning $R=4 a^{3} / 27 b^{2}$. Note that at $\nu=\nu_{\mathrm{c}}=\frac{1}{4}$ that $n_{+}^{*}\left(\nu_{\mathrm{c}}\right)=\frac{1}{2}$, hence $r\left(\nu_{\mathrm{c}}\right)=\frac{1}{8}$, which is smaller than $\left(\nu_{\text {opt }}\right)=\frac{2}{3}$. The harvest $r(\nu)$ discontinuously drops to zero at $\nu=\nu_{\mathrm{c}}$, since for $\nu>\nu_{\mathrm{c}}$ the flow is to the only stable fixed point at $n^{*}=0$.

Figure 12.13: Scaled bletch harvest r versus scaled harvesting rate ν. Optimal harvesting occurs for $\nu_{\mathrm{opt}}=\frac{2}{9}$. The critical harvesting rate is $\nu_{\mathrm{c}}=\frac{1}{4}$, at which point the harvest discontinuously drops to zero.

12.3 Landau Theory of Phase Transitions

Landau's theory of phase transitions is based on an expansion of the free energy of a thermodynamic system in terms of an order parameter, which is nonzero in an ordered phase and zero in a disordered phase. For example, the magnetization M of a ferromagnet in zero external field but at finite temperature typically vanishes for temperatures $T>T_{\mathrm{c}}$, where T_{c} is the critical temperature, also called the Curie temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate sufficiently close to T_{c}, i.e. at temperatures such that the order parameter, if nonzero, is still small.

The simplest example is the quartic free energy,

$$
\begin{equation*}
f(m)=f_{0}+\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4} \tag{12.34}
\end{equation*}
$$

where m is a dimensionless measure of the magnetization density, and where f_{0}, a, and b are all functions of the dimensionless temperature θ, which in a ferromagnet is the ratio $\theta=k_{\mathrm{B}} T / \mathcal{J}$, where $\mathcal{J}=\sum_{j} J_{i j}$ is a sum over the couplings. Let us assume $b>0$, which is necessary if the free energy is to be bounded from below ${ }^{2}$. The equation of state,

$$
\begin{equation*}
\frac{\partial f}{\partial m}=0=a m+b m^{3} \tag{12.35}
\end{equation*}
$$

has three solutions in the complex m plane: (i) $m=0$, (ii) $m=\sqrt{-a / b}$, and (iii) $m=-\sqrt{-a / b}$. The latter two solutions lie along the (physical) real axis if $a<0$. We assume that $a(\theta$ is monotonically increasing, and that there exists a unique temperature θ_{c} where $a\left(\theta_{c}\right)=0$. Minimizing f, we find

$$
\begin{array}{ll}
\theta<\theta_{\mathrm{c}} & : \quad f=f_{0}-\frac{a^{2}}{4 b} \tag{12.36}\\
\theta>\theta_{\mathrm{c}} & : \quad f=f_{0} .
\end{array}
$$

The free energy is continuous at θ_{c} since $a\left(\theta_{\mathrm{c}}\right)=0$. The specific heat, however, is discontinuous across the transition, with

$$
\begin{equation*}
c\left(\theta_{\mathrm{c}}^{+}\right)-c\left(\theta_{\mathrm{c}}^{-}\right)=-\left.\theta_{\mathrm{c}} \frac{\partial^{2}}{\partial \theta^{2}}\right|_{\theta=\theta_{\mathrm{c}}}\left(\frac{a^{2}}{4 b}\right)=-\frac{\theta_{\mathrm{c}}\left[a^{\prime}\left(\theta_{\mathrm{c}}\right)\right]^{2}}{2 b\left(\theta_{\mathrm{c}}\right)} . \tag{12.37}
\end{equation*}
$$

The presence of a magnetic field h breaks the \mathbb{Z}_{2} symmetry of $m \rightarrow-m$. The free energy becomes

$$
\begin{equation*}
f(m)=f_{0}+\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}-h m \tag{12.38}
\end{equation*}
$$

and the mean field equation is

$$
\begin{equation*}
b m^{3}+a m-h=0 . \tag{12.39}
\end{equation*}
$$

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions or one real solution and two complex solutions related by complex conjugation. Clearly we must have $a<0$ in order to have three real roots, since $b m^{3}+a m$ is monotonically increasing otherwise. The

[^27]boundary between these two classes of solution sets occurs when two roots coincide, which means $f^{\prime \prime}(m)=0$ as well as $f^{\prime}(m)=0$. Simultaneously solving these two equations, we find
\[

$$
\begin{equation*}
h^{*}(a)= \pm \frac{2}{3^{3 / 2}} \frac{(-a)^{3 / 2}}{b^{1 / 2}}, \tag{12.40}
\end{equation*}
$$

\]

or, equivalently,

$$
\begin{equation*}
a^{*}(h)=-\frac{3}{2^{2 / 3}} b^{1 / 3}|h|^{2 / 3} . \tag{12.41}
\end{equation*}
$$

If, for fixed h, we have $a<a^{*}(h)$, then there will be three real solutions to the mean field equation $f^{\prime}(m)=0$, one of which is a global minimum (the one for which $m \cdot h>0$). For $a>a^{*}(h)$ there is only a single global minimum, at which m also has the same sign as h. If we solve the mean field equation perturbatively in h / a, we find

$$
\begin{align*}
m(a, h) & =\frac{h}{a}-\frac{b h^{3}}{a^{4}}+\mathcal{O}\left(h^{5}\right) & & (a>0) \\
& =\frac{h}{2|a|}-\frac{3 b^{1 / 2} h^{2}}{8|a|^{5 / 2}}+\mathcal{O}\left(h^{3}\right) & & (a<0) \tag{12.42}
\end{align*}
$$

12.3.1 Landau coefficients from mean field theory

A simple variational density matrix for the Ising ferromagnet yields the dimensionless free energy density

$$
\begin{equation*}
f(m, h, \theta)=-\frac{1}{2} m^{2}-h m+\theta\left\{\left(\frac{1+m}{2}\right) \ln \left(\frac{1+m}{2}\right)+\left(\frac{1-m}{2}\right) \ln \left(\frac{1-m}{2}\right)\right\} \tag{12.43}
\end{equation*}
$$

When m is small, it is appropriate to expand $f(m, h, \theta)$, obtaining

$$
\begin{equation*}
f(m, h, \theta)=-\theta \ln 2-h m+\frac{1}{2}(\theta-1) m^{2}+\frac{\theta}{12} m^{4}+\frac{\theta}{30} m^{6}+\frac{\theta}{56} m^{8}+\ldots . \tag{12.44}
\end{equation*}
$$

Thus, we identify

$$
\begin{equation*}
a(\theta)=\theta-1 \quad, \quad b(\theta)=\frac{1}{3} \theta \tag{12.45}
\end{equation*}
$$

We see that $a(\theta)=0$ at a critical temperature $\theta_{\mathrm{c}}=1$.
The free energy of eqn. 12.43 behaves qualitatively just like it does for the simple Landau expansion, where one stops at order m^{4}. Consider without loss of generality the case $h>0$. The minimum of the free energy $f(m, h, \theta)$ then lies at $m>0$ for any θ. At low temperatures, the double well structure we found in the $h=0$ case is tilted so that the right well lies lower in energy than the left well. This is depicted in fig. 12.15. As the temperature is raised, the local minimum at $m<0$ vanishes, annihilating with the local maximum in a saddle-node bifurcation. To find where this happens, one sets $\frac{\partial f}{\partial m}=0$ and $\frac{\partial^{2} f}{\partial m^{2}}=0$ simultaneously, resulting in

$$
\begin{equation*}
h^{*}(\theta)=\sqrt{1-\theta}-\frac{\theta}{2} \ln \left(\frac{1+\sqrt{1-\theta}}{1-\sqrt{1-\theta}}\right) \tag{12.46}
\end{equation*}
$$

Figure 12.14: Phase diagram for the quartic mean field theory $f=f_{0}+\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}-h m$, with $b>0$. There is a first order line at $h=0$ extending from $a=-\infty$ and terminating in a critical point at $a=0$. For $|h|<h^{*}(a)$ (dashed red line) there are three solutions to the mean field equation, corresponding to one global minimum, one local minimum, and one local maximum. Insets show behavior of the free energy $f(m)$.

The solutions lie at $h= \pm h^{*}(\theta)$. For $\theta<\theta_{\mathrm{c}}=1$ and $h \in\left[-h^{*}(\theta),+h^{*}(\theta)\right]$, there are three solutions to the mean field equation. Equivalently we could in principle invert the above expression to obtain $\theta^{*}(h)$. For $\theta>\theta^{*}(h)$, there is only a single global minimum in the free energy $f(m)$ and there is no local minimum. Note $\theta^{*}(h=0)=1$.

12.3.2 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the dissipative dynamics of a magnet by writing the phenomenological equation

$$
\begin{equation*}
\frac{d m}{d t}=-\Gamma \frac{\partial f}{\partial m} \tag{12.47}
\end{equation*}
$$

This drives the free energy f to smaller and smaller values:

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial m} \frac{d m}{d t}=-\Gamma\left(\frac{\partial f}{\partial m}\right)^{2} \leq 0 \tag{12.48}
\end{equation*}
$$

Figure 12.15: Mean field free energy $f(m)$ at $h=0.1$. Temperatures shown: $\theta=1.2$ (red), $\theta=1.0$ (dark green), and $\theta=0.7$ (blue).

Clearly the fixed point of these dynamics, where $\dot{m}=0$, is a solution to the mean field equation $\frac{\partial f}{\partial m}=0$. At the solution to the mean field equation, one has

$$
\begin{equation*}
\frac{\partial f}{\partial m}=0 \quad \Rightarrow \quad m=\tanh \left(\frac{m+h}{\theta}\right) \tag{12.49}
\end{equation*}
$$

The phase flow for the equation $\dot{m}=-\Gamma f^{\prime}(m)$ is shown in fig. 12.16. As we have seen, for any value of h there is a temperature θ^{*} below which the free energy $f(m)$ has two local minima and one local maximum. When $h=0$ the minima are degenerate, but at finite h one of the minima is a global minimum. Thus, for $\theta<\theta^{*}(h)$ there are three solutions to the mean field equations. In the language of dynamical systems, under the dynamics of eqn. 12.47, minima of $f(m)$ correspond to attractive fixed points and maxima to repulsive fixed points. If $h>0$, the rightmost of these fixed points corresponds to the global minimum of the free energy. As θ is increased, this fixed point evolves smoothly. At $\theta=\theta^{*}$, the (metastable) local minimum and the local maximum coalesce and annihilate in a saddle-note bifurcation. However at $h=0$ all three fixed points coalesce at $\theta=\theta_{c}$ and the bifurcation is a supercritical pitchfork. As a function of t at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is a deformed supercritical pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain $h(\theta, m)$. One readily finds

$$
\begin{equation*}
h(\theta, m)=\frac{\theta}{2} \ln \left(\frac{1+m}{1-m}\right)-m . \tag{12.50}
\end{equation*}
$$

As we see in the bottom panel of fig. 12.17, $m(h)$ becomes multivalued for field values $h \in[-$ $\left.h^{*}(\theta),+h^{*}(\theta)\right]$, where $h^{*}(\theta)$ is given in eqn. 12.46. Now imagine that $\theta<\theta_{\mathrm{c}}$ and we slowly ramp

Figure 12.16: Dissipative magnetization dynamics $\dot{m}=-f^{\prime}(m)$. Bottom panel shows $h^{*}(\theta)$ from eqn. 12.46. For (θ, h) within the blue shaded region, the free energy $f(m)$ has a global minimum plus a local minimum and a local maximum. Otherwise $f(m)$ has only a single global maximum. Top panels show an imperfect bifurcation in the magnetization dynamics at $h=0.0215$, for which $\theta^{*}=0.90$ Temperatures shown: $\theta=0.80$ (blue), $\theta=\theta^{*}(h)=0.90$ (green), and $\theta=1.2$. The rightmost stable fixed point corresponds to the global minimum of the free energy. The bottom of the middle two upper panels shows $h=0$, where both of the attractive fixed points and the repulsive fixed point coalesce into a single attractive fixed point (supercritical pitchfork bifurcation).
the field h from a large negative value to a large positive value, and then slowly back down to its original value. On the time scale of the magnetization dynamics, we can regard $h(t)$ as a constant. Thus, $m(t)$ will flow to the nearest stable fixed point. Initially the system starts with $m=-1$ and h large and negative, and there is only one fixed point, at $m^{*} \approx-1$. As h slowly increases, the fixed point value m^{*} also slowly increases. As h exceeds $-h^{*}(\theta)$, a saddle-node bifurcation occurs, and two new fixed points are created at positive m, one stable and one unstable. The global minimum of the free energy still lies at the fixed point with $m^{*}<0$. However, when h crosses $h=0$, the global minimum of the free energy lies at the most positive fixed point m^{*}. The dynamics, however, keep the system stuck in what is a metastable phase. This persists until $h=+h^{*}(\theta)$, at which point another saddle-note bifurcation occurs, and the attractive fixed point at $m^{*}<0$ annihilates with the repulsive fixed point. The dynamics then act quickly to drive m to the only remaining fixed point. This process is depicted in the top panel of fig.

Figure 12.17: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at $\theta=0.40$. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h. Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of h. Bottom panel : solution set for $m(\theta, h)$ as a function of h at temperatures $\theta=0.40$ (blue), $\theta=\theta_{c}=1.0$ (dark green), and $t=1.25$ (red).
12.17. As one can see from the figure, the the system follows a stable fixed point until the fixed point disappears, even though that fixed point may not always correspond to a global minimum of the free energy. The resulting $m(h)$ curve is then not reversible as a function of time, and it possesses a characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis derives from the Greek $v \sigma \tau \varepsilon \rho \eta \sigma \iota \varsigma$, which means 'lagging behind'. Systems which are hysteretic exhibit a history-dependence to their status, which is not uniquely determined by external conditions. Hysteresis may be exhibited with respect to changes in applied magnetic field, changes in temperature, or changes in other externally determined parameters.

12.3.3 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,

$$
\begin{equation*}
f=f_{0}+\frac{1}{2} a m^{2}-\frac{1}{3} y m^{3}+\frac{1}{4} b m^{4}, \tag{12.51}
\end{equation*}
$$

with $b>0$ for stability. Without loss of generality, we may assume $y>0$ (else send $m \rightarrow-m$). Note that we no longer have $m \rightarrow-m$ (i.e. \mathbb{Z}_{2}) symmetry. The cubic term favors positive m. What is the phase diagram in the (a, y) plane?
Extremizing the free energy with respect to m, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial m}=0=a m-y m^{2}+b m^{3} \tag{12.52}
\end{equation*}
$$

This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The three solutions are $m=0$ and

$$
\begin{equation*}
m=m_{ \pm} \equiv \frac{y}{2 b} \pm \sqrt{\left(\frac{y}{2 b}\right)^{2}-\frac{a}{b}} \tag{12.53}
\end{equation*}
$$

We now see that for $y^{2}<4 a b$ there is only one real solution, at $m=0$, while for $y^{2}>4 a b$ there are three real solutions. Which solution has lowest free energy? To find out, we compare the energy $f(0)$ with $f\left(m_{+}\right)^{3}$. Thus, we set

$$
\begin{equation*}
f(m)=f(0) \quad \Longrightarrow \quad \frac{1}{2} a m^{2}-\frac{1}{3} y m^{3}+\frac{1}{4} b m^{4}=0 \tag{12.54}
\end{equation*}
$$

and we now have two quadratic equations to solve simultaneously:

$$
\begin{align*}
& 0=a-y m+b m^{2} \\
& 0=\frac{1}{2} a-\frac{1}{3} y m+\frac{1}{4} b m^{2}=0 . \tag{12.55}
\end{align*}
$$

Eliminating the quadratic term gives $m=3 a / y$. Finally, substituting $m=m_{+}$gives us a relation between a, b, and y :

$$
\begin{equation*}
y^{2}=\frac{9}{2} a b \tag{12.56}
\end{equation*}
$$

Thus, we have the following:

$$
\begin{aligned}
& a>\frac{y^{2}}{4 b} \quad: \quad 1 \text { real root } m=0 \\
& \frac{y^{2}}{4 b}>a>\frac{2 y^{2}}{9 b} \quad: \quad 3 \text { real roots; minimum at } m=0 \\
& \frac{2 y^{2}}{9 b}>a \quad: \quad 3 \text { real roots; minimum at } m=\frac{y}{2 b}+\sqrt{\left(\frac{y}{2 b}\right)^{2}-\frac{a}{b}}
\end{aligned}
$$

The solution $m=0$ lies at a local minimum of the free energy for $a>0$ and at a local maximum for $a<0$. Over the range $\frac{y^{2}}{4 b}>a>\frac{2 y^{2}}{9 b}$, then, there is a global minimum at $m=0$, a local minimum at $m=m_{+}$, and a local maximum at $m=m_{-}$, with $m_{+}>m_{-}>0$. For $\frac{2 y^{2}}{9 b}>a>0$, there is a local minimum at $a=0$, a global minimum at $m=m_{+}$, and a local maximum at $m=m_{-}$, again with $m_{+}>m_{-}>0$. For $a<0$, there is a local maximum at $m=0$, a local minimum at $m=m_{-}$, and a global minimum at $m=m_{+}$, with $m_{+}>0>m_{-}$. See fig. 12.18.

[^28]

Figure 12.18: Behavior of the quartic free energy $f(m)=\frac{1}{2} a m^{2}-\frac{1}{3} y m^{3}+\frac{1}{4} b m^{4}$. A: $y^{2}<4 a b$; B: $4 a b<y^{2}<\frac{9}{2} a b$; C and D: $y^{2}>\frac{9}{2} a b$. The thick black line denotes a line of first order transitions, where the order parameter is discontinuous across the transition.

12.3.4 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

$$
\begin{equation*}
\frac{d m}{d t}=-\Gamma \frac{\partial f}{\partial m} \tag{12.57}
\end{equation*}
$$

where Γ is a phenomenological kinetic coefficient. Assuming $y>0$ and $b>0$, it is convenient to adimensionalize by writing

$$
\begin{equation*}
m \equiv \frac{y}{b} \cdot u \quad, \quad a \equiv \frac{y^{2}}{b} \cdot \bar{r} \quad, \quad t \equiv \frac{b}{\Gamma y^{2}} \cdot s . \tag{12.58}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial s}=-\frac{\partial \varphi}{\partial u} \tag{12.59}
\end{equation*}
$$

where the dimensionless free energy function is

$$
\begin{equation*}
\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{3} u^{3}+\frac{1}{4} u^{4} . \tag{12.60}
\end{equation*}
$$

We see that there is a single control parameter, \bar{r}. The fixed points of the dynamics are then the stationary points of $\varphi(u)$, where $\varphi^{\prime}(u)=0$, with

$$
\begin{equation*}
\varphi^{\prime}(u)=u\left(\bar{r}-u+u^{2}\right) \tag{12.61}
\end{equation*}
$$

Figure 12.19: Fixed points for $\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{3} u^{3}+\frac{1}{4} u^{4}$ and flow under the dynamics $\dot{u}=-\varphi^{\prime}(u)$. Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows show behavior under slowly increasing control parameter \bar{r} and dark blue arrows show behavior under slowly decreasing \bar{r}. For $u>0$ there is a hysteresis loop. The thick black curve shows the equilibrium thermodynamic value of $u(\bar{r})$, i.e. that value which minimizes the free energy $\varphi(u)$. There is a first order phase transition at $\bar{r}=\frac{2}{9}$, where the thermodynamic value of u jumps from $u=0$ to $u=\frac{2}{3}$.

The solutions to $\varphi^{\prime}(u)=0$ are then given by

$$
\begin{equation*}
u^{*}=0 \quad, \quad u^{*}=\frac{1}{2} \pm \sqrt{\frac{1}{4}-\bar{r}} . \tag{12.62}
\end{equation*}
$$

For $r>\frac{1}{4}$ there is one fixed point at $u=0$, which is attractive under the dynamics $\dot{u}=-\varphi^{\prime}(u)$ since $\varphi^{\prime \prime}(0)=\bar{r}$. At $\bar{r}=\frac{1}{4}$ there occurs a saddle-node bifurcation and a pair of fixed points is generated, one stable and one unstable. As we see from fig. 12.14, the interior fixed point is always unstable and the two exterior fixed points are always stable. At $r=0$ there is a transcritical bifurcation where two fixed points of opposite stability collide and bounce off one another (metaphorically speaking).
At the saddle-node bifurcation, $\bar{r}=\frac{1}{4}$ and $u=\frac{1}{2}$, and we find $\varphi\left(u=\frac{1}{2} ; \bar{r}=\frac{1}{4}\right)=\frac{1}{192}$, which is positive. Thus, the thermodynamic state of the system remains at $u=0$ until the value of $\varphi\left(u_{+}\right)$crosses zero. This occurs when $\varphi(u)=0$ and $\varphi^{\prime}(u)=0$, the simultaneous solution of which yields $\bar{r}=\frac{2}{9}$ and $u=\frac{2}{3}$.

Suppose we slowly ramp the control parameter \bar{r} up and down as a function of the dimensionless time s. Under the dynamics of eqn. $12.59, u(s)$ flows to the first stable fixed point encountered - this is always the case for a dynamical system with a one-dimensional phase space. Then as \bar{r} is further varied, u follows the position of whatever locally stable fixed point it initially encountered. Thus, $u(\bar{r}(s))$ evolves smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 12.19. The

Figure 12.20: Behavior of the sextic free energy $f(m)=\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}+\frac{1}{6} \mathrm{~cm}^{6}$. A: $a>0$ and $b>0$; B: $a<0$ and $b>0$; C: $a<0$ and $b<0$; D: $a>0$ and $b<-\frac{4}{\sqrt{3}} \sqrt{a c}$; E: $a>0$ and $-\frac{4}{\sqrt{3}} \sqrt{a c}<b<-2 \sqrt{a c}$; F: $a>0$ and $-2 \sqrt{a c}<b<0$. The thick dashed line is a line of second order transitions, which meets the thick solid line of first order transitions at the tricritical point, $(a, b)=(0,0)$.
equilibrium thermodynamic value for $u(\bar{r})$ is discontinuous; there is a first order phase transition at $\bar{r}=\frac{2}{9}$, as we've already seen. As r is increased, $u(\bar{r})$ follows a trajectory indicated by the magenta arrows. For an negative initial value of u, the evolution as a function of \bar{r} will be reversible. However, if $u(0)$ is initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive value of $\bar{r}, u(s)$ quickly evolves to $u=0^{+}$, which means a positive infinitesimal value. Then as r is decreased, the system remains at $u=0^{+}$even through the first order transition, because $u=0$ is an attractive fixed point. However, once r begins to go negative, the $u=0$ fixed point becomes repulsive, and $u(s)$ quickly flows to the stable fixed point $u_{+}=\frac{1}{2}+\sqrt{\frac{1}{4}-\bar{r}}$. Further decreasing r, the system remains on this branch. If \bar{r} is later increased, then $u(s)$ remains on the upper branch past $r=0$, until the u_{+}fixed point annihilates with the unstable fixed point at $u_{-}=\frac{1}{2}-\sqrt{\frac{1}{4}-\bar{r}}$, at which time $u(s)$ quickly flows down to $u=0^{+}$again.

12.3.5 Sixth order Landau theory : tricritical point

Finally, consider a model with \mathbb{Z}_{2} symmetry, with the Landau free energy

$$
\begin{equation*}
f=f_{0}+\frac{1}{2} a m^{2}+\frac{1}{4} b m^{4}+\frac{1}{6} c m^{6}, \tag{12.63}
\end{equation*}
$$

with $c>0$ for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with respect to m, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial m}=0=m\left(a+b m^{2}+c m^{4}\right) \tag{12.64}
\end{equation*}
$$

which is a quintic with five solutions over the complex m plane. One solution is obviously $m=0$. The other four are

$$
\begin{equation*}
m= \pm \sqrt{-\frac{b}{2 c} \pm \sqrt{\left(\frac{b}{2 c}\right)^{2}-\frac{a}{c}}} \tag{12.65}
\end{equation*}
$$

For each \pm symbol in the above equation, there are two options, hence four roots in all.
If $a>0$ and $b>0$, then four of the roots are imaginary and there is a unique minimum at $m=0$.
For $a<0$, there are only three solutions to $f^{\prime}(m)=0$ for real m, since the - choice for the \pm sign under the radical leads to imaginary roots. One of the solutions is $m=0$. The other two are

$$
\begin{equation*}
m= \pm \sqrt{-\frac{b}{2 c}+\sqrt{\left(\frac{b}{2 c}\right)^{2}-\frac{a}{c}}} \tag{12.66}
\end{equation*}
$$

The most interesting situation is $a>0$ and $b<0$. If $a>0$ and $b<-2 \sqrt{a c}$, all five roots are real. There must be three minima, separated by two local maxima. Clearly if m^{*} is a solution, then so is $-m^{*}$. Thus, the only question is whether the outer minima are of lower energy than the minimum at $m=0$. We assess this by demanding $f\left(m^{*}\right)=f(0)$, where m^{*} is the position of the largest root (i.e. the rightmost minimum). This gives a second quadratic equation,

$$
\begin{equation*}
0=\frac{1}{2} a+\frac{1}{4} b m^{2}+\frac{1}{6} c m^{4} \tag{12.67}
\end{equation*}
$$

which together with equation 12.64 gives

$$
\begin{equation*}
b=-\frac{4}{\sqrt{3}} \sqrt{a c} . \tag{12.68}
\end{equation*}
$$

Thus, we have the following, for fixed $a>0$:

$$
\begin{aligned}
b>-2 \sqrt{a c} & : 1 \text { real root } m=0 \\
-2 \sqrt{a c}>b>-\frac{4}{\sqrt{3}} \sqrt{a c} & : 5 \text { real roots; minimum at } m=0 \\
-\frac{4}{\sqrt{3}} \sqrt{a c}>b & : \quad 5 \text { real roots; minima at } m= \pm \sqrt{-\frac{b}{2 c}+\sqrt{\left(\frac{b}{2 c}\right)^{2}-\frac{a}{c}}}
\end{aligned}
$$

The point $(a, b)=(0,0)$, which lies at the confluence of a first order line and a second order line, is known as a tricritical point.

Figure 12.21: Free energy $\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{4} u^{4}+\frac{1}{6} u^{6}$ for several different values of the control parameter \bar{r}.

12.3.6 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics $\dot{m}=-\Gamma f^{\prime}(m)$. We adimensionalize by writing

$$
\begin{equation*}
m \equiv \sqrt{\frac{|b|}{c}} \cdot u \quad, \quad a \equiv \frac{b^{2}}{c} \cdot \bar{r} \quad, \quad t \equiv \frac{c}{\Gamma b^{2}} \cdot s \tag{12.69}
\end{equation*}
$$

Then we obtain once again the dimensionless equation

$$
\begin{equation*}
\frac{\partial u}{\partial s}=-\frac{\partial \varphi}{\partial u} \tag{12.70}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(u)=\frac{1}{2} \bar{r} u^{2} \pm \frac{1}{4} u^{4}+\frac{1}{6} u^{6} . \tag{12.71}
\end{equation*}
$$

In the above equation, the coefficient of the quartic term is positive if $b>0$ and negative if $b<0$. That is, the coefficient is $\operatorname{sgn}(b)$. When $b>0$ we can ignore the sextic term for sufficiently small u, and we recover the quartic free energy studied earlier. There is then a second order transition at $r=0$. .

New and interesting behavior occurs for $b>0$. The fixed points of the dynamics are obtained by setting $\varphi^{\prime}(u)=0$. We have

$$
\begin{align*}
\varphi(u) & =\frac{1}{2} \bar{r} u^{2}-\frac{1}{4} u^{4}+\frac{1}{6} u^{6} \\
\varphi^{\prime}(u) & =u\left(\bar{r}-u^{2}+u^{4}\right) . \tag{12.72}
\end{align*}
$$

Thus, the equation $\varphi^{\prime}(u)=0$ factorizes into a linear factor u and a quartic factor $u^{4}-u^{2}+\bar{r}$ which is
quadratic in u^{2}. Thus, we can easily obtain the roots:

$$
\begin{align*}
& \bar{r}<0: \quad u^{*}=0 \quad, u^{*}= \pm \sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}-\bar{r}}} \\
& 0<\bar{r}<\frac{1}{4} \quad: \quad u^{*}=0 \quad, u^{*}= \pm \sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}-\bar{r}}} \quad, u^{*}= \pm \sqrt{\frac{1}{2}-\sqrt{\frac{1}{4}-\bar{r}}} \tag{12.73}\\
& \bar{r}>\frac{1}{4} \quad: \quad u^{*}=0 \quad .
\end{align*}
$$

In fig. 12.22, we plot the fixed points and the hysteresis loops for this system. At $\bar{r}=\frac{1}{4}$, there are two symmetrically located saddle-node bifurcations at $u= \pm \frac{1}{\sqrt{2}}$. We find $\varphi\left(u= \pm \frac{1}{\sqrt{2}}, \bar{r}=\frac{1}{4}\right)=\frac{1}{48}$, which is positive, indicating that the stable fixed point $u^{*}=0$ remains the thermodynamic minimum for the free energy $\varphi(u)$ as \bar{r} is decreased through $\bar{r}=\frac{1}{4}$. Setting $\varphi(u)=0$ and $\varphi^{\prime}(u)=0$ simultaneously, we obtain $\bar{r}=\frac{3}{16}$ and $u= \pm \frac{\sqrt{3}}{2}$. The thermodynamic value for u therefore jumps discontinuously from $u=0$ to $u= \pm \frac{\sqrt{3}}{2}$ (either branch) at $\bar{r}=\frac{3}{16}$; this is a first order transition.
Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the figure, where the arrows show the evolution of $u(s)$ for very slowly varying $\bar{r}(s)$. When the control parameter \bar{r} is large and positive, the flow is toward the sole fixed point at $u^{*}=0$. At $\bar{r}=\frac{1}{4}$, two simultaneous saddle-node bifurcations take place at $u^{*}= \pm \frac{1}{\sqrt{2}}$; the outer branch is stable and the inner branch unstable in both cases. At $r=0$ there is a subcritical pitchfork bifurcation, and the fixed point at $u^{*}=0$ becomes unstable.

Suppose one starts off with $\bar{r} \gg \frac{1}{4}$ with some value $u>0$. The flow $\dot{u}=-\varphi^{\prime}(u)$ then rapidly results in $u \rightarrow 0^{+}$. This is the 'high temperature phase' in which there is no magnetization. Now let r increase slowly, using s as the dimensionless time variable. The scaled magnetization $u(s)=u^{*}(\bar{r}(s))$ will remain pinned at the fixed point $u^{*}=0^{+}$. As \bar{r} passes through $\bar{r}=\frac{1}{4}$, two new stable values of u^{*} appear, but our system remains at $u=0^{+}$, since $u^{*}=0$ is a stable fixed point. But after the subcritical pitchfork, $u^{*}=0$ becomes unstable. The magnetization $u(s)$ then flows rapidly to the stable fixed point at $u^{*}=\frac{1}{\sqrt{2}}$, and follows the curve $u^{*}(\bar{r})=\left(\frac{1}{2}+\left(\frac{1}{4}-\bar{r}\right)^{1 / 2}\right)^{1 / 2}$ for all $r<0$.
Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable fixed point $u^{*}(\bar{r})=\left(\frac{1}{2}+\left(\frac{1}{4}-\bar{r}\right)^{1 / 2}\right)^{1 / 2}$ past $\bar{r}=0$, beyond the first order phase transition point at $\bar{r}=\frac{3}{16}$, and all the way up to $\bar{r}=\frac{1}{4}$, at which point this fixed point is annihilated at a saddle-node bifurcation. The flow then rapidly takes $u \rightarrow u^{*}=0^{+}$, where it remains as r continues to be increased further.
Within the region $\bar{r} \in\left[0, \frac{1}{4}\right]$ of control parameter space, the dynamics are said to be irreversible and the behavior of $u(s)$ is said to be hysteretic.

Figure 12.22: Fixed points $\varphi^{\prime}\left(u^{*}\right)=0$ for the sextic potential $\varphi(u)=\frac{1}{2} \bar{r} u^{2}-\frac{1}{4} u^{4}+\frac{1}{6} u^{6}$, and corresponding dynamical flow (arrows) under $\dot{u}=-\varphi^{\prime}(u)$. Solid curves show stable fixed points and dashed curves show unstable fixed points. The thick solid black and solid grey curves indicate the equilibrium thermodynamic values for u; note the overall $u \rightarrow-u$ symmetry. Within the region $\bar{r} \in\left[0, \frac{1}{4}\right]$ the dynamics are irreversible and the system exhibits the phenomenon of hysteresis. There is a first order phase transition at $\bar{r}=\frac{3}{16}$.

Chapter 13

Two-Dimensional Phase Flows

We've seen how, for one-dimensional dynamical systems $\dot{u}=f(u)$, the possibilities in terms of the behavior of the system are in fact quite limited. Starting from an arbitrary initial condition $u(0)$, the phase flow is monotonically toward the first stable fixed point encountered. (That point may lie at infinity.) No oscillations are possible ${ }^{1}$. For $N=2$ phase flows, a richer set of possibilities arises, as we shall now see.

13.1 Harmonic Oscillator and Pendulum

13.1.1 Simple harmonic oscillator

A one-dimensional harmonic oscillator obeys the equation of motion,

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-k x \tag{13.1}
\end{equation*}
$$

where m is the mass and k the force constant (of a spring). If we define $v=\dot{x}$, this may be written as the $N=2$ system,

$$
\frac{d}{d t}\binom{x}{v}=\left(\begin{array}{cc}
0 & 1 \tag{13.2}\\
-\Omega^{2} & 0
\end{array}\right)\binom{x}{v}=\binom{v}{-\Omega^{2} x}
$$

where $\Omega=\sqrt{k / m}$ has the dimensions of frequency (inverse time). The solution is well known:

$$
\begin{align*}
& x(t)=x_{0} \cos (\Omega t)+\frac{v_{0}}{\Omega} \sin (\Omega t) \tag{13.3}\\
& v(t)=v_{0} \cos (\Omega t)-\Omega x_{0} \sin (\Omega t) .
\end{align*}
$$

The phase curves are ellipses:

$$
\begin{equation*}
\Omega x^{2}(t)+\Omega^{-1} v^{2}(t)=C, \tag{13.4}
\end{equation*}
$$

[^29]

Figure 13.1: Phase curves for the harmonic oscillator.
where the constant $C=\Omega x_{0}^{2}+\Omega^{-1} v_{0}^{2}$. A sketch of the phase curves and of the phase flow is shown in fig. 13.1. Note that the x and v axes have different dimensions. Note also that the origin is a fixed point, however, unlike the $N=1$ systems studied in the first lecture, here the phase flow can avoid the fixed points, and oscillations can occur.

Incidentally, eqn. 13.2 is linear, and may be solved by the following method. Write the equation as $\dot{\varphi}=M \varphi$, with

$$
\varphi=\binom{x}{\dot{x}} \quad \text { and } \quad M=\left(\begin{array}{cc}
0 & 1 \tag{13.5}\\
-\Omega^{2} & 0
\end{array}\right)
$$

The formal solution to $\dot{\varphi}=M \varphi$ is

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=e^{M t} \boldsymbol{\varphi}(0) \tag{13.6}
\end{equation*}
$$

What do we mean by the exponential of a matrix? We mean its Taylor series expansion:

$$
\begin{equation*}
e^{M t}=\mathbb{I}+M t+\frac{1}{2!} M^{2} t^{2}+\frac{1}{3!} M^{3} t^{3}+\ldots \tag{13.7}
\end{equation*}
$$

Note that

$$
M^{2}=\left(\begin{array}{cc}
0 & 1 \tag{13.8}\\
-\Omega^{2} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-\Omega^{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
-\Omega^{2} & 0 \\
0 & -\Omega^{2}
\end{array}\right)=-\Omega^{2} \mathbb{I},
$$

hence

$$
\begin{equation*}
M^{2 k}=\left(-\Omega^{2}\right)^{k} \mathbb{I} \quad, \quad M^{2 k+1}=\left(-\Omega^{2}\right)^{k} M \tag{13.9}
\end{equation*}
$$

Thus,

$$
\begin{align*}
e^{M t} & =\sum_{k=0}^{\infty} \frac{1}{(2 k)!}\left(-\Omega^{2} t^{2}\right)^{k} \cdot \mathbb{I}+\sum_{k=0}^{\infty} \frac{1}{(2 k+1)!}\left(-\Omega^{2} t^{2}\right)^{k} \cdot M t \tag{13.10}\\
& =\cos (\Omega t) \cdot \mathbb{I}+\Omega^{-1} \sin (\Omega t) \cdot M=\left(\begin{array}{cc}
\cos (\Omega t) & \Omega^{-1} \sin (\Omega t) \\
-\Omega \sin (\Omega t) & \cos (\Omega t)
\end{array}\right)
\end{align*}
$$

Plugging this into eqn. 13.6, we obtain the desired solution.

For the damped harmonic oscillator, we have

$$
\ddot{x}+2 \beta \dot{x}+\Omega^{2} x=0 \quad \Longrightarrow \quad M=\left(\begin{array}{cc}
0 & 1 \tag{13.11}\\
-\Omega^{2} & -2 \beta
\end{array}\right) .
$$

The phase curves then spiral inward to the fixed point at $(0,0)$.

13.1.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of length ℓ.

$$
\begin{equation*}
m \ell^{2} \ddot{\theta}=-m g \ell \sin \theta \tag{13.12}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\frac{d}{d t}\binom{\theta}{\omega}=\binom{\omega}{-\Omega^{2} \sin \theta} \tag{13.13}
\end{equation*}
$$

where $\omega=\dot{\theta}$ is the angular velocity, and where $\Omega=\sqrt{g / \ell}$ is the natural frequency of small oscillations.
The phase curves for the pendulum are shown in fig. 13.2. The small oscillations of the pendulum are essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation, $\sin \theta \approx \theta$, and the pendulum equations of motion are exactly those of the harmonic oscillator. These oscillations are called librations. They involve a back-and-forth motion in real space, and the phase space motion is contractable to a point, in the topological sense. However, if the initial angular velocity is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In this case, the pendulum bob keeps swinging around in the same direction, because, as we'll see in a later lecture, the total energy is sufficiently large. The phase curve which separates these two topologically distinct motions is called a separatrix.

13.2 General $N=2$ Systems

The general form to be studied is

$$
\begin{equation*}
\frac{d}{d t}\binom{x}{y}=\binom{V_{x}(x, y)}{V_{y}(x, y)} \tag{13.14}
\end{equation*}
$$

Special cases include autonomous second order ODEs, viz.

$$
\begin{equation*}
\ddot{x}=f(x, \dot{x}) \quad \Longrightarrow \quad \frac{d}{d t}\binom{x}{v}=\binom{v}{f(x, v)}, \tag{13.15}
\end{equation*}
$$

of the type which occur in one-dimensional mechanics.

Figure 13.2: Phase curves for the simple pendulum. The separatrix divides phase space into regions of vibration and libration.

13.2.1 The damped driven pendulum

Another example is that of the damped and driven harmonic oscillator,

$$
\begin{equation*}
\frac{d^{2} \phi}{d s^{2}}+\gamma \frac{d \phi}{d s}+\sin \phi=j \tag{13.16}
\end{equation*}
$$

This is equivalent to a model of a resistively and capacitively shunted Josephson junction, depicted in fig. 13.3. If ϕ is the superconducting phase difference across the junction, the current through the junction is given by $I_{J}=I_{\mathrm{c}} \sin \phi$, where I_{c} is the critical current. The current carried by the resistor is $I_{R}=V / R$ from Ohm's law, and the current from the capacitor is $I_{C}=\dot{Q}$. Finally, the Josephson relation relates the voltage V across the junction to the superconducting phase difference $\phi: V=(\hbar / 2 e) \dot{\phi}$. Summing up the parallel currents, we have that the total current I is given by

$$
\begin{equation*}
I=\frac{\hbar C}{2 e} \ddot{\phi}+\frac{\hbar}{2 e R} \dot{\phi}+I_{\mathrm{c}} \sin \phi \tag{13.17}
\end{equation*}
$$

which, again, is equivalent to a damped, driven pendulum.
This system also has a mechanical analog. Define the 'potential'

$$
\begin{equation*}
U(\phi)=-I_{\mathrm{c}} \cos \phi-I \phi . \tag{13.18}
\end{equation*}
$$

The equation of motion is then

$$
\begin{equation*}
\frac{\hbar C}{2 e} \ddot{\phi}+\frac{\hbar}{2 e R} \dot{\phi}=-\frac{\partial U}{\partial \phi} . \tag{13.19}
\end{equation*}
$$

Figure 13.3: . The resistively and capacitively shunted Josephson junction. The Josephson junction is the X element at the bottom of the figure.

Thus, the combination $\hbar C / 2 e$ plays the role of the inertial term (mass, or moment of inertia), while the combination $\hbar / 2 e R$ plays the role of a damping coefficient. The potential $U(\phi)$ is known as the tilted washboard potential, for obvious reasons. (Though many of you have perhaps never seen a washboard.)

The model is adimensionalized by defining the Josephson plasma frequency ω_{p} and the $R C$ time constant τ :

$$
\begin{equation*}
\omega_{\mathrm{p}} \equiv \sqrt{\frac{2 e I_{\mathrm{c}}}{\hbar C}} \quad, \quad \tau \equiv R C \tag{13.20}
\end{equation*}
$$

The dimensionless combination $\omega_{\mathrm{p}} \tau$ then enters the adimensionalized equation as the sole control parameter:

$$
\begin{equation*}
\frac{I}{I_{\mathrm{c}}}=\frac{d^{2} \phi}{d s^{2}}+\frac{1}{\omega_{\mathrm{p}} \tau} \frac{d \phi}{d s}+\sin \phi \tag{13.21}
\end{equation*}
$$

where $s=\omega_{\mathrm{p}} t$. In the Josephson junction literature, the quantity $\beta \equiv 2 e I_{\mathrm{c}} R^{2} C / \hbar=\left(\omega_{\mathrm{p}} \tau\right)^{2}$, known as the McCumber-Stewart parameter, is a dimensionless measure of the damping (large β means small damping). In terms of eqn. 13.16, we have $\gamma=\left(\omega_{\mathrm{p}} \tau\right)^{-1}$ and $j=I / I_{\mathrm{c}}$.

We can write the second order ODE of eqn. 13.16 as two coupled first order ODEs:

$$
\begin{equation*}
\frac{d}{d t}\binom{\phi}{\omega}=\binom{\omega}{j-\sin \phi-\gamma \omega} \tag{13.22}
\end{equation*}
$$

where $\omega=\dot{\phi}$. Phase space is a cylinder, $\mathbb{S}^{1} \times \mathbb{R}^{1}$.
The quantity $\omega_{\mathrm{p}} \tau$ typically ranges from 10^{-3} to 10^{3} in Josephson junction applications. If $\omega_{\mathrm{p}} \tau$ is small, then the system is heavily damped, and the inertial term $d^{2} \phi / d s^{2}$ can be neglected. One then obtains the $N=1$ system

$$
\begin{equation*}
\gamma \frac{d \phi}{d s}=j-\sin \phi . \tag{13.23}
\end{equation*}
$$

Figure 13.4: Phase flows for the equation $\ddot{\phi}+\gamma^{-1} \dot{\phi}+\sin \phi=j$. Left panel: $0<j<1$; note the separatrix (in black), which flows into the stable and unstable fixed points. Right panel: $j>1$. The red curve overlying the thick black dot-dash curve is a limit cycle.

If $|j|<1$, then $\phi(s)$ evolves to the first stable fixed point encountered, where $\phi^{*}=\sin ^{-1}(j)$ and $\cos \phi^{*}=$ $\sqrt{1-j^{2}}$. Since $\phi(s) \rightarrow \phi^{*}$ is asymptotically a constant, the voltage drop V must then vanish, as a consequence of the Josephson relation $V=(\hbar / 2 e) \dot{\phi}$. This, there is current flowing with no voltage drop! If $|j|>1$, the RHS never vanishes, in which case $\phi(s)$ is monotonic. We then can integrate the differential equation

$$
\begin{equation*}
d t=\frac{\hbar}{2 e R} \cdot \frac{d \phi}{I-I_{\mathrm{c}} \sin \phi} . \tag{13.24}
\end{equation*}
$$

Asymptotically the motion is periodic, with the period T obtained by integrating over the interval $\phi \in$ $[0,2 \pi]$. One finds

$$
\begin{equation*}
T=\frac{\hbar}{2 e R} \cdot \frac{2 \pi}{\sqrt{I^{2}-I_{\mathrm{c}}^{2}}} . \tag{13.25}
\end{equation*}
$$

The time-averaged voltage drop is then

$$
\begin{equation*}
\langle V\rangle=\frac{\hbar}{2 e}\langle\dot{\phi}\rangle=\frac{\hbar}{2 e} \cdot \frac{2 \pi}{T}=R \sqrt{I^{2}-I_{\mathrm{c}}^{2}} \tag{13.26}
\end{equation*}
$$

This is the physics of the current-biased resistively and capacitively shunted Josephson junction in the strong damping limit. It is 'current-biased' because we are specifying the current I. Note that Ohm's law is recovered at large values of I.

For general $\omega_{\mathrm{p}} \tau$, we can still say quite a bit. At a fixed point, both components of the vector field $\boldsymbol{V}(\phi, \omega)$ must vanish. This requires $\omega=0$ and $j=\sin \phi$. Therefore, there are two fixed points for $|j|<1$, one a
saddle point and the other a stable spiral. For $|j|>1$ there are no fixed points, and asymptotically the function $\phi(t)$ tends to a periodic limit cycle $\phi_{\mathrm{LC}}(t)$. The flow is sketched for two representative values of j in fig. 13.4.

13.2.2 Classification of $N=2$ fixed points

Suppose we have solved the fixed point equations $V_{x}\left(x^{*}, y^{*}\right)=0$ and $V_{y}\left(x^{*}, y^{*}\right)=0$. Let us now expand about the fixed point, writing

$$
\begin{align*}
& \dot{x}=\left.\frac{\partial V_{x}}{\partial x}\right|_{\left(x^{*}, y^{*}\right)}\left(x-x^{*}\right)+\left.\frac{\partial V_{x}}{\partial y}\right|_{\left(x^{*}, y^{*}\right)}\left(y-y^{*}\right)+\ldots \tag{13.27}\\
& \dot{y}=\left.\frac{\partial V_{y}}{\partial x}\right|_{\left(x^{*}, y^{*}\right)}\left(x-x^{*}\right)+\left.\frac{\partial V_{y}}{\partial y}\right|_{\left(x^{*}, y^{*}\right)} ^{\left(y-y^{*}\right)+\ldots} .
\end{align*}
$$

We define

$$
\begin{equation*}
u_{1}=x-x^{*} \quad, \quad u_{2}=y-y^{*} \tag{13.28}
\end{equation*}
$$

which, to linear order, satisfy

$$
\frac{d}{d t}\binom{u_{1}}{u_{2}}=\overbrace{\left(\begin{array}{ll}
a & b \tag{13.29}\\
c & d
\end{array}\right)}^{M}\binom{u_{1}}{u_{2}}+\mathcal{O}\left(u^{2}\right) .
$$

The formal solution to $\dot{\boldsymbol{u}}=M \boldsymbol{u}$ is

$$
\begin{equation*}
\boldsymbol{u}(t)=\exp (M t) \boldsymbol{u}(0) \tag{13.30}
\end{equation*}
$$

where $\exp (M t)=\sum_{n=0}^{\infty} \frac{1}{n!}(M t)^{n}$ is the exponential of the matrix $M t$.
The behavior of the system is determined by the eigenvalues of M, which are roots of the characteristic equation $P(\lambda)=0$, where

$$
\begin{align*}
P(\lambda) & =\operatorname{det}(\lambda \mathbb{I}-M) \\
& =\lambda^{2}-T \lambda+D, \tag{13.31}
\end{align*}
$$

with $T=a+d=\operatorname{Tr}(M)$ and $D=a d-b c=\operatorname{det}(M)$. The two eigenvalues are therefore

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}\left(T \pm \sqrt{T^{2}-4 D}\right) \tag{13.32}
\end{equation*}
$$

To see why the eigenvalues control the behavior, let us expand $\boldsymbol{u}(0)$ in terms of the eigenvectors of M. Since M is not necessarily symmetric, we should emphasize that we expand $\boldsymbol{u}(0)$ in terms of the right eigenvectors of M, which satisfy

$$
\begin{equation*}
M \boldsymbol{\psi}_{a}=\lambda_{a} \boldsymbol{\psi}_{a} \tag{13.33}
\end{equation*}
$$

Figure 13.5: Complete classification of fixed points for the $N=2$ system.
where the label a runs over the symbols + and - , as in (13.32). We write

$$
\begin{equation*}
\boldsymbol{u}(t)=\sum_{a} C_{a}(t) \boldsymbol{\psi}_{a} \tag{13.34}
\end{equation*}
$$

Since (we assume) the eigenvectors are linearly independent, the equation $\dot{\boldsymbol{u}}=M \boldsymbol{u}$ becomes

$$
\begin{equation*}
\dot{C}_{a}=\lambda_{a} C_{a} \tag{13.35}
\end{equation*}
$$

with solution

$$
\begin{equation*}
C_{a}(t)=e^{\lambda_{a} t} C_{a}(0) . \tag{13.36}
\end{equation*}
$$

Thus, the coefficients of the eigenvectors $\boldsymbol{\psi}_{a}$ will grow in magnitude if $\left|\lambda_{a}\right|>1$, and will shrink if $\left|\lambda_{a}\right|<1$.

13.2.3 The fixed point zoo

- Saddles : When $D<0$, both eigenvalues are real; one is positive and one is negative, i.e. $\lambda_{+}>0$ and $\lambda_{-}<0$. The right eigenvector ψ_{-}is thus the stable direction while ψ_{+}is the unstable direction.
- Nodes : When $0<D<\frac{1}{4} T^{2}$, both eigenvalues are real and of the same sign. Thus, both right eigenvectors correspond to stable or to unstable directions, depending on whether $T<0$ (stable; $\lambda_{-}<\lambda_{+}<0$) or $T<0$ (unstable; $\lambda_{+}>\lambda_{-}>0$). If $\lambda_{ \pm}$are distinct, one can distinguish fast and slow eigendirections, based on the magnitude of the eigenvalues.
- Spirals: When $D>\frac{1}{4} T^{2}$, the discriminant $T^{2}-4 D$ is negative, and the eigenvalues come in a complex conjugate pair: $\lambda_{-}=\lambda_{+}^{*}$. The real parts are given by $\operatorname{Re}\left(\lambda_{ \pm}\right)=\frac{1}{2} T$, so the motion is stable (i.e. collapsing to the fixed point) if $T<0$ and unstable (i.e. diverging from the fixed point) if $T>0$. The motion is easily shown to correspond to a spiral. One can check that the spiral rotates counterclockwise for $a>d$ and clockwise for $a<d$.

Figure 13.6: Fixed point zoo for $N=2$ systems. Not shown: unstable versions of node, spiral, and star (reverse direction of arrows to turn stable into unstable).

- Degenerate Cases : When $T=0$ we have $\lambda_{ \pm}= \pm \sqrt{-D}$. For $D<0$ we have a saddle, but for $D>0$ both eigenvalues are imaginary: $\lambda_{ \pm}= \pm i \sqrt{D}$. The orbits do not collapse to a point, nor do they diverge to infinity, in the $t \rightarrow \infty$ limit, as they do in the case of the stable and unstable spiral. The fixed point is called a center, and it is surrounded by closed trajectories.
When $D=\frac{1}{4} T^{2}$, the discriminant vanishes and the eigenvalues are degenerate. If the rank of M is two, the fixed point is a stable $(T<0)$ or unstable $(T>0)$ star. If M is degenerate and of rank one, the fixed point is a degenerate node.

When $D=0$, one of the eigenvalues vanishes. This indicates a fixed line in phase space, since any point on that line will not move. The fixed line can be stable or unstable, depending on whether the remaining eigenvalue is negative (stable, $T<0$), or positive (unstable, $T>0$).

13.2.4 Limit cycles

Putting it all together, an example of a phase portrait is shown in fig. 13.7. Note the presence of an isolated, closed trajectory, which is called a limit cycle. Many self-sustained physical oscillations, i.e. oscillations with no external forcing, exhibit limit cycle behavior. Limit cycles, like fixed points, can be stable or unstable, or partially stable. Limit cycles are inherently nonlinear. While the linear equation $\dot{\varphi}=M \varphi$ can have periodic solutions if M has purely imaginary eigenvalues, these periodic trajectories are not isolated, because $\lambda \varphi(t)$ is also a solution. The amplitude of these linear oscillations is fixed by the initial

Figure 13.7: Phase portrait for an $N=2$ flow including saddles (A,C), unstable spiral (B), and limit cycle (D).
conditions, whereas for limit cycles, the amplitude is inherent from the dynamics itself, and the initial conditions are irrelevant (for a stable limit cycle).

In fig. 13.8 we show simple examples of stable, unstable, and half-stable limit cycles. As we shall see when we study nonlinear oscillations, the Van der Pol oscillator,

$$
\begin{equation*}
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=0 \tag{13.37}
\end{equation*}
$$

with $\mu>0$ has a stable limit cycle. The physics is easy to apprehend. The coefficient of the \dot{x} term in the equation of motion is positive for $|x|>1$ and negative for $|x|<1$. Interpreting this as a coefficient of friction, we see that the friction is positive, i.e. dissipating energy, when $|x|>1$ but negative, i.e. accumulating energy, for $|x|<1$. Thus, any small motion with $|x|<1$ is amplified due to the negative friction, and would increase without bound were it not for the fact that the friction term reverses its sign and becomes dissipative for $|x|>1$. The limit cycle for $\mu \gg 1$ is shown in fig. 13.9.

$$
\dot{\theta}=1
$$

STABLE
LIMIT CYCLE
$\dot{r}=a(r-1)$
$\dot{r}=a(1-r)^{2}$

左

Figure 13.9: Limit cycle of the Van der Pol oscillator for $\mu=1$.

13.2.5 Andronov-Hopf bifurcation

A bifurcation between a spiral and a limit cycle is known as an Andronov-Hopf bifurcation. As a simple example, consider the $N=2$ system,

$$
\begin{align*}
& \dot{x}=a x-b y-C\left(x^{2}+y^{2}\right) x \\
& \dot{y}=b x+a y-C\left(x^{2}+y^{2}\right) y \tag{13.38}
\end{align*}
$$

where a, b, and C are real. Clearly the origin is a fixed point, at which one finds the eigenvalues $\lambda=a \pm i b$. Thus, the fixed point is a stable spiral if $a<0$ and an unstable spiral if $a>0$.

Written in terms of the complex variable $z=x+i y$, these two equations collapse to the single equation

$$
\begin{equation*}
\dot{z}=(a+i b) z-C|z|^{2} z . \tag{13.39}
\end{equation*}
$$

The dynamics are also simple in polar coordinates $r=|z|, \theta=\arg (z)$:

$$
\begin{align*}
& \dot{r}=a r-C r^{3} \\
& \dot{\theta}=b . \tag{13.40}
\end{align*}
$$

The phase diagram, for fixed $b>0$, is depicted in fig. 13.10. For positive a / C, there is a limit cycle at $r=\sqrt{a / C}$. In both cases, the limit cycle disappears as a crosses the value $a^{*}=0$ and is replaced by a stable ($a<0, C>0$) or unstable ($a>0, C<0$) spiral.

This example also underscores the following interesting point. Adding a small nonlinear term C has no fundamental effect on the fixed point behavior so long as $a \neq 0$, when the fixed point is a stable or unstable spiral. In general, fixed points which are attractors (stable spirals or nodes), repellers (unstable spirals or nodes), or saddles are robust with respect to the addition of a small nonlinearity. But the fixed

Figure 13.10: Hopf bifurcation: for $C>0$ the bifurcation is supercritical, between stable spiral and stable limit cycle. For $C<0$ the bifurcation is subcritical, between unstable spiral and unstable limit cycle. The bifurcation occurs at $a=0$ in both cases.
point behavior in the marginal cases - centers, stars, degenerate nodes, and fixed lines - is strongly affected by the presence of even a small nonlinearity. In this example, the FP is a center when $a=0$. But as the (r, θ) dynamics shows, a small nonlinearity will destroy the center and turn the FP into an attractor $(C>0)$ or a repeller $(C<0)$.

13.2.6 Fixed points for $N=3$ systems

For an $N=2$ system, there are five generic types of fixed points. They are classified according to the eigenvalues of the linearized dynamics at the fixed point. For a real 2×2 matrix, the eigenvalues must be real or else must be a complex conjugate pair. The five types of fixed points are then

$$
\begin{array}{rlll}
\lambda_{1}>0 & , \lambda_{2}>0 & : & \text { (1) unstable node } \\
\lambda_{1}>0 & , \lambda_{2}<0 & : & \text { (2) saddle point } \\
\lambda_{1}<0 & , \lambda_{2}<0 & : & \text { (3) stable node } \\
\operatorname{Re} \lambda_{1}>0 \quad, & \lambda_{2}=\lambda_{1}^{*} & : & \text { (4) unstable spiral } \\
\operatorname{Re} \lambda_{1}<0 \quad, \lambda_{2}=\lambda_{1}^{*} & : & \text { (5) stable spiral }
\end{array}
$$

How many possible generic fixed points are there for an $N=3$ system?
For a general real 3×3 matrix M, the characteristic polynomial $P(\lambda)=\operatorname{det}(\lambda-M)$ satisfies $P\left(\lambda^{*}\right)=P(\lambda)$. Thus, if λ is a root then so is λ^{*}. This means that the eigenvalues are either real or else come in complex
conjugate pairs. There are then ten generic possibilities for the three eigenvalues:

$$
\begin{array}{rll}
\text { unstable node } & : & \lambda_{1}>\lambda_{2}>\lambda_{3}>0 \\
(++-) \text { saddle } & : & \lambda_{1}>\lambda_{2}>0>\lambda_{3} \\
(+--) \text { saddle } & : & \lambda_{1}>0>\lambda_{2}>\lambda_{3} \\
\text { stable note } & : & 0>\lambda_{1}>\lambda_{2}>\lambda_{3} \\
\text { unstable spiral-node } & : & \lambda_{1}>\operatorname{Re} \lambda_{2,3}>0 ; \operatorname{Im} \lambda_{2}=-\operatorname{Im} \lambda_{3} \\
\text { unstable spiral-node } & : & \operatorname{Re} \lambda_{1,2}>\lambda_{3}>0 ; \operatorname{Im} \lambda_{1}=-\operatorname{Im} \lambda_{2} \\
\text { stable spiral-node } & : & 0>\lambda_{1}>\operatorname{Re} \lambda_{2,3} ; \operatorname{Im} \lambda_{2}=-\operatorname{Im} \lambda_{3} \\
\text { stable spiral-node } & : & 0>\operatorname{Re} \lambda_{1,2}>\lambda_{3} ; \operatorname{Im} \lambda_{1}=-\operatorname{Im} \lambda_{2} \\
(+--) \text { spiral-saddle } & : & \lambda_{1}>0>\operatorname{Re} \lambda_{2,3} ; \operatorname{Im} \lambda_{2}=-\operatorname{Im} \lambda_{3} \\
(++-) \text { spiral-saddle } & : & \operatorname{Re} \lambda_{1,2}>0>\lambda_{3} ; \operatorname{Im} \lambda_{1}=-\operatorname{Im} \lambda_{2} . \tag{10}
\end{array}
$$

13.3 Population Biology : Lotka-Volterra Models

Consider two species with populations N_{1} and N_{2}, respectively. We model the evolution of these populations by the coupled ODEs

$$
\begin{align*}
& \frac{d N_{1}}{d t}=a N_{1}+b N_{1} N_{2}+c N_{1}^{2} \tag{13.41}\\
& \frac{d N_{2}}{d t}=d N_{2}+e N_{1} N_{2}+f N_{2}^{2}
\end{align*}
$$

where $\{a, b, c, d, e, f\}$ are constants. We can eliminate some constants by rescaling $N_{1,2}$. This results in the following:

$$
\begin{align*}
& \dot{x}=x(r-\mu x-k y) \\
& \dot{y}=y\left(r^{\prime}-\mu^{\prime} y-k^{\prime} x\right) \tag{13.42}
\end{align*}
$$

where μ, and μ^{\prime} can each take on one of three possible values $\{0, \pm 1\}$. By rescaling time, we can eliminate the scale of either of r or r^{\prime} as well. Typically, intra-species competition guarantees $\mu=\mu^{\prime}=+1$. The remaining coefficients $\left(r, k, k^{\prime}\right)$ are real may also be of either sign. The values and especially the signs of the various coefficients have a physical (or biological) significance. For example, if $k<0$ it means that x grows due to the presence of y. The effect of y on x may be of the same sign $\left(k k^{\prime}>0\right)$ or of opposite $\operatorname{sign}\left(k k^{\prime}<0\right)$.

13.3.1 Rabbits and foxes

As an example, consider the model

$$
\begin{align*}
& \dot{x}=x-x y \tag{13.43}\\
& \dot{y}=-\beta y+x y
\end{align*}
$$

The quantity x might represent the (scaled) population of rabbits and y the population of foxes in an ecosystem. There are two fixed points: at $(0,0)$ and at $(\beta, 1)$. Linearizing the dynamics about these fixed points, one finds that $(0,0)$ is a saddle while $(\beta, 1)$ is a center. Let's do this explicitly.
The first step is to find the fixed points $\left(x^{*}, y^{*}\right)$. To do this, we set $\dot{x}=0$ and $\dot{y}=0$. From $\dot{x}=x(1-y)=0$ we have that $x=0$ or $y=1$. Suppose $x=0$. The second equation, $\dot{y}=(x-\beta) y$ then requires $y=0$. So $\boldsymbol{P}_{1}=(0,0)$ is a fixed point. The other possibility is that $y=1$, which then requires $x=\beta$. So $\boldsymbol{P}_{2}=(\beta, 1)$ is the second fixed point. Those are the only possibilities.

We now compute the linearized dynamics at these fixed points. The linearized dynamics are given by $\dot{\varphi}=M \varphi$, with

$$
M=\left(\begin{array}{ll}
\partial \dot{x} / \partial x & \partial \dot{x} / \partial y \tag{13.44}\\
\partial \dot{y} / \partial x & \partial \dot{y} / \partial y
\end{array}\right)=\left(\begin{array}{cc}
1-y & -x \\
y & x-\beta
\end{array}\right) .
$$

Evaluating M at \boldsymbol{P}_{1} and \boldsymbol{P}_{2}, we find

$$
M_{1}=\left(\begin{array}{cc}
1 & 0 \tag{13.45}\\
0 & -\beta
\end{array}\right) \quad, \quad M_{2}=\left(\begin{array}{cc}
0 & -\beta \\
1 & 0
\end{array}\right)
$$

The eigenvalues are easily found:

$$
\begin{align*}
& \boldsymbol{P}_{1}: \lambda_{+}=1 \quad, \lambda_{-}=-\beta \tag{13.46}\\
& \boldsymbol{P}_{2}: \lambda_{+}=i \sqrt{\beta} \quad, \lambda_{-}=-i \sqrt{\beta} .
\end{align*}
$$

Thus \boldsymbol{P}_{1} is a saddle point and \boldsymbol{P}_{2} is a center.
As we saw earlier, generally speaking we expect nonlinear terms to transform centers to stable or unstable spirals, possibly with a limit cycle. However for the Lotka-Volterra system there is a conserved quantity. Consider the general predator-prey system

$$
\begin{align*}
& \dot{x}=(a-b y) x \tag{13.47}\\
& \dot{y}=-(c-d x) y,
\end{align*}
$$

where a, b, c, and d are all positive constants. Now consider the function

$$
\begin{equation*}
H \equiv d x+b y-c \ln x-a \ln y \tag{13.48}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial H}{\partial x}=d-\frac{c}{x} \quad, \quad \frac{\partial H}{\partial y}=b-\frac{a}{y} \tag{13.49}
\end{equation*}
$$

Thus, we have $\dot{x}=-x y \frac{\partial H}{\partial y}$ and $\dot{y}=x y \frac{\partial H}{\partial x}$. If we define $p \equiv \ln x$ and $q \equiv \ln y$, then we have

$$
\begin{equation*}
\dot{q}=\frac{\partial H}{\partial p} \quad, \quad \dot{p}=-\frac{\partial H}{\partial q} \tag{13.50}
\end{equation*}
$$

with

$$
\begin{equation*}
H(q, p)=d e^{p}+b e^{q}-c p-a q \tag{13.51}
\end{equation*}
$$

So the system is a Hamiltonian system in disguise, and we know that for Hamiltonian systems the only possible fixed points are saddles and centers. The phase curves are level sets of the function H.

Figure 13.11: Phase flow for the rabbits $v s$. foxes Lotka-Volterra model of eqs. 13.43.

13.3.2 Rabbits and sheep

In the rabbits and foxes model of eqs. 13.43 , the rabbits are the food for the foxes. This means $k=1$ but $k^{\prime}=-1$, i.e. the fox population is enhanced by the presence of rabbits, but the rabbit population is diminished by the presence of foxes. Consider now a model in which the two species (rabbits and sheep, say) compete for food:

$$
\begin{align*}
& \dot{x}=x(r-x-k y) \\
& \dot{y}=y\left(1-y-k^{\prime} x\right), \tag{13.52}
\end{align*}
$$

with r, k, and k^{\prime} all positive. Note that when either population x or y vanishes, the remaining population is governed by the logistic equation, i.e. it will flow to a nonzero fixed point.

The matrix of derivatives, which is to be evaluated at each fixed point in order to assess its stability, is

$$
M=\left(\begin{array}{cc}
\partial \dot{x} / \partial x & \partial \dot{x} / \partial y \tag{13.53}\\
\partial \dot{y} / \partial x & \partial \dot{y} / \partial y
\end{array}\right)=\left(\begin{array}{cc}
r-2 x-k y & -k x \\
-k^{\prime} y & 1-2 y-k^{\prime} x
\end{array}\right)
$$

At each fixed point, we must evaluate $D=\operatorname{det}(M)$ and $T=\operatorname{Tr}(M)$ and apply the classification scheme of fig. 13.5.

- $\boldsymbol{P}_{1}=(0,0)$: This is the trivial state with no rabbits $(x=0)$ and no sheep $(y=0)$. The linearized dynamics gives $M_{1}=\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)$, which corresponds to an unstable node.
- $\boldsymbol{P}_{2}=(r, 0)$: Here we have rabbits but no sheep. The linearized dynamics gives $M_{2}=\left(\begin{array}{cc}-r & -r k \\ 0 & 1-r k^{\prime}\end{array}\right)$. For $r k^{\prime}>1$ this is a stable node; for $r k^{\prime}<1$ it is a saddle point.

Figure 13.12: Two possible phase flows for the rabbits v s. sheep model of eqs. 13.52. Left panel: $k>r>k^{\prime-1}$. Right panel: $k<r<k^{\prime-1}$.

- $\boldsymbol{P}_{3}=(0,1)$: Here we have sheep but no rabbits. The linearized dynamics gives $M_{3}=\left(\begin{array}{cc}r-k & 0 \\ -k^{\prime} & -1\end{array}\right)$. For $k>r$ this is a stable node; for $k<r$ it is a saddle.
- There is one remaining fixed point - a nontrivial one where both x and y are nonzero. To find it, we set $\dot{x}=\dot{y}=0$, and divide out by x and y respectively, to get

$$
\begin{align*}
x+k y & =r \\
k x^{\prime}+y & =1 . \tag{13.54}
\end{align*}
$$

This is a simple rank 2 inhomogeneous linear system. If the fixed point P_{4} is to lie in the physical quadrant $(x>0, y>0)$, then either (i) $k>r$ and $k^{\prime}>r^{-1}$ or (ii) $k<r$ and $k^{\prime}<r^{-1}$. The solution is

$$
\boldsymbol{P}_{4}=\left(\begin{array}{cc}
1 & k \tag{13.55}\\
k^{\prime} & 1
\end{array}\right)^{-1}\binom{r}{1}=\frac{1}{1-k k^{\prime}}\binom{r-k}{1-r k^{\prime}} .
$$

The linearized dynamics then gives

$$
M_{4}=\frac{1}{1-k k^{\prime}}\left(\begin{array}{cc}
k-r & k(k-r) \tag{13.56}\\
k^{\prime}\left(r k^{\prime}-1\right) & r k^{\prime}-1
\end{array}\right)
$$

yielding

$$
\begin{align*}
& T=\frac{r k^{\prime}-1+k-r}{1-k k^{\prime}} \tag{13.57}\\
& D=\frac{(k-r)\left(r k^{\prime}-1\right)}{1-k k^{\prime}} .
\end{align*}
$$

The classification of this fixed point can vary with parameters. Consider the case $r=1$. If $k=k^{\prime}=2$ then both \boldsymbol{P}_{2} and \boldsymbol{P}_{3} are stable nodes. At \boldsymbol{P}_{4}, one finds $T=-\frac{2}{3}$ and $D=-\frac{1}{3}$, corresponding to a saddle

Figure 13.13: Two singularities with index +1 . The direction field $\widehat{\boldsymbol{V}}=\boldsymbol{V} /|\boldsymbol{V}|$ is shown in both cases.
point. In this case it is the fate of one population to die out at the expense of the other, and which one survives depends on initial conditions. If instead we took $k=k^{\prime}=\frac{1}{2}$, then $T=-\frac{4}{3}$ and $D=\frac{1}{3}$, corresponding to a stable node (node $D<\frac{1}{4} T^{2}$ in this case). The situation is depicted in fig. 13.12.

13.4 Poincaré-Bendixson Theorem

Although $N=2$ systems are much richer than $N=1$ systems, they are still ultimately rather impoverished in terms of their long-time behavior. If an orbit does not flow off to infinity or asymptotically approach a stable fixed point (node or spiral or nongeneric example), the only remaining possibility is limit cycle behavior. This is the content of the Poincaré-Bendixson theorem, which states:

- IF Ω is a compact (i.e. closed and bounded) subset of phase space,
- AND $\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})$ is continuously differentiable on Ω,
- AND Ω contains no fixed points (i.e. $\boldsymbol{V}(\boldsymbol{\varphi})$ never vanishes in Ω),
- AND a phase curve $\varphi(t)$ is always confined to Ω,
$\diamond \operatorname{THEN} \varphi(t)$ is either closed or approaches a closed trajectory in the limit $t \rightarrow \infty$.
Thus, under the conditions of the theorem, Ω must contain a closed orbit.
One way to prove that $\varphi(t)$ is confined to Ω is to establish that $\boldsymbol{V} \cdot \hat{\boldsymbol{n}} \leq 0$ everywhere on the boundary $\partial \Omega$, which means that the phase flow is always directed inward (or tangent) along the boundary. Let's
analyze an example from the book by Strogatz. Consider the system

$$
\begin{align*}
& \dot{r}=r\left(1-r^{2}\right)+\lambda r \cos \theta \\
& \dot{\theta}=1, \tag{13.58}
\end{align*}
$$

with $0<\lambda<1$. Then define

$$
\begin{equation*}
a \equiv \sqrt{1-\lambda} \quad, \quad b \equiv \sqrt{1+\lambda} \tag{13.59}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega \equiv\{(r, \theta) \mid a<r<b\} \tag{13.60}
\end{equation*}
$$

On the boundaries of Ω, we have

$$
\begin{align*}
& r=a: \quad \dot{r}=\lambda a(1+\cos \theta) \tag{13.61}\\
& r=b: \quad \dot{r}=-\lambda b(1-\cos \theta) .
\end{align*}
$$

We see that the radial component of the flow is inward along both $r=a$ and $r=b$. Thus, any trajectory which starts inside Ω can never escape. The Poincaré-Bendixson theorem tells us that the trajectory will approach a stable limit cycle in the limit $t \rightarrow \infty$.

It is only with $N \geq 3$ systems that the interesting possibility of chaotic behavior emerges.

13.5 Index Theory

Consider a smooth two-dimensional vector field $\boldsymbol{V}(\boldsymbol{\varphi})$. The angle that the vector \boldsymbol{V} makes with respect to the $\widehat{\boldsymbol{\varphi}}_{1}$ and $\widehat{\varphi}_{2}$ axes is a scalar field,

$$
\begin{equation*}
\Theta(\varphi)=\tan ^{-1}\left(\frac{V_{2}(\boldsymbol{\varphi})}{V_{1}(\boldsymbol{\varphi})}\right) \tag{13.62}
\end{equation*}
$$

So long as \boldsymbol{V} has finite length, the angle Θ is well-defined. In particular, we expect that we can integrate $\nabla \Theta$ over a closed curve \mathcal{C} in phase space to get

$$
\begin{equation*}
\oint_{\mathcal{C}} d \boldsymbol{\varphi} \cdot \nabla \Theta=0 \tag{13.63}
\end{equation*}
$$

However, this can fail if $\boldsymbol{V}(\boldsymbol{\varphi})$ vanishes (or diverges) at one or more points in the interior of \mathcal{C}. In general, if we define

$$
\begin{equation*}
\mathbf{W}_{\mathcal{C}}(\boldsymbol{V})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \boldsymbol{\varphi} \cdot \boldsymbol{\nabla} \Theta \tag{13.64}
\end{equation*}
$$

then $\mathrm{W}_{\mathcal{C}}(\boldsymbol{V}) \in \mathbb{Z}$ is an integer valued function of \mathcal{C}, which is the change in Θ around the curve \mathcal{C}. This must be an integer, because Θ is well-defined only up to multiples of 2π. Note that differential changes of Θ are in general well-defined.

Thus, if $\boldsymbol{V}(\boldsymbol{\varphi})$ is finite, meaning neither infinite nor infinitesimal, i.e. \boldsymbol{V} neither diverges nor vanishes anywhere in $\operatorname{int}(\mathcal{C})$, then $\mathrm{W}_{\mathcal{C}}(\boldsymbol{V})=0$. Assuming that \boldsymbol{V} never diverges, any singularities in Θ must arise

Figure 13.14: Two singularities with index -1 .
from points where $\boldsymbol{V}=0$, which in general occurs at isolated points, since it entails two equations in the two variables $\left(\varphi_{1}, \varphi_{2}\right)$.
The index of a two-dimensional vector field $\boldsymbol{V}(\boldsymbol{\varphi})$ at a point φ is the integer-valued winding of \boldsymbol{V} about that point:

$$
\begin{align*}
\underset{\varphi_{0}}{\operatorname{ind}(\boldsymbol{V})} & =\lim _{a \rightarrow 0} \frac{1}{2 \pi} \oint d \boldsymbol{\varphi} \cdot \boldsymbol{\nabla} \Theta \\
& =\lim _{a \rightarrow 0} \frac{1}{\mathcal{C}_{a}\left(\varphi_{0}\right)} \underset{\mathcal{C}_{a}\left(\varphi_{0}\right)}{ } \oint_{\boldsymbol{\varphi}} d \boldsymbol{\varphi} \cdot \frac{V_{1} \boldsymbol{\nabla} V_{2}-V_{2} \boldsymbol{\nabla} V_{1}}{V_{1}^{2}+V_{2}^{2}} \tag{13.65}
\end{align*}
$$

where $\mathcal{C}_{a}\left(\boldsymbol{\varphi}_{0}\right)$ is a circle of radius a surrounding the point φ_{0}. The index of a closed curve \mathcal{C} is given by the sum of the indices at all the singularities enclosed by the curve: ${ }^{2}$

$$
\begin{equation*}
\mathrm{W}_{\mathcal{C}}(\boldsymbol{V})=\sum_{\varphi_{i} \in \operatorname{int}(\mathcal{C})} \operatorname{ind}_{\boldsymbol{\varphi}_{i}}(\boldsymbol{V}) \tag{13.66}
\end{equation*}
$$

As an example, consider the vector fields plotted in fig. 13.13. We have:

$$
\begin{align*}
& \boldsymbol{V}=(x,-y) \quad \Longrightarrow \quad \Theta=-\theta \\
& \boldsymbol{V}=(-y, x) \quad \Longrightarrow \quad \Theta=\theta+\frac{1}{2} \pi . \tag{13.67}
\end{align*}
$$

[^30]

Figure 13.15: Left panel: a singularity with index +2 . Right panel: two singularities each with index +1 . Note that the long distance behavior of \boldsymbol{V} is the same in both cases.

The index is the same, +1 , in both cases, even though the first corresponds to an unstable node and the second to a center. Any $N=2$ fixed point with $\operatorname{det} M>0$ has index +1 .

Fig. 13.14 shows two vector fields, each with index -1 :

$$
\begin{align*}
\boldsymbol{V}=(x, y) & \Longrightarrow \\
\boldsymbol{V}=(y, x) & \Longrightarrow \tag{13.68}\\
\text { quad. } &
\end{align*}
$$

In both cases, the fixed point is a saddle.
As an example of the content of eqn. 13.66, consider the vector fields in eqn. 13.15. The left panel shows the vector field $\boldsymbol{V}=\left(x^{2}-y^{2}, 2 x y\right)$, which has a single fixed point, at the origin $(0,0)$, of index +2 . The right panel shows the vector field $\boldsymbol{V}=\left(1+x^{2}-y^{2}, x+2 x y\right)$, which has fixed points $\left(x^{*}, y^{*}\right)$ at $(0,1)$ and $(0,-1)$. The linearized dynamics is given by the matrix

$$
M=\left(\begin{array}{cc}
\frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} \tag{13.69}\\
\frac{\partial \dot{y}}{\partial x} & \frac{\partial \dot{y}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
2 x & -2 y \\
1+2 y & 2 x
\end{array}\right) .
$$

Thus,

$$
M_{(0,1)}=\left(\begin{array}{cc}
0 & -2 \tag{13.70}\\
2 & 0
\end{array}\right) \quad, \quad M_{(0,-1)}=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) .
$$

At each of these fixed points, we have $T=0$ and $D=4$, corresponding to a center, with index +1 . If we consider a square-ish curve \mathcal{C} around the periphery of each figure, the vector field is almost the same along such a curve for both the left and right panels, and the winding number is $\mathrm{W}_{\mathcal{C}}(\boldsymbol{V})=+2$.

Figure 13.16: A vector field with index -2 .

Finally, consider the vector field shown in fig. 13.16, with $\boldsymbol{V}=\left(x^{2}-y^{2},-2 x y\right)$. Clearly $\Theta=-2 \theta$, and the index of the singularity at $(0,0)$ is -2 .

To recapitulate some properties of the index / winding number:

- The index ind ${ }_{\varphi_{0}}(\boldsymbol{V})$ of an $N=2$ vector field \boldsymbol{V} at a point φ_{0} is the winding number of \boldsymbol{V} about that point.
- The winding number $\mathrm{W}_{\mathcal{C}}(\boldsymbol{V})$ of a curve \mathcal{C} is the sum of the indices of the singularities enclosed by that curve.
- Smooth deformations of \mathcal{C} do not change its winding number. One must instead "stretch" \mathcal{C} over a fixed point singularity in order to change $\mathrm{W}_{\mathcal{C}}(\boldsymbol{V})$.
- Uniformly rotating each vector in the vector field by an angle β has the effect of sending $\Theta \rightarrow \Theta+\beta$; this leaves all indices and winding numbers invariant.
- Nodes and spirals, whether stable or unstable, have index +1 (ss do the special cases of centers, stars, and degenerate nodes). Saddle points have index -1 .
- Clearly any closed orbit must lie on a curve \mathcal{C} of index +1 .

Figure 13.17: Two smooth vector fields on the sphere \mathbb{S}^{2}, which has genus $g=0$. Left panel: two index +1 singularities. Right panel: one index +2 singularity.

13.5.1 Gauss-Bonnet Theorem

There is a deep result in mathematics, the Gauss-Bonnet theorem, which connects the local geometry of a two-dimensional manifold to its global topological structure. The content of the theorem is as follows:

$$
\begin{equation*}
\int_{\mathcal{M}} d A K=2 \pi \chi(\mathcal{M})=2 \pi \sum_{i} \operatorname{ind}_{\varphi_{i}}(\boldsymbol{V}) \tag{13.71}
\end{equation*}
$$

where \mathcal{M} is a 2 -manifold (a topological space locally homeomorphic to \mathbb{R}^{2}), κ is the local Gaussian curvature of \mathcal{M}, which is given by $K=\left(R_{1} R_{2}\right)^{-1}$, where $R_{1,2}$ are the principal radii of curvature at a given point, and $d A$ is the differential area element. The quantity $\chi(\mathcal{M})$ is called the Euler characteristic of \mathcal{M} and is given by $\chi(\mathcal{M})=2-2 g$, where g is the genus of \mathcal{M}, which is the number of holes (or handles) of \mathcal{M}. Furthermore, $\boldsymbol{V}(\varphi)$ is any smooth vector field on \mathcal{M}, and φ_{i} are the singularity points of that vector field, which are fixed points of the dynamics $\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})$.
To apprehend the content of the Gauss-Bonnet theorem, it is helpful to consider an example. Let $\mathcal{M}=\mathbb{S}^{2}$ be the unit 2 -sphere, as depicted in fig. 13.17. At any point on the unit 2 -sphere, the radii of curvature are degenerate and both equal to $R=1$, hence $K=1$. If we integrate the Gaussian curvature over the sphere, we thus get $4 \pi=2 \pi \chi\left(\mathbb{S}^{2}\right)$, which says $\chi\left(\mathbb{S}^{2}\right)=2-2 g=2$, which agrees with $g=0$ for the sphere. Furthermore, the Gauss-Bonnet theorem says that any smooth vector field on \mathbb{S}^{2} must have a singularity or singularities, with the total index summed over the singularities equal to +2 . The vector field sketched in the left panel of fig. 13.17 has two index +1 singularities, which could be taken at the north and south poles, but which could be anywhere. Another possibility, depicted in the right panel of fig. 13.17, is that there is a one singularity with index +2 .

In fig. 13.18 we show examples of manifolds with genii $g=1$ and $g=2$. The case $g=1$ is the familiar 2-torus, which is topologically equivalent to a product of circles: $\mathbb{T}^{2} \simeq \mathbb{S}^{1} \times \mathbb{S}^{1}$, and is thus

Figure 13.18: Smooth vector fields on the torus $\mathbb{T}^{2}(g=1)$, and on a 2-manifold \mathcal{M} of genus $g=2$.
coordinatized by two angles θ_{1} and θ_{2}. A smooth vector field pointing in the direction of increasing θ_{1} never vanishes, and thus has no singularities, consistent with $g=1$ and $\chi\left(\mathbb{T}^{2}\right)=0$. Topologically, one can define a torus as the quotient space $\mathbb{R}^{2} / \mathbb{Z}^{2}$, or as a square with opposite sides identified. This is what mathematicians call a 'flat torus' - one with curvature $K=0$ everywhere. Of course, such a torus cannot be embedded in three-dimensional Euclidean space; a two-dimensional figure embedded in a three-dimensional Euclidean space inherits a metric due to the embedding, and for a physical torus, like the surface of a bagel, the Gaussian curvature is only zero on average.

The $g=2$ surface \mathcal{M} shown in the right panel of fig. 13.18 has Euler characteristic $\chi(\mathcal{M})=-2$, which means that any smooth vector field on \mathcal{M} must have singularities with indices totalling -2 . One possibility, depicted in the figure, is to have two saddle points with index -1 ; one of these singularities is shown in the figure (the other would be on the opposite side).

13.5.2 Singularities and topology

For any $N=1$ system $\dot{x}=f(x)$, we can identify a 'charge' Q with any generic fixed point x^{*} by setting

$$
\begin{equation*}
Q=\operatorname{sgn}\left[f^{\prime}\left(x^{*}\right)\right] \tag{13.72}
\end{equation*}
$$

where $f\left(x^{*}\right)=0$. The total charge contained in a region $\left[x_{1}, x_{2}\right]$ is then

$$
\begin{equation*}
Q_{12}=\frac{1}{2} \operatorname{sgn}\left[f\left(x_{2}\right)\right]-\frac{1}{2} \operatorname{sgn}\left[f\left(x_{1}\right)\right] . \tag{13.73}
\end{equation*}
$$

It is easy to see that Q_{12} is the sum of the charges of all the fixed points lying within the interval $\left[x_{1}, x_{2}\right]$. In higher dimensions, we have the following general construction. Consider an N-dimensional dynam-

Figure 13.19: Composition of two circles. The same general construction applies to the merging of n-spheres \mathbb{S}^{n}, called the wedge sum.
ical system $\dot{\boldsymbol{x}}=\boldsymbol{V}(\boldsymbol{x})$, and let $\hat{\boldsymbol{n}}(\boldsymbol{x})$ be the unit vector field defined by

$$
\begin{equation*}
\hat{\boldsymbol{n}}(\boldsymbol{x})=\frac{\boldsymbol{V}(\boldsymbol{x})}{|\boldsymbol{V}(\boldsymbol{x})|} . \tag{13.74}
\end{equation*}
$$

Consider now a unit sphere in $\hat{\boldsymbol{n}}$ space, which is of dimension $(N-1)$. If we integrate over this surface, we obtain

$$
\begin{equation*}
\Omega_{N}=\oint d \sigma_{a} n^{a}=\frac{2 \pi^{(N-1) / 2}}{\Gamma\left(\frac{N-1}{2}\right)}, \tag{13.75}
\end{equation*}
$$

which is the surface area of the unit sphere \mathbb{S}^{N-1}. Thus, $\Omega_{2}=2 \pi, \Omega_{3}=4 \pi, \Omega_{4}=2 \pi^{2}$, etc.
Now consider a change of variables over the surface of the sphere, to the set $\left(\xi_{1}, \ldots, \xi_{N-1}\right)$. We then have

$$
\begin{equation*}
\Omega_{N}=\oint_{\mathbb{S}^{N-1}} d \sigma_{a} n^{a}=\oint d^{N-1} \xi \epsilon_{a_{1} \cdots a_{N}} n^{a_{1}} \frac{\partial n^{a_{2}}}{\partial \xi_{1}} \cdots \frac{\partial n^{a_{N}}}{\partial \xi_{N-1}} \tag{13.76}
\end{equation*}
$$

The topological charge is then

$$
\begin{equation*}
Q=\frac{1}{\Omega_{N}} \oint d^{N-1} \xi \epsilon_{a_{1} \cdots a_{N}} n^{a_{1}} \frac{\partial n^{a_{2}}}{\partial \xi_{1}} \cdots \frac{\partial n^{a_{N}}}{\partial \xi_{N-1}} \tag{13.77}
\end{equation*}
$$

The quantity Q is an integer topological invariant which characterizes the map from the surface $\left(\xi_{1}, \ldots, \xi_{N-1}\right)$ to the unit sphere $|\hat{\boldsymbol{n}}|=1$. In mathematical parlance, Q is known as the Pontrjagin index of this map.

This analytical development recapitulates some basic topology. Let \mathcal{M} be a topological space and consider a map from the circle \mathbb{S}^{1} to \mathcal{M}. We can compose two such maps by merging the two circles, as shown in fig. 13.19. Two maps are said to be homotopic if they can be smoothly deformed into each other. Any two homotopic maps are said to belong to the same equivalence class or homotopy class. For general \mathcal{M}, the homotopy classes may be multiplied using the composition law, resulting in a group structure. The group is called the fundamental group of the manifold \mathcal{M}, and is abbreviated $\pi_{1}(\mathcal{M})$. If $\mathcal{M}=\mathbb{S}^{2}$, then
any such map can be smoothly contracted to a point on the 2 -sphere, which is to say a trivial map. We then have $\pi_{1}(\mathcal{M})=0$. If $\mathcal{M}=\mathbb{S}^{1}$, the maps can wind nontrivially, and the homotopy classes are labeled by a single integer winding number: $\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}$. The winding number of the composition of two such maps is the sum of their individual winding numbers. If $\mathcal{M}=\mathbb{T}^{2}$, the maps can wind nontrivially around either of the two cycles of the 2-torus. We then have $\pi_{1}\left(\mathbb{T}^{2}\right)=\mathbb{Z}^{2}$, and in general $\pi_{1}\left(\mathbb{T}^{n}\right)=\mathbb{Z}^{n}$. This makes good sense, since an n-torus is topologically equivalent to a product of n circles. In some cases, $\pi_{1}(\mathcal{M})$ can be nonabelian, as is the case when \mathcal{M} is the genus $g=2$ structure shown in the right hand panel of fig. 13.18.

In general we define the $n^{\text {th }}$ homotopy group $\pi_{n}(\mathcal{M})$ as the group under composition of maps from \mathbb{S}^{n} to \mathcal{M}. For $n \geq 2, \pi_{n}(\mathcal{M})$ is abelian. If $\operatorname{dim}(\mathcal{M})<n$, then $\pi_{n}(\mathcal{M})=0$. In general, $\pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}$. These $n^{\text {th }}$ homotopy classes of the n-sphere are labeled by their Pontrjagin index Q.
Finally, we ask what is Q in terms of the eigenvalues and eigenvectors of the linearized map

$$
\begin{equation*}
M_{i j}=\left.\frac{\partial V_{i}}{\partial x_{j}}\right|_{x^{*}} \tag{13.78}
\end{equation*}
$$

For simple cases where all the λ_{i} are nonzero, we have

$$
\begin{equation*}
Q=\operatorname{sgn}\left(\prod_{i=1}^{N} \lambda_{i}\right) \tag{13.79}
\end{equation*}
$$

13.6 Appendix : Example Problem

Consider the two-dimensional phase flow,

$$
\begin{align*}
& \dot{x}=\frac{1}{2} x+x y-2 x^{3} \\
& \dot{y}=\frac{5}{2} y+x y-y^{2} . \tag{13.80}
\end{align*}
$$

(a) Find and classify all fixed points.

Solution : We have

$$
\begin{align*}
& \dot{x}=x\left(\frac{1}{2}+y-2 x^{2}\right) \tag{13.81}\\
& \dot{y}=y\left(\frac{5}{2}+x-y\right) .
\end{align*}
$$

The matrix of first derivatives is

$$
M=\left(\begin{array}{cc}
\frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} \tag{13.82}\\
\frac{\partial \dot{y}}{\partial x} & \frac{\partial \dot{y}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2}+y-6 x^{2} & x \\
y & \frac{5}{2}+x-2 y
\end{array}\right)
$$

There are six fixed points.

Figure 13.20: Sketch of phase flow for $\dot{x}=\frac{1}{2} x+x y-2 x^{3}, \dot{y}=\frac{5}{2} y+x y-y^{2}$. Fixed point classifications are in the text.
$(x, y)=(0,0):$ The derivative matrix is

$$
M=\left(\begin{array}{ll}
\frac{1}{2} & 0 \tag{13.83}\\
0 & \frac{5}{2}
\end{array}\right)
$$

The determinant is $D=\frac{5}{4}$ and the trace is $T=3$. Since $D<\frac{1}{4} T^{2}$ and $T>0$, this is an unstable node. (Duh! One can read off both eigenvalues are real and positive.) Eigenvalues: $\lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{5}{2}$. $(x, y)=\left(0, \frac{5}{2}\right):$ The derivative matrix is

$$
M=\left(\begin{array}{cc}
3 & 0 \tag{13.84}\\
\frac{5}{2} & -\frac{5}{2}
\end{array}\right)
$$

for which $D=-\frac{15}{2}$ and $T=\frac{1}{2}$. The determinant is negative, so this is a saddle. Eigenvalues: $\lambda_{1}=-\frac{5}{2}$, $\lambda_{2}=3$.
$(x, y)=\left(-\frac{1}{2}, 0\right):$ The derivative matrix is

$$
M=\left(\begin{array}{cc}
-1 & -\frac{1}{2} \tag{13.85}\\
0 & 2
\end{array}\right)
$$

for which $D=-2$ and $T=+1$. The determinant is negative, so this is a saddle. Eigenvalues: $\lambda_{1}=-1$, $\lambda_{2}=2$.
$(x, y)=\left(\frac{1}{2}, 0\right):$ The derivative matrix is

$$
M=\left(\begin{array}{cc}
-1 & \frac{1}{2} \tag{13.86}\\
0 & 3
\end{array}\right)
$$

for which $D=-3$ and $T=+2$. The determinant is negative, so this is a saddle. Eigenvalues: $\lambda_{1}=-1$, $\lambda_{2}=3$.
$(x, y)=\left(\frac{3}{2}, 4\right)$: This is one root obtained by setting $y=x+\frac{5}{2}$ and the solving $\frac{1}{2}+y-2 x^{2}=3+x-2 x^{2}=0$, giving $x=-1$ and $x=+\frac{3}{2}$. The derivative matrix is

$$
M=\left(\begin{array}{cc}
-9 & \frac{3}{2} \tag{13.87}\\
4 & -4
\end{array}\right)
$$

for which $D=30$ and $T=-13$. Since $D<\frac{1}{4} T^{2}$ and $T<0$, this corresponds to a stable node. Eigenvalues: $\lambda_{1}=-10, \lambda_{2}=-3$.
$(x, y)=\left(-1, \frac{3}{2}\right)$: This is the second root obtained by setting $y=x+\frac{5}{2}$ and the solving $\frac{1}{2}+y-2 x^{2}=$ $3+x-2 x^{2}=0$, giving $x=-1$ and $x=+\frac{3}{2}$. The derivative matrix is

$$
M=\left(\begin{array}{cc}
-4 & -1 \tag{13.88}\\
\frac{3}{2} & -\frac{3}{2}
\end{array}\right)
$$

for which $D=\frac{15}{2}$ and $T=-\frac{11}{2}$. Since $D<\frac{1}{4} T^{2}$ and $T<0$, this corresponds to a stable node. Eigenvalues: $\lambda_{1}=-3, \lambda_{2}=-\frac{5}{2}$.
(b) Sketch the phase flow.

Solution: The flow is sketched in fig. 13.20. Thanks to Evan Bierman for providing the Mathematica code.

Chapter 14

Nonlinear Oscillators

14.1 Weakly Perturbed Linear Oscillators

Consider a nonlinear oscillator described by the equation of motion

$$
\begin{equation*}
\ddot{x}+\Omega_{0}^{2} x=\epsilon h(x) . \tag{14.1}
\end{equation*}
$$

Here, ϵ is a dimensionless parameter, assumed to be small, and $h(x)$ is a nonlinear function of x. In general, we might consider equations of the form

$$
\begin{equation*}
\ddot{x}+\Omega_{0}^{2} x=\epsilon h(x, \dot{x}) \tag{14.2}
\end{equation*}
$$

such as the van der Pol oscillator,

$$
\begin{equation*}
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+\Omega_{0}^{2} x=0 \quad . \tag{14.3}
\end{equation*}
$$

First, we will focus on nondissipative systems, i.e. where we may write $m \ddot{x}=-\partial_{x} V$, with $V(x)$ some potential.

As an example, consider the simple pendulum, which obeys

$$
\begin{equation*}
\ddot{\theta}+\Omega_{0}^{2} \sin \theta=0, \tag{14.4}
\end{equation*}
$$

where $\Omega_{0}^{2}=g / \ell$, with ℓ the length of the pendulum. We may rewrite his equation as

$$
\begin{align*}
\ddot{\theta}+\Omega_{0}^{2} \theta & =\Omega_{0}^{2}(\theta-\sin \theta) \tag{14.5}\\
& =\frac{1}{6} \Omega_{0}^{2} \theta^{3}-\frac{1}{120} \Omega_{0}^{2} \theta^{5}+\ldots
\end{align*}
$$

The RHS above is a nonlinear function of θ. We can define this to be $h(\theta)$, and take $\epsilon=1$.

14.1.1 Naïve Perturbation theory and its failure

Let's assume though that ϵ is small, and write a formal power series expansion of the solution $x(t)$ to equation 14.1 as

$$
\begin{equation*}
x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots \tag{14.6}
\end{equation*}
$$

We now plug this into 14.1. We need to use Taylor's theorem,

$$
\begin{equation*}
h\left(x_{0}+\eta\right)=h\left(x_{0}\right)+h^{\prime}\left(x_{0}\right) \eta+\frac{1}{2} h^{\prime \prime}\left(x_{0}\right) \eta^{2}+\ldots \tag{14.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta=\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots \tag{14.8}
\end{equation*}
$$

Working out the resulting expansion in powers of ϵ is tedious. One finds

$$
\begin{equation*}
h(x)=h\left(x_{0}\right)+\epsilon h^{\prime}\left(x_{0}\right) x_{1}+\epsilon^{2}\left\{h^{\prime}\left(x_{0}\right) x_{2}+\frac{1}{2} h^{\prime \prime}\left(x_{0}\right) x_{1}^{2}\right\}+\ldots . \tag{14.9}
\end{equation*}
$$

Equating terms of the same order in ϵ, we obtain a hierarchical set of equations,

$$
\begin{align*}
& \ddot{x}_{0}+\Omega_{0}^{2} x_{0}=0 \\
& \ddot{x}_{1}+\Omega_{0}^{2} x_{1}=h\left(x_{0}\right) \tag{14.10}\\
& \ddot{x}_{2}+\Omega_{0}^{2} x_{2}=h^{\prime}\left(x_{0}\right) x_{1} \\
& \ddot{x}_{3}+\Omega_{0}^{2} x_{3}=h^{\prime}\left(x_{0}\right) x_{2}+\frac{1}{2} h^{\prime \prime}\left(x_{0}\right) x_{1}^{2}
\end{align*}
$$

et cetera, where prime denotes differentiation with respect to argument. The first of these is easily solved: $x_{0}(t)=A \cos \left(\Omega_{0} t+\varphi\right)$, where A and φ are constants. This solution then is plugged in at the next order, to obtain an inhomogeneous equation for $x_{1}(t)$. Solve for $x_{1}(t)$ and insert into the following equation for $x_{2}(t)$, etc. It looks straightforward enough.

The problem is that resonant forcing terms generally appear in the RHS of each equation of the hierarchy past the first. Define $\theta \equiv \Omega_{0} t+\varphi$. Then $x_{0}(\theta)$ is an even periodic function of θ with period 2π, hence so is $h\left(x_{0}\right)$. We may then expand $h\left(x_{0}(\theta)\right)$ in a Fourier series:

$$
\begin{equation*}
h(A \cos \theta)=\sum_{n=0}^{\infty} h_{n}(A) \cos (n \theta) . \tag{14.11}
\end{equation*}
$$

The $n=1$ term leads to resonant forcing. Thus, the solution for $x_{1}(t)$ is

$$
\begin{equation*}
x_{1}(t)=\frac{1}{\Omega_{0}^{2}} \sum_{\substack{n=0 \\(n \neq 1)}}^{\infty} \frac{h_{n}(A)}{1-n^{2}} \cos \left(n \Omega_{0} t+n \varphi\right)+\frac{h_{1}(A)}{2 \Omega_{0}} t \sin \left(\Omega_{0} t+\varphi\right) \tag{14.12}
\end{equation*}
$$

which increases linearly with time. As an example, consider a cubic nonlinearity with $h(x)=r x^{3}$, where r is a constant. Then using

$$
\begin{equation*}
\cos ^{3} \theta=\frac{3}{4} \cos \theta+\frac{1}{4} \cos (3 \theta) \tag{14.13}
\end{equation*}
$$

we have $h_{1}=\frac{3}{4} r A^{3}$ and $h_{3}=\frac{1}{4} r A^{3}$.

14.1.2 Poincaré-Lindstedt method

The problem here is that the nonlinear oscillator has a different frequency than its linear counterpart. Indeed, if we assume the frequency Ω is a function of ϵ, with

$$
\begin{equation*}
\Omega(\epsilon)=\Omega_{0}+\epsilon \Omega_{1}+\epsilon^{2} \Omega_{2}+\ldots, \tag{14.14}
\end{equation*}
$$

then subtracting the unperturbed solution from the perturbed one and expanding in ϵ yields

$$
\begin{align*}
\cos (\Omega t)-\cos \left(\Omega_{0} t\right) & =-\sin \left(\Omega_{0} t\right)\left(\Omega-\Omega_{0}\right) t-\frac{1}{2} \cos \left(\Omega_{0} t\right)\left(\Omega-\Omega_{0}\right)^{2} t^{2}+\ldots \\
& =-\epsilon \sin \left(\Omega_{0} t\right) \Omega_{1} t-\epsilon^{2}\left\{\sin \left(\Omega_{0} t\right) \Omega_{2} t+\frac{1}{2} \cos \left(\Omega_{0} t\right) \Omega_{1}^{2} t^{2}\right\}+\mathcal{O}\left(\epsilon^{3}\right) . \tag{14.15}
\end{align*}
$$

What perturbation theory can do for us is to provide a good solution up to a given time, provided that ϵ is sufficiently small. It will not give us a solution that is close to the true answer for all time. We see above that in order to do that, and to recover the shifted frequency $\Omega(\epsilon)$, we would have to resum perturbation theory to all orders, which is a daunting task.

The Poincaré-Lindstedt method obviates this difficulty by assuming $\Omega=\Omega(\epsilon)$ from the outset. Define a dimensionless time $s \equiv \Omega t$ and write 14.1 as

$$
\begin{equation*}
\Omega^{2} \frac{d^{2} x}{d s^{2}}+\Omega_{0}^{2} x=\epsilon h(x) \tag{14.16}
\end{equation*}
$$

where

$$
\begin{align*}
x & =x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots \tag{14.17}\\
\Omega^{2} & =a_{0}+\epsilon a_{1}+\epsilon^{2} a_{2}+\ldots
\end{align*} .
$$

We now plug the above expansions into 14.16:

$$
\begin{align*}
& \left(a_{0}+\epsilon a_{1}+\epsilon^{2} a_{2}+\ldots\right)\left(\frac{d^{2} x_{0}}{d s^{2}}+\epsilon \frac{d^{2} x_{1}}{d s^{2}}+\epsilon^{2} \frac{d^{2} x_{2}}{d s^{2}}+\ldots\right) \\
& \quad+\Omega_{0}^{2}\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right) \tag{14.18}\\
& =\epsilon h\left(x_{0}\right)+\epsilon^{2} h^{\prime}\left(x_{0}\right) x_{1}+\epsilon^{3}\left\{h^{\prime}\left(x_{0}\right) x_{2}+\frac{1}{2} h^{\prime \prime}\left(x_{0}\right) x_{1}^{2}\right\}+\ldots
\end{align*}
$$

Now let's write down equalities at each order in ϵ :

$$
\begin{align*}
& a_{0} \frac{d^{2} x_{0}}{d s^{2}}+\Omega_{0}^{2} x_{0}=0 \tag{14.19}\\
& a_{0} \frac{d^{2} x_{1}}{d s^{2}}+\Omega_{0}^{2} x_{1}=h\left(x_{0}\right)-a_{1} \frac{d^{2} x_{0}}{d s^{2}} \tag{14.20}\\
& a_{0} \frac{d^{2} x_{2}}{d s^{2}}+\Omega_{0}^{2} x_{2}=h^{\prime}\left(x_{0}\right) x_{1}-a_{2} \frac{d^{2} x_{0}}{d s^{2}}-a_{1} \frac{d^{2} x_{1}}{d s^{2}}, \tag{14.21}
\end{align*}
$$

et cetera.
The first equation of the hierarchy is immediately solved by

$$
\begin{equation*}
a_{0}=\Omega_{0}^{2} \quad, \quad x_{0}(s)=A \cos (s+\varphi) \tag{14.22}
\end{equation*}
$$

At $\mathcal{O}(\epsilon)$, then, we have

$$
\begin{equation*}
\frac{d^{2} x_{1}}{d s^{2}}+x_{1}=\Omega_{0}^{-2} h(A \cos (s+\varphi))+\Omega_{0}^{-2} a_{1} A \cos (s+\varphi) \tag{14.23}
\end{equation*}
$$

The LHS of the above equation has a natural frequency of unity (in terms of the dimensionless time s). We expect $h\left(x_{0}\right)$ to contain resonant forcing terms, per 14.11. However, we now have the freedom to adjust the undetermined coefficient a_{1} to cancel any such resonant term. Clearly we must choose

$$
\begin{equation*}
a_{1}=-\frac{h_{1}(A)}{A} \tag{14.24}
\end{equation*}
$$

The solution for $x_{1}(s)$ is then

$$
\begin{equation*}
x_{1}(s)=\frac{1}{\Omega_{0}^{2}} \sum_{\substack{n=0 \\(n \neq 1)}}^{\infty} \frac{h_{n}(A)}{1-n^{2}} \cos (n s+n \varphi) \tag{14.25}
\end{equation*}
$$

which is periodic and hence does not increase in magnitude without bound, as does 14.12. The perturbed frequency is then obtained from

$$
\begin{equation*}
\Omega^{2}=\Omega_{0}^{2}-\frac{h_{1}(A)}{A} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \quad \Longrightarrow \quad \Omega(\epsilon)=\Omega_{0}-\frac{h_{1}(A)}{2 A \Omega_{0}} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \tag{14.26}
\end{equation*}
$$

Note that Ω depends on the amplitude of the oscillations.
As an example, consider an oscillator with a quartic nonlinearity in the potential, i.e. $h(x)=r x^{3}$. Then

$$
\begin{equation*}
h(A \cos \theta)=\frac{3}{4} r A^{3} \cos \theta+\frac{1}{4} r A^{3} \cos (3 \theta) . \tag{14.27}
\end{equation*}
$$

We then obtain, setting $\epsilon=1$ at the end of the calculation,

$$
\begin{equation*}
\Omega=\Omega_{0}-\frac{3 r A^{2}}{8 \Omega_{0}}+\ldots \tag{14.28}
\end{equation*}
$$

where the remainder is higher order in the amplitude A. In the case of the pendulum,

$$
\begin{equation*}
\ddot{\theta}+\Omega_{0}^{2} \theta=\frac{1}{6} \Omega_{0}^{2} \theta^{3}+\mathcal{O}\left(\theta^{5}\right) \tag{14.29}
\end{equation*}
$$

and with $r=\frac{1}{6} \Omega_{0}^{2}$ and $\theta_{0}(t)=\theta_{0} \sin (\Omega t)$, we find

$$
\begin{equation*}
T\left(\theta_{0}\right)=\frac{2 \pi}{\Omega}=\frac{2 \pi}{\Omega_{0}} \cdot\left\{1+\frac{1}{16} \theta_{0}^{2}+\ldots\right\} \tag{14.30}
\end{equation*}
$$

One can check that this is correct to lowest nontrivial order in the amplitude, using the exact result for the period,

$$
\begin{equation*}
T\left(\theta_{0}\right)=\frac{4}{\Omega_{0}} \mathbb{K}\left(\sin ^{2} \frac{1}{2} \theta_{0}\right) \tag{14.31}
\end{equation*}
$$

where $\mathbb{K}(x)$ is the complete elliptic integral.
The procedure can be continued to the next order, where the free parameter a_{2} is used to eliminate resonant forcing terms on the RHS.

A good exercise to test one's command of the method is to work out the lowest order nontrivial corrections to the frequency of an oscillator with a quadratic nonlinearity, such as $h(x)=r x^{2}$. One finds that there are no resonant forcing terms at first order in ϵ, hence one must proceed to second order to find the first nontrivial corrections to the frequency.

14.2 Multiple Time Scale Method

Another method of eliminating secular terms (i.e. driving terms which oscillate at the resonant frequency of the unperturbed oscillator), and one which has applicability beyond periodic motion alone, is that of multiple time scale analysis. Consider the equation

$$
\begin{equation*}
\ddot{x}+x=\epsilon h(x, \dot{x}) \tag{14.32}
\end{equation*}
$$

where ϵ is presumed small, and $h(x, \dot{x})$ is a nonlinear function of position and/or velocity. We define a hierarchy of time scales: $T_{n} \equiv \epsilon^{n} t$. There is a normal time scale $T_{0}=t$, slow time scale $T_{1}=\epsilon t$, a 'superslow' time scale $T_{2}=\epsilon^{2} t$, etc. Thus,

$$
\begin{equation*}
\frac{d}{d t}=\frac{\partial}{\partial T_{0}}+\epsilon \frac{\partial}{\partial T_{1}}+\epsilon^{2} \frac{\partial}{\partial T_{2}}+\ldots=\sum_{n=0}^{\infty} \epsilon^{n} \frac{\partial}{\partial T_{n}} \tag{14.33}
\end{equation*}
$$

Next, we expand

$$
\begin{equation*}
x(t)=\sum_{n=0}^{\infty} \epsilon^{n} x_{n}\left(T_{0}, T_{1}, \ldots\right) \tag{14.34}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \epsilon^{n} \frac{\partial}{\partial T_{n}}\right)^{2}\left(\sum_{k=0}^{\infty} \epsilon^{k} x_{k}\right)+\sum_{k=0}^{\infty} \epsilon^{k} x_{k}=\epsilon h\left(\sum_{k=0}^{\infty} \epsilon^{k} x_{k} \quad, \sum_{n=0}^{\infty} \epsilon^{n} \frac{\partial}{\partial T_{n}}\left(\sum_{k=0}^{\infty} \epsilon^{k} x_{k}\right)\right) . \tag{14.35}
\end{equation*}
$$

We now evaluate this order by order in ϵ :

$$
\begin{align*}
& \mathcal{O}\left(\epsilon^{0}\right):\left(\frac{\partial^{2}}{\partial T_{0}^{2}}+1\right) x_{0}=0 \tag{14.36}\\
& \mathcal{O}\left(\epsilon^{1}\right):\left(\frac{\partial^{2}}{\partial T_{0}^{2}}+1\right) x_{1}=-2 \frac{\partial^{2} x_{0}}{\partial T_{0} \partial T_{1}}+h\left(x_{0}, \frac{\partial x_{0}}{\partial T_{0}}\right) \tag{14.37}\\
& \mathcal{O}\left(\epsilon^{2}\right):\left(\frac{\partial^{2}}{\partial T_{0}^{2}}+1\right) x_{2}=-2 \frac{\partial^{2} x_{1}}{\partial T_{0} \partial T_{1}}-2 \frac{\partial^{2} x_{0}}{\partial T_{0} \partial T_{2}}-\frac{\partial^{2} x_{0}}{\partial T_{1}^{2}} \tag{14.38}\\
&+\left.\frac{\partial h}{\partial x}\right|_{\substack{\left.x_{0}, \dot{x}_{0}\right\}}} x_{1}+\left.\frac{\partial h}{\partial \dot{x}}\right|_{\left\{x_{0}, \dot{x}_{0}\right\}}\left(\frac{\partial x_{1}}{\partial T_{0}}+\frac{\partial x_{0}}{\partial T_{1}}\right)
\end{align*}
$$

et cetera. The expansion gets more and more tedious with increasing order in ϵ. Let's carry this procedure out to first order in ϵ. To order ϵ^{0},

$$
\begin{equation*}
x_{0}=A \cos \left(T_{0}+\phi\right), \tag{14.39}
\end{equation*}
$$

where A and ϕ are arbitrary (at this point) functions of $\left\{T_{1}, T_{2}, \ldots\right\}$. Now we solve the next equation in the hierarchy, for x_{1}. Let $\theta \equiv T_{0}+\phi$. Then $\frac{\partial}{\partial T_{0}}=\frac{\partial}{\partial \theta}$ and we have

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1}=2 \frac{\partial A}{\partial T_{1}} \sin \theta+2 A \frac{\partial \phi}{\partial T_{1}} \cos \theta+h(A \cos \theta,-A \sin \theta) \tag{14.40}
\end{equation*}
$$

Since the arguments of h are periodic under $\theta \rightarrow \theta+2 \pi$, we may expand h in a Fourier series:

$$
\begin{equation*}
h(\theta) \equiv h(A \cos \theta,-A \sin \theta)=\sum_{k=1}^{\infty} \alpha_{k}(A) \sin (k \theta)+\sum_{k=0}^{\infty} \beta_{k}(A) \cos (k \theta) \tag{14.41}
\end{equation*}
$$

The inverse of this relation is

$$
\begin{equation*}
\beta_{0}(A)=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} h(\theta) \tag{14.42}
\end{equation*}
$$

and, for $k>0$,

$$
\begin{equation*}
\alpha_{k}(A)=\int_{0}^{2 \pi} \frac{d \theta}{\pi} h(\theta) \sin (k \theta) \quad, \quad \beta_{k}(A)=\int_{0}^{2 \pi} \frac{d \theta}{\pi} h(\theta) \cos (k \theta) \tag{14.43}
\end{equation*}
$$

We now demand that the secular terms on the RHS - those terms proportional to $\cos \theta$ and $\sin \theta$ - must vanish. This means

$$
\begin{array}{r}
2 \frac{\partial A}{\partial T_{1}}+\alpha_{1}(A)=0 \tag{14.44}\\
2 A \frac{\partial \phi}{\partial T_{1}}+\beta_{1}(A)=0
\end{array}
$$

These two first order equations require two initial conditions, which is sensible since our initial equation $\ddot{x}+x=\epsilon h(x, \dot{x})$ is second order in time.

With the secular terms eliminated, we may solve for x_{1} :

$$
\begin{equation*}
x_{1}=\sum_{k \neq 1}^{\infty}\left\{\frac{\alpha_{k}(A)}{1-k^{2}} \sin (k \theta)+\frac{\beta_{k}(A)}{1-k^{2}} \cos (k \theta)\right\}+C_{0} \cos \theta+D_{0} \sin \theta \tag{14.45}
\end{equation*}
$$

Note: (i) the $k=1$ terms are excluded from the sum, and (ii) an arbitrary solution to the homogeneous equation, i.e. eqn. 14.40 with the right hand side set to zero, is included. The constants C_{0} and D_{0} are arbitrary functions of T_{1}, T_{2}, etc. .

The equations for A and ϕ are both first order in T_{1}. They will therefore involve two constants of integration - call them A_{0} and ϕ_{0}. At second order, these constants are taken as dependent upon the superslow time scale T_{2}. The method itself may break down at this order. (See if you can find out why.)

Let's apply this to the nonlinear oscillator $\ddot{x}+\sin x=0$, also known as the simple pendulum. We'll expand the sine function to include only the lowest order nonlinear term, and consider

$$
\begin{equation*}
\ddot{x}+x=\frac{1}{6} \epsilon x^{3} . \tag{14.46}
\end{equation*}
$$

We'll assume ϵ is small and take $\epsilon=1$ at the end of the calculation. This will work provided the amplitude of the oscillation is itself small. To zeroth order, we have $x_{0}=A \cos (t+\phi)$, as always. At first order, we must solve

$$
\begin{align*}
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1} & =2 \frac{\partial A}{\partial T_{1}} \sin \theta+2 A \frac{\partial \phi}{\partial T_{1}} \cos \theta+\frac{1}{6} A^{3} \cos ^{3} \theta \\
& =2 \frac{\partial A}{\partial T_{1}} \sin \theta+2 A \frac{\partial \phi}{\partial T_{1}} \cos \theta+\frac{1}{24} A^{3} \cos (3 \theta)+\frac{1}{8} A^{3} \cos \theta \tag{14.47}
\end{align*}
$$

We eliminate the secular terms by demanding

$$
\begin{equation*}
\frac{\partial A}{\partial T_{1}}=0 \quad, \quad \frac{\partial \phi}{\partial T_{1}}=-\frac{1}{16} A^{2} \tag{14.48}
\end{equation*}
$$

hence $A=A_{0}$ and $\phi=-\frac{1}{16} A_{0}^{2} T_{1}+\phi_{0}$, and

$$
\begin{align*}
x(t)= & A_{0} \cos \left(t-\frac{1}{16} \epsilon A_{0}^{2} t+\phi_{0}\right) \tag{14.49}\\
& -\frac{1}{192} \epsilon A_{0}^{3} \cos \left(3 t-\frac{3}{16} \epsilon A_{0}^{2} t+3 \phi_{0}\right)+\ldots,
\end{align*}
$$

which reproduces the result obtained from the Poincaré-Lindstedt method.

14.2.1 Duffing oscillator

Consider the equation

$$
\begin{equation*}
\ddot{x}+2 \epsilon \mu \dot{x}+x+\epsilon x^{3}=0 \tag{14.50}
\end{equation*}
$$

This describes a damped nonlinear oscillator. Here we assume both the damping coefficient $\tilde{\mu} \equiv \epsilon \mu$ as well as the nonlinearity both depend linearly on the small parameter ϵ. We may write this equation in our standard form $\ddot{x}+x=\epsilon h(x, \dot{x})$, with $h(x, \dot{x})=-2 \mu \dot{x}-x^{3}$.

For $\epsilon>0$, which we henceforth assume, it is easy to see that the only fixed point is $(x, \dot{x})=(0,0)$. The linearized flow in the vicinity of the fixed point is given by

$$
\frac{d}{d t}\binom{x}{\dot{x}}=\left(\begin{array}{cc}
0 & 1 \tag{14.51}\\
-1 & -2 \epsilon \mu
\end{array}\right)\binom{x}{\dot{x}}+\mathcal{O}\left(x^{3}\right) .
$$

The determinant is $D=1$ and the trace is $T=-2 \epsilon \mu$. Thus, provided $\epsilon \mu<1$, the fixed point is a stable spiral; for $\epsilon \mu>1$ the fixed point becomes a stable node.

We employ the multiple time scale method to order ϵ. We have $x_{0}=A \cos \left(T_{0}+\phi\right)$ to zeroth order, as usual. The nonlinearity is expanded in a Fourier series in $\theta=T_{0}+\phi$:

$$
\begin{align*}
h\left(x_{0}, \frac{\partial x_{0}}{\partial T_{0}}\right) & =2 \mu A \sin \theta-A^{3} \cos ^{3} \theta \tag{14.52}\\
& =2 \mu A \sin \theta-\frac{3}{4} A^{3} \cos \theta-\frac{1}{4} A^{3} \cos 3 \theta
\end{align*}
$$

Thus, $\alpha_{1}(A)=2 \mu A$ and $\beta_{1}(A)=-\frac{3}{4} A^{3}$. We now solve the first order equations,

$$
\begin{equation*}
\frac{\partial A}{\partial T_{1}}=-\frac{1}{2} \alpha_{1}(A)=-\mu A \quad \Longrightarrow \quad A(T)=A_{0} e^{-\mu T_{1}} \tag{14.53}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\frac{\partial \phi}{\partial T_{1}}=-\frac{\beta_{1}(A)}{2 A}=\frac{3}{8} A_{0}^{2} e^{-2 \mu T_{1}} \quad \Longrightarrow \quad \phi\left(T_{1}\right)=\phi_{0}+\frac{3 A_{0}^{2}}{16 \mu}\left(1-e^{-2 \mu T_{1}}\right) \tag{14.54}
\end{equation*}
$$

After elimination of the secular terms, we may read off

$$
\begin{equation*}
x_{1}\left(T_{0}, T_{1}\right)=\frac{1}{32} A^{3}\left(T_{1}\right) \cos \left(3 T_{0}+3 \phi\left(T_{1}\right)\right) . \tag{14.55}
\end{equation*}
$$

Finally, we have

$$
\begin{align*}
x(t)= & A_{0} e^{-\epsilon \mu t} \cos \left(t+\frac{3 A_{0}^{2}}{16 \mu}\left(1-e^{-2 \epsilon \mu t}\right)+\phi_{0}\right) \\
& +\frac{1}{32} \epsilon A_{0}^{3} e^{-3 \epsilon \mu t} \cos \left(3 t+\frac{9 A_{0}^{2}}{16 \mu}\left(1-e^{-2 \epsilon \mu t}\right)+3 \phi_{0}\right) \tag{14.56}
\end{align*}
$$

14.2.2 Van der Pol oscillator

Let's apply this method to another problem, that of the van der Pol oscillator,

$$
\begin{equation*}
\ddot{x}+\epsilon\left(x^{2}-1\right) \dot{x}+x=0, \tag{14.57}
\end{equation*}
$$

with $\epsilon>0$. The nonlinear term acts as a frictional drag for $x>1$, and as a 'negative friction' (i.e. increasing the amplitude) for $x<1$. Note that the linearized equation at the fixed point $(x=0, \dot{x}=0)$ corresponds to an unstable spiral for $\epsilon<2$.
For the van der Pol oscillator, we have $h(x, \dot{x})=\left(1-x^{2}\right) \dot{x}$, and plugging in the zeroth order solution $x_{0}=A \cos (t+\phi)$ gives

$$
\begin{align*}
h\left(x_{0}, \frac{\partial x_{0}}{\partial T_{0}}\right) & =\left(1-A^{2} \cos ^{2} \theta\right)(-A \sin \theta) \tag{14.58}\\
& =\left(-A+\frac{1}{4} A^{3}\right) \sin \theta+\frac{1}{4} A^{3} \sin (3 \theta),
\end{align*}
$$

with $\theta \equiv t+\phi$. Thus, $\alpha_{1}=-A+\frac{1}{4} A^{3}$ and $\beta_{1}=0$, which gives $\phi=\phi_{0}$ and

$$
\begin{equation*}
2 \frac{\partial A}{\partial T_{1}}=A-\frac{1}{4} A^{3} \tag{14.59}
\end{equation*}
$$

The equation for A is easily integrated:

$$
\begin{gather*}
d T_{1}=- \\
\Longrightarrow \frac{8 d A}{A\left(A^{2}-4\right)}=\left(\frac{2}{A}-\frac{1}{A-2}-\frac{1}{A+2}\right) d A=d \ln \left(\frac{A}{A^{2}-4}\right) \tag{14.60}\\
\Longrightarrow \quad A\left(T_{1}\right)=\frac{2}{\sqrt{1-\left(1-\frac{4}{A_{0}^{2}}\right) \exp \left(-T_{1}\right)}} .
\end{gather*}
$$

Thus,

$$
\begin{equation*}
x_{0}(t)=\frac{2 \cos \left(t+\phi_{0}\right)}{\sqrt{1-\left(1-\frac{4}{A_{0}^{2}}\right) \exp (-\epsilon t)}} . \tag{14.61}
\end{equation*}
$$

This behavior describes the approach to the limit cycle $2 \cos \left(t+\phi_{0}\right)$. With the elimination of the secular terms, we have

$$
\begin{equation*}
x_{1}(t)=-\frac{1}{32} A^{3} \sin (3 \theta)=-\frac{\frac{1}{4} \sin \left(3 t+3 \phi_{0}\right)}{\left[1-\left(1-\frac{4}{A_{0}^{2}}\right) \exp (-\epsilon t)\right]^{3 / 2}} . \tag{14.62}
\end{equation*}
$$

14.3 Forced Nonlinear Oscillations

The forced, damped linear oscillator,

$$
\begin{equation*}
\ddot{x}+2 \mu \dot{x}+x=f_{0} \cos \Omega t \tag{14.63}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
x(t)=x_{\mathrm{h}}(t)+C(\Omega) f_{0} \cos (\Omega t+\delta(\Omega)), \tag{14.64}
\end{equation*}
$$

where $x_{\mathrm{h}}(t)=A_{+} e^{\lambda_{+} t}+A_{-} e^{\lambda_{-} t}$ is the solution to the homogeneous equation (i.e. with $f_{0}=0$), with $\lambda_{ \pm}=-\mu \pm \sqrt{\mu^{2}-1}$ the roots of $\lambda^{2}+2 \mu \lambda+1=0$. The 'susceptibility' C and phase shift δ are given by

$$
\begin{equation*}
C(\Omega)=\frac{1}{\sqrt{\left(\Omega^{2}-1\right)^{2}+4 \mu^{2} \Omega^{2}}} \quad, \quad \delta(\Omega)=\tan ^{-1}\left(\frac{2 \mu \Omega}{1-\Omega^{2}}\right) \tag{14.65}
\end{equation*}
$$

The homogeneous solution, $x_{\mathrm{h}}(t)$, is a transient and decays exponentially with time, since $\operatorname{Re}\left(\lambda_{ \pm}\right)<0$. The asymptotic behavior is a phase-shifted oscillation at the driving frequency Ω.

Now let's add a nonlinearity. We study the equation

$$
\begin{equation*}
\ddot{x}+x=\epsilon h(x, \dot{x})+\epsilon f_{0} \cos (t+\epsilon \nu t) . \tag{14.66}
\end{equation*}
$$

Note that amplitude of the driving term, $\epsilon f_{0} \cos (\Omega t)$, is assumed to be small, i.e. proportional to ϵ, and the driving frequency $\Omega=1+\epsilon \nu$ is assumed to be close to resonance. (The resonance frequency of the unperturbed oscillator is $\omega_{\text {res }}=1$.) Were the driving frequency far from resonance, it could be dealt with in the same manner as the non-secular terms encountered thus far. The situation when Ω is close to resonance deserves our special attention.

At order ϵ^{0}, we still have $x_{0}=A \cos \left(T_{0}+\phi\right)$. We write

$$
\begin{equation*}
\Omega t=t+\epsilon \nu t=T_{0}+\nu T_{1} \equiv \theta-\psi \tag{14.67}
\end{equation*}
$$

where $\theta=T_{0}+\phi\left(T_{1}\right)$ as before, and $\psi\left(T_{1}\right) \equiv \phi\left(T_{1}\right)-\nu T_{1}$. At order ϵ^{1}, we must then solve

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1}=2 A^{\prime} \sin \theta+2 A \phi^{\prime} \cos \theta+h(A \cos \theta,-A \sin \theta)+f_{0} \cos (\theta-\psi) \\
=\sum_{k \neq 1}\left(\alpha_{k} \sin (k \theta)+\beta_{k} \cos (k \theta)\right)+\left(2 A^{\prime}+\alpha_{1}+f_{0} \sin \psi\right) \sin \theta \tag{14.68}\\
+\left(2 A \psi^{\prime}+2 A \nu+\beta_{1}+f_{0} \cos \psi\right) \cos \theta
\end{gather*}
$$

where the prime denotes differentiation with respect to T_{1}. We thus have the $N=2$ dynamical system

$$
\begin{align*}
\frac{d A}{d T_{1}} & =-\frac{1}{2} \alpha_{1}(A)-\frac{1}{2} f_{0} \sin \psi \\
\frac{d \psi}{d T_{1}} & =-\nu-\frac{\beta_{1}(A)}{2 A}-\frac{f_{0}}{2 A} \cos \psi \tag{14.69}
\end{align*}
$$

If we assume that $\{A, \psi\}$ approaches a fixed point of these dynamics, then at the fixed point these equations provide a relation between the amplitude A, the 'detuning' parameter ν, and the drive f_{0} :

$$
\begin{equation*}
F(A) \equiv\left[\alpha_{1}(A)\right]^{2}+\left[2 \nu A+\beta_{1}(A)\right]^{2}=f_{0}^{2} \tag{14.70}
\end{equation*}
$$

In general this is a nonlinear equation for $A\left(f_{0}, \nu\right)$. The linearized (A, ψ) dynamics in the vicinity of a fixed point is governed by the matrix

$$
M=\left(\begin{array}{ll}
\partial \dot{A} / \partial A & \partial \dot{A} / \partial \psi \tag{14.71}\\
\partial \dot{\psi} / \partial A & \partial \dot{\psi} / \partial \psi
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} \alpha_{1}^{\prime}(A) & \nu A+\frac{1}{2} \beta_{1}(A) \\
-\frac{\beta_{1}^{\prime}(A)}{2 A}-\frac{\nu}{A} & -\frac{\alpha_{1}(A)}{2 A}
\end{array}\right) .
$$

If the (A, ψ) dynamics exhibits a stable fixed point $\left(A^{*}, \psi^{*}\right)$, then one has

$$
\begin{equation*}
x_{0}(t)=A^{*} \cos \left(T_{0}+\nu T_{1}+\psi^{*}\right)=A^{*} \cos \left(\Omega t+\psi^{*}\right) . \tag{14.72}
\end{equation*}
$$

Figure 14.1: Phase diagram for the forced Duffing oscillator.

The oscillator's frequency is then the forcing frequency $\Omega=1+\epsilon \nu$, in which case the oscillator is said to be entrained, or synchronized, with the forcing. Note that

$$
\operatorname{det} M=\frac{F^{\prime}\left(A^{*}\right)}{8 A^{*}} .
$$

14.3.1 Forced Duffing oscillator

Thus far our approach has been completely general. We now restrict our attention to the Duffing equation, for which

$$
\begin{equation*}
\alpha_{1}(A)=2 \mu A \quad, \quad \beta_{1}(A)=-\frac{3}{4} A^{3} \tag{14.73}
\end{equation*}
$$

which yields the cubic equation

$$
\begin{equation*}
A^{6}-\frac{16}{3} \nu A^{4}+\frac{64}{9}\left(\mu^{2}+\nu^{2}\right) A^{2}-\frac{16}{9} f_{0}^{2}=0 . \tag{14.74}
\end{equation*}
$$

Analyzing the cubic is a good exercise. Setting $y=A^{2}$, we define

$$
\begin{equation*}
G(y) \equiv y^{3}-\frac{16}{3} \nu y^{2}+\frac{64}{9}\left(\mu^{2}+\nu^{2}\right) y, \tag{14.75}
\end{equation*}
$$

and we seek a solution to $G(y)=\frac{16}{9} f_{0}^{2}$. Setting $G^{\prime}(y)=0$, we find roots at

$$
\begin{equation*}
y_{ \pm}=\frac{16}{9} \nu \pm \frac{8}{9} \sqrt{\nu^{2}-3 \mu^{2}} . \tag{14.76}
\end{equation*}
$$

If $\nu^{2}<3 \mu^{2}$ the roots are imaginary, which tells us that $G(y)$ is monotonically increasing for real y. There is then a unique solution to $G(y)=\frac{16}{9} f_{0}^{2}$.
If $\nu^{2}>3 \mu^{2}$, then the cubic $G(y)$ has a local maximum at $y=y_{-}$and a local minimum at $y=y_{+}$. For $\nu<-\sqrt{3} \mu$, we have $y_{-}<y_{+}<0$, and since $y=A^{2}$ must be positive, this means that once more there is a unique solution to $G(y)=\frac{16}{9} f_{0}^{2}$.

Figure 14.2: Amplitude A versus detuning ν for the forced Duffing oscillator for three values of the drive f_{0}. The critical drive is $f_{0, \mathrm{c}}=\frac{16}{3^{5 / 4}} \mu^{3 / 2}$. For $f_{0}>f_{0, \mathrm{c}}$, there is hysteresis as a function of the detuning.

For $\nu>\sqrt{3} \mu$, we have $y_{+}>y_{-}>0$. There are then three solutions for $y(\nu)$ for $f_{0} \in\left[f_{0}^{-}, f_{0}^{+}\right]$, where $f_{0}^{ \pm}=\frac{3}{4} \sqrt{G\left(y_{\mp}\right)}$. If we define $\kappa \equiv \nu / \mu$, then

$$
\begin{equation*}
f_{0}^{ \pm}=\frac{8}{9} \mu^{3 / 2} \sqrt{\kappa^{3}+9 \kappa \pm \sqrt{\kappa^{2}-3}} . \tag{14.77}
\end{equation*}
$$

The phase diagram is shown in fig. 14.1. The minimum value for f_{0} is $f_{0, \mathrm{c}}=\frac{16}{3^{5 / 4}} \mu^{3 / 2}$, which occurs at $\kappa=\sqrt{3}$.

Thus far we have assumed that the (A, ψ) dynamics evolves to a fixed point. We should check to make sure that this fixed point is in fact stable. To do so, we evaluate the linearized dynamics at the fixed point. Writing $A=A^{*}+\delta A$ and $\psi=\psi^{*}+\delta \psi$, we have

$$
\begin{equation*}
\frac{d}{d T_{1}}\binom{\delta A}{\delta \psi}=M\binom{\delta A}{\delta \psi} \tag{14.78}
\end{equation*}
$$

with

$$
M=\left(\begin{array}{cc}
\frac{\partial \dot{A}}{\partial A} & \frac{\partial \dot{A}}{\partial \psi} \tag{14.79}\\
\frac{\partial \dot{\psi}}{\partial A} & \frac{\partial \dot{\psi}}{\partial \psi}
\end{array}\right)=\left(\begin{array}{cc}
-\mu & -\frac{1}{2} f_{0} \cos \psi \\
\frac{3}{4} A+\frac{f_{0}}{2 A^{2}} \cos \psi & \frac{f_{0}}{2 A} \sin \psi
\end{array}\right)=\left(\begin{array}{cc}
-\mu & \nu A-\frac{3}{8} A^{3} \\
\frac{9}{8} A-\frac{\nu}{A} & -\mu
\end{array}\right) .
$$

One then has $T=-2 \mu$ and

$$
\begin{equation*}
D=\mu^{2}+\left(\nu-\frac{3}{8} A^{2}\right)\left(\nu-\frac{9}{8} A^{2}\right) . \tag{14.80}
\end{equation*}
$$

Setting $D=\frac{1}{4} T^{2}=\mu^{2}$ sets the boundary between stable spiral and stable node. Setting $D=0$ sets the boundary between stable node and saddle. The fixed point structure is as shown in fig. 14.3. Though the amplitude exhibits hysteresis, the oscillator frequency is always synchronized with the forcing as one varies the detuning.

Figure 14.3: Amplitude versus detuning for the forced Duffing oscillator for ten equally spaced values of f_{0} between $\mu^{3 / 2}$ and $10 \mu^{3 / 2}$. The critical value is $f_{0, \mathrm{c}}=4.0525 \mu^{3 / 2}$. The red and blue curves are boundaries for the fixed point classification.

14.3.2 Forced van der Pol oscillator

Consider now a weakly dissipative, weakly forced van der Pol oscillator, governed by the equation

$$
\begin{equation*}
\ddot{x}+\epsilon\left(x^{2}-1\right) \dot{x}+x=\epsilon f_{0} \cos (t+\epsilon \nu t) \tag{14.81}
\end{equation*}
$$

where the forcing frequency is $\Omega=1+\epsilon \nu$, which is close to the natural frequency $\omega_{0}=1$. We apply the multiple time scale method, with $h(x, \dot{x})=\left(1-x^{2}\right) \dot{x}$. As usual, the lowest order solution is $x_{0}=$ $A\left(T_{1}\right) \cos \left(T_{0}+\phi\left(T_{1}\right)\right)$, where $T_{0}=t$ and $T_{1}=\epsilon t$. Again, we define $\theta \equiv T_{0}+\phi\left(T_{1}\right)$ and $\psi\left(T_{1}\right) \equiv$ $\phi\left(T_{1}\right)-\nu T_{1}$. From

$$
\begin{equation*}
h(A \cos \theta,-A \sin \theta)=\left(\frac{1}{4} A^{3}-A\right) \sin \theta+\frac{1}{4} A^{3} \sin (3 \theta), \tag{14.82}
\end{equation*}
$$

we arrive at

$$
\begin{align*}
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1} & =-2 \frac{\partial^{2} x_{0}}{\partial T_{0} \partial T_{1}}+h\left(x_{0}, \frac{\partial x_{0}}{\partial T_{0}}\right) \\
& =\left(\frac{1}{4} A^{3}-A+2 A^{\prime}+f_{0} \sin \psi\right) \sin \theta+\left(2 A \psi^{\prime}+2 \nu A+f_{0} \cos \psi\right) \cos \theta+\frac{1}{4} A^{3} \sin (3 \theta) \tag{14.83}
\end{align*}
$$

We eliminate the secular terms, proportional to $\sin \theta$ and $\cos \theta$, by demanding

$$
\begin{align*}
& \frac{d A}{d T_{1}}=\frac{1}{2} A-\frac{1}{8} A^{3}-\frac{1}{2} f_{0} \sin \psi \tag{14.84}\\
& \frac{d \psi}{d T_{1}}=-\nu-\frac{f_{0}}{2 A} \cos \psi \tag{14.85}
\end{align*}
$$

Figure 14.4: Amplitude versus detuning for the forced van der Pol oscillator. Fixed point classifications are abbreviated SN (stable node), SS (stable spiral), UN (unstable node), US (unstable spiral), and SP (saddle point).

Stationary solutions have $A^{\prime}=\psi^{\prime}=0$, hence $\cos \psi=-2 \nu A / f_{0}$, and hence

$$
\begin{align*}
f_{0}^{2} & =4 \nu^{2} A^{2}+\left(1-\frac{1}{4} A^{2}\right)^{2} A^{2} \\
& =\frac{1}{16} A^{6}-\frac{1}{2} A^{4}+\left(1+4 \nu^{2}\right) A^{2} . \tag{14.86}
\end{align*}
$$

For this solution, we have

$$
\begin{equation*}
x_{0}=A^{*} \cos \left(T_{0}+\nu T_{1}+\psi^{*}\right) \tag{14.87}
\end{equation*}
$$

and the oscillator's frequency is the forcing frequency $\Omega=1+\varepsilon \nu$.
To proceed further, let $y=A^{2}$, and consider the cubic equation

$$
\begin{equation*}
G(y)=\frac{1}{16} y^{3}-\frac{1}{2} y^{2}+\left(1+4 \nu^{2}\right) y=f_{0}^{2} . \tag{14.88}
\end{equation*}
$$

Setting $G^{\prime}(y)=0$, we find the roots of $G^{\prime}(y)$ lie at $y_{ \pm}=\frac{4}{3}(2 \pm u)$, where $u=\left(1-12 \nu^{2}\right)^{1 / 2}$. Thus, the roots are complex for $\nu^{2}>\frac{1}{12}$, in which case $G(y)$ is monotonically increasing, and there is a unique solution to $G(y)=f_{0}^{2}$. Since $G(0)=0<f_{0}^{2}$, that solution satisfies $y>0$. For $\nu^{2}<\frac{1}{12}$, there are two local extrema at $y=y_{ \pm}$. When $G_{\min }=G\left(y_{+}\right)<f_{0}^{2}<G\left(y_{-}\right)=G_{\max }$, the cubic equation $G(y)=f_{0}^{2}$ has three real, positive roots. This is equivalent to the condition

$$
\begin{equation*}
-\frac{8}{27} u^{3}+\frac{8}{9} u^{2}<\frac{32}{27}-f_{0}^{2}<\frac{8}{27} u^{3}+\frac{8}{9} u^{2} . \tag{14.89}
\end{equation*}
$$

Figure 14.5: Phase diagram for the weakly forced van der Pol oscillator in the $\left(\nu^{2}, f_{0}^{2}\right)$ plane. Inset shows detail. Abbreviations for fixed point classifications are as in fig. 14.4.

We can say even more by exploring the behavior of eqs. (14.84) and (14.85) in the vicinity of the fixed points. Writing $A=A^{*}+\delta A$ and $\psi=\psi^{*}+\delta \psi$, we have

$$
\frac{d}{d T_{1}}\binom{\delta A}{\delta \psi}=\left(\begin{array}{cc}
\frac{1}{2}\left(1-\frac{3}{4} A^{* 2}\right) & \nu A^{*} \tag{14.90}\\
-\nu / A^{*} & \frac{1}{2}\left(1-\frac{1}{4} A^{* 2}\right)
\end{array}\right)\binom{\delta A}{\delta \psi} .
$$

The eigenvalues of the linearized dynamics at the fixed point are given by $\lambda_{ \pm}=\frac{1}{2}\left(T \pm \sqrt{T^{2}-4 D}\right)$, where T and D are the trace and determinant of the linearized equation. Recall now the classification scheme for fixed points of two-dimensional phase flows. When $D<0$, we have $\lambda_{-}<0<\lambda_{+}$and the fixed point is a saddle. For $0<4 D<T^{2}$, both eigenvalues have the same sign, so the fixed point is a node. For $4 D>T^{2}$, the eigenvalues form a complex conjugate pair, and the fixed point is a spiral. A node/spiral fixed point is stable if $T<0$ and unstable if $T>0$. For our forced van der Pol oscillator, we

Figure 14.6: Forced van der Pol system with $\epsilon=0.1, \nu=0.4$ for three values of f_{0}. The limit entrained solution becomes unstable at $f_{0}=1.334$.
have

$$
\begin{align*}
& T=1-\frac{1}{2} A^{* 2} \\
& D=\frac{1}{4}\left(1-A^{* 2}+\frac{3}{16} A^{* 4}\right)+\nu^{2} \tag{14.91}
\end{align*}
$$

From these results we can obtain the plot of fig. 14.4, where amplitude is shown versus detuning. We now ask: for what values of f_{0}^{2} is there hysteretic behavior over a range $\nu \in\left[\nu_{-}, \nu_{+}\right]$? Suppose, following the curves of constant f_{0}^{2} in fig. 14.4, we start somewhere in the upper left corner of the diagram, in the region $D>0$ and $f_{0}^{2}<\frac{32}{27}$. Now ramp up ν^{2} while keeping f_{0}^{2} constant until we arrive on the upper
branch of the $D=0$ curve. An infinitesimal further increase in ν^{2} will cause a discontinuous drop in $y=A^{2}$ to a value below the saddle point region. Clearly if $f_{0}^{2}=1$, we will wind up on a branch of this curve for which $A^{2}<2$, which is unstable, and so in order to end up on a stable branch, we must start with $f_{0}^{2}>1$. To find the minimum such value of f_{0}^{2} for which this is possible, we first demand $G(y)=0$ as well as $D=0$. The second of these conditions is equivalent to $G^{\prime}(y)=0$. Eliminating y, we obtain the equation $\frac{8}{27}(2+u)^{2}(1-u)=f_{0}^{2}$, where $u=\sqrt{1-12 \nu^{2}}$ as above. Next, we demand that $G(y)=0$ at $y=2$ (i.e. the blue line in fig. 14.4) for the same values of f_{0}^{2} and ν^{2}. Thus says $f_{0}^{2}=\frac{1}{6}\left(7-4 u^{2}\right)$. Eliminating f_{0}^{2}, we obtain the equation

$$
\begin{equation*}
\frac{8}{27}(2+u)^{2}(1-u)=\frac{1}{6}\left(7-4 u^{2}\right) \tag{14.92}
\end{equation*}
$$

which is equivalent to the factorized cubic $(4 u-1)(2 u+1)^{2}=0$. The root we seek is $u=\frac{1}{4}$, corresponding to $\nu^{2}=\frac{15}{16} \cdot \frac{1}{12}$ and $f_{0}^{2}=\frac{27}{24}$. Thus, hysteretic behavior is possible only in the narrow regime $f_{0}^{2} \in\left[\frac{27}{24}, \frac{32}{27}\right]$. The phase diagram in the $\left(\nu^{2}, f_{0}^{2}\right)$ plane is shown in fig. 14.5. Hysteresis requires two among the three fixed points be stable, so the system can jump from one stable branch to another as ν is varied. These regions are so small they are only discernible in the inset.

Finally, we can make the following statement about the global dynamics (i.e. not simply in the vicinity of a fixed point). For large A, we have

$$
\begin{equation*}
\frac{d A}{d T_{1}}=-\frac{1}{8} A^{3}+\ldots \quad, \quad \frac{d \psi}{d T_{1}}=-\nu+\ldots \tag{14.93}
\end{equation*}
$$

This flow is inward, hence if the flow is not to a stable fixed point, it must be attracted to a limit cycle. The limit cycle necessarily involves several frequencies. This result - the generation of new frequencies by nonlinearities - is called heterodyning.

We can see heterodyning in action in the van der Pol system. In fig. 14.5, the blue line which separates stable and unstable spiral solutions is given by $f_{0}^{2}=8 \nu^{2}+\frac{1}{2}$. For example, if we take $\nu=0.40$ then the boundary lies at $f_{0}=1.334$. For $f_{0}<1.334$, we expect heterodyning, as the entrained solution is unstable. For $f>1.334$ the solution is entrained and oscillates at a fixed frequency. This behavior is exhibited in fig. 14.6.

14.4 Synchronization

Thus far we have assumed both the nonlinearity as well as the perturbation are weak. In many systems, we are confronted with a strong nonlinearity which we can perturb weakly. How does an attractive limit cycle in a strongly nonlinear system respond to weak periodic forcing? Here we shall follow the nice discussion in the book of Pikovsky et al.

Consider a forced dynamical system,

$$
\begin{equation*}
\dot{\varphi}=\boldsymbol{V}(\boldsymbol{\varphi})+\varepsilon \boldsymbol{f}(\boldsymbol{\varphi}, t) \tag{14.94}
\end{equation*}
$$

When $\varepsilon=0$, we assume that the system has at least one attractive limit cycle $\gamma(t)=\gamma\left(t+T_{0}\right)$. All points on the limit cycle are fixed under the T_{0}-advance map $g_{T_{0}}$, where $g_{\tau} \boldsymbol{\varphi}(t)=\boldsymbol{\varphi}(t+\tau)$. The idea is now to parameterize the points along the limit cycle by a phase angle ϕ which runs from 0 to 2π such
that $\phi(t)$ increases by 2π with each orbit of the limit cycle, with ϕ increasing uniformly with time, so that $\dot{\phi}=\omega_{0}=2 \pi / T_{0}$. Now consider the action of the T_{0}-advance map $g_{T_{0}}$ on points in the vicinity of the limit cycle. Since each point $\gamma(\phi)$ on the limit cycle is a fixed point, and since the limit cycle is presumed to be attractive, we can define the ϕ-isochrone as the set of points $\{\boldsymbol{\varphi}\}$ in phase space which flow to the fixed point $\gamma(\phi)$ under repeated application of $g_{T_{0}}$. The isochrones are $(N-1)$-dimensional hypersurfaces.

Equivalently, consider a point $\varphi_{0} \in \Omega_{\gamma}$ lying within the basin of attraction Ω_{γ} of the limit cycle $\gamma(t)$. We say that φ_{0} lies along the ϕ-isochrone if

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left|\varphi(t)-\gamma\left(t+\frac{\phi}{2 \pi} T_{0}\right)\right|=0 \tag{14.95}
\end{equation*}
$$

where $\varphi(0)=\varphi_{0}$. For each $\varphi_{0} \in \Omega_{\gamma}$, there exists a unique corresponding value of $\phi\left(\varphi_{0}\right) \in[0,2 \pi]$. This is called the asymptotic (or latent) phase of φ_{0}.
To illustrate this, we analyze the example in Pikovsky et al. of the complex amplitude equation (CAE),

$$
\begin{equation*}
\frac{d A}{d t}=(1+i \alpha) A-(1+i \beta)|A|^{2} A \tag{14.96}
\end{equation*}
$$

where $A \in \mathbb{C}$ is a complex number. It is convenient to work in polar coordinates, writing $A=R e^{i \Theta}$, in which case the real and complex parts of the CAE become

$$
\begin{align*}
& \dot{R}=\left(1-R^{2}\right) R \\
& \dot{\Theta}=\alpha-\beta R^{2} . \tag{14.97}
\end{align*}
$$

These equations can be integrated to yield the solution

$$
\begin{align*}
R(t) & =\frac{R_{0}}{\sqrt{R_{0}^{2}+\left(1-R_{0}^{2}\right) e^{-2 t}}} \\
\Theta(t) & =\Theta_{0}+(\alpha-\beta) t-\frac{1}{2} \beta \ln \left[R_{0}^{2}+\left(1-R_{0}^{2}\right) e^{-2 t}\right] \tag{14.98}\\
& =\Theta_{0}+(\alpha-\beta) t+\beta \ln \left(R / R_{0}\right) .
\end{align*}
$$

As $t \rightarrow \infty$, we have $R(t) \rightarrow 1$ and $\dot{\Theta}(t) \rightarrow \omega_{0}$. Thus the limit cycle is the circle $R=1$, and its frequency is $\omega_{0}=\alpha-\beta$.
Since all points on each isochrone share the same phase, we can evaluate $\dot{\phi}$ along the limit cycle, and thus we have $\dot{\phi}=\omega_{0}$. The functional form of the isochrones is dictated by the rotational symmetry of the vector field, which requires $\phi(R, \Theta)=\Theta-f(R)$, where $f(R)$ is an as-yet undetermined function. Taking the derivative, we immediately find $f(R)=\beta \ln R$, i.e.

$$
\begin{equation*}
\phi(R, \Theta)=\Theta-\beta \ln R+c, \tag{14.99}
\end{equation*}
$$

where c is a constant. We can now check that

$$
\begin{equation*}
\dot{\phi}=\dot{\Theta}-\beta \frac{\dot{R}}{R}=\alpha-\beta=\omega_{0} \tag{14.100}
\end{equation*}
$$

Figure 14.7: Isochrones of the complex amplitude equation $\dot{A}=(1+i \alpha) A-(1+i \beta)|A|^{2} A$, where $A=X+i Y$.

Without loss of generality we may take $c=0$. Thus the ϕ-isochrone is given by the curve $\Theta(R)=$ $\phi+\beta \ln R$, which is a logarithmic spiral. These isochrones are depicted in fig. 14.7.

At this point we have defined a phase function $\phi(\varphi)$ as the phase of the fixed point along the limit cycle to which φ flows under repeated application of the T_{0}-advance map $g_{T_{0}}$. Now let us examine the dynamics of ϕ for the weakly perturbed system of eqn. 14.94. We have

$$
\begin{align*}
\frac{d \phi}{d t} & =\sum_{j=1}^{N} \frac{\partial \phi}{\partial \varphi_{j}} \frac{d \varphi_{j}}{d t} \\
& =\omega_{0}+\varepsilon \sum_{j=1}^{N} \frac{\partial \phi}{\partial \varphi_{j}} f_{j}(\boldsymbol{\varphi}, t) . \tag{14.101}
\end{align*}
$$

We will assume that φ is close to the limit cycle, so that $\varphi-\gamma(\phi)$ is small. As an example, consider once more the complex amplitude equation (14.96), but now adding in a periodic forcing term.

$$
\begin{equation*}
\frac{d A}{d t}=(1+i \alpha) A-(1+i \beta)|A|^{2} A+\varepsilon \cos \omega t . \tag{14.102}
\end{equation*}
$$

Writing $A=X+i Y$, we have

$$
\begin{align*}
\dot{X} & =X-\alpha Y-(X-\beta Y)\left(X^{2}+Y^{2}\right)+\varepsilon \cos \omega t \\
\dot{Y} & =Y+\alpha X-(\beta X+Y)\left(X^{2}+Y^{2}\right) \tag{14.103}
\end{align*}
$$

In Cartesian coordinates, the isochrones for the $\varepsilon=0$ system are

$$
\begin{equation*}
\phi=\tan ^{-1}(Y / X)-\frac{1}{2} \beta \ln \left(X^{2}+Y^{2}\right) \tag{14.104}
\end{equation*}
$$

hence

$$
\begin{align*}
\frac{d \phi}{d t} & =\omega_{0}+\varepsilon \frac{\partial \phi}{\partial X} \cos \omega t \\
& =\alpha-\beta-\varepsilon\left(\frac{\beta X+Y}{X^{2}+Y^{2}}\right) \cos \omega t \tag{14.105}\\
& \approx \omega_{0}-\varepsilon(\beta \cos \phi+\sin \phi) \cos \omega t \\
& =\omega_{0}-\varepsilon \sqrt{1+\beta^{2}} \cos \left(\phi-\phi_{\beta}\right) \cos \omega t
\end{align*}
$$

where $\phi_{\beta}=\operatorname{ctn}^{-1} \beta$. Note that in the third line above we have invoked $R \approx 1$, i.e. we assume that we are close to the limit cycle.

We now define the function

$$
\begin{equation*}
\left.F(\phi, t) \equiv \sum_{j=1}^{N} \frac{\partial \phi}{\partial \varphi_{j}}\right|_{\gamma(\phi)} f_{j}(\gamma(\phi), t) \tag{14.106}
\end{equation*}
$$

The phase dynamics for ϕ are now written as

$$
\begin{equation*}
\dot{\phi}=\omega_{0}+\varepsilon F(\phi, t) . \tag{14.107}
\end{equation*}
$$

Now $F(\phi, t)$ is periodic in both its arguments, so we may write

$$
\begin{equation*}
F(\phi, t)=\sum_{k, l} F_{k l} e^{i(k \phi+l \omega t)} . \tag{14.108}
\end{equation*}
$$

For the unperturbed problem, we have $\dot{\phi}=\omega_{0}$, hence resonant terms in the above sum are those for which $k \omega_{0}+l \omega \approx 0$. This occurs when $\omega \approx \frac{p}{q} \omega_{0}$, where p and q are relatively prime integers. In this case the resonance condition is satisfied for $k=j p$ and $l=-j q$ for all $j \in \mathbb{Z}$. We now separate the resonant from the nonresonant terms in the (k, l) sum, writing

$$
\begin{equation*}
\dot{\phi}=\omega_{0}+\varepsilon \sum_{j} F_{j p,-j q} e^{i j(p \phi-q \omega t)}+\mathrm{NRT} \tag{14.109}
\end{equation*}
$$

where NRT denotes nonresonant terms, i.e. those for which $(k, l) \neq(j p,-j q)$ for some integer j. We now average over short time scales to eliminate the nonresonant terms, and focus on the dynamics of this averaged phase $\langle\phi\rangle$.
We define the angle $\psi \equiv p\langle\phi\rangle-q \omega t$, which obeys

$$
\begin{align*}
\dot{\psi} & =p\langle\dot{\phi}\rangle-q \omega \\
& =\left(p \omega_{0}-q \omega\right)+\varepsilon p \sum_{j} F_{j p,-j q} e^{i j \psi} \equiv-\nu+\varepsilon G(\psi) \tag{14.110}
\end{align*}
$$

Figure 14.8: Left panel: graphical analysis of the equation $\dot{\psi}=-\nu+\varepsilon G(\psi)$. Right panel: Synchronization region (gray) as a function of detuning ν.
where $\nu \equiv q \omega-p \omega_{0}$ is the detuning and $G(\psi)=p \sum_{j} F_{j p,-j q} e^{i j \psi}$ is the sum over resonant terms. Note that the nonresonant terms have been eliminated by the aforementioned averaging procedure. This last equation is a simple $N=1$ dynamical system on the circle - a system we have already studied. The dynamics are depicted in fig. 14.8. If the detuning ν falls within the range $\left[\varepsilon G_{\min }, \varepsilon G_{\max }\right]$, then ψ flows to a fixed point, and the nonlinear oscillator is synchronized with the periodic external force, with $\langle\phi\rangle \rightarrow \frac{q}{p} \omega$. If the detuning is too large and lies outside this region, then there is no synchronization. Rather, $\psi(t)$ increases on average linearly with time. In this case we have $\langle\phi(t)\rangle=\phi_{0}+\frac{q}{p} \omega t+\frac{1}{p} \psi(t)$, where

$$
\begin{equation*}
d t=\frac{d \psi}{\varepsilon G(\psi)-\nu} \quad \Longrightarrow \quad T_{\psi}=\int_{-\pi}^{\pi} \frac{d \psi}{\varepsilon G(\psi)-\nu} \tag{14.111}
\end{equation*}
$$

Thus, $\psi(t)=\Omega_{\psi} t+\Psi(t)$, where $\Psi(t)=\Psi(t+T)$ is periodic with period $T_{\psi}=2 \pi / \Omega_{\psi}$. This leads to heterodyning with a beat frequency $\Omega_{\psi}(\nu, \varepsilon)$.
Why do we here find the general resonance condition $\omega=\frac{p}{q} \omega_{0}$, whereas for weakly forced, weakly nonlinear oscillators resonance could only occur for $\omega=\omega_{0}$? There are two reasons. The main reason is that in the latter case, the limit cycle is harmonic to zeroth order, with $x_{0}(t)=A \cos (t+\phi)$. There are only two frequencies, then, in the Fourier decomposition of the limit cycle: $\omega_{0}= \pm 1$. In the strongly nonlinear case, the limit cycle is decomposed into what is in general a countably infinite set of frequencies which are all multiples of a fundamental ω_{0}. In addition, if the forcing $\boldsymbol{f}(\boldsymbol{\varphi}, t)$ is periodic in t, its Fourier decomposition in t will involve all integer multiples of some fundamental ω. Thus, the most general resonance condition is $k \omega_{0}+l \omega=0$.

Our analysis has been limited to the lowest order in ε, and we have averaged out the nonresonant terms. When one systematically accounts for both these features, there are two main effects. One is that the boundaries of the synchronous region are no longer straight lines as depicted in the right panel of fig. 14.8. The boundaries themselves can be curved. Moreover, even if there are no resonant terms in the (k, l) sum to lowest order, they can be generated by going to higher order in ε. In such a case, the width
of the synchronization region $\Delta \nu$ will be proportional to a higher power of $\varepsilon: \Delta \nu \propto \varepsilon^{n}$, where n is the order of ε where resonant forcing terms first appear in the analysis.

14.5 Relaxation Oscillations

We saw how to use multiple time scale analysis to identify the limit cycle of the van der Pol oscillator when ϵ is small. Consider now the opposite limit, where the coefficient of the damping term is very large. We generalize the van der Pol equation to

$$
\begin{equation*}
\ddot{x}+\mu \Phi(x) \dot{x}+x=0, \tag{14.112}
\end{equation*}
$$

and suppose $\mu \gg 1$. Define now the variable

$$
\begin{align*}
y & \equiv \frac{\dot{x}}{\mu}+\int_{0}^{x} d x^{\prime} \Phi\left(x^{\prime}\right) \tag{14.113}\\
& =\frac{\dot{x}}{\mu}+F(x)
\end{align*}
$$

where $F^{\prime}(x)=\Phi(x)$. (y is sometimes called the Liènard variable, and (x, y) the Liènard plane.) Then the original second order equation may be written as two coupled first order equations:

$$
\begin{align*}
\dot{x} & =\mu(y-F(x)) \tag{14.114}\\
\dot{y} & =-\frac{x}{\mu} \tag{14.115}
\end{align*}
$$

Since $\mu \gg 1$, the first of these equations is fast and the second one slow. The dynamics rapidly achieves $y \approx F(x)$, and then slowly evolves along the curve $y=F(x)$, until it is forced to make a large, fast excursion.

A concrete example is useful. Consider $F(x)$ of the form sketched in fig. 14.9. This is what one finds for the van der Pol oscillator, where $\Phi(x)=x^{2}-1$ and $F(x)=\frac{1}{3} x^{3}-x$. The limit cycle behavior $x_{\mathrm{LC}}(t)$ is sketched in fig. 14.10. We assume $\Phi(x)=\Phi(-x)$ for simplicity.

Assuming $\Phi(x)=\Phi(-x)$ is symmetric, $F(x)$ is antisymmetric. For the van der Pol oscillator and other similar cases, $F(x)$ resembles the sketch in fig. 14.9. There are two local extrema: a local maximum at $x=-a$ and a local minimum at $x=+a$. We define b such that $F(b)=F(-a)$, as shown in the figure; antisymmetry then entails $F(-b)=F(+a)$. Starting from an arbitrary initial condition, the y dynamics are slow, since $\dot{y}=-\mu^{-1} x$ (we assume $\mu \gg x(0)$). So y can be regarded as essentially constant for the fast dynamics of eqn. 14.115, according to which $x(t)$ flows rapidly to the right if $y>F(x)$ and rapidly to the left if $y<F(x)$. This fast motion stops when $x(t)$ reaches a point where $y=F(x)$. At this point, the slow dynamics takes over. Assuming $y \approx F(x)$, we have

$$
\begin{equation*}
y \approx F(x) \quad \Rightarrow \quad \dot{y}=-\frac{x}{\mu} \approx F^{\prime}(x) \dot{x} \tag{14.116}
\end{equation*}
$$

Figure 14.9: Relaxation oscillations in the so-called Liènard plane (x, y). The system rapidly flows to a point on the curve $y=F(x)$, and then crawls slowly along this curve. The slow motion takes x from $-b$ to $-a$, after which the system executes a rapid jump to $x=+b$, then a slow retreat to $x=+a$, followed by a rapid drop to $x=-b$.
which says that

$$
\begin{equation*}
\dot{x} \approx-\frac{x}{\mu F^{\prime}(x)} \quad \text { if } y \approx F(x) \tag{14.117}
\end{equation*}
$$

over the slow segments of the motion, which are the regions $x \in[-b,-a]$ and $x \in[a, b]$. The relaxation oscillation is then as follows. Starting at $x=-b, x(t)$ increases slowly according to eqn. 14.117. At $x=-a$, the motion can no longer follow the curve $y=F(x)$, since $\dot{y}=-\mu^{-1} x$ is still positive. The motion thus proceeds quickly to $x=+b$, with

$$
\begin{equation*}
\dot{x} \approx \mu(F(b)-F(x)) \quad x \in[-a,+b] . \tag{14.118}
\end{equation*}
$$

After reaching $x=+b$, the motion once again is slow, and again follows eqn. 14.117, according to which $x(t)$ now decreases slowly until it reaches $x=+a$, at which point the motion is again fast, with

$$
\begin{equation*}
\dot{x} \approx \mu(F(a)-F(x)) \quad x \in[-b,+a] . \tag{14.119}
\end{equation*}
$$

The cycle then repeats.

Figure 14.10: A sketch of the limit cycle for the relaxation oscillation studied in this section.

Thus, the limit cycle is given by the following segments:

$$
\begin{array}{lll}
x \in[-b,-a] & (\dot{x}>0): & \dot{x} \approx-\frac{x}{\mu F^{\prime}(x)} \\
x \in[-a, b] & (\dot{x}>0): & \dot{x} \approx \mu[F(b)-F(x)] \\
x \in[a, b] & (\dot{x}<0): & \dot{x} \approx-\frac{x}{\mu F^{\prime}(x)} \\
x \in[-b, a] & (\dot{x}<0): & \dot{x} \approx \mu[F(a)-F(x)] . \tag{14.123}
\end{array}
$$

A sketch of the limit cycle is given in fig. 14.11, showing the slow and fast portions.
When $\mu \gg 1$ we can determine approximately the period of the limit cycle. Clearly the period is twice the time for either of the slow portions, hence

$$
\begin{equation*}
T \approx 2 \mu \int_{a}^{b} d x \frac{\Phi(x)}{x} \tag{14.124}
\end{equation*}
$$

where $F^{\prime}(\pm a)=\Phi(\pm a)=0$ and $F(\pm b)=F(\mp a)$. For the van der Pol oscillator, with $\Phi(x)=x^{2}-1$, we have $a=1, b=2$, and $T \simeq(3-2 \ln 2) \mu$.

Figure 14.11: Limit cycle for large μ relaxation oscillations, shown in the phase plane (x, \dot{x}).

14.5.1 Example problem

Consider the equation

$$
\begin{equation*}
\ddot{x}+\mu(|x|-1) \dot{x}+x=0 \quad . \tag{14.125}
\end{equation*}
$$

Sketch the trajectory in the Liènard plane, and find the approximate period of the limit cycle for $\mu \gg 1$.
Solution: We define

$$
F^{\prime}(x)=|x|-1 \quad \Rightarrow \quad F(x)= \begin{cases}+\frac{1}{2} x^{2}-x & \text { if } x>0 \tag{14.126}\\ -\frac{1}{2} x^{2}-x & \text { if } x<0\end{cases}
$$

We therefore have

$$
\begin{equation*}
\dot{x}=\mu\{y-F(x)\} \quad, \quad \dot{y}=-\frac{x}{\mu}, \tag{14.127}
\end{equation*}
$$

with $y \equiv \mu^{-1} \dot{x}+F(x)$.
Setting $F^{\prime}(x)=0$ we find $x= \pm a$, where $a=1$ and $F(\pm a)=\mp \frac{1}{2}$. We also find $F(\pm b)=F(\mp a)$, where $b=1+\sqrt{2}$. Thus, the limit cycle is as follows: (i) fast motion from $x=-a$ to $x=+b$, (ii) slow relaxation from $x=+b$ to $x=+a$, (iii) fast motion from $x=+a$ to $x=-b$, and (iv) slow relaxation from $x=-b$ to $x=-a$. The period is approximately the time it takes for the slow portions of the cycle. Along these portions, we have $y \simeq F(x)$, and hence $\dot{y} \simeq F^{\prime}(x) \dot{x}$. But $\dot{y}=-x / \mu$, so

$$
\begin{equation*}
F^{\prime}(x) \dot{x} \simeq-\frac{x}{\mu} \quad \Rightarrow \quad d t=-\mu \frac{F^{\prime}(x)}{x} d x \tag{14.128}
\end{equation*}
$$

Figure 14.12: Relaxation oscillations for $\ddot{x}+\mu(|x|-1) \dot{x}+x=0$ plotted in the Liénard plane. The solid black curve is $y=F(x)=\frac{1}{2} x^{2} \operatorname{sgn}(x)-x$. The variable y is defined to be $y=\mu^{-1} \dot{x}+F(x)$. Along slow portions of the limit cycle, $y \simeq F(x)$.
which we integrate to obtain

$$
\begin{align*}
T & \simeq-2 \mu \int_{b}^{a} d x \frac{F^{\prime}(x)}{x}=2 \mu \int_{1}^{1+\sqrt{2}} d x\left(1-\frac{1}{x}\right) \tag{14.129}\\
& =2 \mu[\sqrt{2}-\ln (1+\sqrt{2})] \simeq 1.066 \mu
\end{align*}
$$

14.5.2 Multiple limit cycles

For the equation

$$
\begin{equation*}
\ddot{x}+\mu F^{\prime}(x) \dot{x}+x=0 \tag{14.130}
\end{equation*}
$$

it is illustrative to consider what sort of $F(x)$ would yield more than one limit cycle. Such an example is shown in fig. 14.13.

In polar coordinates, it is very easy to construct such examples. Consider, for example, the system

$$
\begin{align*}
& \dot{r}=\sin (\pi r)+\epsilon \cos \theta \\
& \dot{\theta}=b r, \tag{14.131}
\end{align*}
$$

with $|\epsilon|<1$. First consider the case $\epsilon=0$. Clearly the radial flow is outward for $\sin (\pi r)>0$ and inward for $\sin (\pi r)<0$. Thus, we have stable limit cycles at $r=2 n+1$ and unstable limit cycles at $r=2 n$, for

Figure 14.13: Liénard plots for systems with one (left) and two (right) relaxation oscillations.
all $n \in \mathbb{Z}$. With $0<|\epsilon|<1$, we have

$$
\begin{array}{lll}
\dot{r}>0 & \text { for } & r \in\left[2 n+\frac{1}{\pi} \sin ^{-1} \epsilon, 2 n+1-\frac{1}{\pi} \sin ^{-1} \epsilon\right] \\
\dot{r}<0 & \text { for } & r \in\left[2 n+1+\frac{1}{\pi} \sin ^{-1} \epsilon, 2 n+2-\frac{1}{\pi} \sin ^{-1} \epsilon\right] \tag{14.133}
\end{array}
$$

The Poincaré-Bendixson theorem then guarantees the existence of stable and unstable limit cycles. We can put bounds on the radial extent of these limit cycles.

$$
\begin{array}{cll}
\text { stable limit cycle } & : & r \in\left[2 n+1-\frac{1}{\pi} \sin ^{-1} \epsilon, 2 n+1+\frac{1}{\pi} \sin ^{-1} \epsilon\right] \\
\text { unstable limit cycle } & : & r \in\left[2 n-\frac{1}{\pi} \sin ^{-1} \epsilon, 2 n+\frac{1}{\pi} \sin ^{-1} \epsilon\right] \tag{14.135}
\end{array}
$$

Note that an unstable limit cycle is a repeller, which is to say that it is stable (an attractor) if we run the dynamics backwards, sending $t \rightarrow-t$.

14.5.3 Example problem

Consider the nonlinear oscillator,

$$
\begin{equation*}
\ddot{x}+\mu \Phi(x) \dot{x}+x=0, \tag{14.136}
\end{equation*}
$$

with $\mu \gg 1$. For each case in fig. 14.14, sketch the flow in the Liènard plane, starting with a few different initial conditions. For which case(s) do relaxation oscillations occur?

Figure 14.14: Three instances of $\Phi(x)$.

Solution : Recall the general theory of relaxation oscillations. We define

$$
\begin{equation*}
y \equiv \frac{\dot{x}}{\mu}+\int_{0}^{x} d x^{\prime} \Phi\left(x^{\prime}\right)=\frac{\dot{x}}{\mu}+F(x) \tag{14.137}
\end{equation*}
$$

in which case the second order ODE for the oscillator may be written as two coupled first order ODEs:

$$
\begin{equation*}
\dot{y}=-\frac{x}{\mu} \quad, \quad \dot{x}=\mu(y-F(x)) . \tag{14.138}
\end{equation*}
$$

Since $\mu \gg 1$, the first of these equations is slow and the second one fast. The dynamics rapidly achieves $y \approx F(x)$, and then slowly evolves along the curve $y=F(x)$, until it is forced to make a large, fast excursion.

To explore the dynamics in the Liènard plane, we plot $F(x)$ versus x, which means we must integrate $\Phi(x)$. This is done for each of the three cases in fig. 14.14.

Note that a fixed point corresponds to $x=0$ and $\dot{x}=0$. In the Liènard plane, this means $x=0$ and $y=F(0)$. Linearizing by setting $x=\delta x$ and $y=F(0)+\delta y$, we have ${ }^{1}$

$$
\frac{d}{d t}\binom{\delta x}{\delta y}=\binom{\mu \delta y-\mu F^{\prime}(0) \delta x}{-\mu^{-1} \delta x}=\left(\begin{array}{cc}
-\mu F^{\prime}(0) & \mu \tag{14.139}\\
-\mu^{-1} & 0
\end{array}\right)\binom{\delta x}{\delta y} .
$$

The linearized map has trace $T=-\mu F^{\prime}(0)$ and determinant $D=1$. Since $\mu \gg 1$ we have $0<D<\frac{1}{4} T^{2}$, which means the fixed point is either a stable node, for $F^{\prime}(0)>0$, or an unstable node, for $F^{\prime}(0)<0$. In cases (a) and (b) the fixed point is a stable node, while in case (c) it is unstable. The flow in case (a) always collapses to the stable node. In case (b) the flow either is unbounded or else it collapses to the stable node. In case (c), all initial conditions eventually flow to a unique limit cycle exhibiting relaxation oscillations.

[^31]

Figure 14.15: Phase flows in the Liénard plane for the three examples in fig. 14.14.

14.6 Appendix I : Multiple Time Scale Analysis to $\mathcal{O}\left(\epsilon^{2}\right)$

Problem : A particle of mass m moves in one dimension subject to the potential

$$
\begin{equation*}
U(x)=\frac{1}{2} m \omega_{0}^{2} x^{2}+\frac{1}{3} \epsilon m \omega_{0}^{2} \frac{x^{3}}{a}, \tag{14.140}
\end{equation*}
$$

where ϵ is a dimensionless parameter.
(a) Find the equation of motion for x. Show that by rescaling x and t you can write this equation in dimensionless form as

$$
\begin{equation*}
\frac{d^{2} u}{d s^{2}}+u=-\epsilon u^{2} \tag{14.141}
\end{equation*}
$$

Solution : The equation of motion is

$$
\begin{align*}
m \ddot{x} & =-U^{\prime}(x) \\
& =-m \omega_{0}^{2} x-\epsilon m \omega_{0}^{2} \frac{x^{2}}{a} . \tag{14.142}
\end{align*}
$$

We now define $s \equiv \omega_{0} t$ and $u \equiv x / a$, yielding

$$
\begin{equation*}
\frac{d^{2} u}{d s^{2}}+u=-\epsilon u^{2} \tag{14.143}
\end{equation*}
$$

(b) You are now asked to perform an $\mathcal{O}\left(\epsilon^{2}\right)$ multiple time scale analysis of this problem, writing

$$
T_{0}=s \quad, \quad T_{1}=\epsilon s \quad, \quad T_{2}=\epsilon^{2} s
$$

and

$$
u=u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots
$$

This results in a hierarchy of coupled equations for the functions $\left\{u_{n}\right\}$. Derive the first three equations in the hierarchy.

Solution: We have

$$
\begin{equation*}
\frac{d}{d s}=\frac{\partial}{\partial T_{0}}+\epsilon \frac{\partial}{\partial T_{1}}+\epsilon^{2} \frac{\partial}{\partial T_{2}}+\ldots \tag{14.144}
\end{equation*}
$$

Therefore

$$
\begin{array}{r}
\left(\frac{\partial}{\partial T_{0}}+\epsilon \frac{\partial}{\partial T_{1}}+\epsilon^{2} \frac{\partial}{\partial T_{2}}+\ldots\right)^{2}\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots\right)+\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots\right) \tag{14.145}\\
=-\epsilon\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots\right)^{2}
\end{array}
$$

Expanding and then collecting terms order by order in ϵ, we derive the hierarchy. The first three levels are

$$
\begin{align*}
& \frac{\partial^{2} u_{0}}{\partial T_{0}^{2}}+u_{0}=0 \tag{14.146}\\
& \frac{\partial^{2} u_{1}}{\partial T_{0}^{2}}+u_{1}=-2 \frac{\partial^{2} u_{0}}{\partial T_{0} \partial T_{1}}-u_{0}^{2} \tag{14.147}\\
& \frac{\partial^{2} u_{2}}{\partial T_{0}^{2}}+u_{2}=-2 \frac{\partial^{2} u_{0}}{\partial T_{0} \partial T_{2}}-\frac{\partial^{2} u_{0}}{\partial T_{1}^{2}}-2 \frac{\partial^{2} u_{1}}{\partial T_{0} \partial T_{1}}-2 u_{0} u_{1} \tag{14.148}
\end{align*}
$$

(c) Show that there is no frequency shift to first order in ϵ.

Solution : At the lowest (first) level of the hierarchy, the solution is

$$
\begin{equation*}
u_{0}=A\left(T_{1}, T_{2}\right) \cos \left(T_{0}+\phi\left(T_{1}, T_{2}\right)\right) \tag{14.149}
\end{equation*}
$$

At the second level, then,

$$
\begin{equation*}
\frac{\partial^{2} u_{1}}{\partial T_{0}^{2}}+u_{1}=2 \frac{\partial A}{\partial T_{1}} \sin \left(T_{0}+\phi\right)+2 A \frac{\partial \phi}{\partial T_{1}} \cos \left(T_{0}+\phi\right)-A^{2} \cos ^{2}\left(T_{0}+\phi\right) \tag{14.150}
\end{equation*}
$$

We eliminate the resonant forcing terms on the RHS by demanding

$$
\begin{equation*}
\frac{\partial A}{\partial T_{1}}=0 \quad \text { and } \quad \frac{\partial \phi}{\partial T_{1}}=0 \tag{14.151}
\end{equation*}
$$

Thus, we must have $A=A\left(T_{2}\right)$ and $\phi=\phi\left(T_{2}\right)$. To $\mathcal{O}(\epsilon)$, then, ϕ is a constant, which means there is no frequency shift at this level of the hierarchy.
(d) Find $u_{0}(s)$ and $u_{1}(s)$.

Solution :The equation for u_{1} is that of a non-resonantly forced harmonic oscillator. The solution is easily found to be

$$
\begin{equation*}
u_{1}=-\frac{1}{2} A^{2}+\frac{1}{6} A^{2} \cos \left(2 T_{0}+2 \phi\right) \tag{14.152}
\end{equation*}
$$

We now insert this into the RHS of the third equation in the hierarchy:

$$
\begin{align*}
\frac{\partial^{2} u_{2}}{\partial T_{0}^{2}}+u_{2} & =-2 \frac{\partial^{2} u_{0}}{\partial T_{0} \partial T_{2}}-2 u_{0} u_{1} \tag{14.153}\\
& =2 \frac{\partial A}{\partial T_{2}} \sin \left(T_{0}+\phi\right)+2 A \frac{\partial \phi}{\partial T_{2}} \cos \left(T_{0}+\phi\right)-2 A \cos \left(T_{0}+\phi\right)\left\{-\frac{1}{2} A^{2}+\frac{1}{6} A^{2} \cos \left(2 T_{0}+2 \phi\right)\right\} \\
& =2 \frac{\partial A}{\partial T_{2}} \sin \left(T_{0}+\phi\right)+\left(2 A \frac{\partial \phi}{\partial T_{2}}+\frac{5}{6} A^{3}\right) \cos \left(T_{0}+\phi\right)-\frac{1}{6} A^{3} \cos \left(3 T_{0}+3 \phi\right)
\end{align*}
$$

Setting the coefficients of the resonant terms on the RHS to zero yields

$$
\begin{align*}
& \frac{\partial A}{\partial T_{2}}=0 \quad \Rightarrow \quad A=A_{0} \tag{14.154}\\
& 2 A \frac{\partial \phi}{\partial T_{2}}+\frac{5}{6} A^{3}=0 \quad \Rightarrow \quad \phi=-\frac{5}{12} A_{0}^{2} T_{2} .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
u(s)=\overbrace{A_{0} \cos \left(s-\frac{5}{12} \epsilon^{2} A_{0}^{2} s\right)}^{u_{0}(s)}+\overbrace{\frac{1}{6} \epsilon A_{0}^{2} \cos \left(2 s-\frac{5}{6} \epsilon^{2} A_{0}^{2} s\right)-\frac{1}{2} \epsilon A_{0}^{2}}^{\epsilon u_{1}(s)}+\mathcal{O}\left(\epsilon^{2}\right) \tag{14.155}
\end{equation*}
$$

14.7 Appendix II : MSA and Poincaré-Lindstedt Methods

14.7.1 Problem using multiple time scale analysis

Consider the central force law $F(r)=-k r^{\beta^{2}-3}$.
(a) Show that a stable circular orbit exists at radius $r_{0}=\left(\ell^{2} / \mu k\right)^{1 / \beta^{2}}$.

Solution : For a circular orbit, the effective radial force must vanish:

$$
\begin{equation*}
F_{\mathrm{eff}}(r)=\frac{\ell^{2}}{\mu r^{3}}+F(r)=\frac{\ell^{2}}{\mu r^{3}}-\frac{k}{r^{3-\beta^{2}}}=0 . \tag{14.156}
\end{equation*}
$$

Solving for $r=r_{0}$, we have $r_{0}=\left(\ell^{2} / \mu k\right)^{1 / \beta^{2}}$. The second derivative of $U_{\text {eff }}(r)$ at this point is

$$
\begin{equation*}
U_{\mathrm{eff}}^{\prime \prime}\left(r_{0}\right)=-F_{\mathrm{eff}}^{\prime}\left(r_{0}\right)=\frac{3 \ell^{2}}{\mu r_{0}^{4}}+\left(\beta^{2}-3\right) \frac{k}{r_{0}^{4-\beta^{2}}}=\frac{\beta^{2} \ell^{2}}{\mu r_{0}^{4}}, \tag{14.157}
\end{equation*}
$$

which is manifestly positive. Thus, the circular orbit at $r=r_{0}$ is stable.
(b) Show that the geometric equation for the shape of the orbit may be written

$$
\begin{equation*}
\frac{d^{2} s}{d \phi^{2}}+s=K(s) \tag{14.158}
\end{equation*}
$$

where $s=1 / r$, and

$$
\begin{equation*}
K(s)=s_{0}\left(\frac{s}{s_{0}}\right)^{1-\beta^{2}} \tag{14.159}
\end{equation*}
$$

with $s_{0}=1 / r_{0}$.
Solution: We have previously derived (e.g. in the notes) the equation

$$
\begin{equation*}
\frac{d^{2} s}{d \phi^{2}}+s=-\frac{\mu}{\ell^{2} s^{2}} F\left(s^{-1}\right) \tag{14.160}
\end{equation*}
$$

From the given $F(r)$, we then have

$$
\begin{equation*}
\frac{d^{2} s}{d \phi^{2}}+s=\frac{\mu k}{\ell^{2}} s^{1-\beta^{2}} \equiv K(s) \tag{14.161}
\end{equation*}
$$

where $s_{0} \equiv\left(\mu k / \ell^{2}\right)^{1 / \beta^{2}}=1 / r_{0}$, and where

$$
\begin{equation*}
K(s)=s_{0}\left(\frac{s}{s_{0}}\right)^{1-\beta^{2}} \tag{14.162}
\end{equation*}
$$

(c) Writing $s \equiv(1+u) s_{0}$, show that u satisfies

$$
\begin{equation*}
\frac{1}{\beta^{2}} \frac{d^{2} u}{d \phi^{2}}+u=a_{1} u^{2}+a_{2} u^{3}+\ldots . \tag{14.163}
\end{equation*}
$$

Find a_{1} and a_{2}.
Solution: Writing $s \equiv s_{0}(1+u)$, we have

$$
\begin{align*}
& \frac{d^{2} u}{d \phi^{2}}+1+u=(1+u)^{1-\beta^{2}} \\
& =1+\left(1-\beta^{2}\right) u+\frac{1}{2}\left(-\beta^{2}\right)\left(1-\beta^{2}\right) u^{2} \tag{14.164}\\
& \\
& \quad+\frac{1}{6}\left(-1-\beta^{2}\right)\left(-\beta^{2}\right)\left(1-\beta^{2}\right) u^{3}+\ldots
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{1}{\beta^{2}} \frac{d^{2} u}{d \phi^{2}}+u=a_{1} u^{2}+a_{2} u^{3}+\ldots \tag{14.165}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=-\frac{1}{2}\left(1-\beta^{2}\right) \quad, \quad a_{2}=\frac{1}{6}\left(1-\beta^{4}\right) . \tag{14.166}
\end{equation*}
$$

(d) Now let us associate a power of ε with each power of the deviation u and write

$$
\begin{equation*}
\frac{1}{\beta^{2}} \frac{d^{2} u}{d \phi^{2}}+u=\varepsilon a_{1} u^{2}+\varepsilon^{2} a_{2} u^{3}+\ldots \tag{14.167}
\end{equation*}
$$

Solve this equation using the method of multiple scale analysis (MSA). You will have to go to second order in the multiple scale expansion, writing

$$
\begin{equation*}
X \equiv \beta \phi \quad, \quad Y \equiv \varepsilon \beta \phi \quad, \quad Z \equiv \varepsilon^{2} \beta \phi \tag{14.168}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{\beta} \frac{d}{d \phi}=\frac{\partial}{\partial X}+\varepsilon \frac{\partial}{\partial Y}+\varepsilon^{2} \frac{\partial}{\partial Z}+\ldots \tag{14.169}
\end{equation*}
$$

Further writing

$$
\begin{equation*}
u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots \tag{14.170}
\end{equation*}
$$

derive the equations for the multiple scale analysis, up to second order in ε.
Solution: We now associate one power of ε with each additional power of u beyond order u^{1}. In this way, a uniform expansion in terms of ε will turn out to be an expansion in powers of the amplitude of the oscillations. We'll see how this works below. We then have

$$
\begin{equation*}
\frac{1}{\beta^{2}} \frac{d^{2} u}{d \phi^{2}}+u=a_{1} \varepsilon u^{2}+a_{2} \varepsilon^{2} u^{3}+\ldots \tag{14.171}
\end{equation*}
$$

with $\varepsilon=1$. We now perform a multiple scale analysis, writing

$$
\begin{equation*}
X \equiv \beta \phi \quad, \quad Y \equiv \varepsilon \beta \phi \quad, \quad Z \equiv \varepsilon^{2} \beta \phi \tag{14.172}
\end{equation*}
$$

This entails

$$
\begin{equation*}
\frac{1}{\beta} \frac{d}{d \phi}=\frac{\partial}{\partial X}+\varepsilon \frac{\partial}{\partial Y}+\varepsilon^{2} \frac{\partial}{\partial Z}+\ldots \tag{14.173}
\end{equation*}
$$

We also expand u in powers of ε, as

$$
\begin{equation*}
u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots \tag{14.174}
\end{equation*}
$$

Thus, we obtain

$$
\begin{gather*}
\left(\partial_{X}+\varepsilon \partial_{Y}+\varepsilon^{2} \partial_{Z}+\ldots\right)^{2}\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots\right)+\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots\right) \\
\quad=\varepsilon a_{1}\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots\right)^{2}+\varepsilon^{2} a_{2}\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots\right)^{3}+\ldots . \tag{14.175}
\end{gather*}
$$

We now extract a hierarchy of equations, order by order in powers of ε.
We find, out to order ε^{2},

$$
\begin{array}{ll}
\mathcal{O}\left(\varepsilon^{0}\right): & \frac{\partial^{2} u_{0}}{\partial X^{2}}+u_{0}=0 \\
\mathcal{O}\left(\varepsilon^{1}\right): & \frac{\partial^{2} u_{1}}{\partial X^{2}}+u_{1}=-2 \frac{\partial^{2} u_{0}}{\partial Y \partial X}+a_{1} u_{0}^{2} \\
\mathcal{O}\left(\varepsilon^{2}\right): & \frac{\partial^{2} u_{2}}{\partial X^{2}}+u_{2}=-2 \frac{\partial^{2} u_{0}}{\partial Z \partial X}-\frac{\partial^{2} u_{0}}{\partial Y^{2}}-2 \frac{\partial^{2} u_{1}}{\partial Z \partial X}+2 a_{1} u_{0} u_{1}+a_{2} u_{0}^{3} . \tag{14.178}
\end{array}
$$

(e) Show that there is no shift of the angular period $\Delta \phi=2 \pi / \beta$ if one works only to leading order in ε. Solution : The $\mathcal{O}\left(\varepsilon^{0}\right)$ equation in the hierarchy is solved by writing

$$
\begin{equation*}
u_{0}=A \cos (X+\psi) \tag{14.179}
\end{equation*}
$$

where

$$
\begin{equation*}
A=A(Y, Z) \quad, \quad \psi=\psi(Y, Z) \tag{14.180}
\end{equation*}
$$

We define $\theta \equiv X+\psi(Y, Z)$, so we may write $u_{0}=A \cos \theta$. At the next order, we obtain

$$
\begin{align*}
\frac{\partial^{2} u_{1}}{\partial \theta^{2}}+u_{1} & =2 \frac{\partial A}{\partial Y} \sin \theta+2 A \frac{\partial \psi}{\partial Y} \cos \theta+a_{1} A^{2} \cos \theta \\
& =2 \frac{\partial A}{\partial Y} \sin \theta+2 A \frac{\partial \psi}{\partial Y} \cos \theta+\frac{1}{2} a_{1} A^{2}+\frac{1}{2} a_{1} A^{2} \cos 2 \theta \tag{14.181}
\end{align*}
$$

In order that there be no resonantly forcing terms on the RHS of eqn. 15.36, we demand

$$
\begin{equation*}
\frac{\partial A}{\partial Y}=0 \quad, \quad \frac{\partial \psi}{\partial Y}=0 \quad \Rightarrow \quad A=A(Z) \quad, \quad \psi=\psi(Z) \tag{14.182}
\end{equation*}
$$

The solution for u_{1} is then

$$
\begin{equation*}
u_{1}(\theta)=\frac{1}{2} a_{1} A^{2}-\frac{1}{6} a_{1} A^{2} \cos 2 \theta . \tag{14.183}
\end{equation*}
$$

Were we to stop at this order, we could ignore $Z=\varepsilon^{2} \beta \phi$ entirely, since it is of order ε^{2}, and the solution would be

$$
\begin{equation*}
u(\phi)=A_{0} \cos \left(\beta \phi+\psi_{0}\right)+\frac{1}{2} \varepsilon a_{1} A_{0}^{2}-\frac{1}{6} \varepsilon a_{1} A_{0}^{2} \cos \left(2 \beta \phi+2 \psi_{0}\right) . \tag{14.184}
\end{equation*}
$$

The angular period is still $\Delta \phi=2 \pi / \beta$, and, starting from a small amplitude solution at order ε^{0} we find that to order ε we must add a constant shift proportional to A_{0}^{2}, as well as a second harmonic term, also proportional to A_{0}^{2}.
(f) Carrying out the MSA to second order in ε, show that the shift of the angular period vanishes only if $\beta^{2}=1$ or $\beta^{2}=4$.

Solution : Carrying out the MSA to the next order, $\mathcal{O}\left(\varepsilon^{2}\right)$, we obtain

$$
\begin{align*}
\frac{\partial^{2} u_{2}}{\partial \theta^{2}}+u_{2} & =2 \frac{\partial A}{\partial Z} \sin \theta+2 A \frac{\partial \psi}{\partial Z} \cos \theta+2 a_{1} A \cos \theta\left(\frac{1}{2} a_{1} A^{2}-\frac{1}{6} a_{1} A^{2} \cos 2 \theta\right)+a_{2} A^{3} \cos ^{3} \theta \\
& =2 \frac{\partial A}{\partial Z} \sin \theta+2 A \frac{\partial \psi}{\partial Z} \cos \theta+\left(\frac{5}{6} a_{1}^{2}+\frac{3}{4} a_{2}\right) A^{3} \cos \theta+\left(-\frac{1}{6} a_{1}^{2}+\frac{1}{4} a_{2}\right) A^{3} \cos 3 \theta \tag{14.185}
\end{align*}
$$

Now in order to make the resonant forcing terms on the RHS vanish, we must choose

$$
\begin{equation*}
\frac{\partial A}{\partial Z}=0 \tag{14.186}
\end{equation*}
$$

as well as

$$
\begin{align*}
\frac{\partial \psi}{\partial Z} & =-\left(\frac{5}{12} a_{1}^{2}+\frac{3}{8} a_{2}\right) A^{2} \\
& =-\frac{1}{24}\left(\beta^{2}-4\right)\left(\beta^{2}-1\right) . \tag{14.187}
\end{align*}
$$

The solutions to these equations are trivial:

$$
\begin{equation*}
A(Z)=A_{0} \quad, \quad \psi(Z)=\psi_{0}-\frac{1}{24}\left(\beta^{2}-1\right)\left(\beta^{2}-4\right) A_{0}^{2} Z \tag{14.188}
\end{equation*}
$$

With the resonant forcing terms eliminated, we may write

$$
\begin{equation*}
\frac{\partial^{2} u_{2}}{\partial \theta^{2}}+u_{2}=\left(-\frac{1}{6} a_{1}^{2}+\frac{1}{4} a_{2}\right) A^{3} \cos 3 \theta \tag{14.189}
\end{equation*}
$$

with solution

$$
\begin{align*}
u_{2} & =\frac{1}{96}\left(2 a_{1}^{2}-3 a_{2}\right) A^{3} \cos 3 \theta \\
& =\frac{1}{96} \beta^{2}\left(\beta^{2}-1\right) A_{0}^{2} \cos (3 X+3 \psi(Z)) . \tag{14.190}
\end{align*}
$$

The full solution to second order in this analysis is then

$$
\begin{gather*}
u(\phi)=A_{0} \cos \left(\beta^{\prime} \phi+\psi_{0}\right)+\frac{1}{2} \varepsilon a_{1} A_{0}^{2}-\frac{1}{6} \varepsilon a_{1} A_{0}^{2} \cos \left(2 \beta^{\prime} \phi+2 \psi_{0}\right) \\
+\frac{1}{96} \varepsilon^{2}\left(2 a_{1}^{2}-3 a_{2}\right) A_{0}^{3} \cos \left(3 \beta^{\prime} \phi+3 \psi_{0}\right) . \tag{14.191}
\end{gather*}
$$

with

$$
\begin{equation*}
\beta^{\prime}=\beta \cdot\left\{1-\frac{1}{24} \varepsilon^{2}\left(\beta^{2}-1\right)\left(\beta^{2}-4\right) A_{0}^{2}\right\} . \tag{14.192}
\end{equation*}
$$

The angular period shifts:

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi}{\beta^{\prime}}=\frac{2 \pi}{\beta} \cdot\left\{1+\frac{1}{24} \varepsilon^{2}\left(\beta^{2}-1\right)\left(\beta^{2}-4\right) A_{0}^{2}\right\}+\mathcal{O}\left(\varepsilon^{3}\right) . \tag{14.193}
\end{equation*}
$$

Note that there is no shift in the period, for any amplitude, if $\beta^{2}=1$ (i.e. Kepler potential) or $\beta^{2}=4$ (i.e. harmonic oscillator).

14.7.2 Solution using Poincaré-Lindstedt method

Recall that geometric equation for the shape of the (relative coordinate) orbit for the two body central force problem is

$$
\begin{align*}
\frac{d^{2} s}{d \phi^{2}}+s & =K(s) \\
K(s) & =s_{0}\left(\frac{s}{s_{0}}\right)^{1-\beta^{2}} \tag{14.194}
\end{align*}
$$

where $s=1 / r, s_{0}=\left(l^{2} / \mu k\right)^{1 / \beta^{2}}$ is the inverse radius of the stable circular orbit, and $f(r)=-k r^{\beta^{2}-3}$ is the central force. Expanding about the stable circular orbit, one has

$$
\begin{equation*}
\frac{d^{2} y}{d \phi^{2}}+\beta^{2} y=\frac{1}{2} K^{\prime \prime}\left(s_{0}\right) y^{2}+\frac{1}{6} K^{\prime \prime \prime}\left(s_{0}\right) y^{3}+\ldots \tag{14.195}
\end{equation*}
$$

where $s=s_{0}(1+y)$, with

$$
\begin{align*}
& K^{\prime}(s)=\left(1-\beta^{2}\right)\left(\frac{s_{0}}{s}\right)^{\beta^{2}} \\
& K^{\prime \prime}(s)=-\beta^{2}\left(1-\beta^{2}\right)\left(\frac{s_{0}}{s}\right)^{1+\beta^{2}} \tag{14.196}\\
& K^{\prime \prime \prime}(s)=\beta^{2}\left(1-\beta^{2}\right)\left(1+\beta^{2}\right)\left(\frac{s_{0}}{s}\right)^{2+\beta^{2}}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{d^{2} y}{d \phi^{2}}+\beta^{2} y=\epsilon a_{1} y^{2}+\epsilon^{2} a_{2} y^{3} \tag{14.197}
\end{equation*}
$$

with $\epsilon=1$ and

$$
\begin{align*}
& a_{1}=-\frac{1}{2} \beta^{2}\left(1-\beta^{2}\right) \tag{14.198}\\
& a_{2}=+\frac{1}{6} \beta^{2}\left(1-\beta^{2}\right)\left(1+\beta^{2}\right) .
\end{align*}
$$

Note that we assign one factor of ϵ for each order of nonlinearity beyond order y^{1}. Note also that while y here corresponds to u in eqn. 14.165, the constants $a_{1,2}$ here are a factor of β^{2} larger than those defined in eqn. 14.166.

We now apply the Poincaré-Lindstedt method, by defining $\theta=\Omega \phi$, with

$$
\begin{equation*}
\Omega^{2}=\Omega_{0}^{2}+\epsilon \Omega_{1}^{2}+\epsilon^{2} \Omega_{2}^{2}+\ldots \tag{14.199}
\end{equation*}
$$

and

$$
\begin{equation*}
y(\theta)=y_{0}(\theta)+\epsilon y_{1}(\theta)+\epsilon^{2} y_{2}(\theta)+\ldots \tag{14.200}
\end{equation*}
$$

We therefore have

$$
\begin{equation*}
\frac{d}{d \phi}=\Omega \frac{d}{d \theta} \tag{14.201}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\Omega_{0}^{2}+\epsilon \Omega_{1}^{2}+\epsilon^{2} \Omega_{2}^{2}\right. & +\ldots)\left(y_{0}^{\prime \prime}+\epsilon y_{1}^{\prime \prime}+\epsilon^{2} y_{2}^{\prime \prime}+\ldots\right)+\beta^{2}\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots\right) \tag{14.202}\\
& =\epsilon a_{1}\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots\right)^{2}+\epsilon^{2} a_{2}\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots\right)^{3} .
\end{align*}
$$

We now extract equations at successive orders of ϵ. The first three in the hierarchy are

$$
\begin{align*}
\Omega_{0}^{2} y_{0}^{\prime \prime}+\beta^{2} y_{0} & =0 \\
\Omega_{1}^{2} y_{0}^{\prime \prime}+\Omega_{0}^{2} y_{1}^{\prime \prime}+\beta^{2} y_{1} & =a_{1} y_{0}^{2} \tag{14.203}\\
\Omega_{2}^{2} y_{0}^{\prime \prime}+\Omega_{1}^{2} y_{1}^{\prime \prime}+\Omega_{0}^{2} y_{2}^{\prime \prime}+\beta^{2} y_{2} & =2 a_{1} y_{0} y_{1}+a_{2} y_{0}^{3},
\end{align*}
$$

where prime denotes differentiation with respect to θ.

To order ϵ^{0}, the solution is $\Omega_{0}^{2}=\beta^{2}$ and

$$
\begin{equation*}
y_{0}(\theta)=A \cos (\theta+\delta), \tag{14.204}
\end{equation*}
$$

where A and δ are constants.
At order ϵ^{1}, we have

$$
\begin{align*}
\beta^{2}\left(y_{1}^{\prime \prime}+y_{1}\right) & =-\Omega_{1}^{2} y_{0}^{\prime \prime}+a_{1} y_{0}^{2} \\
& =\Omega_{1}^{2} A \cos (\theta+\delta)+a_{1} A^{2} \cos ^{2}(\theta+\delta) \tag{14.205}\\
& =\Omega_{1}^{2} A \cos (\theta+\delta)+\frac{1}{2} a_{1} A^{2}+\frac{1}{2} a_{1} A^{2} \cos (2 \theta+2 \delta) .
\end{align*}
$$

The secular forcing terms on the RHS are eliminated by the choice $\Omega_{1}^{2}=0$. The solution is then

$$
\begin{equation*}
y_{1}(\theta)=\frac{a_{1} A^{2}}{2 \beta^{2}}\left\{1-\frac{1}{3} \cos (2 \theta+2 \delta)\right\} \tag{14.206}
\end{equation*}
$$

At order ϵ^{2}, then, we have

$$
\begin{align*}
\beta^{2}\left(y_{2}^{\prime \prime}+y_{2}\right) & =-\Omega_{2}^{2} y_{0}^{\prime \prime}-\Omega_{1}^{2} y_{1}^{\prime \prime}+2 a_{1} y_{1} y_{1}+a_{2} y_{0}^{3} \\
& =\Omega_{2}^{2} A \cos (\theta+\delta)+\frac{a_{1}^{2} A^{3}}{\beta^{2}}\left\{1-\frac{1}{3} \cos (2 \theta+2 \delta)\right\} \cos (\theta+\delta)+a_{2} A^{3} \cos ^{2}(\theta+\delta) \tag{14.207}\\
& =\left\{\Omega_{2}^{2}+\frac{5 a_{1}^{2} A^{3}}{6 \beta^{2}}+\frac{3}{4} a_{2} A^{3}\right\} A \cos (\theta+\delta)+\left\{-\frac{a_{1}^{2} A^{3}}{6 \beta^{2}}+\frac{1}{4} a_{2} A^{3}\right\} \cos (3 \theta+3 \delta) .
\end{align*}
$$

The resonant forcing terms on the RHS are eliminated by the choice

$$
\begin{align*}
\Omega_{2}^{2} & =-\left(\frac{5}{6} \beta^{-2} a_{1}^{2}+\frac{3}{4} a_{2}\right) A^{3} \\
& =-\frac{1}{24} \beta^{2}\left(1-\beta^{2}\right)\left[5\left(1-\beta^{2}\right)+3\left(1+\beta^{2}\right)\right] \tag{14.208}\\
& =-\frac{1}{12} \beta^{2}\left(1-\beta^{2}\right)\left(4-\beta^{2}\right) .
\end{align*}
$$

Thus, the frequency shift to this order vanishes whenever $\beta^{2}=0, \beta^{2}=1$, or $\beta^{2}=4$. Recall the force law is $F(r)=-C r^{\beta^{2}-3}$, so we see that there is no shift - hence no precession - for inverse cube, inverse square, or linear forces.

14.8 Appendix III : Modified van der Pol Oscillator

Consider the nonlinear oscillator

$$
\begin{equation*}
\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0 \quad . \tag{14.209}
\end{equation*}
$$

Analyze this using the same approach we apply to the van der Pol oscillator.
(a) Sketch the vector field $\dot{\varphi}$ for this problem. It may prove convenient to first identify the nullclines, which are the curves along which $\dot{x}=0$ or $\dot{v}=0$ (with $v=\dot{x}$). Argue that a limit cycle exists.

Figure 14.16: Sketch of phase flow and nullclines for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$. Red nullclines: $\dot{v}=0$; blue nullcline: $\dot{x}=0$.

Solution : There is a single fixed point, at the origin $(0,0)$, for which the linearized dynamics obeys

$$
\frac{d}{d t}\binom{x}{v}=\left(\begin{array}{cc}
0 & 1 \tag{14.210}\\
-1 & \epsilon
\end{array}\right)\binom{x}{v}+\mathcal{O}\left(x^{4} v\right)
$$

One finds $T=\epsilon$ and $D=1$ for the trace and determinant, respectively. The origin is an unstable spiral for $0<\epsilon<2$ and an unstable node for $\epsilon>2$.

The nullclines are sketched in fig. 14.16. One has

$$
\begin{equation*}
\dot{x}=0 \leftrightarrow v=0 \quad, \quad \dot{v}=0 \leftrightarrow v=\frac{1}{\epsilon} \frac{x}{1-x^{4}} . \tag{14.211}
\end{equation*}
$$

The flow at large distances from the origin winds once around the origin and spirals in. The flow close to the origin spirals out $(\epsilon<2)$ or flows radially out $(\epsilon>2)$. Ultimately the flow must collapse to a limit cycle, as can be seen in the accompanying figures.
(b) In the limit $0<\varepsilon \ll 1$, use multiple time scale analysis to obtain a solution which reveals the approach to the limit cycle.

Solution : We seek to solve the equation

$$
\begin{equation*}
\ddot{x}+x=\epsilon h(x, \dot{x}) \tag{14.212}
\end{equation*}
$$

with

$$
\begin{equation*}
h(x, \dot{x})=\left(1-x^{4}\right) \dot{x} . \tag{14.213}
\end{equation*}
$$

Figure 14.17: Vector field and phase curves for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$, with $\epsilon=1$ and starting from $\left(x_{0}, v_{0}\right)=(1,1)$.

Employing the multiple time scale analysis to lowest nontrivial order, we write $T_{0} \equiv t, T_{1} \equiv \epsilon t$,

$$
\begin{equation*}
x=x_{0}+\epsilon x_{1}+\ldots \tag{14.214}
\end{equation*}
$$

and identify terms order by order in ϵ. At $\mathcal{O}\left(\epsilon^{0}\right)$, this yields

$$
\begin{equation*}
\frac{\partial^{2} x_{0}}{\partial T_{0}^{2}}+x_{0}=0 \quad \Rightarrow \quad x_{0}=A \cos \left(T_{0}+\phi\right) \tag{14.215}
\end{equation*}
$$

where $A=A\left(T_{1}\right)$ and $\phi=\phi\left(T_{1}\right)$. At $\mathcal{O}\left(\epsilon^{1}\right)$, we have

$$
\begin{align*}
\frac{\partial^{2} x_{1}}{\partial T_{0}^{2}}+x_{1} & =-2 \frac{\partial^{2} x_{0}}{\partial T_{0} \partial T_{1}}+h\left(x_{0}, \frac{\partial x_{0}}{\partial T_{0}}\right) \\
& =2 \frac{\partial A}{\partial T_{1}} \sin \theta+2 A \frac{\partial \phi}{\partial T_{1}} \cos \theta+h(A \cos \theta,-A \sin \theta) \tag{14.216}
\end{align*}
$$

with $\theta=T_{0}+\phi\left(T_{1}\right)$ as usual. We also have

$$
\begin{align*}
h(A \cos \theta,-A \sin \theta) & =A^{5} \sin \theta \cos \theta-A \sin \theta \\
& =\left(\frac{1}{8} A^{5}-A\right) \sin \theta+\frac{3}{16} A^{5} \sin 3 \theta+\frac{1}{16} A^{5} \sin 5 \theta \tag{14.217}
\end{align*}
$$

Figure 14.18: Solution to the oscillator equation $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ with $\epsilon=1$ and initial conditions $\left(x_{0}, v_{0}\right)=(1,3) . x(t)$ is shown in red and $v(t)$ in blue. Note that $x(t)$ resembles a relaxation oscillation for this moderate value of ϵ.

To eliminate the resonant terms in eqn. 14.216, we must choose

$$
\begin{equation*}
\frac{\partial A}{\partial T_{1}}=\frac{1}{2} A-\frac{1}{16} A^{5} \quad, \quad \frac{\partial \phi}{\partial T_{1}}=0 \tag{14.218}
\end{equation*}
$$

The A equation is similar to the logistic equation. Clearly $A=0$ is an unstable fixed point, and $A=8^{1 / 4} \approx 1.681793$ is a stable fixed point. Thus, the amplitude of the oscillations will asymptotically approach $A^{*}=8^{1 / 4}$. (Recall the asymptotic amplitude in the van der Pol case was $A^{*}=2$.)
To integrate the A equation, substitute $y=\frac{1}{\sqrt{8}} A^{2}$, and obtain

$$
\begin{equation*}
d T_{1}=\frac{d y}{y\left(1-y^{2}\right)}=\frac{1}{2} d \ln \frac{y^{2}}{1-y^{2}} \quad \Rightarrow \quad y^{2}\left(T_{1}\right)=\frac{1}{1+\left(y_{0}^{-2}-1\right) \exp \left(-2 T_{1}\right)} \tag{14.219}
\end{equation*}
$$

We then have

$$
\begin{equation*}
A\left(T_{1}\right)=8^{1 / 4} \sqrt{y\left(T_{1}\right)}=\left(\frac{8}{1+\left(8 A_{0}^{-4}-1\right) \exp \left(-2 T_{1}\right)}\right)^{1 / 4} \tag{14.220}
\end{equation*}
$$

(c) In the limit $\epsilon \gg 1$, find the period of relaxation oscillations, using Liénard plane analysis. Sketch the orbit of the relaxation oscillation in the Liénard plane.
Solution: Our nonlinear oscillator may be written in the form

$$
\begin{equation*}
\ddot{x}+\epsilon \frac{d F(x)}{d t}+x=0 \tag{14.221}
\end{equation*}
$$

with

$$
\begin{equation*}
F(x)=\frac{1}{5} x^{5}-x \tag{14.222}
\end{equation*}
$$

Figure 14.19: Vector field and phase curves for the oscillator $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$, with $\epsilon=0.25$ and starting from $\left(x_{0}, v_{0}\right)=(1,1)$. As $\epsilon \rightarrow 0$, the limit cycle is a circle of radius $A^{*}=8^{1 / 4} \approx 1.682$.

Note $\dot{F}=\left(x^{4}-1\right) \dot{x}$. Now we define the Liénard variable

$$
\begin{equation*}
y \equiv \frac{\dot{x}}{\epsilon}+F(x) \tag{14.223}
\end{equation*}
$$

and in terms of (x, y) we have

$$
\begin{equation*}
\dot{x}=\epsilon[y-F(x)] \quad, \quad \dot{y}=-\frac{x}{\epsilon} . \tag{14.224}
\end{equation*}
$$

As we have seen in the notes, for large ϵ the motion in the (x, y) plane is easily analyzed. $x(t)$ must move quickly over to the curve $y=F(x)$, at which point the motion slows down and slowly creeps along this curve until it can no longer do so, at which point another big fast jump occurs. The jumps take place between the local extrema of $F(x)$, which occur for $F^{\prime}(a)=a^{4}-1=0$, i.e. at $a= \pm 1$, and points on the curve with the same values of $F(a)$. Thus, we solve $F(-1)=\frac{4}{5}=\frac{1}{5} b^{5}-b$ and find the desired root at $b^{*} \approx 1.650629$. The period of the relaxation oscillations, for large ϵ, is

$$
\begin{equation*}
T \approx 2 \epsilon \int_{a}^{b} d x \frac{F^{\prime}(x)}{x}=\epsilon \cdot\left[\frac{1}{2} x^{4}-2 \ln x\right]_{a}^{b} \approx 2.20935 \epsilon \tag{14.225}
\end{equation*}
$$

(d) Numerically integrate the equation (14.209) starting from several different initial conditions.

Solution: The accompanying Mathematica plots show $x(t)$ and $v(t)$ for this system for two representative values of ϵ.

Figure 14.20: Solution to the oscillator equation $\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=0$ with $\epsilon=0.25$ and initial conditions $\left(x_{0}, v_{0}\right)=(1,3) . x(t)$ is shown in red and $v(t)$ in blue. As $\epsilon \rightarrow 0$, the amplitude of the oscillations tends to $A^{*}=8^{1 / 4} \approx 1.682$.

Chapter 15

Hamiltonian Mechanics

15.1 References

- R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics (Harwood, 1988) A thorough treatment of nonlinear Hamiltonian particle and wave mechanics.
- E. Ott, Chaos in Dynamical Systems (Cambridge, 2002) An excellent introductory text appropriate for graduate or advanced undergraduate students.
- W. Dittrich and M. Reuter, Classical and Quantum Dynamics (Springer, 2001) More a handbook than a textbook, but reliably covers a large amount of useful material.
- G. M. Zaslavsky, Hamiltonian Chaos \& Fractional Dynamics (Oxford, 2005) An advanced text for graduate students and researchers.
- I. Percival and D. Richards, Introduction to Dynamics (Cambridge, 1994) An excellent advanced undergraduate text.
- A. J. Lichenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, 1983) An advanced graduate level text. Excellent range of topics, but quite technical and often lacking physical explanations.

15.2 The Hamiltonian

Recall that $L=L(q, \dot{q}, t)$, and

$$
\begin{equation*}
p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}} \tag{15.1}
\end{equation*}
$$

with $n=N d$ for a system of N particles in d space dimensions. The Hamiltonian, $H(q, p, t)$ is obtained by a Legendre transformation,

$$
\begin{equation*}
H(q, p)=\sum_{\sigma=1}^{n} p_{\sigma} \dot{q}_{\sigma}-L(q, \dot{q}, t) \tag{15.2}
\end{equation*}
$$

Note that

$$
\begin{align*}
d H & =\sum_{\sigma=1}^{n}\left(p_{\sigma} d \dot{q}_{\sigma}+\dot{q}_{\sigma} d p_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}-\frac{\partial L}{\partial \dot{q}_{\sigma}} d \dot{q}_{\sigma}\right)-\frac{\partial L}{\partial t} d t \\
& =\sum_{\sigma=1}^{n}\left(\dot{q}_{\sigma} d p_{\sigma}-\frac{\partial L}{\partial q_{\sigma}} d q_{\sigma}\right)-\frac{\partial L}{\partial t} d t . \tag{15.3}
\end{align*}
$$

Thus, we obtain Hamilton's equations of motion,

$$
\begin{equation*}
\frac{\partial H}{\partial p_{\sigma}}=\dot{q}_{\sigma} \quad, \quad \frac{\partial H}{\partial q_{\sigma}}=-\frac{\partial L}{\partial q_{\sigma}}=-\dot{p}_{\sigma} \tag{15.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d H}{d t}=\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} \tag{15.5}
\end{equation*}
$$

Some remarks:

- As an example, consider a particle moving in three dimensions, described by spherical polar coordinates (r, θ, ϕ). Then

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-U(r, \theta, \phi) . \tag{15.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
p_{r}=\frac{\partial L}{\partial \dot{r}}=m \dot{r} \quad, \quad p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta} \quad, \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m r^{2} \sin ^{2} \theta \dot{\phi}, \tag{15.7}
\end{equation*}
$$

and thus

$$
\begin{align*}
H & =p_{r} \dot{r}+p_{\theta} \dot{\theta}+p_{\phi} \dot{\phi}-L \\
& =\frac{p_{r}^{2}}{2 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}+\frac{p_{\phi}^{2}}{2 m r^{2} \sin ^{2} \theta}+U(r, \theta, \phi) . \tag{15.8}
\end{align*}
$$

Note that H is time-independent, hence $\frac{\partial H}{\partial t}=\frac{d H}{d t}=0$, and therefore H is a constant of the motion.

- In order to obtain $H(q, p)$ we must invert the relation $p_{\sigma}=\frac{\partial L}{\partial \dot{q}_{\sigma}}=p_{\sigma}(q, \dot{q})$ to obtain $\dot{q}_{\sigma}(q, p)$. This is possible if the Hessian,

$$
\begin{equation*}
\frac{\partial p_{\alpha}}{\partial \dot{q}_{\beta}}=\frac{\partial^{2} L}{\partial \dot{q}_{\alpha} \partial \dot{q}_{\beta}} \tag{15.9}
\end{equation*}
$$

is nonsingular. This is the content of the 'inverse function theorem' of multivariable calculus.

- Define the rank $2 n$ vector, ξ, by its components,

$$
\xi_{i}= \begin{cases}q_{i} & \text { if } 1 \leq i \leq n \tag{15.10}\\ p_{i-n} & \text { if } n<i \leq 2 n\end{cases}
$$

Then we may write Hamilton's equations compactly as

$$
\begin{equation*}
\dot{\xi}_{i}=\mathbb{J}_{i j} \frac{\partial H}{\partial \xi_{j}} \tag{15.11}
\end{equation*}
$$

where

$$
\mathbb{J}=\left(\begin{array}{cc}
\mathbb{O}_{n \times n} & \mathbb{I}_{n \times n} \tag{15.12}\\
-\mathbb{I}_{n \times n} & \mathbb{O}_{n \times n}
\end{array}\right)
$$

is a rank $2 n$ matrix. Note that $\mathbb{J}^{t}=-\mathbb{J}$, i.e. \mathbb{J} is antisymmetric, and that $\mathbb{J}^{2}=-\mathbb{I}_{2 n \times 2 n}$. We shall utilize this 'symplectic structure' to Hamilton's equations shortly.

15.2.1 Modified Hamilton's principle

Let's vary the action now with respect to both $\left\{q_{\sigma}\right\}$ and $\left\{p_{\sigma}\right\}$, considering them as independent variations. We then have

$$
\begin{align*}
0=\delta \int_{t_{a}}^{t_{b}} d t L & =\delta \int_{t_{a}}^{t_{b}} d t\left(p_{\sigma} \dot{q}_{\sigma}-H\right) \\
& =\int_{t_{a}}^{t_{b}} d t\left\{p_{\sigma} \delta \dot{q}_{\sigma}+\dot{q}_{\sigma} \delta p_{\sigma}-\frac{\partial H}{\partial q_{\sigma}} \delta q_{\sigma}-\frac{\partial H}{\partial p_{\sigma}} \delta p_{\sigma}\right\} \tag{15.13}\\
& =\int_{t_{a}}^{t_{b}} d t\left\{-\left(\dot{p}_{\sigma}+\frac{\partial H}{\partial q_{\sigma}}\right) \delta q_{\sigma}+\left(\dot{q}_{\sigma}-\frac{\partial H}{\partial p_{\sigma}}\right) \delta p_{\sigma}\right\}+\left.\left(p_{\sigma} \delta q_{\sigma}\right)\right|_{t_{a}} ^{t_{b}}
\end{align*}
$$

Assuming $\delta q_{\sigma}\left(t_{a}\right)=\delta q_{\sigma}\left(t_{b}\right)=0$, and setting the coefficients of δq_{σ} and δp_{σ} to zero, we recover Hamilton's equations.

15.2.2 Phase flow is incompressible

A flow for which $\nabla \cdot \boldsymbol{v}=0$ is incompressible - we shall see why in a moment. Let's check that the divergence of the phase space velocity does indeed vanish:

$$
\begin{align*}
\nabla \cdot \dot{\boldsymbol{\xi}} & =\sum_{\sigma=1}^{n}\left\{\frac{\partial \dot{q}_{\sigma}}{\partial q_{\sigma}}+\frac{\partial \dot{p}_{\sigma}}{\partial p_{\sigma}}\right\} \\
& =\sum_{i=1}^{2 n} \frac{\partial \dot{\xi}_{i}}{\partial \xi_{i}}=\sum_{i, j} \mathbb{J}_{i j} \frac{\partial^{2} H}{\partial \xi_{i} \partial \xi_{j}}=0 \tag{15.14}
\end{align*}
$$

Now let $\rho(\boldsymbol{\xi}, t)$ be a distribution on phase space. Continuity implies

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \dot{\boldsymbol{\xi}})=0 \tag{15.15}
\end{equation*}
$$

Invoking $\boldsymbol{\nabla} \cdot \dot{\boldsymbol{\xi}}=0$, we have that

$$
\begin{equation*}
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+\dot{\boldsymbol{\xi}} \cdot \boldsymbol{\nabla} \rho=0 \tag{15.16}
\end{equation*}
$$

where $D \rho / D t$ is sometimes called the convective derivative - it is the total derivative of the function $\rho(\boldsymbol{\xi}(t), t)$, evaluated at a point $\xi(t)$ in phase space which moves according to the dynamics. This says that the density in the "comoving frame" is locally constant.

15.2.3 Poincaré recurrence theorem

Let g_{τ} be the ' τ-advance mapping' which evolves points in phase space according to Hamilton's equations

$$
\begin{equation*}
\dot{q}_{\sigma}=+\frac{\partial H}{\partial p_{\sigma}} \quad, \quad \dot{p}_{\sigma}=-\frac{\partial H}{\partial q_{\sigma}} \tag{15.17}
\end{equation*}
$$

for a time interval $\Delta t=\tau$. Consider a region Ω in phase space. Define $g_{\tau}^{n} \Omega$ to be the $n^{\text {th }}$ image of Ω under the mapping g_{τ}. Clearly g_{τ} is invertible; the inverse is obtained by integrating the equations of motion backward in time. We denote the inverse of g_{τ} by g_{τ}^{-1}. By Liouville's theorem, g_{τ} is volume preserving when acting on regions in phase space, since the evolution of any given point is Hamiltonian. This follows from the continuity equation for the phase space density,

$$
\begin{equation*}
\frac{\partial \varrho}{\partial t}+\nabla \cdot(\boldsymbol{u} \varrho)=0 \tag{15.18}
\end{equation*}
$$

where $\boldsymbol{u}=\{\dot{\boldsymbol{q}}, \dot{\boldsymbol{p}}\}$ is the velocity vector in phase space, and Hamilton's equations, which say that the phase flow is incompressible, i.e. $\nabla \cdot \boldsymbol{u}=0$:

$$
\begin{align*}
\nabla \cdot \boldsymbol{u} & =\sum_{\sigma=1}^{n}\left\{\frac{\partial \dot{q}_{\sigma}}{\partial q_{\sigma}}+\frac{\partial \dot{p}_{\sigma}}{\partial p_{\sigma}}\right\} \\
& =\sum_{\sigma=1}^{n}\left\{\frac{\partial}{\partial q_{\sigma}}\left(\frac{\partial H}{\partial p_{\sigma}}\right)+\frac{\partial}{\partial p_{\sigma}}\left(-\frac{\partial H}{\partial q_{\sigma}}\right)\right\}=0 . \tag{15.19}
\end{align*}
$$

Thus, we have that the convective derivative vanishes, viz.

$$
\begin{equation*}
\frac{D \varrho}{D t} \equiv \frac{\partial \varrho}{\partial t}+\boldsymbol{u} \cdot \nabla \varrho=0 \tag{15.20}
\end{equation*}
$$

which guarantees that the density remains constant in a frame moving with the flow.
The proof of the recurrence theorem is simple. Assume that g_{τ} is invertible and volume-preserving, as is the case for Hamiltonian flow. Further assume that phase space volume is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we simply ask that the volume of phase space at fixed total energy E be finite, i.e.

$$
\begin{equation*}
\int d \mu \delta(E-H(\boldsymbol{q}, \boldsymbol{p}))<\infty \tag{15.21}
\end{equation*}
$$

where $d \mu=\prod_{i} d q_{i} d p_{i}$ is the phase space uniform integration measure.
Theorem: In any finite neighborhood Ω of phase space there exists a point φ_{0} which will return to Ω after n applications of g_{τ}, where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the set Υ formed from the union of all sets $g_{\tau}^{m} \Omega$ for all m :

$$
\begin{equation*}
\Upsilon=\bigcup_{m=0}^{\infty} g_{\tau}^{m} \Omega \tag{15.22}
\end{equation*}
$$

We assume that the set $\left\{g_{\tau}^{m} \Omega \mid m \in \mathbb{Z}_{\geq 0}\right\}$ is disjoint. The volume of a union of disjoint sets is the sum of the individual volumes. Thus,

$$
\begin{equation*}
\operatorname{vol}(\Upsilon)=\sum_{m=0}^{\infty} \operatorname{vol}\left(g_{\tau}^{m} \Omega\right)=\operatorname{vol}(\Omega) \cdot \sum_{m=1}^{\infty} 1=\infty \tag{15.23}
\end{equation*}
$$

since $\operatorname{vol}\left(g_{\tau}^{m} \Omega\right)=\operatorname{vol}(\Omega)$ from volume preservation. But clearly Υ is a subset of the entire phase space, hence we have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set $\left\{g_{\tau}^{m} \Omega \mid m \in \mathbb{Z} \quad, m \geq 0\right\}$ is disjoint fails. This means that there exists some pair of integers k and l, with $k \neq l$, such that $g_{\tau}^{k} \Omega \cap g_{\tau}^{l} \Omega \neq \emptyset$. Without loss of generality we may assume $k>l$. Apply the inverse g_{τ}^{-1} to this relation l times to get $g_{\tau}^{k-l} \Omega \cap \Omega \neq \emptyset$. Now choose any point $\boldsymbol{\varphi} \in g_{\tau}^{n} \Omega \cap \Omega$, where $n=k-l$, and define $\boldsymbol{\varphi}_{0}=g_{\tau}^{-n} \boldsymbol{\varphi}$. Then by construction both $\boldsymbol{\varphi}_{0}$ and $g_{\tau}^{n} \boldsymbol{\varphi}_{0}$ lie within Ω and the theorem is proven.
Each of the two central assumptions - invertibility and volume preservation - is crucial. Without either of them, the proof fails. Consider, for example, a volume-preserving map which is not invertible. An example might be a mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ which takes any real number to its fractional part. Thus, $f(\pi)=0.14159265 \ldots$. Let us restrict our attention to intervals of width less than unity. Clearly f is then volume preserving. The action of f on the interval $[2,3)$ is to map it to the interval $[0,1)$. But $[0,1)$ remains fixed under the action of f, so no point within the interval $[2,3)$ will ever return under repeated iterations of f. Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract. For a one-dimensional oscillator obeying $\ddot{x}+2 \beta \dot{x}+\Omega_{0}^{2} x=0$ one has $\nabla \cdot \boldsymbol{u}=-2 \beta<0$ ($\beta>0$ for damping). Thus the convective derivative is equal to $D_{t} \varrho=-(\nabla \cdot \boldsymbol{u}) \varrho=+2 \beta \varrho$ which says that the density increases exponentially in the comoving frame, as $\varrho(t)=e^{2 \beta t} \varrho(0)$. Thus, phase space volumes collapse, and are not preserved by the dynamics. In this case, it is possible for the set Υ to be of finite volume, even if it is the union of an infinite number of sets $g_{\tau}^{n} \Omega$, because the volumes of these component sets themselves decrease exponentially, as $\operatorname{vol}\left(g_{\tau}^{n} \Omega\right)=e^{-2 n \beta \tau} \operatorname{vol}(\Omega)$. A damped pendulum, released from rest at some small angle θ_{0}, will not return arbitrarily close to these initial conditions.

15.2.4 Poisson brackets

The time evolution of any function $F(\boldsymbol{q}, \boldsymbol{p})$ over phase space is given by

$$
\begin{align*}
\frac{d}{d t} F(\boldsymbol{q}(t), \boldsymbol{p}(t), t) & =\frac{\partial F}{\partial t}+\sum_{\sigma=1}^{n}\left\{\frac{\partial F}{\partial q_{\sigma}} \dot{q}_{\sigma}+\frac{\partial F}{\partial p_{\sigma}} \dot{p}_{\sigma}\right\} \tag{15.24}\\
& \equiv \frac{\partial F}{\partial t}+\{F, H\}
\end{align*}
$$

where the Poisson bracket $\{\cdot, \cdot\}$ is given by

$$
\begin{align*}
\{A, B\} & \equiv \sum_{\sigma=1}^{n}\left(\frac{\partial A}{\partial q_{\sigma}} \frac{\partial B}{\partial p_{\sigma}}-\frac{\partial A}{\partial p_{\sigma}} \frac{\partial B}{\partial q_{\sigma}}\right) \\
& =\sum_{i, j=1}^{2 n} \mathbb{J}_{i j} \frac{\partial A}{\partial \xi_{i}} \frac{\partial B}{\partial \xi_{j}} \tag{15.25}
\end{align*}
$$

Properties of the Poisson bracket:

- Antisymmetry:

$$
\begin{equation*}
\{f, g\}=-\{g, f\} \tag{15.26}
\end{equation*}
$$

- Bilinearity: if λ is a constant, and f, g, and h are functions on phase space, then

$$
\begin{equation*}
\{f+\lambda g, h\}=\{f, h\}+\lambda\{g, h\} \tag{15.27}
\end{equation*}
$$

Linearity in the second argument follows from this and the antisymmetry condition.

- Associativity:

$$
\begin{equation*}
\{f g, h\}=f\{g, h\}+g\{f, h\} \tag{15.28}
\end{equation*}
$$

- Jacobi identity:

$$
\begin{equation*}
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0 \tag{15.29}
\end{equation*}
$$

Some other useful properties:

- If $\{A, H\}=0$ and $\frac{\partial A}{\partial t}=0$, then $\frac{d A}{d t}=0$,i.e. $A(q, p)$ is a constant of the motion.
- If $\{A, H\}=0$ and $\{B, H\}=0$, then $\{\{A, B\}, H\}=0$. If in addition A and B have no explicit time dependence, we conclude that $\{A, B\}$ is a constant of the motion.
- It is easily established that

$$
\begin{equation*}
\left\{q_{\alpha}, q_{\beta}\right\}=0 \quad, \quad\left\{p_{\alpha}, p_{\beta}\right\}=0 \quad, \quad\left\{q_{\alpha}, p_{\beta}\right\}=\delta_{\alpha \beta} \tag{15.30}
\end{equation*}
$$

15.3 Canonical Transformations

15.3.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

$$
\begin{equation*}
Q_{\sigma}=Q_{\sigma}\left(q_{1}, \ldots, q_{n}, t\right) \tag{15.31}
\end{equation*}
$$

This is called a "point transformation." The transformation is invertible if

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial Q_{\alpha}}{\partial q_{\beta}}\right) \neq 0 . \tag{15.32}
\end{equation*}
$$

The transformed Lagrangian, \tilde{L}, written as a function of the new coordinates \boldsymbol{Q} and velocities $\dot{\boldsymbol{Q}}$, is

$$
\begin{equation*}
\tilde{L}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}, t)=L(\boldsymbol{q}(\boldsymbol{Q}, t), \dot{\boldsymbol{q}}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}, t), t)+\frac{d}{d t} F(\boldsymbol{q}(\boldsymbol{Q}, t), t) \tag{15.33}
\end{equation*}
$$

where $F(\boldsymbol{q}, t)$ is a function only of the coordinates $q_{\sigma}(\boldsymbol{Q}, t)$ and time ${ }^{1}$. Finally, Hamilton's principle,

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{b}} d t \tilde{L}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}, t)=0 \tag{15.34}
\end{equation*}
$$

with $\delta Q_{\sigma}\left(t_{a}\right)=\delta Q_{\sigma}\left(t_{b}\right)=0$, still holds, and the form of the Euler-Lagrange equations remains unchanged:

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial Q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{Q}_{\sigma}}\right)=0 \tag{15.35}
\end{equation*}
$$

The invariance of the equations of motion under a point transformation may be verified explicitly. We first evaluate

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{Q}_{\sigma}}\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \frac{\partial \dot{q}_{\alpha}}{\partial \dot{Q}_{\sigma}}\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \frac{\partial q_{\alpha}}{\partial Q_{\sigma}}\right) \tag{15.36}
\end{equation*}
$$

[^32]where the relation $\partial \dot{q}_{\alpha} / \partial \dot{Q}_{\sigma}=\partial q_{\alpha} / \partial Q_{\sigma}$ follows from $\dot{q}_{\alpha}=\frac{\partial q_{\alpha}}{\partial Q_{\sigma}} \dot{Q}_{\sigma}+\frac{\partial q_{\alpha}}{\partial t}$. We know that adding a total time derivative of a function $\tilde{F}(\boldsymbol{Q}, t)=F(\boldsymbol{q}(\boldsymbol{Q}, t), t)$ to the Lagrangian does not alter the equations of motion. Hence we can set $F=0$ and compute
\[

$$
\begin{align*}
\frac{\partial \tilde{L}}{\partial Q_{\sigma}} & =\frac{\partial L}{\partial q_{\alpha}} \frac{\partial q_{\alpha}}{\partial Q_{\sigma}}+\frac{\partial L}{\partial \dot{q}_{\alpha}} \frac{\partial \dot{q}_{\alpha}}{\partial Q_{\sigma}} \\
& =\frac{\partial L}{\partial q_{\alpha}} \frac{\partial q_{\alpha}}{\partial Q_{\sigma}}+\frac{\partial L}{\partial \dot{q}_{\alpha}}\left(\frac{\partial^{2} q_{\alpha}}{\partial Q_{\sigma} \partial Q_{\sigma^{\prime}}} \dot{Q}_{\sigma^{\prime}}+\frac{\partial^{2} q_{\alpha}}{\partial Q_{\sigma} \partial t}\right) \\
& =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right) \frac{\partial q_{\alpha}}{\partial Q_{\sigma}}+\frac{\partial L}{\partial \dot{q}_{\alpha}} \frac{d}{d t}\left(\frac{\partial q_{\alpha}}{\partial Q_{\sigma}}\right) \tag{15.37}\\
& =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial q_{\alpha}}{\partial Q_{\sigma}}\right)=\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{Q}_{\sigma}}\right),
\end{align*}
$$
\]

where the last equality is what we obtained earlier in eqn. 15.36.

15.3.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations - ones which mix all the $q^{\prime} \mathrm{s}$ and p^{\prime} s. The general form for a canonical transformation (CT) is

$$
\begin{align*}
& q_{\sigma}=q_{\sigma}\left(Q_{1}, \ldots, Q_{n} ; P_{1}, \ldots, P_{n} ; t\right) \tag{15.38}\\
& p_{\sigma}=p_{\sigma}\left(Q_{1}, \ldots, Q_{n} ; P_{1}, \ldots, P_{n} ; t\right),
\end{align*}
$$

with $\sigma \in\{1, \ldots, n\}$. We may also write

$$
\begin{equation*}
\xi_{i}=\xi_{i}\left(\Xi_{1}, \ldots, \Xi_{2 n} ; t\right) \tag{15.39}
\end{equation*}
$$

with $i \in\{1, \ldots, 2 n\}$. The transformed Hamiltonian is $\tilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)$., where, as we shall see below, $\tilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=$ $H(\boldsymbol{q}, \boldsymbol{p}, t)+\frac{\partial}{\partial t} F(\boldsymbol{q}, \boldsymbol{Q}, t)$.
What sorts of transformations are allowed? Well, if Hamilton's equations are to remain invariant, then

$$
\begin{equation*}
\dot{Q}_{\sigma}=\frac{\partial \widetilde{H}}{\partial P_{\sigma}} \quad, \quad \dot{P}_{\sigma}=-\frac{\partial \widetilde{H}}{\partial Q_{\sigma}} \tag{15.40}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\partial \dot{Q}_{\sigma}}{\partial Q_{\sigma}}+\frac{\partial \dot{P}_{\sigma}}{\partial P_{\sigma}}=0=\frac{\partial \dot{\Xi}_{i}}{\partial \Xi_{i}} \tag{15.41}
\end{equation*}
$$

I.e. the flow remains incompressible in the new (Q, P) variables. We will also require that phase space volumes are preserved by the transformation, i.e.

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial \Xi_{i}}{\partial \xi_{j}}\right)=\left\|\frac{\partial(\boldsymbol{Q}, \boldsymbol{P})}{\partial(\boldsymbol{q}, \boldsymbol{p})}\right\|=1 \tag{15.42}
\end{equation*}
$$

Additional conditions will be discussed below.

15.3.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let $\xi_{i}=\xi_{i}(t)$ and let $\xi_{i}^{\prime}=\xi_{i}(t+d t)$. Then from the dynamics $\dot{\xi}_{i}=\mathbb{J}_{i j} \partial H / \partial \xi_{j}$, we have

$$
\begin{equation*}
\xi_{i}(t+d t)=\xi_{i}(t)+\mathbb{J}_{i j} \frac{\partial H}{\partial \xi_{j}} d t+\mathcal{O}\left(d t^{2}\right) \tag{15.43}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\frac{\partial \xi_{i}^{\prime}}{\partial \xi_{j}} & =\frac{\partial}{\partial \xi_{j}}\left(\xi_{i}+\mathbb{J}_{i k} \frac{\partial H}{\partial \xi_{k}} d t+\mathcal{O}\left(d t^{2}\right)\right) \tag{15.44}\\
& =\delta_{i j}+\mathbb{J}_{i k} \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{k}} d t+\mathcal{O}\left(d t^{2}\right)
\end{align*}
$$

Now, using the result $\operatorname{det}(1+\epsilon M)=1+\epsilon \operatorname{Tr} M+\mathcal{O}\left(\epsilon^{2}\right)$, we have

$$
\begin{equation*}
\left\|\frac{\partial \xi_{i}^{\prime}}{\partial \xi_{j}}\right\|=1+\mathbb{J}_{j k} \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{k}} d t+\mathcal{O}\left(d t^{2}\right)=1+\mathcal{O}\left(d t^{2}\right) \tag{15.45}
\end{equation*}
$$

15.3.4 Symplectic structure

We have that

$$
\begin{equation*}
\dot{\xi}_{i}=\mathbb{J}_{i j} \frac{\partial H}{\partial \xi_{j}} \tag{15.46}
\end{equation*}
$$

Suppose we make a time-independent canonical transformation from $\left\{\xi_{i}\right\}$ to new phase space coordinates $\left\{\Xi_{a}\right\}$, where $\Xi_{a}=\Xi_{a}(\xi)$. We then have

$$
\begin{equation*}
\dot{\Xi}_{a}=\frac{\partial \Xi_{a}}{\partial \xi_{j}} \dot{\xi}_{j}=\frac{\partial \Xi_{a}}{\partial \xi_{j}} \mathbb{J}_{j k} \frac{\partial H}{\partial \xi_{k}} \tag{15.47}
\end{equation*}
$$

But if the transformation is canonical, then the equations of motion are preserved, and we also have ${ }^{2}$

$$
\begin{equation*}
\dot{\Xi}_{a}=\mathbb{J}_{a b} \frac{\partial \widetilde{H}}{\partial \Xi_{b}}=\mathbb{J}_{a b} \frac{\partial H}{\partial \xi_{k}} \frac{\partial \xi_{k}}{\partial \Xi_{b}} \tag{15.48}
\end{equation*}
$$

Equating these two expressions, we have

$$
\begin{equation*}
M_{a j} \mathbb{J}_{j k} \frac{\partial H}{\partial \xi_{k}}=\mathbb{J}_{a b} M_{k b}^{-1} \frac{\partial H}{\partial \xi_{k}} \tag{15.49}
\end{equation*}
$$

where $M_{a j} \equiv \partial \Xi_{a} / \partial \xi_{j}$ is the Jacobian of the transformation. Since the equality must hold for all ξ, we conclude

$$
\begin{equation*}
M \mathbb{J}=\mathbb{J}\left(M^{\mathrm{t}}\right)^{-1} \quad \Longrightarrow \quad M \mathbb{J} M^{\mathrm{t}}=\mathbb{J} . \tag{15.50}
\end{equation*}
$$

${ }^{2}$ The astute reader will notice that this equation is wrong, because $\widetilde{H}(\boldsymbol{\Xi})=H(\boldsymbol{\xi})+\partial_{t} F(\boldsymbol{q}, \boldsymbol{Q}, t)$. We leave it to the reader to patch up the argument, which requires the results of §15.3.5.

A matrix M satisfying $M M^{\mathrm{t}}=\mathbb{I}$ is an orthogonal matrix. A matrix M satisfying $M \mathbb{J} M^{\mathrm{t}}=\mathbb{J}$ is called symplectic. We write $M \in \operatorname{Sp}(2 n)$, i.e. M is an element of the group of symplectic matrices ${ }^{3}$ of rank $2 n$.

The symplectic property of M guarantees that the Poisson brackets are preserved under a canonical transformation:

$$
\begin{align*}
\{A, B\}_{\xi} & =\mathbb{J}_{i j} \frac{\partial A}{\partial \xi_{i}} \frac{\partial B}{\partial \xi_{j}}=\mathbb{J}_{i j} \frac{\partial A}{\partial \Xi_{a}} \frac{\partial \Xi_{a}}{\partial \xi_{i}} \frac{\partial B}{\partial \Xi_{b}} \frac{\partial \Xi_{b}}{\partial \xi_{j}} \tag{15.51}\\
& =\left(M_{a i} \mathbb{J}_{i j} M_{j b}^{\mathrm{t}}\right) \frac{\partial A}{\partial \Xi_{a}} \frac{\partial B}{\partial \Xi_{b}}=\mathbb{J}_{a b} \frac{\partial A}{\partial \Xi_{a}} \frac{\partial B}{\partial \Xi_{b}}=\{A, B\}_{\Xi} .
\end{align*}
$$

15.3.5 Generating functions for canonical transformations

For a transformation to be canonical, we require

$$
\begin{equation*}
\delta \int_{t_{a}}^{t_{b}} d t\left\{p_{\sigma} \dot{q}_{\sigma}-H(\boldsymbol{q}, \boldsymbol{p}, t)\right\}=0=\delta \int_{t_{a}}^{t_{b}} d t\left\{P_{\sigma} \dot{Q}_{\sigma}-\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)\right\} . \tag{15.52}
\end{equation*}
$$

This is satisfied provided

$$
\begin{equation*}
\left\{p_{\sigma} \dot{q}_{\sigma}-H(\boldsymbol{q}, \boldsymbol{p}, t)\right\}=\lambda\left\{P_{\sigma} \dot{Q}_{\sigma}-\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)+\frac{d}{d t} F(\boldsymbol{q}, \boldsymbol{Q}, t)\right\} \tag{15.53}
\end{equation*}
$$

where λ is a constant. For canonical transformations ${ }^{4}, \lambda=1$. Thus,

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=H(\boldsymbol{q}, \boldsymbol{p}, t)+P_{\sigma} \dot{Q}_{\sigma}-p_{\sigma} \dot{q}_{\sigma}+\frac{\partial F}{\partial q_{\sigma}} \dot{q}_{\sigma}+\frac{\partial F}{\partial Q_{\sigma}} \dot{Q}_{\sigma}+\frac{\partial F}{\partial t} \tag{15.54}
\end{equation*}
$$

Thus, we require

$$
\begin{equation*}
\frac{\partial F}{\partial q_{\sigma}}=p_{\sigma} \quad, \quad \frac{\partial F}{\partial Q_{\sigma}}=-P_{\sigma} \quad, \quad \frac{\partial F}{\partial p_{\sigma}}=0 \quad, \quad \frac{\partial F}{\partial P_{\sigma}}=0 \tag{15.55}
\end{equation*}
$$

which says that $F=F(\boldsymbol{q}, \boldsymbol{Q}, t)$ is only a function of $(\boldsymbol{q}, \boldsymbol{Q}, t)$ and not a function of any of the momentum variables \boldsymbol{p} and \boldsymbol{P}. The transformed Hamiltonian is then

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=H(\boldsymbol{q}, \boldsymbol{p}, t)+\frac{\partial F(\boldsymbol{q}, \boldsymbol{Q}, t)}{\partial t} . \tag{15.56}
\end{equation*}
$$

[^33]There are four possibilities, corresponding to the freedom to make Legendre transformations with respect to the coordinate arguments of $F(q, Q, t)$:

$$
F(\boldsymbol{q}, \boldsymbol{Q}, t)=\left\{\begin{array}{lll}
F_{1}(\boldsymbol{q}, \boldsymbol{Q}, t) & ; p_{\sigma}=+\frac{\partial F_{1}}{\partial q_{\sigma}} \quad, \quad P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}} \quad \text { (type I) } \tag{15.57}\\
F_{2}(\boldsymbol{q}, \boldsymbol{P}, t)-P_{\sigma} Q_{\sigma} & ; p_{\sigma}=+\frac{\partial F_{2}}{\partial q_{\sigma}} \quad, \quad Q_{\sigma}=+\frac{\partial F_{2}}{\partial P_{\sigma}} \quad \text { (type II) } \\
F_{3}(\boldsymbol{p}, \boldsymbol{Q}, t)+p_{\sigma} q_{\sigma} & ; q_{\sigma}=-\frac{\partial F_{3}}{\partial p_{\sigma}} \quad, \quad P_{\sigma}=-\frac{\partial F_{3}}{\partial Q_{\sigma}} \quad \text { (type III) } \\
F_{4}(\boldsymbol{p}, \boldsymbol{P}, t)+p_{\sigma} q_{\sigma}-P_{\sigma} Q_{\sigma} & ; q_{\sigma}=-\frac{\partial F_{4}}{\partial p_{\sigma}} \quad, \quad Q_{\sigma}=+\frac{\partial F_{4}}{\partial P_{\sigma}} \quad \text { (type IV) }
\end{array}\right.
$$

In each case $(\gamma=1,2,3,4)$, we have

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=H(\boldsymbol{q}, \boldsymbol{p}, t)+\frac{\partial F_{\gamma}}{\partial t} . \tag{15.58}
\end{equation*}
$$

Let's work out some examples:

- Consider the type-II transformation generated by

$$
\begin{equation*}
F_{2}(\boldsymbol{q}, \boldsymbol{P})=A_{\sigma}(\boldsymbol{q}) P_{\sigma}, \tag{15.59}
\end{equation*}
$$

where $A_{\sigma}(\boldsymbol{q})$ is an arbitrary function of the $\left\{q_{\sigma}\right\}$. We then have

$$
\begin{equation*}
Q_{\sigma}=\frac{\partial F_{2}}{\partial P_{\sigma}}=A_{\sigma}(\boldsymbol{q}) \quad, \quad p_{\sigma}=\frac{\partial F_{2}}{\partial q_{\sigma}}=\frac{\partial A_{\alpha}}{\partial q_{\sigma}} P_{\alpha} . \tag{15.60}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
Q_{\sigma}=A_{\sigma}(\boldsymbol{q}) \quad, \quad P_{\sigma}=\frac{\partial q_{\alpha}}{\partial Q_{\sigma}} p_{\alpha} \tag{15.61}
\end{equation*}
$$

This is a general point transformation of the kind discussed in eqn. 15.31. For a general linear point transformation, $Q_{\alpha}=M_{\alpha \beta} q_{\beta}$, we have $P_{\alpha}=p_{\beta} M_{\beta \alpha}^{-1}$, i.e. $\boldsymbol{Q}=M \boldsymbol{q}, \boldsymbol{P}=\boldsymbol{p} M^{-1}$. If $M_{\alpha \beta}=\delta_{\alpha \beta}$, this is the identity transformation. $F_{2}=q_{1} P_{3}+q_{3} P_{1}$ interchanges labels 1 and 3 , etc.

- Consider the type-I transformation generated by

$$
\begin{equation*}
F_{1}(\boldsymbol{q}, \boldsymbol{Q})=A_{\sigma}(\boldsymbol{q}) Q_{\sigma} \tag{15.62}
\end{equation*}
$$

We then have

$$
\begin{align*}
& p_{\sigma}=\frac{\partial F_{1}}{\partial q_{\sigma}}=\frac{\partial A_{\alpha}}{\partial q_{\sigma}} Q_{\alpha} \\
& P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}}=-A_{\sigma}(\boldsymbol{q}) . \tag{15.63}
\end{align*}
$$

Note that $A_{\sigma}(\boldsymbol{q})=q_{\sigma}$ generates the transformation

$$
\begin{equation*}
\binom{\boldsymbol{q}}{\boldsymbol{p}} \longrightarrow\binom{-\boldsymbol{P}}{+\boldsymbol{Q}} \tag{15.64}
\end{equation*}
$$

- A mixed transformation is also permitted. For example,

$$
\begin{equation*}
F(\boldsymbol{q}, \boldsymbol{Q})=q_{1} Q_{1}+\left(q_{3}-Q_{2}\right) P_{2}+\left(q_{2}-Q_{3}\right) P_{3} \tag{15.65}
\end{equation*}
$$

is of type-I with respect to index $\sigma=1$ and type-II with respect to indices $\sigma=2,3$. The transformation effected is

$$
\begin{equation*}
Q_{1}=p_{1} \quad, \quad Q_{2}=q_{3} \quad, \quad Q_{3}=q_{2} \quad, \quad P_{1}=-q_{1} \quad, \quad P_{2}=p_{3} \quad, \quad P_{3}=p_{2} \tag{15.66}
\end{equation*}
$$

- Consider the $n=1$ harmonic oscillator,

$$
\begin{equation*}
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2} \tag{15.67}
\end{equation*}
$$

If we could find a time-independent canonical transformation such that

$$
\begin{equation*}
p=\sqrt{2 m f(P)} \cos Q \quad, \quad q=\sqrt{\frac{2 f(P)}{k}} \sin Q \tag{15.68}
\end{equation*}
$$

where $f(P)$ is some function of P, then we'd have $\widetilde{H}(Q, P)=f(P)$, which is cyclic in Q. To find this transformation, we take the ratio of p and q to obtain

$$
\begin{equation*}
p=\sqrt{m k} q \operatorname{ctn} Q \tag{15.69}
\end{equation*}
$$

which suggests the type-I transformation

$$
\begin{equation*}
F_{1}(q, Q)=\frac{1}{2} \sqrt{m k} q^{2} \operatorname{ctn} Q \tag{15.70}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
p=\frac{\partial F_{1}}{\partial q}=\sqrt{m k} q \operatorname{ctn} Q \quad, \quad P=-\frac{\partial F_{1}}{\partial Q}=\frac{\sqrt{m k} q^{2}}{2 \sin ^{2} Q} \tag{15.71}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
q=\frac{\sqrt{2 P}}{\sqrt[4]{m k}} \sin Q \quad \Longrightarrow \quad f(P)=\sqrt{\frac{k}{m}} P=\omega P \tag{15.72}
\end{equation*}
$$

where $\omega=\sqrt{k / m}$ is the oscillation frequency. We therefore have that $\widetilde{H}(Q, P)=\omega P$, whence $P=E / \omega$. The equations of motion are

$$
\begin{equation*}
\dot{P}=-\frac{\partial \widetilde{H}}{\partial Q}=0 \quad, \quad \dot{Q}=\frac{\partial \widetilde{H}}{\partial P}=\omega \tag{15.73}
\end{equation*}
$$

which yields

$$
\begin{equation*}
Q(t)=\omega t+\varphi_{0} \quad, \quad q(t)=\sqrt{\frac{2 E}{m \omega^{2}}} \sin \left(\omega t+\varphi_{0}\right) \tag{15.74}
\end{equation*}
$$

15.4 Hamilton-Jacobi Theory

We've stressed the great freedom involved in making canonical transformations. Coordinates and momenta, for example, may be interchanged - the distinction between them is purely a matter of convention! We now ask: is there any specially preferred canonical transformation? In this regard, one obvious goal is to make the Hamiltonian $\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)$ and the corresponding equations of motion as simple as possible.
Recall the general form of the canonical transformation:

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=H(\boldsymbol{q}, \boldsymbol{p}, t)+\frac{\partial F(\boldsymbol{q}, \boldsymbol{Q}, t)}{\partial t}, \tag{15.75}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial F}{\partial q_{\sigma}}=p_{\sigma} \quad, \quad \frac{\partial F}{\partial p_{\sigma}}=0 \quad, \quad \frac{\partial F}{\partial Q_{\sigma}}=-P_{\sigma} \quad, \quad \frac{\partial F}{\partial P_{\sigma}}=0 \tag{15.76}
\end{equation*}
$$

We now ask that this transformation result in the simplest Hamiltonian possible, that is, $\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=0$. This requires we find a function F such that

$$
\begin{equation*}
\frac{\partial F}{\partial t}=-H \quad, \quad \frac{\partial F}{\partial q_{\sigma}}=p_{\sigma} \tag{15.77}
\end{equation*}
$$

The remaining functional dependence may be taken to be either on \boldsymbol{Q} (type I) or on \boldsymbol{P} (type II). As it turns out, the generating function F we seek is in fact the action, S, which is the integral of L with respect to time, expressed as a function of its endpoint values.

15.4.1 The action as a function of coordinates and time

We have seen how the action $S[\boldsymbol{\eta}(\tau)]$ is a functional of the path $\boldsymbol{\eta}(\tau)$ and a function of the endpoint values $\left\{\boldsymbol{q}_{a}, t_{a}\right\}$ and $\left\{\boldsymbol{q}_{b}, t_{b}\right\}$. Let us define the action function $S(\boldsymbol{q}, t)$ as

$$
\begin{equation*}
S(\boldsymbol{q}, t)=\int_{t_{a}}^{t} d \tau L(\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}, \tau) \tag{15.78}
\end{equation*}
$$

where $\boldsymbol{\eta}(\tau)$ starts at $\left(\boldsymbol{q}_{a}, t_{a}\right)$ and ends at (\boldsymbol{q}, t). We also require that $\boldsymbol{\eta}(\tau)$ satisfy the Euler-Lagrange equations,

$$
\begin{equation*}
\frac{\partial L}{\partial \eta_{\sigma}}-\frac{d}{d \tau}\left(\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right)=0 \tag{15.79}
\end{equation*}
$$

Let us now consider a new path, $\tilde{\boldsymbol{\eta}}(\tau)$, also starting at $\left(\boldsymbol{q}_{a}, t_{a}\right)$, but ending at $(\boldsymbol{q}+d \boldsymbol{q}, t+d t)$, and also

Figure 15.1: The paths $\boldsymbol{\eta}(\tau)$ and $\tilde{\boldsymbol{\eta}}(\tau)$.
satisfying the equations of motion. The differential of S is

$$
\begin{align*}
d S & =S[\tilde{\boldsymbol{\eta}}(\tau)]-S[\boldsymbol{\eta}(\tau)]=\int_{t_{a}}^{t+d t} d \tau L(\tilde{\boldsymbol{\eta}}, \dot{\tilde{\boldsymbol{\eta}}}, \tau)-\int_{t_{a}}^{t} d \tau L(\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}, \tau) \\
& =\int_{t_{a}}^{t} d \tau\left\{\frac{\partial L}{\partial \eta_{\sigma}}\left[\tilde{\eta}_{\sigma}(\tau)-\eta_{\sigma}(\tau)\right]+\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\left[\dot{\tilde{\eta}}_{\sigma}(\tau)-\dot{\eta}_{\sigma}(\tau)\right]\right\}+L(\tilde{\boldsymbol{\eta}}(t), \dot{\tilde{\boldsymbol{\eta}}}(t), t) d t \\
& =\int_{t_{a}}^{t} d \tau\left\{\frac{\partial L}{\partial \eta_{\sigma}}-\frac{d}{d \tau}\left(\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right)\right\}\left[\tilde{\eta}_{\sigma}(\tau)-\eta_{\sigma}(\tau)\right]+\left.\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right|_{t}\left[\tilde{\eta}_{\sigma}(t)-\eta_{\sigma}(t)\right]+L(\tilde{\boldsymbol{\eta}}(t), \dot{\tilde{\boldsymbol{\eta}}}(t), t) d t \\
& =0+\pi_{\sigma}(t) \delta \eta_{\sigma}(t)+L(\boldsymbol{\eta}(t), \dot{\boldsymbol{\eta}}(t), t) d t+\mathcal{O}(\delta \boldsymbol{q} d t) \tag{15.80}
\end{align*}
$$

where we have defined $\pi_{\sigma}=\partial L / \partial \dot{\eta}_{\sigma}$, and $\delta \eta_{\sigma}(\tau) \equiv \tilde{\eta}_{\sigma}(\tau)-\eta_{\sigma}(\tau)$.
Note that the differential $d q_{\sigma}$ is given by

$$
\begin{align*}
d q_{\sigma} & =\tilde{\eta}_{\sigma}(t+d t)-\eta_{\sigma}(t) \\
& =\tilde{\eta}_{\sigma}(t+d t)-\tilde{\eta}_{\sigma}(t)+\tilde{\eta}_{\sigma}(t)-\eta_{\sigma}(t) \tag{15.81}\\
& =\dot{\tilde{\eta}}_{\sigma}(t) d t+\delta \eta_{\sigma}(t)=\dot{q}_{\sigma}(t) d t+\delta \eta_{\sigma}(t)+\mathcal{O}(\delta \boldsymbol{q} d t) .
\end{align*}
$$

Thus, with $\pi_{\sigma}(t) \equiv p_{\sigma}$, we have

$$
\begin{align*}
d S & =p_{\sigma} d q_{\sigma}+\left(L-p_{\sigma} \dot{q}_{\sigma}\right) d t \tag{15.82}\\
& =p_{\sigma} d q_{\sigma}-H d t .
\end{align*}
$$

We therefore obtain

$$
\begin{equation*}
\frac{\partial S}{\partial q_{\sigma}}=p_{\sigma} \quad, \quad \frac{\partial S}{\partial t}=-H \quad, \quad \frac{d S}{d t}=L \tag{15.83}
\end{equation*}
$$

What about the lower limit at t_{a} ? Clearly there are $n+1$ constants associated with this limit, and those are: $\left\{q_{1}\left(t_{a}\right), \ldots, q_{n}\left(t_{a}\right) ; t_{a}\right\}$. Thus, we may write

$$
\begin{equation*}
S=S\left(q_{1}, \ldots, q_{n} ; \Lambda_{1}, \ldots, \Lambda_{n}, t\right)+\Lambda_{n+1} \tag{15.84}
\end{equation*}
$$

where our $n+1$ constants are $\left\{\Lambda_{1}, \ldots, \Lambda_{n+1}\right\}$. If we regard S as a mixed generator, which is type-I in some variables and type-II in others, then each Λ_{σ} for $1 \leq \sigma \leq n$ may be chosen to be either Q_{σ} or P_{σ}. We will define

$$
\Gamma_{\sigma}=\frac{\partial S}{\partial \Lambda_{\sigma}}= \begin{cases}+Q_{\sigma} & \text { if } \Lambda_{\sigma}=P_{\sigma} \tag{15.85}\\ -P_{\sigma} & \text { if } \Lambda_{\sigma}=Q_{\sigma}\end{cases}
$$

For each σ, the two possibilities $\Lambda_{\sigma}=Q_{\sigma}$ or $\Lambda_{\sigma}=P_{\sigma}$ are of course rendered equivalent by a canonical transformation $\left(Q_{\sigma}, P_{\sigma}\right) \rightarrow\left(P_{\sigma},-Q_{\sigma}\right)$.

15.4.2 The Hamilton-Jacobi equation

Since the action $S(\boldsymbol{q}, \boldsymbol{\Lambda}, t)$ generates a canonical transformation for which $\tilde{H}(\boldsymbol{Q}, \boldsymbol{P})=0$, this requirement may be written as

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{n}, \frac{\partial S}{\partial q_{1}}, \ldots, \frac{\partial S}{\partial q_{n}}, t\right)+\frac{\partial S}{\partial t}=0 \tag{15.86}
\end{equation*}
$$

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation in $n+1$ variables, and in general is nonlinear (since kinetic energy is generally a quadratic function of momenta). Since $\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=0$, the equations of motion are trivial, and

$$
\begin{equation*}
Q_{\sigma}(t)=\text { const. } \quad, \quad P_{\sigma}(t)=\text { const } . \tag{15.87}
\end{equation*}
$$

Once the HJE is solved, one must invert the relations $\Gamma_{\sigma}=\partial S(\boldsymbol{q}, \boldsymbol{\Lambda}, t) / \partial \Lambda_{\sigma}$ to obtain the $q_{\sigma}(\boldsymbol{Q}, \boldsymbol{P}, t)$. This is possible only if

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} S}{\partial q_{\alpha} \partial \Lambda_{\beta}}\right) \neq 0 \tag{15.88}
\end{equation*}
$$

which is known as the Hessian condition.
It is worth noting that the HJE may have several solutions. For example, consider the case of the free particle in one dimension, with $H(q, p)=p^{2} / 2 m$. The HJE is

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}+\frac{\partial S}{\partial t}=0 \tag{15.89}
\end{equation*}
$$

One solution of the HJE is

$$
\begin{equation*}
S(q, \Lambda, t)=\frac{m(q-\Lambda)^{2}}{2 t} \tag{15.90}
\end{equation*}
$$

For this we find

$$
\begin{equation*}
\Gamma=\frac{\partial S}{\partial \Lambda}=-\frac{m}{t}(q-\Lambda) \quad \Rightarrow \quad q(t)=\Lambda-\frac{\Gamma}{m} t . \tag{15.91}
\end{equation*}
$$

Here $\Lambda=q(0)$ is the initial value of q, and $\Gamma=-p$ is minus the momentum.
Another equally valid solution to the HJE is

$$
\begin{equation*}
S(q, \Lambda, t)=q \sqrt{2 m \Lambda}-\Lambda t . \tag{15.92}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\Gamma=\frac{\partial S}{\partial \Lambda}=q \sqrt{\frac{m}{2 \Lambda}}-t \quad \Rightarrow \quad q(t)=\sqrt{\frac{2 \Lambda}{m}}(t+\Gamma) \tag{15.93}
\end{equation*}
$$

For this solution, $\Lambda=\frac{1}{2} m v^{2}$ is the energy and Γ may be related to the initial value $q(0)=\Gamma \sqrt{2 \Lambda / m}$.

15.4.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one, writing

$$
\begin{equation*}
S(\boldsymbol{q}, \boldsymbol{\Lambda}, t)=W(\boldsymbol{q}, \boldsymbol{\Lambda})+T(\boldsymbol{\Lambda}, t) . \tag{15.94}
\end{equation*}
$$

The HJE becomes

$$
\begin{equation*}
H\left(\boldsymbol{q}, \frac{\partial W}{\partial \boldsymbol{q}}\right)=-\frac{\partial T}{\partial t} . \tag{15.95}
\end{equation*}
$$

Note that the LHS of the above equation is independent of t, and the RHS is independent of q. Therefore, each side must only depend on the constants Λ, which is to say that each side must be a constant, which, without loss of generality, we take to be Λ_{1}. Therefore

$$
\begin{equation*}
S(\boldsymbol{q}, \boldsymbol{\Lambda}, t)=W(\boldsymbol{q}, \boldsymbol{\Lambda})-\Lambda_{1} t . \tag{15.96}
\end{equation*}
$$

The function $W(\boldsymbol{q}, \boldsymbol{\Lambda})$ is called Hamilton's characteristic function. The HJE now takes the form

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{n}, \frac{\partial W}{\partial q_{1}}, \ldots, \frac{\partial W}{\partial q_{n}}\right)=\Lambda_{1} . \tag{15.97}
\end{equation*}
$$

Note that adding an arbitrary constant C to S generates the same equation, and simply shifts the last constant $\Lambda_{n+1} \rightarrow \Lambda_{n+1}+C$. According to eqn. 15.96, this is equivalent to replacing t by $t-t_{0}$ with $t_{0}=C / \Lambda_{1}$, i.e. it just redefines the zero of the time variable.

15.4.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

$$
\begin{equation*}
H(q, p)=\frac{p^{2}}{2 m}+U(q) \tag{15.98}
\end{equation*}
$$

The HJE is

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W}{\partial q}\right)^{2}+U(q)=\Lambda \tag{15.99}
\end{equation*}
$$

Clearly $\Lambda=E$ is the total energy. The HJE may be recast as

$$
\begin{equation*}
\frac{\partial W}{\partial q}= \pm \sqrt{2 m[\Lambda-U(q)]} \tag{15.100}
\end{equation*}
$$

with solution

$$
\begin{equation*}
W(q, \Lambda)= \pm \sqrt{2 m} \int^{q} d q^{\prime} \sqrt{\Lambda-U\left(q^{\prime}\right)} \tag{15.101}
\end{equation*}
$$

with $S(q, \Lambda, t)=W(q, \Lambda)-\Lambda t$. We now have

$$
\begin{equation*}
p=\frac{\partial W}{\partial q}= \pm \sqrt{2 m[\Lambda-U(q)]} \tag{15.102}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\Gamma=\frac{\partial S}{\partial \Lambda}=\frac{\partial W}{\partial \Lambda}-t= \pm \sqrt{\frac{m}{2}} \int^{q(t)} \frac{d q^{\prime}}{\sqrt{\Lambda-U\left(q^{\prime}\right)}}-t \tag{15.103}
\end{equation*}
$$

Thus, the motion $q(t)$ is given by quadrature:

$$
\begin{equation*}
\Gamma+t= \pm \sqrt{\frac{m}{2}} \int^{q(t)} \frac{d q^{\prime}}{\sqrt{\Lambda-U\left(q^{\prime}\right)}} \tag{15.104}
\end{equation*}
$$

where Λ and Γ are constants. The lower limit on the integral is arbitrary and merely shifts t by another constant. The characteristic function $W(q, \Lambda)$ is actually double-valued in q, corresponding to rightmoving and left-moving parts of the motion.

15.4.5 Separation of variables

It is convenient to first work an example before discussing the general theory. Consider the following Hamiltonian, written in spherical polar coordinates:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)+\overbrace{A(r)+\frac{B(\theta)}{r^{2}}+\frac{C(\phi)}{r^{2} \sin ^{2} \theta}}^{\text {potential } U(r, \theta, \phi)} . \tag{15.105}
\end{equation*}
$$

We seek a characteristic function of the form $W(r, \theta, \phi)=W_{r}(r)+W_{\theta}(\theta)+W_{\phi}(\phi)$. The HJE is then

$$
\begin{align*}
\frac{1}{2 m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+\frac{1}{2 m r^{2}}\left(\frac{\partial W_{\theta}}{\partial \theta}\right)^{2}+ & \frac{1}{2 m r^{2} \sin ^{2} \theta}\left(\frac{\partial W_{\phi}}{\partial \phi}\right)^{2} \tag{15.106}\\
& +A(r)+\frac{B(\theta)}{r^{2}}+\frac{C(\phi)}{r^{2} \sin ^{2} \theta}=\Lambda_{1}=E
\end{align*}
$$

Multiply through by $r^{2} \sin ^{2} \theta$ to obtain

$$
\begin{align*}
\frac{1}{2 m}\left(\frac{\partial W_{\phi}}{\partial \phi}\right)^{2}+C(\phi)=-\sin ^{2} \theta\{ & \left.\frac{1}{2 m}\left(\frac{\partial W_{\theta}}{\partial \theta}\right)^{2}+B(\theta)\right\} \tag{15.107}\\
& -r^{2} \sin ^{2} \theta\left\{\frac{1}{2 m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+A(r)-\Lambda_{1}\right\}
\end{align*}
$$

The LHS is independent of (r, θ), and the RHS is independent of ϕ. Therefore, we may set

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{\phi}}{\partial \phi}\right)^{2}+C(\phi)=\Lambda_{2} \tag{15.108}
\end{equation*}
$$

Proceeding, we replace the LHS in eqn. 15.107 with Λ_{2}, arriving at

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{\theta}}{\partial \theta}\right)^{2}+B(\theta)+\frac{\Lambda_{2}}{\sin ^{2} \theta}=-r^{2}\left\{\frac{1}{2 m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+A(r)-\Lambda_{1}\right\} \tag{15.109}
\end{equation*}
$$

The LHS of this equation is independent of r, and the RHS is independent of θ. Therefore,

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{\theta}}{\partial \theta}\right)^{2}+B(\theta)+\frac{\Lambda_{2}}{\sin ^{2} \theta}=\Lambda_{3} \tag{15.110}
\end{equation*}
$$

We're left with

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+A(r)+\frac{\Lambda_{3}}{r^{2}}=\Lambda_{1} \tag{15.111}
\end{equation*}
$$

The full solution is therefore

$$
\begin{align*}
& S(\boldsymbol{q}, \boldsymbol{\Lambda}, t)=\sqrt{2 m} \int^{r} d r^{\prime} \sqrt{\Lambda_{1}-A\left(r^{\prime}\right)-\frac{\Lambda_{3}}{r^{\prime 2}}}+\sqrt{2 m} \int^{\theta} d \theta^{\prime} \sqrt{\Lambda_{3}-B\left(\theta^{\prime}\right)-\frac{\Lambda_{2}}{\sin ^{2} \theta^{\prime}}} \tag{15.112}\\
&+\sqrt{2 m} \int^{\phi} d \phi^{\prime} \sqrt{\Lambda_{2}-C\left(\phi^{\prime}\right)}-\Lambda_{1} t
\end{align*}
$$

We then have

$$
\begin{align*}
& \Gamma_{1}=\frac{\partial S}{\partial \Lambda_{1}}=\sqrt{\frac{m}{2}} \int^{r(t)} \frac{d r^{\prime}}{\sqrt{\Lambda_{1}-A\left(r^{\prime}\right)-\Lambda_{3} r^{\prime-2}}}-t \\
& \Gamma_{2}=\frac{\partial S}{\partial \Lambda_{2}}=-\sqrt{\frac{m}{2}} \int^{\theta(t)} \frac{d \theta^{\prime}}{\sin ^{2} \theta^{\prime} \sqrt{\Lambda_{3}-B\left(\theta^{\prime}\right)-\Lambda_{2} \csc ^{2} \theta^{\prime}}}+\sqrt{\frac{m}{2}} \int^{\phi(t)} \frac{d \phi^{\prime}}{\sqrt{\Lambda_{2}-C\left(\phi^{\prime}\right)}} \tag{15.113}\\
& \Gamma_{3}=\frac{\partial S}{\partial \Lambda_{3}}=-\sqrt{\frac{m}{2}} \int^{r(t)} \frac{d r^{\prime}}{r^{\prime 2} \sqrt{\Lambda_{1}-A\left(r^{\prime}\right)-\Lambda_{3}{r^{\prime-2}}}}+\sqrt{\frac{m}{2}} \int^{\theta(t)} \frac{d \theta^{\prime}}{\sqrt{\Lambda_{3}-B\left(\theta^{\prime}\right)-\Lambda_{2} \csc ^{2} \theta^{\prime}}}
\end{align*}
$$

The game plan here is as follows. The first of the above trio of equations is inverted to yield $r(t)$ in terms of t and constants. This solution is then invoked in the last equation (the upper limit on the first integral on the RHS) in order to obtain an implicit equation for $\theta(t)$, which is invoked in the second equation to yield an implicit equation for $\phi(t)$. The net result is the motion of the system in terms of time t and the six constants $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right)$. A seventh constant, associated with an overall shift of the zero of t, arises due to the arbitrary lower limits of the integrals.
In general, the separation of variables method begins with ${ }^{5}$

$$
\begin{equation*}
W(\boldsymbol{q}, \boldsymbol{\Lambda})=\sum_{\sigma=1}^{n} W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}\right) \tag{15.114}
\end{equation*}
$$

Each $W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}\right)$ may be regarded as a function of the single variable q_{σ}, and is obtained by satisfying an ODE of the form ${ }^{6}$

$$
\begin{equation*}
H_{\sigma}\left(q_{\sigma}, \frac{d W_{\sigma}}{d q_{\sigma}}\right)=\Lambda_{\sigma} \tag{15.115}
\end{equation*}
$$

We then have

$$
\begin{equation*}
p_{\sigma}=\frac{\partial W_{\sigma}}{\partial q_{\sigma}} \quad, \quad \Gamma_{\sigma}=\frac{\partial W_{\sigma}}{\partial \Lambda_{\sigma}}+\delta_{\sigma, 1} t \tag{15.116}
\end{equation*}
$$

Note that while each W_{σ} depends on only a single q_{σ}, it may depend on several of the Λ_{σ}.

15.5 Action-Angle Variables

15.5.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separation of variables. Each momentum p_{σ} is a function of only its corresponding coordinate q_{σ} plus constants - no other coordinates enter:

$$
\begin{equation*}
p_{\sigma}=\frac{\partial W_{\sigma}}{\partial q_{\sigma}}=p_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}\right) \tag{15.117}
\end{equation*}
$$

The motion satisfies $H_{\sigma}\left(q_{\sigma}, p_{\sigma}\right)=\Lambda_{\sigma}$. The level sets of H_{σ} are curves \mathcal{C}_{σ}. In general, these curves each depend on all of the constants $\boldsymbol{\Lambda}$, so we write $\mathcal{C}_{\sigma}=\mathcal{C}_{\sigma}(\boldsymbol{\Lambda})$. The curves \mathcal{C}_{σ} are the projections of the full motion onto the (q_{σ}, p_{σ}) plane. In general we will assume the motion, and hence the curves \mathcal{C}_{σ}, is bounded. In this case, two types of projected motion are possible: librations and rotations. Librations are periodic oscillations about an equilibrium position. Rotations involve the advancement of an angular variable by 2π during a cycle. This is most conveniently illustrated in the case of the simple pendulum, for which

$$
\begin{equation*}
H\left(\phi, p_{\phi}\right)=\frac{p_{\phi}^{2}}{2 I}+\frac{1}{2} I \omega^{2}(1-\cos \phi) . \tag{15.118}
\end{equation*}
$$

[^34]

Figure 15.2: Phase curves for the simple pendulum, showing librations (in blue), rotations (in green), and the separatrix (in red). This phase flow is most correctly viewed as taking place on a cylinder, obtained from the above sketch by identifying the lines $\phi=\pi$ and $\phi=-\pi$.

- When $E<I \omega^{2}$, the momentum p_{ϕ} vanishes at $\phi= \pm \cos ^{-1}\left(2 E / I \omega^{2}\right)$. The system executes librations between these extreme values of the angle ϕ.
- When $E>I \omega^{2}$, the kinetic energy is always positive, and the angle advances monotonically, executing rotations.

In a completely integrable system, each \mathcal{C}_{σ} is either a libration or a rotation ${ }^{7}$. Both librations and rotations are closed curves. Thus, each \mathcal{C}_{σ} is in general homotopic to (= "can be continuously distorted to yield") a circle, \mathbb{S}^{1}. For n freedoms, the motion is therefore confined to an n-torus, \mathbb{T}^{n} :

$$
\begin{equation*}
\mathbb{T}^{n}=\overbrace{\mathbb{S}^{1} \times \mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}}^{n \text { times }} \tag{15.119}
\end{equation*}
$$

These are called invariant tori (or invariant manifolds). There are many such tori, as there are many \mathcal{C}_{σ} curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension $2 n$, while the invariant tori are of dimension n. Phase space is 'covered' by the invariant tori, but it is in general difficult to conceive of how this happens. Perhaps the most accessible analogy is the $n=1$ case, where the ' 1 -tori' are just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The orbits are topologically equivalent to circles, although geometrically they may be distorted.) It is challenging to think about the $n=2$ case, where a fourdimensional phase space is filled by nonintersecting 2 -tori.

[^35]
15.5.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from $(\boldsymbol{q}, \boldsymbol{p})$ to new coordinates $(\boldsymbol{\phi}, \boldsymbol{J})$ which specify a particular n-torus \mathbb{T}^{n} as well as the location on the torus, which is specified by n angle variables. The $\left\{J_{\sigma}\right\}$ are 'momentum' variables which specify the torus itself; they are constants of the motion since the tori are invariant. They are called action variables. Since $\dot{J}_{\sigma}=0$, we must have

$$
\begin{equation*}
\dot{J}_{\sigma}=-\frac{\partial H}{\partial \phi_{\sigma}}=0 \quad \Longrightarrow \quad H=H(\boldsymbol{J}) . \tag{15.120}
\end{equation*}
$$

The $\left\{\phi_{\sigma}\right\}$ are the angle variables.
The coordinate ϕ_{σ} describes the projected motion along \mathcal{C}_{σ}, and is normalized by

$$
\begin{equation*}
\oint_{\mathcal{C}_{\sigma}} d \phi_{\sigma}=2 \pi \quad \text { (once around } \mathcal{C}_{\sigma} \text {) } \tag{15.121}
\end{equation*}
$$

The dynamics of the angle variables are given by

$$
\begin{equation*}
\dot{\phi}_{\sigma}=\frac{\partial H}{\partial J_{\sigma}} \equiv \nu_{\sigma}(\boldsymbol{J}) . \tag{15.122}
\end{equation*}
$$

Thus, the motion is given by

$$
\begin{equation*}
\phi_{\sigma}(t)=\phi_{\sigma}(0)+\nu_{\sigma}(\boldsymbol{J}) t . \tag{15.123}
\end{equation*}
$$

The $\left\{\nu_{\sigma}(\boldsymbol{J})\right\}$ are frequencies describing the rate at which the \mathcal{C}_{σ} are traversed, and the period is $T_{\sigma}(\boldsymbol{J})=$ $2 \pi / \nu_{\sigma}(\boldsymbol{J})$.

15.5.3 Canonical Transformation to Action-Angle Variables

The $\left\{J_{\sigma}\right\}$ determine the $\left\{\mathcal{C}_{\sigma}\right\}$; each q_{σ} determines a point on \mathcal{C}_{σ}. This suggests a type-II transformation, with generator $F_{2}(\boldsymbol{q}, \boldsymbol{J})$:

$$
\begin{equation*}
p_{\sigma}=\frac{\partial F_{2}}{\partial q_{\sigma}} \quad, \quad \phi_{\sigma}=\frac{\partial F_{2}}{\partial J_{\sigma}} \tag{15.124}
\end{equation*}
$$

Note that ${ }^{8}$

$$
\begin{equation*}
2 \pi=\oint_{\mathcal{C}_{\sigma}} d \phi_{\sigma}=\oint_{\mathcal{C}_{\sigma}} d\left(\frac{\partial F_{2}}{\partial J_{\sigma}}\right)=\oint_{\mathcal{C}_{\sigma}} \frac{\partial^{2} F_{2}}{\partial J_{\sigma} \partial q_{\sigma}} d q_{\sigma}=\frac{\partial}{\partial J_{\sigma}} \oint_{\mathcal{C}_{\sigma}} p_{\sigma} d q_{\sigma} \tag{15.125}
\end{equation*}
$$

which suggests the definition

$$
\begin{equation*}
J_{\sigma}=\frac{1}{2 \pi} \oint_{\mathcal{C}_{\sigma}} p_{\sigma} d q_{\sigma} \tag{15.126}
\end{equation*}
$$

I.e. J_{σ} is $(2 \pi)^{-1}$ times the area enclosed by \mathcal{C}_{σ}.

[^36]If, separating variables,

$$
\begin{equation*}
W(\boldsymbol{q}, \boldsymbol{\Lambda})=\sum_{\sigma} W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}\right) \tag{15.127}
\end{equation*}
$$

is Hamilton's characteristic function for the transformation $(\boldsymbol{q}, \boldsymbol{p}) \rightarrow(\boldsymbol{Q}, \boldsymbol{P})$, then

$$
\begin{equation*}
J_{\sigma}=\frac{1}{2 \pi} \oint_{\mathcal{C}_{\sigma}} \frac{\partial W_{\sigma}}{\partial q_{\sigma}} d q_{\sigma}=J_{\sigma}(\boldsymbol{\Lambda}) \tag{15.128}
\end{equation*}
$$

is a function only of the $\left\{\Lambda_{\alpha}\right\}$ and not the $\left\{\Gamma_{\alpha}\right\}$. We then invert this relation to obtain $\boldsymbol{\Lambda}(\boldsymbol{J})$, to finally obtain

$$
\begin{equation*}
F_{2}(\boldsymbol{q}, \boldsymbol{J})=W(\boldsymbol{q}, \boldsymbol{\Lambda}(\boldsymbol{J}))=\sum_{\sigma} W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}(\boldsymbol{J})\right) \tag{15.129}
\end{equation*}
$$

Thus, the recipe for canonically transforming to action-angle variable is as follows:
(1) Separate and solve the Hamilton-Jacobi equation for $W(\boldsymbol{q}, \boldsymbol{\Lambda})=\sum_{\sigma} W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}\right)$.
(2) Find the orbits $\mathcal{C}_{\sigma}(\boldsymbol{\Lambda})$, i.e. the level sets satisfying $H_{\sigma}\left(q_{\sigma}, p_{\sigma}\right)=\Lambda_{\sigma}$.
(3) Invert the relation $J_{\sigma}(\boldsymbol{\Lambda})=\frac{1}{2 \pi} \oint_{\mathcal{C}_{\sigma}} \frac{\partial W_{\sigma}}{\partial q_{\sigma}} d q_{\sigma}$ to obtain $\boldsymbol{\Lambda}(\boldsymbol{J})$.
(4) $F_{2}(\boldsymbol{q}, \boldsymbol{J})=\sum_{\sigma} W_{\sigma}\left(q_{\sigma}, \boldsymbol{\Lambda}(\boldsymbol{J})\right)$ is the desired type-II generator ${ }^{9}$.

15.5.4 Example : Harmonic Oscillator

The Hamiltonian is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} q^{2} \tag{15.130}
\end{equation*}
$$

hence the Hamilton-Jacobi equation is

$$
\begin{equation*}
\left(\frac{d W}{d q}\right)^{2}+m^{2} \omega_{0}^{2} q^{2}=2 m \Lambda \tag{15.131}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
p=\frac{d W}{d q}= \pm \sqrt{2 m \Lambda-m^{2} \omega_{0}^{2} q^{2}} . \tag{15.132}
\end{equation*}
$$

We now define

$$
\begin{equation*}
q \equiv \sqrt{\frac{2 \Lambda}{m \omega_{0}^{2}}} \sin \theta \quad \Rightarrow \quad p=\sqrt{2 m \Lambda} \cos \theta \tag{15.133}
\end{equation*}
$$

in which case

$$
\begin{equation*}
J=\frac{1}{2 \pi} \oint p d q=\frac{1}{2 \pi} \cdot \frac{2 \Lambda}{\omega_{0}} \cdot \int_{0}^{2 \pi} d \theta \cos ^{2} \theta=\frac{\Lambda}{\omega_{0}} \tag{15.134}
\end{equation*}
$$

${ }^{9}$ Note that $F_{2}(\boldsymbol{q}, \boldsymbol{J})$ is time-independent. I.e. we are not transforming to $\widetilde{H}=0$, but rather to $\widetilde{H}=\widetilde{H}(\boldsymbol{J})$.

Solving the HJE, we write

$$
\begin{equation*}
\frac{d W}{d \theta}=\frac{\partial q}{\partial \theta} \cdot \frac{d W}{d q}=2 J \cos ^{2} \theta \tag{15.135}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
W=J \theta+\frac{1}{2} J \sin 2 \theta, \tag{15.136}
\end{equation*}
$$

up to an irrelevant constant. We then have

$$
\begin{equation*}
\phi=\left.\frac{\partial W}{\partial J}\right|_{q}=\theta+\frac{1}{2} \sin 2 \theta+\left.J(1+\cos 2 \theta) \frac{\partial \theta}{\partial J}\right|_{q} . \tag{15.137}
\end{equation*}
$$

To find $(\partial \theta / \partial J)_{q}$, we differentiate $q=\sqrt{2 J / m \omega_{0}} \sin \theta$:

$$
\begin{equation*}
d q=\frac{\sin \theta}{\sqrt{2 m \omega_{0} J}} d J+\left.\sqrt{\frac{2 J}{m \omega_{0}}} \cos \theta d \theta \quad \Rightarrow \quad \frac{\partial \theta}{\partial J}\right|_{q}=-\frac{1}{2 J} \tan \theta . \tag{15.138}
\end{equation*}
$$

Plugging this result into eqn. 15.137, we obtain $\phi=\theta$. Thus, the full transformation is

$$
\begin{equation*}
q=\sqrt{\frac{2 J}{m \omega_{0}}} \sin \phi \quad, \quad p=\sqrt{2 m \omega_{0} J} \cos \phi . \tag{15.139}
\end{equation*}
$$

The Hamiltonian is

$$
\begin{equation*}
H=\omega_{0} J \tag{15.140}
\end{equation*}
$$

hence $\dot{\phi}=\frac{\partial H}{\partial J}=\omega_{0}$ and $\dot{J}=-\frac{\partial H}{\partial \phi}=0$, with solution $\phi(t)=\phi(0)+\omega_{0} t$ and $J(t)=J(0)$.

15.5.5 Example : Particle in a Box

Consider a particle in an open box of dimensions $L_{x} \times L_{y}$ moving under the influence of gravity. The bottom of the box lies at $z=0$. The Hamiltonian is

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}+m g z . \tag{15.141}
\end{equation*}
$$

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-Jacobi equation is written

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{x}}{\partial x}\right)^{2}+\frac{1}{2 m}\left(\frac{\partial W_{y}}{\partial y}\right)^{2}+\frac{1}{2 m}\left(\frac{\partial W_{z}}{\partial z}\right)^{2}+m g z=E \equiv \Lambda_{z} . \tag{15.142}
\end{equation*}
$$

We can solve for $W_{x, y}$ by inspection:

$$
\begin{equation*}
W_{x}(x)=\sqrt{2 m \Lambda_{x}} x \quad, \quad W_{y}(y)=\sqrt{2 m \Lambda_{y}} y \tag{15.143}
\end{equation*}
$$

We then have ${ }^{10}$

$$
\begin{align*}
& W_{z}^{\prime}(z)=-\sqrt{2 m\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}-m g z\right)} \\
& W_{z}(z)=\frac{2 \sqrt{2}}{3 \sqrt{m} g}\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}-m g z\right)^{3 / 2} . \tag{15.144}
\end{align*}
$$

$\overline{{ }^{10} \text { Our choice of signs in taking the square roots for }} W_{x}^{\prime}, W_{y}^{\prime}$, and W_{z}^{\prime} is discussed below.

Figure 15.3: The librations \mathcal{C}_{z} and \mathcal{C}_{x}. Not shown is \mathcal{C}_{y}, which is of the same shape as \mathcal{C}_{x}.
Step two is to find the \mathcal{C}_{σ}. Clearly $p_{x, y}=\sqrt{2 m \Lambda_{x, y}}$. For fixed p_{x}, the x motion proceeds from $x=0$ to $x=L_{x}$ and back, with corresponding motion for y. For x, we have

$$
\begin{equation*}
p_{z}(z)=W_{z}^{\prime}(z)=\sqrt{2 m\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}-m g z\right)} \tag{15.145}
\end{equation*}
$$

and thus \mathcal{C}_{z} is a truncated parabola, with $z_{\text {max }}=\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}\right) / \mathrm{mg}$.
Step three is to compute $J(\Lambda)$ and invert to obtain $\Lambda(J)$. We have

$$
\begin{align*}
& J_{x}=\frac{1}{2 \pi} \oint_{\mathcal{C}_{x}} p_{x} d x=\frac{1}{\pi} \int_{0}^{L_{x}} d x \sqrt{2 m \Lambda_{x}}=\frac{L_{x}}{\pi} \sqrt{2 m \Lambda_{x}} \\
& J_{y}=\frac{1}{2 \pi} \oint_{\mathcal{C}_{y}} p_{y} d y=\frac{1}{\pi} \int_{0}^{L_{y}} d y \sqrt{2 m \Lambda_{y}}=\frac{L_{y}}{\pi} \sqrt{2 m \Lambda_{y}} \tag{15.146}
\end{align*}
$$

and

$$
\begin{align*}
J_{z} & =\frac{1}{2 \pi} \oint_{\mathcal{C}_{z}} p_{z} d z=\frac{1}{\pi} \int_{0}^{z_{\max }} d z \sqrt{2 m\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}-m g z\right)} \tag{15.147}\\
& =\frac{2 \sqrt{2}}{3 \pi \sqrt{m} g}\left(\Lambda_{z}-\Lambda_{x}-\Lambda_{y}\right)^{3 / 2}
\end{align*}
$$

We now invert to obtain

$$
\begin{align*}
& \Lambda_{x}=\frac{\pi^{2}}{2 m L_{x}^{2}} J_{x}^{2}, \quad \Lambda_{y}=\frac{\pi^{2}}{2 m L_{y}^{2}} J_{y}^{2} \\
& \Lambda_{z}=\left(\frac{3 \pi \sqrt{m} g}{2 \sqrt{2}}\right)^{2 / 3} J_{z}^{2 / 3}+\frac{\pi^{2}}{2 m L_{x}^{2}} J_{x}^{2}+\frac{\pi^{2}}{2 m L_{y}^{2}} J_{y}^{2} \tag{15.148}
\end{align*}
$$

$$
\begin{equation*}
F_{2}\left(x, y, z, J_{x}, J_{y}, J_{z}\right)=\frac{\pi x}{L_{x}} J_{x}+\frac{\pi y}{L_{y}} J_{y}+\pi\left(J_{z}^{2 / 3}-\frac{2 m^{2 / 3} g^{1 / 3} z}{(3 \pi)^{2 / 3}}\right)^{3 / 2} \tag{15.149}
\end{equation*}
$$

We now find

$$
\begin{equation*}
\phi_{x}=\frac{\partial F_{2}}{\partial J_{x}}=\frac{\pi x}{L_{x}} \quad, \quad \phi_{y}=\frac{\partial F_{2}}{\partial J_{y}}=\frac{\pi y}{L_{y}} \tag{15.150}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{z}=\frac{\partial F_{2}}{\partial J_{z}}=\pi \sqrt{1-\frac{2 m^{2 / 3} g^{1 / 3} z}{\left(3 \pi J_{z}\right)^{2 / 3}}}=\pi \sqrt{1-\frac{z}{z_{\max }}}, \tag{15.151}
\end{equation*}
$$

where $z_{\max }\left(J_{z}\right)=\left(3 \pi J_{z} / m\right)^{2 / 3} / 2 g^{1 / 3}$. The momenta are

$$
\begin{equation*}
p_{x}=\frac{\partial F_{2}}{\partial x}=\frac{\pi J_{x}}{L_{x}} \quad, \quad p_{y}=\frac{\partial F_{2}}{\partial y}=\frac{\pi J_{y}}{L_{y}} \tag{15.152}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{z}=\frac{\partial F_{2}}{\partial z}=-\sqrt{2 m}\left(\left(\frac{3 \pi \sqrt{m} g}{2 \sqrt{2}}\right)^{2 / 3} J_{z}^{2 / 3}-m g z\right)^{1 / 2} . \tag{15.153}
\end{equation*}
$$

We note that the angle variables $\phi_{x, y, z}$ seem to be restricted to the range $[0, \pi]$, which seems to be at odds with eqn. 15.125 . Similarly, the momenta $p_{x, y, z}$ all seem to be positive, whereas we know the momenta reverse sign when the particle bounces off a wall. The origin of the apparent discrepancy is that when we solved for the functions $W_{x, y, z}$, we had to take a square root in each case, and we chose a particular branch of the square root. So rather than $W_{x}(x)=\sqrt{2 m \Lambda_{x}} x$, we should have taken

$$
W_{x}(x)=\left\{\begin{array}{ll}
\sqrt{2 m \Lambda_{x}} x & \text { if } p_{x}>0 \tag{15.154}\\
\sqrt{2 m \Lambda_{x}}\left(2 L_{x}-x\right) & \text { if } p_{x}<0
\end{array} .\right.
$$

The relation $J_{x}=\left(L_{x} / \pi\right) \sqrt{2 m \Lambda_{x}}$ is unchanged, hence

$$
W_{x}(x)=\left\{\begin{array}{ll}
\left(\pi x / L_{x}\right) J_{x} & \text { if } p_{x}>0 \tag{15.155}\\
2 \pi J_{x}-\left(\pi x / L_{x}\right) J_{x} & \text { if } p_{x}<0
\end{array} .\right.
$$

and

$$
\phi_{x}= \begin{cases}\pi x / L_{x} & \text { if } p_{x}>0 \tag{15.156}\\ \pi\left(2 L_{x}-x\right) / L_{x} & \text { if } p_{x}<0 .\end{cases}
$$

Now the angle variable ϕ_{x} advances by 2π during the cycle \mathcal{C}_{x}. Similar considerations apply to the y and z sectors.

15.6 Integrability and Motion on Invariant Tori

15.6.1 Librations and rotations

As discussed above, a completely integrable Hamiltonian system is solvable by separation of variables. The angle variables evolve as

$$
\begin{equation*}
\phi_{\sigma}(t)=\nu_{\sigma}(\boldsymbol{J}) t+\phi_{\sigma}(0) . \tag{15.157}
\end{equation*}
$$

Thus, they wind around the invariant torus, specified by $\left\{J_{\sigma}\right\}$ at constant rates. In general, while each ϕ_{σ} executes periodic motion around a circle, the motion of the system as a whole is not periodic, since the frequencies $\nu_{\sigma}(\boldsymbol{J})$ are not, in general, commensurate. Periodic motion requires that there exists a time T such that $\nu_{\sigma}(\boldsymbol{J}) T=2 \pi k_{\sigma}$ with $k_{\sigma} \in \mathbb{Z}$ for each $\sigma \in\{1, \ldots, n\}$ where each. This means the ratio of any two frequencies $\nu_{\sigma} / \nu_{\sigma^{\prime}}=k_{\sigma} / k_{\sigma^{\prime}} \in \mathbb{Q}$ must be a rational number. T is the smallest possible such period provided the set $\left\{k_{1}, \ldots, k_{n}\right\}$ has no common factors. On a given torus, there are several possible orbits, depending on initial conditions $\phi(0)$. However, since the frequencies are determined by the action variables, which specify each such invariant torus, on a given torus either all orbits are periodic, or none are.

In terms of the original coordinates \boldsymbol{q}, there are two possibilities:

$$
\begin{equation*}
q_{\sigma}(t)=\sum_{\ell_{1}=-\infty}^{\infty} \cdots \sum_{\ell_{n}=-\infty}^{\infty} A_{\ell_{1} \ell_{2} \cdots \ell_{n}}^{(\sigma)} e^{i \ell_{1} \phi_{1}(t)} \cdots e^{i \ell_{n} \phi_{n}(t)} \equiv \sum_{\ell} A_{\ell}^{\sigma} e^{i \ell \cdot \phi(t)} \quad \text { (libration) } \tag{15.158}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{\sigma}(t)=\frac{q_{\sigma}^{\circ} \phi_{\sigma}(t)}{2 \pi}+\sum_{\ell} B_{\ell}^{\sigma} e^{i \ell \cdot \phi(t)} \quad \text { (rotation) } \tag{15.159}
\end{equation*}
$$

For rotations, the variable $q_{\sigma}(t)$ increased by $\Delta q_{\sigma}=q_{\sigma}^{\circ}$.
I want to distinguish two important concepts. Complete periodicity, as we have defined, requires that there exists a time $T(\boldsymbol{J})$ such that $\nu_{\sigma}(\boldsymbol{J}) T(\boldsymbol{J})=2 \pi k_{\sigma}$, with $k_{\sigma} \in \mathbb{Z}$ for all $\sigma \in\{1, \ldots, n\}$. The period is then defined to be the smallest nonzero such value of $T(\boldsymbol{J})$. The second condition, resonance is weaker and only requires that there exists some $\boldsymbol{\ell} \in \mathbb{Z}^{n}$ such that $\boldsymbol{\ell} \cdot \boldsymbol{\nu}(\boldsymbol{J})=0^{11}$. Resonance is thus equivalent to periodicity on a lower-dimensional sub-torus \mathbb{T}^{k} with $k<n$. In other words, if the projected dynamics $\phi(t)$ onto any 2 -torus $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$ spanned by coordinates $\left(\phi_{\sigma}, \phi_{\bar{\sigma}}\right)$ is periodic, where $\sigma, \bar{\sigma} \in\{1, \ldots, n\}$, then the original n-torus is said to be resonant. Complete periodicity is thus a maximal state of resonance, where the motion projected onto any subtorus \mathbb{T}^{2} is periodic.

15.6.2 Liouville-Arnol'd theorem

Another statement of complete integrability is the content of the Liouville-Arnol'd theorem, which says the following. Suppose that a time-independent Hamiltonian $H(\boldsymbol{q}, \boldsymbol{p})$ has n first integrals $I_{k}(\boldsymbol{q}, \boldsymbol{p})$ with

[^37]$k \in\{1, \ldots, n\}$. This means that (see eqn. 15.24)
\[

$$
\begin{equation*}
0=\frac{d}{d t} I_{k}(\boldsymbol{q}, \boldsymbol{p})=\sum_{\sigma=1}^{n}\left(\frac{\partial I_{k}}{\partial q_{\sigma}} \dot{q}_{\sigma}+\frac{\partial I_{k}}{\partial p_{\sigma}} \dot{p}_{\sigma}\right)=\left\{I_{k}, H\right\} . \tag{15.160}
\end{equation*}
$$

\]

If the $\left\{I_{k}\right\}$ are independent functions, meaning that the phase space gradients $\left\{\nabla I_{k}\right\}$ constitute a set of n linearly independent vectors at almost every point $(\boldsymbol{q}, \boldsymbol{p}) \in \mathcal{M}$ in phase space, and the different first integrals commute with respect to the Poisson bracket, i.e. $\left\{I_{k}, I_{l}\right\}=0$, then the set of Hamilton's equations of motion is completely solvable ${ }^{12}$. The theorem establishes that ${ }^{13}$
(i) The space $\mathcal{M}_{\boldsymbol{I}}=\left\{(\boldsymbol{q}, \boldsymbol{p}) \in \mathcal{M} \mid I_{k}(\boldsymbol{p}, \boldsymbol{q})=C_{k} \forall k \in\{1, \ldots, n\}\right\}$ is diffeomorphic to an n-torus $T^{n} \equiv \mathbb{S}^{1} \times \mathbb{S}^{1} \times \cdots \mathbb{S}^{1}$, on which one can introduce action-angle variables (ϕ, \boldsymbol{J}) on patches, where ϕ are coordinates on $\mathcal{M}_{\boldsymbol{I}}$ and \boldsymbol{J} are the first integrals, i.e. $J_{k}\left(I_{1}, \ldots, I_{n}\right)=I_{k}$.
(ii) The equations of motion are $\dot{I}_{k}=0$ and $\dot{\phi}_{k}=\omega_{k}\left(I_{1}, \ldots, I_{n}\right)$.

Note that the Liouville-Arnol'd theorem does not require that H that $\widetilde{H}(\boldsymbol{I})=\sum_{k} \widetilde{H}^{(k)}\left(I_{k}\right)$, which would be a trivial state of affairs.

15.7 Adiabatic Invariants

15.7.1 Slow perturbations

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical system. A classic example: a pendulum with a slowly varying length $l(t)$. Suppose $\lambda(t)$ is the adiabatic parameter. We write $H=H(\boldsymbol{q}, \boldsymbol{p} ; \lambda(t))$. All explicit time-dependence to H comes through $\lambda(t)$. Typically, a dimensionless parameter ϵ may be associated with the perturbation:

$$
\begin{equation*}
\epsilon=\frac{1}{\omega_{0}}\left|\frac{d \ln \lambda}{d t}\right| \tag{15.161}
\end{equation*}
$$

where ω_{0} is the natural frequency of the system when λ is constant. We require $\epsilon \ll 1$ for adiabaticity. In adiabatic processes, the action variables are conserved to a high degree of accuracy. These are the adiabatic invariants. For example, for the harmonic oscillator, the action is $J=E / \nu$. While E and ν may vary considerably during the adiabatic process, their ratio is very nearly fixed. As a consequence, assuming small oscillations,

$$
\begin{equation*}
E=\nu J=\frac{1}{2} m g l \theta_{0}^{2} \quad \Rightarrow \quad \theta_{0}(l) \approx \frac{2 J}{m \sqrt{g} l^{3 / 2}} \tag{15.162}
\end{equation*}
$$

where $\theta_{0}(l)$ is the amplitude of the oscillation. Adiabatic invariance of J thus entails $\theta_{0}(\ell) \propto l^{-3 / 2}$.

[^38]Consider an $n=1$ system, and suppose that for fixed λ the Hamiltonian is transformed to action-angle variables via the generator $S(q, J ; \lambda)$. Now let $\lambda=\lambda(t) . S(q, J ; \lambda(t))$ is still a type-II generating function of a canonical transformation. The resulting transformed Hamiltonian is

$$
\begin{equation*}
\widetilde{H}(\phi, J, t)=H(J ; \lambda)+\frac{\partial S}{\partial \lambda} \frac{d \lambda}{d t} \tag{15.163}
\end{equation*}
$$

where

$$
\begin{equation*}
H(J ; \lambda)=H(q(\phi, J ; \lambda), p(\phi, J ; \lambda) ; \lambda) \tag{15.164}
\end{equation*}
$$

is a function only of J and the instantaneous value of λ. Hamilton's equations are now

$$
\begin{align*}
& \dot{\phi}=+\frac{\partial \widetilde{H}}{\partial J}=\nu(J ; \lambda)+\frac{\partial^{2} S}{\partial \lambda \partial J} \frac{d \lambda}{d t} \tag{15.165}\\
& \dot{J}=-\frac{\partial \widetilde{H}}{\partial \phi}=-\frac{\partial^{2} S}{\partial \lambda \partial \phi} \frac{d \lambda}{d t}
\end{align*}
$$

where $\nu(J ; \lambda) \equiv \partial H(J ; \lambda) / \partial J$, and where $S(\phi, J ; \lambda)=S(q(\phi, J ; \lambda), J ; \lambda)$ The second of eqns. 15.165 may then be Fourier decomposed as

$$
\begin{equation*}
\dot{J}=-i \dot{\lambda} \sum_{m=-\infty}^{\infty} m \frac{\partial S_{m}(J ; \lambda)}{\partial \lambda} e^{i m \phi} \tag{15.166}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Delta J=J(t=+\infty)-J(t=-\infty)=\sum_{m=-\infty}^{\infty}(-i m) \int_{-\infty}^{\infty} d t \frac{\partial S_{m}(J ; \lambda)}{\partial \lambda} \frac{d \lambda}{d t} e^{i m \phi} \tag{15.167}
\end{equation*}
$$

Since $\dot{\lambda}$ is small, we have $\phi(t)=\nu t+\beta$, to lowest order. We must therefore evaluate integrals such as

$$
\begin{equation*}
\mathcal{I}_{m}=\int_{-\infty}^{\infty} d t\left\{\frac{\partial S_{m}(J ; \lambda)}{\partial \lambda} \frac{d \lambda}{d t}\right\} e^{i m \nu t} \tag{15.168}
\end{equation*}
$$

The term in curly brackets is a smooth, slowly varying function of t. Call it $f(t)$. We presume $f(t)$ can be analytically continued off the real t axis, and that its closest singularities in the complex t plane lies at $\operatorname{Im} t= \pm \tau$, where $|\nu \tau| \gg 1$. In this case \mathcal{I}_{m} behaves as $\exp (-|m| \nu \tau)$. Consider, for example, the Lorentzian,

$$
\begin{equation*}
f(t)=\frac{1}{\pi} \frac{\tau}{t^{2}+\tau^{2}} \quad \Rightarrow \quad \int_{-\infty}^{\infty} d t f(t) e^{i m \nu t}=e^{-|m \nu \tau|} \tag{15.169}
\end{equation*}
$$

which is exponentially small in the dimensionless product $|\nu \tau|$. Because of this, only $m= \pm 1$ need be considered. What this tells us is that the change ΔJ may be made arbitrarily small by a sufficiently slowly varying $\lambda(t)$.

Figure 15.4: A mechanical mirror.

15.7.2 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 15.4. A particle bounces between two curves, $y= \pm D(x)$, where $\left|D^{\prime}(x)\right| \ll 1$. The bounce time given by $\tau_{\mathrm{b} \perp}=2 D / v_{y}$. We assume $\tau \ll L / v_{x}$, where $v_{x, y}$ are the components of the particle's velocity, and L is the total length of the system. There are, therefore, many bounces, which means the particle gets to sample the curvature in $D(x)$. The adiabatic invariant is the action,

$$
\begin{equation*}
J=\frac{1}{2 \pi} \int_{-D}^{D} d y m v_{y}+\frac{1}{2 \pi} \int_{D}^{-D} d y m\left(-v_{y}\right)=\frac{2}{\pi} m v_{y} D(x) . \tag{15.170}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
E=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m v_{x}^{2}+\frac{\pi^{2} J^{2}}{8 m D^{2}(x)} \tag{15.171}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{x}^{2}=\frac{2 E}{m}-\left(\frac{\pi J}{2 m D(x)}\right)^{2} \tag{15.172}
\end{equation*}
$$

The particle is reflected in the throat of the device at horizontal coordinate x^{*}, where

$$
\begin{equation*}
D\left(x^{*}\right)=\frac{\pi J}{\sqrt{8 m E}} \tag{15.173}
\end{equation*}
$$

15.7.3 Example: magnetic mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field $\boldsymbol{B}=B \hat{\boldsymbol{z}}$. Recall the basic physics: velocity in the parallel direction v_{z} is conserved, while in the plane perpendicular to \boldsymbol{B} the particle executes circular 'cyclotron orbits', satisfying

$$
\begin{equation*}
\frac{m v_{\perp}^{2}}{\rho}=\frac{e}{c} v_{\perp} B \quad \Rightarrow \quad \rho=\frac{m c v_{\perp}}{e B} \tag{15.174}
\end{equation*}
$$

where ρ is the radial coordinate in the plane perpendicular to B. The period of the orbits is given by $T=2 \pi \rho v_{\perp}=2 \pi m c / e B$, hence their frequency is the cyclotron frequency $\omega_{\mathrm{c}}=e B / m c$.

Figure 15.5: \boldsymbol{B} field lines in a magnetic bottle.

Now assume that the magnetic field is spatially dependent. Note that a spatially varying B-field cannot be unidirectional:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{B}=\boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{B}_{\perp}+\frac{\partial B_{z}}{\partial z}=0 \tag{15.175}
\end{equation*}
$$

The non-collinear nature of \boldsymbol{B} results in the drift of the cyclotron orbits. Nevertheless, if the field \boldsymbol{B} felt by the particle varies slowly on the time scale $T=2 \pi / \omega_{\mathrm{c}}$, then the system possesses an adiabatic invariant:

$$
\begin{align*}
J & =\frac{1}{2 \pi} \oint_{\mathcal{C}} \boldsymbol{p} \cdot d \boldsymbol{\ell}=\frac{1}{2 \pi} \oint_{\mathcal{C}}\left(m \boldsymbol{v}+\frac{e}{c} \boldsymbol{A}\right) \cdot d \boldsymbol{\ell} \\
& =\frac{m}{2 \pi} \oint_{\mathcal{C}} \boldsymbol{v} \cdot d \boldsymbol{\ell}+\frac{e}{2 \pi c} \oint_{\operatorname{int}(\mathcal{C})} \boldsymbol{B} \cdot \hat{\boldsymbol{n}} d \Sigma . \tag{15.176}
\end{align*}
$$

The last two terms are of opposite sign, and one has

$$
\begin{align*}
J & =-\frac{m}{2 \pi} \cdot \frac{\rho e B_{z}}{m c} \cdot 2 \pi \rho+\frac{e}{2 \pi c} \cdot B_{z} \cdot \pi \rho^{2} \\
& =-\frac{e B_{z} \rho^{2}}{2 c}=-\frac{e}{2 \pi c} \cdot \Phi_{B}(\mathcal{C})=-\frac{m^{2} v_{\perp}^{2} c}{2 e B_{z}} \tag{15.177}
\end{align*}
$$

where $\Phi_{B}(\mathcal{C})$ is the magnetic flux enclosed by \mathcal{C}. The energy is $E=\frac{1}{2} m v_{\perp}^{2}+\frac{1}{2} m v_{z}^{2}$, hence we have

$$
\begin{equation*}
v_{z}=\sqrt{\frac{2}{m}(E-M B)} . \tag{15.178}
\end{equation*}
$$

where

$$
\begin{equation*}
M \equiv-\frac{e}{m c} J=\frac{e^{2}}{2 \pi m c^{2}} \Phi_{B}(\mathcal{C}) \tag{15.179}
\end{equation*}
$$

is the magnetic moment. Note that v_{z} vanishes when $B=B_{\max }=E / M$. When this limit is reached, the particle turns around. This is a magnetic mirror. A pair of magnetic mirrors may be used to confine charged particles in a magnetic bottle, depicted in fig. 15.5.

Let $v_{\|, 0}, \boldsymbol{v}_{\perp, 0}$, and $B_{\|, 0}$ be the longitudinal particle velocity, transverse particle velocity, and longitudinal component of the magnetic field, respectively, at the point of injection. Our two conservation laws, for
J and E, guarantee $v_{\|}^{2}(z)+v_{\perp}^{2}(z)=v_{\|, 0}^{2}+v_{\perp, 0}^{2}$ and

$$
\begin{equation*}
\frac{v_{\perp}^{2}(z)}{B_{\|}(z)}=\frac{v_{\perp, 0}^{2}}{B_{\|, 0}} \tag{15.180}
\end{equation*}
$$

This leads to reflection at a longitudinal coordinate z^{*}, where

$$
\begin{equation*}
B_{\|}\left(z^{*}\right)=B_{\|, 0}\left(1+\frac{v_{\|, 0}^{2}}{v_{\perp, 0}^{2}}\right)^{1 / 2} \tag{15.181}
\end{equation*}
$$

The physics is quite similar to that of the mechanical mirror.

15.7.4 Resonances

When $n>1$, we have

$$
\begin{align*}
\dot{J}^{\alpha} & =-i \dot{\lambda} \sum_{m \in \mathbb{Z}^{n}} m^{\alpha} \frac{\partial S_{m}(\boldsymbol{J} ; \lambda)}{\partial \lambda} e^{i \boldsymbol{m} \cdot \boldsymbol{\phi}} \\
\Delta J^{\alpha} & =-i \sum_{m \in \mathbb{Z}^{n}} m^{\alpha} \int_{-\infty}^{\infty} d t \frac{\partial S_{m}(\boldsymbol{J} ; \lambda)}{\partial \lambda} \frac{d \lambda}{d t} e^{i m \cdot \nu t} e^{i \boldsymbol{m} \cdot \boldsymbol{\beta}} . \tag{15.182}
\end{align*}
$$

Therefore, when $\boldsymbol{m} \cdot \boldsymbol{\nu}(J)=0$ we have a resonance, and the integral grows linearly with its time limits, which is a violation of the adiabatic invariance of J^{α}.

15.8 Canonical Perturbation Theory

15.8.1 Canonical transformations and perturbation theory

Suppose we have a Hamiltonian

$$
\begin{equation*}
H(\boldsymbol{\xi}, t)=H_{0}(\boldsymbol{\xi}, t)+\epsilon H_{1}(\boldsymbol{\xi}, t) \tag{15.183}
\end{equation*}
$$

where ϵ is a small dimensionless parameter. Let's implement a type-II transformation, generated by $S(\boldsymbol{q}, \boldsymbol{P}, t):^{14}$

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=H(\boldsymbol{q}, \boldsymbol{p}, t)+\frac{\partial}{\partial t} S(\boldsymbol{q}, \boldsymbol{P}, t) . \tag{15.184}
\end{equation*}
$$

[^39]Let's expand everything in powers of ϵ :

$$
\begin{align*}
q_{\sigma} & =Q_{\sigma}+\epsilon q_{1, \sigma}+\epsilon^{2} q_{2, \sigma}+\ldots \\
p_{\sigma} & =P_{\sigma}+\epsilon p_{1, \sigma}+\epsilon^{2} p_{2, \sigma}+\ldots \\
\widetilde{H} & =\widetilde{H}_{0}+\epsilon \widetilde{H}_{1}+\epsilon^{2} \widetilde{H}_{2}+\ldots \tag{15.185}\\
S & =\underbrace{q_{\sigma} P_{\sigma}}_{\substack{\text { identity } \\
\text { transformation }}}+\epsilon S_{1}+\epsilon^{2} S_{2}+\ldots
\end{align*}
$$

Then

$$
\begin{align*}
Q_{\sigma}=\frac{\partial S}{\partial P_{\sigma}} & =q_{\sigma}+\epsilon \frac{\partial S_{1}}{\partial P_{\sigma}}+\epsilon^{2} \frac{\partial S_{2}}{\partial P_{\sigma}}+\ldots \\
& =Q_{\sigma}+\left(q_{1, \sigma}+\frac{\partial S_{1}}{\partial P_{\sigma}}\right) \epsilon+\left(q_{2, \sigma}+\frac{\partial S_{2}}{\partial P_{\sigma}}\right) \epsilon^{2}+\ldots \tag{15.186}
\end{align*}
$$

and

$$
\begin{align*}
p_{\sigma}=\frac{\partial S}{\partial q_{\sigma}} & =P_{\sigma}+\epsilon \frac{\partial S_{1}}{\partial q_{\sigma}}+\epsilon^{2} \frac{\partial S_{2}}{\partial q_{\sigma}}+\ldots \tag{15.187}\\
& =P_{\sigma}+\epsilon p_{1, \sigma}+\epsilon^{2} p_{2, \sigma}+\ldots
\end{align*}
$$

We therefore conclude, order by order in ϵ,

$$
\begin{equation*}
q_{k, \sigma}=-\frac{\partial S_{k}}{\partial P_{\sigma}} \quad, \quad p_{k, \sigma}=+\frac{\partial S_{k}}{\partial q_{\sigma}} . \tag{15.188}
\end{equation*}
$$

Now let's expand the Hamiltonian:

$$
\begin{align*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t) & =H_{0}(\boldsymbol{q}, \boldsymbol{p}, t)+\epsilon H_{1}(q, p, t)+\frac{\partial S}{\partial t} \tag{15.189}\\
& =H_{0}(\boldsymbol{Q}, \boldsymbol{P}, t)+\frac{\partial H_{0}}{\partial Q_{\sigma}}\left(q_{\sigma}-Q_{\sigma}\right)+\frac{\partial H_{0}}{\partial P_{\sigma}}\left(p_{\sigma}-P_{\sigma}\right)+\epsilon H_{1}(\boldsymbol{Q}, \boldsymbol{P}, t)+\epsilon \frac{\partial}{\partial t} S_{1}(\boldsymbol{Q}, \boldsymbol{P}, t)+\mathcal{O}\left(\epsilon^{2}\right)
\end{align*}
$$

Collecting terms, we have

$$
\begin{align*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t) & =H_{0}(\boldsymbol{Q}, \boldsymbol{P}, t)+\left(-\frac{\partial H_{0}}{\partial Q_{\sigma}} \frac{\partial S_{1}}{\partial P_{\sigma}}+\frac{\partial H_{0}}{\partial P_{\sigma}} \frac{\partial S_{1}}{\partial Q_{\sigma}}+\frac{\partial S_{1}}{\partial t}+H_{1}\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \tag{15.190}\\
& =H_{0}(\boldsymbol{Q}, \boldsymbol{P}, t)+\left(H_{1}+\left\{S_{1}, H_{0}\right\}+\frac{\partial S_{1}}{\partial t}\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{align*}
$$

In the above expression, we evaluate $H_{k}(q, p, t)$ and $S_{k}(q, P, t)$ at $q=Q$ and $p=P$ and expand in the differences $q-Q$ and $p-P$. Thus, we have derived the relation

$$
\begin{equation*}
\widetilde{H}(\boldsymbol{Q}, \boldsymbol{P}, t)=\widetilde{H}_{0}(\boldsymbol{Q}, \boldsymbol{P}, t)+\epsilon \widetilde{H}_{1}(\boldsymbol{Q}, \boldsymbol{P}, t)+\ldots \tag{15.191}
\end{equation*}
$$

with

$$
\begin{align*}
& \widetilde{H}_{0}(\boldsymbol{Q}, \boldsymbol{P}, t)=H_{0}(\boldsymbol{Q}, \boldsymbol{P}, t) \tag{15.192}\\
& \widetilde{H}_{1}(\boldsymbol{Q}, \boldsymbol{P}, t)=H_{1}+\left\{S_{1}, H_{0}\right\}+\frac{\partial S_{1}}{\partial t} \tag{15.193}
\end{align*}
$$

The problem, though, is this: we have one equation, eqn, 15.193, for the two unknowns \widetilde{H}_{1} and S_{1}. Thus, the problem is underdetermined. Of course, we could choose $\widetilde{H}_{1}=0$, for example. But we might just as well demand that \widetilde{H}_{1} satisfy some other desideratum, such as that $\widetilde{H}_{0}+\epsilon \widetilde{H}_{1}$ be integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary transformation may be implemented to eliminate a perturbation to lowest order in a small parameter. Consider the Schrödinger equation,

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left(\mathcal{H}_{0}+\epsilon \mathcal{H}_{1}\right) \psi \tag{15.194}
\end{equation*}
$$

and define χ by $\psi \equiv e^{i S / \hbar} \chi$, with

$$
\begin{equation*}
S=\epsilon S_{1}+\epsilon^{2} S_{2}+\ldots \tag{15.195}
\end{equation*}
$$

As before, the transformation $U \equiv \exp (i S / \hbar)$ collapses to the identity in the $\epsilon \rightarrow 0$ limit. Now let's write the Schrödinger equation for χ. Expanding in powers of ϵ, one finds

$$
\begin{equation*}
i \hbar \frac{\partial \chi}{\partial t}=\mathcal{H}_{0} \chi+\epsilon\left(\mathcal{H}_{1}+\frac{1}{i \hbar}\left[S_{1}, \mathcal{H}_{0}\right]+\frac{\partial S_{1}}{\partial t}\right) \chi+\ldots \equiv \widetilde{\mathcal{H}} \chi \tag{15.196}
\end{equation*}
$$

where $[A, B]=A B-B A$ is the commutator. Note the classical-quantum correspondence,

$$
\begin{equation*}
\{A, B\} \longleftrightarrow \frac{1}{i \hbar}[A, B] \tag{15.197}
\end{equation*}
$$

Again, what should we choose for S_{1} ? Usually the choice is made to make the $\mathcal{O}(\epsilon)$ term in $\widetilde{\mathcal{H}}$ vanish. But this is not the only possible simplifying choice.

15.8.2 Canonical perturbation theory for $n=1$ systems

Here and henceforth we shall assume $H(\boldsymbol{q}, \boldsymbol{p}, t)=H(\boldsymbol{q}, \boldsymbol{p})$ is time-independent, and we write the perturbed Hamiltonian as

$$
\begin{equation*}
H(\boldsymbol{q}, \boldsymbol{p})=H_{0}(\boldsymbol{q}, \boldsymbol{p})+\epsilon H_{1}(\boldsymbol{q}, \boldsymbol{p}) . \tag{15.198}
\end{equation*}
$$

Let $\left(\phi_{0}, J_{0}\right)$ be the action-angle variables for H_{0}. Then

$$
\begin{equation*}
\widetilde{H}_{0}\left(\phi_{0}, J_{0}\right)=H_{0}\left(q\left(\phi_{0}, J_{0}\right), p\left(\phi_{0}, J_{0}\right)\right)=\widetilde{H}_{0}\left(J_{0}\right) \tag{15.199}
\end{equation*}
$$

We define

$$
\begin{equation*}
\widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)=H_{1}\left(q\left(\phi_{0}, J_{0}\right), p\left(\phi_{0}, J_{0}\right)\right) \tag{15.200}
\end{equation*}
$$

We assume that $\widetilde{H}=\widetilde{H}_{0}+\epsilon \widetilde{H}_{1}$ is integrable ${ }^{15}$, so it, too, possesses action-angle variables, which we denote by $(\phi, J)^{16}$. Thus, there must be a canonical transformation taking $\left(\phi_{0}, J_{0}\right) \rightarrow(\phi, J)$, with

$$
\begin{equation*}
\widetilde{H}\left(\phi_{0}(\phi, J), J_{0}(\phi, J)\right) \equiv E(J) \tag{15.201}
\end{equation*}
$$

We solve via a type-II canonical transformation:

$$
\begin{equation*}
S\left(\phi_{0}, J\right)=\phi_{0} J+\epsilon S_{1}\left(\phi_{0}, J\right)+\epsilon^{2} S_{2}\left(\phi_{0}, J\right)+\ldots \tag{15.202}
\end{equation*}
$$

where $\phi_{0} J$ is the identity transformation. Then

$$
\begin{align*}
J_{0} & =\frac{\partial S}{\partial \phi_{0}}=J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}}+\ldots \\
\phi & =\frac{\partial S}{\partial J}=\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\epsilon^{2} \frac{\partial S_{2}}{\partial J}+\ldots \tag{15.203}
\end{align*}
$$

and

$$
\begin{align*}
E(J) & =E_{0}(J)+\epsilon E_{1}(J)+\epsilon^{2} E_{2}(J)+\ldots \tag{15.204}\\
& =\widetilde{H}_{0}\left(\phi_{0}, J_{0}\right)+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)
\end{align*}
$$

How is it that the second line terminates after order ϵ while the first line contains terms of order ϵ^{k} for all $k \geq 0$? The answer is that when we express (ϕ_{0}, J_{0}) in terms of (ϕ, J), the canonical transformation itself involve terms to all orders in ϵ, as we see from eqn. 15.203. In general, when a nonlinear system is perturbed, the response will include expressions to all orders in the perturbation.
We now expand $\widetilde{H}\left(\phi_{0}, J_{0}\right)$ in powers of $J_{0}-J$, keeping in mind that $\widetilde{H}_{0}\left(\phi_{0}, J_{0}\right)=\widetilde{H}_{0}\left(J_{0}\right)$:

$$
\begin{align*}
\widetilde{H}\left(\phi_{0}, J_{0}\right) & =\widetilde{H}_{0}\left(J_{0}\right)+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J_{0}\right) \tag{15.205}\\
& =\widetilde{H}_{0}(J)+\frac{\partial \widetilde{H}_{0}}{\partial J}\left(J_{0}-J\right)+\frac{1}{2} \frac{\partial^{2} \widetilde{H}_{0}}{\partial J^{2}}\left(J_{0}-J\right)^{2}+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J\right)+\left.\epsilon \frac{\partial \widetilde{H}_{1}}{\partial J}\right|_{\phi_{0}}\left(J_{0}-J\right)+\ldots
\end{align*}
$$

Collecting terms,

$$
\begin{equation*}
\widetilde{H}\left(\phi_{0}, J_{0}\right)=\widetilde{H}_{0}(J)+\left(\widetilde{H}_{1}+\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}\right) \epsilon+\left(\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{2}}{\partial \phi_{0}}+\frac{1}{2} \frac{\partial^{2} \widetilde{H}_{0}}{\partial J^{2}}\left(\frac{\partial S_{1}}{\partial \phi_{0}}\right)^{2}+\frac{\partial \widetilde{H}_{1}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}\right) \epsilon^{2}+\ldots \tag{15.206}
\end{equation*}
$$

where all terms on the RHS are expressed as functions of ϕ_{0} and J. Equating terms, then,

$$
\begin{align*}
& E_{0}(J)=\widetilde{H}_{0}(J) \\
& E_{1}(J)=\widetilde{H}_{1}\left(\phi_{0}, J\right)+\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}} \tag{15.207}\\
& E_{2}(J)=\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{2}}{\partial \phi_{0}}+\frac{1}{2} \frac{\partial^{2} \widetilde{H}_{0}}{\partial J^{2}}\left(\frac{\partial S_{1}}{\partial \phi_{0}}\right)^{2}+\frac{\partial \widetilde{H}_{1}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}
\end{align*}
$$

[^40]How, one might ask, can we be sure that the LHS of each equation in the above hierarchy depends only on J when each RHS seems to depend on ϕ_{0} as well? The answer is that we use the freedom to choose each S_{k} to make this so. We demand each RHS be independent of ϕ_{0}, which means it must be equal to its average, $\left\langle\operatorname{RHS}\left(\phi_{0}\right)\right\rangle$, where

$$
\begin{equation*}
\left\langle f\left(\phi_{0}\right)\right\rangle=\int_{0}^{2 \pi} \frac{d \phi_{0}}{2 \pi} f\left(\phi_{0}\right) \tag{15.208}
\end{equation*}
$$

The average is performed at fixed J and not at fixed J_{0}. In this regard, we note that holding J constant and increasing ϕ_{0} by 2π also returns us to the same starting point. Therefore, we are able to write

$$
\begin{equation*}
S_{k}\left(\phi_{0}, J\right)=\sum_{\ell=-\infty}^{\infty} S_{k, \ell}(J) e^{i \ell \phi_{0}} \tag{15.209}
\end{equation*}
$$

for each $k>0$, in which case

$$
\begin{equation*}
\left\langle\frac{\partial S_{k}}{\partial \phi_{0}}\right\rangle=\frac{1}{2 \pi}\left[S_{k}(2 \pi, J)-S_{k}(0, J)\right]=0 \tag{15.210}
\end{equation*}
$$

Let's see how this averaging works to the first two orders of the hierarchy. Since $\widetilde{H}_{0}(J)$ is independent of ϕ_{0} and since $\partial S_{1} / \partial \phi_{0}$ is periodic, we have

$$
\begin{equation*}
E_{1}(J)=\left\langle\widetilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle+\frac{\partial \widetilde{H}_{0}}{\partial J} \overbrace{\left\langle\frac{\partial S_{1}}{\partial \phi_{0}}\right\rangle}^{\text {this vanishes! }} \tag{15.211}
\end{equation*}
$$

and hence S_{1} must satisfy

$$
\begin{equation*}
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\left\langle\widetilde{H}_{1}\right\rangle-\widetilde{H}_{1}}{\nu_{0}(J)} \tag{15.212}
\end{equation*}
$$

where $\nu_{0}(J)=\partial \widetilde{H}_{0} / \partial J$. Clearly the RHS of eqn. 15.212 has zero average, and must be a periodic function of ϕ_{0}. The solution is $S_{1}=S_{1}\left(\phi_{0}, J\right)+f(J)$, where $f(J)$ is an arbitrary function of J. However, $f(J)$ affects only the difference $\phi-\phi_{0}$, changing it by a constant value $f^{\prime}(J)$. So there is no harm in taking $f(J)=0$.

Next, let's go to second order in ϵ. We have

$$
\begin{equation*}
E_{2}(J)=\nu_{0}(J) \overbrace{\left\langle\frac{\partial S_{2}}{\partial \phi_{0}}\right\rangle}^{\text {this vanishes! }}+\frac{1}{2} \frac{\partial \nu_{0}}{\partial J}\left\langle\left(\frac{\partial S_{1}}{\partial \phi_{0}}\right)^{2}\right\rangle+\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}\right\rangle . \tag{15.213}
\end{equation*}
$$

The equation for S_{2} is then

$$
\begin{align*}
\frac{\partial S_{2}}{\partial \phi_{0}}=\frac{1}{\nu_{0}^{2}(J)}\left\{\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J}\right\rangle\left\langle\widetilde{H}_{1}\right\rangle-\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J} \widetilde{H}_{1}\right\rangle\right. & -\frac{\partial \widetilde{H}_{1}}{\partial J}\left\langle\widetilde{H}_{1}\right\rangle+\frac{\partial \widetilde{H}_{1}}{\partial J} \widetilde{H}_{1} \\
& \left.+\frac{1}{2} \frac{\partial \ln \nu_{0}}{\partial J}\left(\left\langle\widetilde{H}_{1}^{2}\right\rangle-2\left\langle\widetilde{H}_{1}\right\rangle^{2}+2\left\langle\widetilde{H}_{1}\right\rangle \widetilde{H}_{1}-\widetilde{H}_{1}^{2}\right)\right\} \tag{15.214}
\end{align*}
$$

The expansion for the energy $E(J)$ is then
$E(J)=\widetilde{H}_{0}(J)+\epsilon\left\langle\widetilde{H}_{1}\right\rangle+\frac{\epsilon^{2}}{\nu_{0}(J)}\left\{\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J}\right\rangle\left\langle\widetilde{H}_{1}\right\rangle-\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J} \widetilde{H}_{1}\right\rangle+\frac{1}{2} \frac{\partial \ln \nu_{0}}{\partial J}\left(\left\langle\widetilde{H}_{1}^{2}\right\rangle-\left\langle\widetilde{H}_{1}\right\rangle^{2}\right)\right\}+\mathcal{O}\left(\epsilon^{3}\right)$.
Note that we don't need S to find $E(J)$! The perturbed frequencies are $\nu(J)=\partial E / \partial J$. Sometimes the frequencies are all that is desired. However, we can of course obtain the full motion of the system via the succession of canonical transformations,

$$
\begin{equation*}
(\phi, J) \longrightarrow\left(\phi_{0}, J_{0}\right) \longrightarrow(q, p) \tag{15.216}
\end{equation*}
$$

15.8.3 Example : quartic oscillator

Consider a harmonic oscillator with a quartic nonlinearity ${ }^{17}$. The Hamiltonian is

$$
\begin{equation*}
H(q, p)=\overbrace{\frac{p^{2}}{2 m}+\frac{1}{2} m \nu_{0}^{2} q^{2}}^{H_{0}}+\frac{1}{4} \epsilon \alpha q^{4} . \tag{15.217}
\end{equation*}
$$

The action-angle variables for the harmonic oscillator Hamiltonian H_{0} are

$$
\begin{equation*}
\phi_{0}=\tan ^{-1}\left(m \nu_{0} q / p\right) \quad, \quad J_{0}=\frac{p^{2}}{2 m \nu_{0}}+\frac{1}{2} m \nu_{0} q^{2} \tag{15.218}
\end{equation*}
$$

hence

$$
\begin{equation*}
q=\sqrt{\frac{2 J_{0}}{m \nu_{0}}} \cos \phi_{0} \quad, \quad p=\sqrt{2 J_{0} m \nu_{0}} \sin \phi_{0} \tag{15.219}
\end{equation*}
$$

as depicted in fig. 15.6. Note $H_{0}=\nu_{0} J_{0}$. For the full Hamiltonian, we have

$$
\begin{align*}
\widetilde{H}\left(\phi_{0}, J_{0}\right) & =\nu_{0} J_{0}+\frac{1}{4} \epsilon \alpha\left(\sqrt{\frac{2 J_{0}}{m \nu_{0}}} \sin \phi_{0}\right)^{4} \tag{15.220}\\
& =\nu_{0} J_{0}+\frac{\epsilon \alpha}{m^{2} \nu_{0}^{2}} J_{0}^{2} \sin ^{4} \phi_{0} \equiv H_{0}\left(\phi_{0}, J_{0}\right)+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J_{0}\right) .
\end{align*}
$$

We may now evaluate

$$
\begin{equation*}
E_{1}(J)=\left\langle\widetilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\frac{\alpha J^{2}}{m^{2} \nu_{0}^{2}} \int_{0}^{2 \pi} \frac{d \phi_{0}}{2 \pi} \sin ^{4} \phi_{0}=\frac{3 \alpha J^{2}}{8 m^{2} \nu_{0}^{2}} \tag{15.221}
\end{equation*}
$$

The frequency, to order ϵ, is

$$
\begin{equation*}
\nu(J)=\nu_{0}+\frac{3 \epsilon \alpha J}{4 m^{2} \nu_{0}^{2}} \tag{15.222}
\end{equation*}
$$

[^41]

Figure 15.6: Action-angle variables for the harmonic oscillator.

Now to lowest order in ϵ, we may replace J by $J_{0}=\frac{1}{2} m \nu_{0} A^{2}$, where A is the amplitude of the q motion:

$$
\begin{equation*}
\nu(A)=\nu_{0}+\frac{3 \epsilon \alpha A^{2}}{8 m \nu_{0}} . \tag{15.223}
\end{equation*}
$$

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt method.
Next, let's evaluate the canonical transformation $\left(\phi_{0}, J_{0}\right) \rightarrow(\phi, J)$. We have

$$
\begin{align*}
\nu_{0} \frac{\partial S_{1}}{\partial \phi_{0}} & =\frac{\alpha J^{2}}{m^{2} \nu_{0}^{2}}\left(\frac{3}{8}-\sin ^{4} \phi_{0}\right) \quad \Rightarrow \tag{15.224}\\
S\left(\phi_{0}, J\right) & =\phi_{0} J+\frac{\epsilon \alpha J^{2}}{8 m^{2} \nu_{0}^{3}}\left(3+2 \sin ^{2} \phi_{0}\right) \sin \phi_{0} \cos \phi_{0}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{align*}
$$

Thus,

$$
\begin{align*}
\phi & =\frac{\partial S}{\partial J}=\phi_{0}+\frac{\epsilon \alpha J}{4 m^{2} \nu_{0}^{3}}\left(3+2 \sin ^{2} \phi_{0}\right) \sin \phi_{0} \cos \phi_{0}+\mathcal{O}\left(\epsilon^{2}\right) \\
J_{0} & =\frac{\partial S}{\partial \phi_{0}}=J+\frac{\epsilon \alpha J^{2}}{8 m^{2} \nu_{0}^{3}}\left(4 \cos 2 \phi_{0}-\cos 4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) . \tag{15.225}
\end{align*}
$$

Again, to lowest order, we may replace J by J_{0} in the above, whence

$$
\begin{align*}
& J=J_{0}-\frac{\epsilon \alpha J_{0}^{2}}{8 m^{2} \nu_{0}^{3}}\left(4 \cos 2 \phi_{0}-\cos 4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) \tag{15.226}\\
& \phi=\phi_{0}+\frac{\epsilon \alpha J_{0}}{8 m^{2} \nu_{0}^{3}}\left(3+2 \sin ^{2} \phi_{0}\right) \sin 2 \phi_{0}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{align*}
$$

Writing $q=\left(2 J_{0} / m \nu_{0}\right)^{1 / 2} \sin \phi_{0}$ and $p=\left(2 m \nu_{0} J_{0}\right)^{1 / 2} \cos \phi_{0}$, one can substitute the above relations, replacing $\left(\phi_{0}, J_{0}\right)$ with (ϕ, J) in the $\mathcal{O}(\epsilon)$ terms on the RHS of each equation, to obtain (q, p) in terms of (ϕ, J), valid to $\mathcal{O}(\epsilon)$.

15.8.4 $n>1$ systems : degeneracies and resonances

Generalizing the procedure we derived for $n=1$, we obtain

$$
\begin{align*}
& J_{0}^{\alpha}=\frac{\partial S}{\partial \phi_{0}^{\alpha}}=J^{\alpha}+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}^{\alpha}}+\ldots \tag{15.227}\\
& \phi^{\alpha}=\frac{\partial S}{\partial J^{\alpha}}=\phi_{0}^{\alpha}+\epsilon \frac{\partial S_{1}}{\partial J^{\alpha}}+\epsilon^{2} \frac{\partial S_{2}}{\partial J^{\alpha}}+\ldots
\end{align*}
$$

and

$$
\begin{align*}
& E_{0}(\boldsymbol{J})=\widetilde{H}_{0}(\boldsymbol{J}) \\
& E_{1}(\boldsymbol{J})=\widetilde{H}_{1}+\nu_{0}^{\alpha} \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}} \tag{15.228}\\
& E_{2}(\boldsymbol{J})=\nu_{0}^{\alpha} \frac{\partial S_{2}}{\partial \phi_{0}^{\alpha}}+\frac{1}{2} \frac{\partial \nu_{0}^{\alpha}}{\partial J^{\beta}} \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}} \frac{\partial S_{1}}{\partial \phi_{0}^{\beta}}+\frac{\partial \widetilde{H}_{1}}{\partial J^{\alpha}} \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}}
\end{align*}
$$

where $\nu_{0}^{\alpha}(\boldsymbol{J})=\partial \widetilde{H}_{0}(\boldsymbol{J}) / \partial J^{\alpha}$. We now implement the averaging procedure, with

$$
\begin{equation*}
\left\langle f\left(\phi_{0}^{1}, \ldots, \phi_{0}^{n}, J^{1}, \ldots, J^{n}\right)\right\rangle=\int_{0}^{2 \pi} \frac{d \phi_{0}^{1}}{2 \pi} \cdots \int_{0}^{2 \pi} \frac{d \phi_{0}^{n}}{2 \pi} f\left(\phi_{0}^{1}, \ldots, \phi_{0}^{n}, J^{1}, \ldots, J^{n}\right) \tag{15.229}
\end{equation*}
$$

The equation for S_{1} is

$$
\begin{equation*}
\nu_{0}^{\alpha} \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}}=\left\langle\widetilde{H}_{1}\left(\phi_{0}, \boldsymbol{J}\right)\right\rangle-\widetilde{H}_{1}\left(\boldsymbol{\phi}_{0}, \boldsymbol{J}\right) \equiv-\sum_{\ell}^{\prime} \hat{V}_{\boldsymbol{\ell}}(\boldsymbol{J}) e^{i \boldsymbol{\ell} \cdot \boldsymbol{\phi}_{0}} \tag{15.230}
\end{equation*}
$$

where $\ell=\left\{\ell^{1}, \ell^{2}, \ldots, \ell^{n}\right\}$, with each ℓ^{σ} an integer, and with $\ell \neq 0$. The solution is

$$
\begin{equation*}
S_{1}\left(\phi_{0}, \boldsymbol{J}\right)=i \sum_{l}^{\prime} \frac{\hat{V}_{\ell}(\boldsymbol{J})}{\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}(\boldsymbol{J})} e^{i \boldsymbol{\ell} \cdot \phi_{0}} \tag{15.231}
\end{equation*}
$$

where $\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}=\sum_{\alpha=1}^{n} l^{\alpha} \nu_{0}^{\alpha}$. When two or more of the frequencies $\nu_{0}^{\alpha}(\boldsymbol{J})$ are commensurate, there exists a set of integers ℓ such that the denominator of $D(l)$ vanishes. But even when the frequencies are not rationally related, one can approximate the ratios $\nu_{0}^{\alpha} / \nu_{0}^{\alpha^{\prime}}$ by rational numbers, and for large enough $|\ell|$ the denominator can become arbitrarily small.

15.8.5 Nonlinear oscillator with two degrees of freedom

As an example of how to implement canonical perturbation theory for $n>1$, consider the nonlinear oscillator system,

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+\frac{1}{2} m \omega_{1}^{2} q_{1}^{2}+\frac{1}{2} m \omega_{2}^{2} q_{2}^{2}+\frac{1}{4} \epsilon b \omega_{1}^{2} \omega_{2}^{2} q_{1}^{2} q_{2}^{2} \tag{15.232}
\end{equation*}
$$

Writing $H=H_{0}+\epsilon H_{1}$, we have, in terms of the action-angle variables $\left(\phi_{0}^{(1,2)}, J_{0}^{(1,2)}\right)$,

$$
\begin{equation*}
\widetilde{H}_{0}\left(\boldsymbol{J}_{0}\right)=\omega_{1} J_{0}^{(1)}+\omega_{2} J_{0}^{(2)} \tag{15.233}
\end{equation*}
$$

with $q_{k}=\left(2 J_{0}^{k} / m \omega_{k}\right)^{1 / 2} \sin \phi_{0}^{k}$ and $p_{k}=\left(2 m \omega_{k} J_{0}^{k}\right)^{1 / 2} \cos \phi_{0}^{k}$ with $k \in\{1,2\}$. We then have

$$
\begin{equation*}
\widetilde{H}_{1}\left(\phi_{0}, \boldsymbol{J}\right)=b \omega_{1} \omega_{2} J^{(1)} J^{(2)} \sin ^{2} \phi_{0}^{(1)} \sin ^{2} \phi_{0}^{(2)} \tag{15.234}
\end{equation*}
$$

We therefore have $E(\boldsymbol{J})=E_{0}(\boldsymbol{J})+\epsilon E_{1}(\boldsymbol{J})$ with $E_{0}(\boldsymbol{J})=H_{0}(\boldsymbol{J})=\omega_{1} J^{(1)}+\omega_{2} J^{(2)}$ and

$$
\begin{equation*}
E_{1}(\boldsymbol{J})=\left\langle\widetilde{H}_{1}\left(\phi_{0}, \boldsymbol{J}\right)\right\rangle=\frac{1}{4} b \omega_{1} \omega_{2} J^{(1)} J^{(2)} \tag{15.235}
\end{equation*}
$$

Next, we work out the generator $S_{1}\left(\phi_{0}, \boldsymbol{J}\right)$ from eqn. 15.230:

$$
\begin{align*}
\left\langle\widetilde{H}_{1}\left(\phi_{0}, \boldsymbol{J}\right)\right\rangle-\widetilde{H}_{1}\left(\phi_{0}, \boldsymbol{J}\right) & =b \omega_{1} \omega_{2} J^{(1)} J^{(2)}\left\{\frac{1}{4}-\sin ^{2} \phi_{0}^{(1)} \sin ^{2} \phi_{0}^{(2)}\right\} \tag{15.236}\\
= & b \omega_{1} \omega_{2} J^{(1)} J^{(2)}\left\{-\frac{1}{2} \cos \left(2 \phi_{0}^{(1)}+2 \phi_{0}^{(2)}\right)-\frac{1}{2} \cos \left(2 \phi_{0}^{(1)}-2 \phi_{0}^{(2)}\right)\right. \\
& \left.+\cos 2 \phi_{0}^{(1)}+\cos 2 \phi_{0}^{(2)}\right\}
\end{align*}
$$

and therefore, from eqn. 15.231,

$$
\begin{equation*}
S_{1}\left(\boldsymbol{\phi}_{0}, \boldsymbol{J}\right)=\frac{1}{4} b \omega_{1} \omega_{2} J^{(1)} J^{(2)}\left\{-\frac{\sin \left(2 \phi_{0}^{(1)}+2 \phi_{0}^{(2)}\right)}{\omega_{1}+\omega_{2}}-\frac{\sin \left(2 \phi_{0}^{(1)}-2 \phi_{0}^{(2)}\right)}{\omega_{1}-\omega_{2}}+\frac{2 \sin 2 \phi_{0}^{(1)}}{\omega_{1}}+\frac{2 \sin 2 \phi_{0}^{(2)}}{\omega_{2}}\right\} \tag{15.237}
\end{equation*}
$$

We see that there is a vanishing denominator if $\omega_{1}=\omega_{2}$.

15.8.6 Periodic time-dependent perturbations

Periodic time-dependent perturbations present a similar problem. Consider the system

$$
\begin{equation*}
H(\boldsymbol{\phi}, \boldsymbol{J}, t)=H_{0}(\boldsymbol{J})+\epsilon V(\boldsymbol{\phi}, \boldsymbol{J}, t), \tag{15.238}
\end{equation*}
$$

where $V(t+T)=V(t)$. This means we may write

$$
\begin{align*}
V(\boldsymbol{\phi}, \boldsymbol{J}, t) & =\sum_{k} \hat{V}_{k}(\boldsymbol{\phi}, \boldsymbol{J}) e^{-i k \Omega t} \\
& =\sum_{k} \sum_{\ell} \hat{V}_{k, \ell}(\boldsymbol{J}) e^{i \ell \cdot \boldsymbol{\phi}} e^{-i k \Omega t} \tag{15.239}
\end{align*}
$$

by Fourier transforming from both time and angle variables; here $\Omega=2 \pi / T$. Note that $V(\boldsymbol{\phi}, \boldsymbol{J}, t)$ is real if $V_{k, \ell}^{*}=\hat{V}_{-k,-l}$. The equations of motion are

$$
\begin{align*}
& \dot{J}^{\alpha}=-\frac{\partial H}{\partial \phi^{\alpha}}=-i \epsilon \sum_{k, \boldsymbol{\ell}} l^{\alpha} \hat{V}_{k, \ell}(\boldsymbol{J}) e^{i \ell \cdot \phi} e^{-i k \Omega t} \\
& \dot{\phi}^{\alpha}=+\frac{\partial H}{\partial J^{\alpha}}=\nu_{0}^{\alpha}(\boldsymbol{J})+\epsilon \sum_{k, \ell} \frac{\partial \hat{V}_{k, \ell}(\boldsymbol{J})}{\partial J^{\alpha}} e^{i \ell \cdot \phi} e^{-i k \Omega t} \tag{15.240}
\end{align*}
$$

We now expand in ϵ :

$$
\begin{align*}
& \phi^{\alpha}=\phi_{0}^{\alpha}+\epsilon \phi_{1}^{\alpha}+\epsilon^{2} \phi_{2}^{\alpha}+\ldots \tag{15.241}\\
& J^{\alpha}=J_{0}^{\alpha}+\epsilon J_{1}^{\alpha}+\epsilon^{2} J_{2}^{\alpha}+\ldots
\end{align*}
$$

To order ϵ^{0}, we have $J^{\alpha}=J_{0}^{\alpha}$ and $\phi_{0}^{\alpha}=\nu_{0}^{\alpha} t+\beta_{0}^{\alpha}$. To order ϵ^{1},

$$
\begin{equation*}
\dot{J}_{1}^{\alpha}=-i \sum_{k, l} l^{\alpha} \hat{V}_{k, \boldsymbol{\ell}}\left(\boldsymbol{J}_{0}\right) e^{i\left(\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}-k \Omega\right) t} e^{i \boldsymbol{\ell} \cdot \boldsymbol{\beta}_{0}} \tag{15.242}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\phi}_{1}^{\alpha}=\frac{\partial \nu_{0}^{\alpha}}{\partial J^{\beta}} J_{1}^{\beta}+\sum_{k, \ell} \frac{\partial \hat{V}_{k, \ell}(\boldsymbol{J})}{\partial J^{\alpha}} e^{i\left(\ell \cdot \nu_{0}-k \Omega\right) t} e^{i \ell \cdot \boldsymbol{\beta}_{0}} \tag{15.243}
\end{equation*}
$$

where derivatives are evaluated at $\boldsymbol{J}=\boldsymbol{J}_{0}$. The solution is:

$$
\begin{align*}
& J_{1}^{\alpha}=\sum_{k, \boldsymbol{\ell}} \frac{l^{\alpha} \hat{V}_{k, \boldsymbol{\ell}}\left(\boldsymbol{J}_{0}\right)}{k \Omega-\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}} e^{i\left(\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}-k \Omega\right) t} e^{i \boldsymbol{\ell} \cdot \boldsymbol{\beta}_{0}} \\
& \phi_{1}^{\alpha}=\left\{\frac{\partial \nu_{0}^{\alpha}}{\partial J_{0}^{\beta}} \frac{l^{\beta} \hat{V}_{k, \ell}\left(\boldsymbol{J}_{0}\right)}{\left(k \Omega-\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}\right)^{2}}+\frac{\partial \hat{V}_{k, \boldsymbol{\ell}}\left(\boldsymbol{J}_{0}\right)}{\partial J_{0}^{\alpha}} \frac{1}{k \Omega-\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}}\right\} e^{i\left(\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}-k \Omega\right) t} e^{i \boldsymbol{\ell} \cdot \boldsymbol{\beta}_{0}} . \tag{15.244}
\end{align*}
$$

When the resonance condition $k \Omega=\boldsymbol{\ell} \cdot \boldsymbol{\nu}_{0}\left(\boldsymbol{J}_{0}\right)$ is satisfied, the denominators vanish, and the perturbation theory breaks down.

15.8.7 Particle-wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field $\boldsymbol{B}=B \hat{\boldsymbol{z}}$ and a spaceand time-varying electric field $\boldsymbol{E}(\boldsymbol{x}, t)$, described by the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\boldsymbol{p}-\frac{e}{c} \boldsymbol{A}\right)^{2}+\epsilon e \hat{V}_{0} \cos \left(k_{\perp} x+k_{z} z-\omega t\right) \tag{15.245}
\end{equation*}
$$

where ϵ is a dimensionless expansion parameter. This is an $n=3$ system with canonical pairs (x, p_{x}), $\left(y, p_{y}\right)$, and $\left(z, p_{z}\right)$.
Working in the gauge $\boldsymbol{A}=B x \hat{\boldsymbol{y}}$, we transform the first two pairs (x, y, p_{x}, p_{y}) to convenient variables (Q, P, ϕ, J), explicitly discussed in $\S 15.11 .2$ below), such that

$$
\begin{equation*}
H=\omega_{\mathrm{c}} J+\frac{p_{z}^{2}}{2 m}+\epsilon e \hat{V}_{0} \cos \left(k_{z} z+\frac{k_{\perp} P}{m \omega_{\mathrm{c}}}+k_{\perp} \sqrt{\frac{2 J}{m \omega_{\mathrm{c}}}} \sin \phi-\omega t\right) . \tag{15.246}
\end{equation*}
$$

Here,

$$
\begin{equation*}
x=\frac{P}{m \omega_{\mathrm{c}}}+\sqrt{\frac{2 J}{m \omega_{\mathrm{c}}}} \sin \phi \quad, \quad y=Q+\sqrt{\frac{2 J}{m \omega_{\mathrm{c}}}} \cos \phi \tag{15.247}
\end{equation*}
$$

with $\omega_{\mathrm{c}}=e B / m c$, the cyclotron frequency. Here, (Q, P) describe the guiding center degrees of freedom, and (ϕ, J) the cyclotron degrees of freedom.

We now make a mixed canonical transformation, generated by

$$
\begin{equation*}
F=\phi \tilde{J}+\left(k_{z} z+\frac{k_{\perp} P}{m \omega_{\mathrm{c}}}-\omega t\right) \tilde{K}-P \tilde{Q} \tag{15.248}
\end{equation*}
$$

where the new sets of conjugate variables are $\{(\tilde{\phi}, \tilde{J}),(\tilde{Q}, \tilde{P}),(\tilde{\psi}, \tilde{K})\}$. We then have

$$
\begin{array}{rlr}
\tilde{\phi}=\frac{\partial F}{\partial \tilde{J}}=\phi & J=\frac{\partial F}{\partial \phi}=\tilde{J} \\
Q=-\frac{\partial F}{\partial P}=-\frac{k_{\perp} \tilde{K}}{m \omega_{\mathrm{c}}}+\tilde{Q} & \tilde{P}=-\frac{\partial F}{\partial \tilde{Q}}=P \\
\tilde{\psi}=\frac{\partial F}{\partial \tilde{K}}=k_{z} z+\frac{k_{\perp} P}{m \omega_{\mathrm{c}}}-\omega t & p_{z}=\frac{\partial F}{\partial z}=k_{z} \tilde{K} . \tag{15.251}
\end{array}
$$

The transformed Hamiltonian is

$$
\begin{align*}
H^{\prime} & =H+\frac{\partial F}{\partial t} \\
& =\omega_{\mathrm{c}} \tilde{J}+\frac{k_{z}^{2}}{2 m} \tilde{K}^{2}-\omega \tilde{K}+\epsilon e \hat{V}_{0} \cos \left(\tilde{\psi}+k_{\perp} \sqrt{\frac{2 \tilde{J}}{m \omega_{\mathrm{c}}}} \sin \tilde{\phi}\right) \tag{15.252}
\end{align*}
$$

Note the guiding center pair (\tilde{Q}, \tilde{P}) doesn't appear in the transformed Hamiltonian H^{\prime}.
We now drop the tildes and the prime on H and write $H=H_{0}+\epsilon H_{1}$, with

$$
\begin{align*}
& H_{0}=\omega_{\mathrm{c}} J+\frac{k_{z}^{2}}{2 m} K^{2}-\omega K \tag{15.253}\\
& H_{1}=e \hat{V}_{0} \cos \left(\psi+k_{\perp} \sqrt{\frac{2 J}{m \omega_{\mathrm{c}}}} \sin \phi\right)
\end{align*}
$$

When $\epsilon=0$, the frequencies associated with the ϕ and ψ motion are

$$
\begin{equation*}
\omega_{\phi}^{0}=\frac{\partial H_{0}}{\partial J}=\omega_{\mathrm{c}} \quad, \quad \omega_{\psi}^{0}=\frac{\partial H_{0}}{\partial K}=\frac{k_{z}^{2} K}{m}-\omega=k_{z} v_{z}-\omega \tag{15.254}
\end{equation*}
$$

where $v_{z}=p_{z} / m$ is the z-component of the particle's velocity.
We are now in position to implement the time-independent canonical perturbation theory approach. We invoke a generator

$$
\begin{equation*}
S(\phi, \mathcal{J}, \psi, \mathcal{K})=\phi \mathcal{J}+\psi \mathcal{K}+\epsilon S_{1}(\phi, \mathcal{J}, \psi, \mathcal{K})+\epsilon^{2} S_{2}(\phi, \mathcal{J}, \psi, \mathcal{K})+\ldots \tag{15.255}
\end{equation*}
$$

to transform from (ϕ, J, ψ, K) to $(\Phi, \mathcal{J}, \Psi, \mathcal{K})$. We must now solve eqn. 15.230:

$$
\begin{equation*}
\omega_{\phi}^{0} \frac{\partial S_{1}}{\partial \phi}+\omega_{\psi}^{0} \frac{\partial S_{1}}{\partial \psi}=\left\langle H_{1}\right\rangle-H_{1} . \tag{15.256}
\end{equation*}
$$

That is,

$$
\begin{aligned}
\omega_{\mathrm{c}} \frac{\partial S_{1}}{\partial \phi}+\left(\frac{k_{z}^{2} \mathcal{K}}{m}-\omega\right) \frac{\partial S_{1}}{\partial \psi} & =-e A_{0} \cos \left(\psi+k_{\perp} \sqrt{\frac{2 \mathcal{J}}{m \omega_{\mathrm{c}}}} \sin \phi\right) \\
& =-e A_{0} \sum_{n=-\infty}^{\infty} J_{n}\left(k_{\perp} \sqrt{\frac{2 \mathcal{J}}{m \omega_{\mathrm{c}}}}\right) \cos (\psi+n \phi)
\end{aligned}
$$

where we have used the result

$$
\begin{equation*}
e^{i z \sin \theta}=\sum_{n=-\infty}^{\infty} J_{n}(z) e^{i n \theta} \tag{15.257}
\end{equation*}
$$

The solution for S_{1} is then

$$
\begin{equation*}
S_{1}(\phi, \mathcal{J}, \psi, \mathcal{K})=\sum_{n} \frac{e \hat{V}_{0}}{\omega-n \omega_{\mathrm{c}}-k_{z}^{2} \mathcal{K} / m} J_{n}\left(k_{\perp} \sqrt{\frac{2 \mathcal{J}}{m \omega_{\mathrm{c}}}}\right) \sin (\psi+n \phi) \tag{15.258}
\end{equation*}
$$

We then have new action variables \mathcal{J} and \mathcal{K}, where

$$
\begin{align*}
J & =\mathcal{J}+\epsilon \frac{\partial S_{1}}{\partial \phi}+\mathcal{O}\left(\epsilon^{2}\right) \\
K & =\mathcal{K}+\epsilon \frac{\partial S_{1}}{\partial \psi}+\mathcal{O}\left(\epsilon^{2}\right) \tag{15.259}
\end{align*}
$$

Defining the dimensionless variable

$$
\begin{equation*}
\lambda \equiv k_{\perp} \sqrt{\frac{2 J}{m \omega_{\mathrm{c}}}}, \tag{15.260}
\end{equation*}
$$

we obtain the result ${ }^{18}$

$$
\begin{equation*}
\left(\frac{m \omega_{\mathrm{c}}^{2}}{2 e \hat{V}_{0} k_{\perp}^{2}}\right) \Lambda^{2}=\left(\frac{m \omega_{\mathrm{c}}^{2}}{2 e \hat{V}_{0} k_{\perp}^{2}}\right) \lambda^{2}-\epsilon \sum_{n} \frac{n J_{n}(\Lambda) \cos (\psi+n \phi)}{\omega / \omega_{\mathrm{c}}-n-k_{z}^{2} \mathcal{K} / m \omega_{\mathrm{c}}}+\mathcal{O}\left(\epsilon^{2}\right) \tag{15.261}
\end{equation*}
$$

where $\Lambda \equiv k_{\perp}\left(2 \mathcal{J} / m \omega_{\mathrm{c}}\right)^{1 / 2}$.
We see that resonances occur whenever

$$
\begin{equation*}
\frac{\omega}{\omega_{\mathrm{c}}}-\frac{k_{z}^{2} \mathcal{K}}{m \omega_{\mathrm{c}}}=n \tag{15.262}
\end{equation*}
$$

for any integer n. Let us consider the case $k_{z}=0$, in which the resonance condition is $\omega=n \omega_{\mathrm{c}}$. We then have

$$
\begin{equation*}
\frac{\Lambda^{2}}{2 \alpha}=\frac{\lambda^{2}}{2 \alpha}-\epsilon \sum_{n} \frac{n J_{n}(\Lambda) \cos (\psi+n \phi)}{\omega / \omega_{\mathrm{c}}-n} \tag{15.263}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{E_{0}}{B} \cdot \frac{c k_{\perp}}{\omega_{\mathrm{c}}} \tag{15.264}
\end{equation*}
$$

[^42]

Figure 15.7: Plot of Λ versus ψ for $\phi=0$ (Poincaré section) for $\omega=30.11 \omega_{\mathrm{c}}$ Top panels are nonresonant invariant curves calculated to first order. Bottom panels are exact numerical dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude (no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and Lieberman (1983).
is a dimensionless measure of the strength of the perturbation, with $E_{0} \equiv k_{\perp} \hat{V}_{0}$. In fig. 15.7 we plot the level sets for the RHS of the above equation $\lambda(\psi)$ for $\phi=0$, for two different values of the dimensionless amplitude α, for $\omega / \omega_{\mathrm{c}}=30.11$ (i.e. off resonance). Thus, when the amplitude is small, the level sets are far from a primary resonance, and the analytical and numerical results are very similar (left panels). When the amplitude is larger, resonances may occur which are not found in the lowest order perturbation treatment. However, as is apparent from the plots, the gross features of the phase diagram are reproduced by perturbation theory. What is missing is the existence of 'chaotic islands' which initially emerge in the vicinity of the trapping regions.

15.9 Removal of Resonances in Perturbation Theory

We follow the treatment in chapter 3 of Lichtenberg and Lieberman.

15.9.1 The case of $n=\frac{3}{2}$ degrees of freedom

Consider the time-dependent Hamiltonian,

$$
\begin{equation*}
H(\phi, J, t)=H_{0}(J)+\epsilon V(\phi, J, t) \tag{15.265}
\end{equation*}
$$

where $V(\phi, J, t)=V(\phi+2 \pi, J, t)=V(\phi, J, t+T)$ is periodic in time as well as in the angle variable ϕ. We may express the perturbation as a double Fourier sum,

$$
\begin{equation*}
V(\phi, J, t)=\sum_{k, \ell} \hat{V}_{k, \ell}(J) e^{i k \phi} e^{-i \ell \Omega t} \tag{15.266}
\end{equation*}
$$

where $\Omega=2 \pi / T$. Hamilton's equations of motion are

$$
\begin{align*}
& \dot{J}=-\frac{\partial H}{\partial \phi}=-i \epsilon \sum_{k, \ell} k \hat{V}_{k, l}(J) e^{i k \phi} e^{-i \ell \Omega t} \\
& \dot{\phi}=+\frac{\partial H}{\partial J}=\omega_{0}(J)+\epsilon \sum_{k, \ell} \frac{\partial \hat{V}_{k, l}(J)}{\partial J} e^{i k \phi} e^{-i \ell \Omega t} \tag{15.267}
\end{align*}
$$

where $\omega_{0}(J) \equiv \partial H_{0} / \partial J .{ }^{19}$ The resonance condition is obtained by inserting the zeroth order solution $\phi(t)=\omega_{0}(J) t+\beta$ into the perturbation terms. When $k \omega_{0}(J)=l \Omega$, the perturbation results in a secular forcing, leading to a linear time increase and a failure of the solution at sufficiently large values of t.

To resolve this crisis, we focus on a particular resonance, where $(k, \ell)= \pm\left(k_{0}, \ell_{0}\right)$. The resonance condition $k_{0} \omega(J)=\ell_{0} \Omega$ fixes the value of J. There may be several solutions, and we focus on a particular one, which we write as $J=J_{0}$. There is still an infinite set of possible (k, l) values, because if $\left(k_{0}, \ell_{0}\right)$ yields a solution for $J=J_{0}$, so does $(k, \ell)=\left(p k_{0}, p \ell_{0}\right)$ for $p \in \mathbb{Z}$. However, the amplitude of the Fourier components $\hat{V}_{p k_{0}, p \ell_{0}}$ is, in general, a rapidly decreasing function of $|p|$, provided $V(J, \phi, t)$ is smooth in ϕ and t. Furthermore, $p=0$ always yields a solution. Therefore, we will assume k_{0} and ℓ_{0} are relatively prime and take $p=0$ and $p= \pm 1$. This simplifies the system in eqn. 15.267 to

$$
\begin{align*}
& \dot{J}=2 \epsilon k_{0} \hat{V}_{1}(J) \sin \left(k_{0} \phi-\ell_{0} \Omega t+\delta\right) \\
& \dot{\phi}=\omega_{0}(J)+\epsilon \frac{\partial \hat{V}_{0}(J)}{\partial J}+2 \epsilon \frac{\partial \hat{V}_{1}(J)}{\partial J} \cos \left(k_{0} \phi-\ell_{0} \Omega t+\delta\right) \tag{15.268}
\end{align*}
$$

where $\hat{V}_{0,0}(J) \equiv \hat{V}_{0}(J)$ and $\hat{V}_{k_{0}, \ell_{0}}(J)=V_{-k_{0},-\ell_{0}}^{*}(J) \equiv \hat{V}_{1}(J) e^{i \delta}$, where $\hat{V}_{0}(J)$ and $\hat{V}_{1}(J)$ are both real. We then expand, writing

$$
\begin{equation*}
J=J_{0}+\Delta J \quad, \quad \psi=k_{0} \phi-\ell_{0} \Omega t+\delta+\pi \tag{15.269}
\end{equation*}
$$

resulting in the system

$$
\begin{align*}
\frac{d \Delta J}{d t} & =-2 \epsilon k_{0} \hat{V}_{1}\left(J_{0}\right) \sin \psi \tag{15.270}\\
\frac{d \psi}{d t} & =k_{0} \omega_{0}^{\prime}\left(J_{0}\right) \Delta J+\epsilon k_{0} \hat{V}_{0}^{\prime}\left(J_{0}\right)-2 \epsilon k_{0} \hat{V}_{1}^{\prime}\left(J_{0}\right) \cos \psi
\end{align*}
$$

[^43]which follow from the Hamiltonian
\[

$$
\begin{equation*}
K(\Delta J, \psi)=\frac{1}{2} k_{0} \omega_{0}^{\prime}\left(J_{0}\right)(\Delta J)^{2}+\epsilon k_{0} \hat{V}_{0}^{\prime}\left(J_{0}\right) \Delta J-2 \epsilon k_{0} \hat{V}_{1}\left(J_{0}+\Delta J\right) \cos \psi \tag{15.271}
\end{equation*}
$$

\]

with $d \psi / d t=\partial K / \partial(\Delta J)$ and $d(\Delta J) / d t=-\partial K / \partial \psi$. Concerning the last term, we can drop the ΔJ term in the argument of \hat{V}_{1}, leaving $\hat{V}_{1}\left(J_{0}\right)$, because it will yield a term of second order in smallness in the equation of motion for ψ. The remaining term in K linear in ΔJ can then be removed by a shift of $\Delta J \rightarrow \Delta J-\epsilon \hat{V}_{0}^{\prime}\left(J_{0}\right) / \omega_{0}^{\prime}\left(J_{0}\right)$. This is tantamount to shifting the value of J_{0}, which we could have done at the outset by absorbing the term $\epsilon \hat{V}_{0}(J)$ into $H_{0}(J)$, and defining $\omega(J) \equiv \omega_{0}(J)+\epsilon \partial \hat{V}_{0} / \partial J$. We are left with a simple pendulum, with

$$
\begin{equation*}
\ddot{\psi}+\gamma^{2} \sin \psi=0 \tag{15.272}
\end{equation*}
$$

with $\gamma=\sqrt{2 \epsilon k_{0}^{2} \omega^{\prime}\left(J_{0}\right) \hat{V}_{1}\left(J_{0}\right)}$. In Fig. 15.8, we plot the level sets of the function

$$
\begin{equation*}
\check{K}(\Delta J, \psi) \equiv \frac{1}{2} k_{0} \omega_{0}^{\prime}\left(J_{0}\right)(\Delta J)^{2}+\epsilon k_{0} \hat{V}_{0}^{\prime}\left(J_{0}\right) \Delta J-2 \epsilon k_{0} \hat{V}_{1}\left(J_{0}\right) \cos \psi \tag{15.273}
\end{equation*}
$$

in the rotating (q, p) plane, i.e. in the ($\check{q}, \check{p})$ plane, where

$$
\begin{equation*}
\check{q} \propto\left(J_{0}+\Delta J\right)^{1 / 2} \cos \left(k_{0} \check{\phi}\right) \quad, \quad \check{p} \propto\left(J_{0}+\Delta J\right)^{1 / 2} \sin \left(k_{0} \check{\phi}\right), \tag{15.274}
\end{equation*}
$$

where $\check{\phi}=\phi-l_{0} \Omega t / k_{0}$.
What do we conclude? The original 1-torus (i.e. circle) with $J=J_{0}$ and $\phi(t)=\omega_{0}\left(J_{0}\right) t+\beta$ is destroyed. It and its neighboring tori are replaced, in the c ase $k_{0}=1$, by the separatrix in the left panel of fig. 15.8 and the neighboring librational and rotational phase curves. The structure for $k_{0}=6$ is shown in the right panel. The amplitude of the separatrix is $(\Delta J)_{\max }=\sqrt{8 \epsilon \hat{V}_{1}\left(J_{0}\right) / \omega_{0}^{\prime}\left(J_{0}\right)}$. In order for the approximations leading to this structure to be justified, we need $(\Delta J)_{\max } \ll J_{0}$ and $\Delta \omega \ll \omega_{0}$, where $\Delta \omega=\gamma$. These conditions may be written as

$$
\begin{equation*}
\epsilon \ll \alpha \ll \frac{1}{\epsilon} \tag{15.275}
\end{equation*}
$$

where $\alpha=d \ln \omega_{0} /\left.d \ln J\right|_{J_{0}}=J_{0}\left|\omega_{0}^{\prime}\right| / \omega_{0}$.

15.9.2 $n=2$ systems

Consider now the time-independent Hamiltonian $H=H_{0}(\boldsymbol{J})+\epsilon H_{1}(\boldsymbol{\phi}, \boldsymbol{J})$ with $n=2$ degrees of freedom, i.e. $\boldsymbol{J}=\left(J_{1}, J_{2}\right)$ and $\boldsymbol{\phi}=\left(\phi_{1}, \phi_{2}\right)$. We Fourier expand

$$
\begin{equation*}
H_{1}(\boldsymbol{\phi}, \boldsymbol{J})=\sum_{\ell} \hat{V}_{\ell}(\boldsymbol{J}) e^{i \ell \cdot \phi} \tag{15.276}
\end{equation*}
$$

with $\ell=\left(\ell_{1}, \ell_{2}\right)$ and $\hat{V}_{-\ell}(\boldsymbol{J})=V_{\ell}^{*}(\boldsymbol{J})$ since $\hat{V}_{\ell}(\boldsymbol{J})$ are the Fourier components of a real function. A resonance exists between the frequencies $\omega_{1,2}=\partial H_{0} / \partial J_{1,2}$ if there exist nonzero integers r and s such that $r \omega_{1}=s \omega_{2}$. We eliminate the resonance in two steps. First, we employ a canonical transformation $(\phi, \boldsymbol{J}) \rightarrow(\varphi, \mathcal{J})$, generated by

$$
\begin{equation*}
F_{2}(\phi, \mathcal{J})=\left(r \phi_{1}-s \phi_{2}\right) \mathcal{J}_{1}+\phi_{2} \mathcal{J}_{2} \tag{15.277}
\end{equation*}
$$

Figure 15.8: Librations, separatrices, and rotations for $k_{0}=1$ (left) and $k_{0}=6$ (right), plotted in the (q, p) phase plane. Elliptical fixed points are shown in magenta. Hyperbolic fixed points are located at the self-intersection of the separatrices (black curves).

We then have

$$
\begin{array}{ll}
J_{1}=\frac{\partial F_{2}}{\partial \phi_{1}}=r \mathcal{J}_{1} & \varphi_{1}=\frac{\partial F_{2}}{\partial \mathcal{J}_{1}}=r \phi_{1}-s \phi_{2} \\
J_{2}=\frac{\partial F_{2}}{\partial \phi_{2}}=\mathcal{J}_{2}-s \mathcal{J}_{1} & \varphi_{2}=\frac{\partial F_{2}}{\partial \mathcal{J}_{2}}=\phi_{2} .
\end{array}
$$

This transforms us to a rotating frame in which $\dot{\varphi}_{1}=r \dot{\phi}_{1}-s \dot{\phi}_{2}$ is slowly varying, while $\dot{\varphi}_{2}=\dot{\phi}_{2} \approx \omega_{2}$. Note that we could have chosen $F_{2}=\phi_{1} \mathcal{J}_{1}+\left(r \phi_{1}-s \phi_{2}\right) \mathcal{J}_{2}$, in which case we'd have obtained $\varphi_{1}=\phi_{1}$ with an unperturbed natural frequency of ω_{1} and $\varphi_{2}=r \phi_{1}-s \phi_{2}$ slowly varying, i.e. with an unperturbed natural frequency of zero. Which transformation are we to choose? The answer is that we want to end up averaging over the slower of $\omega_{1,2}$, so the generator in eqn. 15.277 is appropriate if $\omega_{1}>\omega_{2}$. The reason has to do with what happens when there are higher order resonances to be removed - a state of affairs we shall discuss in the following section.
At this stage, our transformed Hamiltonian is

$$
\begin{align*}
\widetilde{H}(\boldsymbol{\varphi}, \mathcal{J}) & =H_{0}(\boldsymbol{J}(\mathcal{J}))+\epsilon H_{1}(\boldsymbol{\phi}(\boldsymbol{\varphi}), \boldsymbol{J}(\mathcal{J})) \\
& \equiv \widetilde{H}_{0}(\mathcal{J})+\epsilon \sum_{\ell} \hat{\tilde{V}}_{\ell}(\mathcal{J}) \exp \left[\frac{i \ell_{1}}{r} \varphi_{1}+i\left(\frac{s \ell_{1}}{r}+\ell_{2}\right) \varphi_{2}\right] \tag{15.280}
\end{align*}
$$

where $\widetilde{H}(\mathcal{J}) \equiv H_{0}(\boldsymbol{J}(\mathcal{J}))$ and $\hat{\tilde{V}}_{\ell}(\mathcal{J}) \equiv \hat{\tilde{V}}_{\ell}(\boldsymbol{J}(\mathcal{J}))$. Note that $\phi_{1}=\varphi_{1} / r+s \varphi_{2} / r$. We now average over the angle φ_{2}, which requires $s \ell_{1}+r \ell_{2}=0$. Thus, $\ell_{1}=p r$ and $\ell_{2}=-p s$ for some $p \in \mathbb{Z}$, and

$$
\begin{equation*}
\left\langle H_{1}\right\rangle=\sum_{p} \hat{\tilde{V}}_{p r,-p s}(\mathcal{J}) e^{-i p \varphi_{1}} . \tag{15.281}
\end{equation*}
$$

The averaging is valid close to the resonance, where $\left|\dot{\varphi}_{2}\right| \gg\left|\dot{\varphi}_{1}\right|$. We are now left with the Hamiltonian

$$
\begin{equation*}
\mathcal{H}\left(\varphi_{1}, \mathcal{J}\right)=\widetilde{H}_{0}(\mathcal{J})+\epsilon \sum_{p} \hat{\tilde{V}}_{p r,-p s}(\mathcal{J}) e^{-i p \varphi_{1}} \tag{15.282}
\end{equation*}
$$

Here, \mathcal{J}_{2} is to be regarded as a parameter which itself has no dynamics: $\dot{\mathcal{J}}_{2}=0$. Note $\mathcal{J}_{2}=(s / r) J_{1}+J_{2}$ is the new invariant.

At this point, φ_{2} has been averaged out, \mathcal{J}_{2} is a constant, and only the $\left(\varphi_{1}, \mathcal{J}_{1}\right)$ variables are dynamical. A stationary point for these dynamics, satisfying $\partial \mathcal{H} / \partial \mathcal{J}_{1}=\partial \mathcal{H} / \partial \varphi_{1}=0$ corresponds to a periodic solution to the original perturbed Hamiltonian, since we are now in a rotating frame. Since the Fourier amplitudes $\hat{\tilde{V}}_{-p r, p s}(\mathcal{J})$ generally decrease rapidly with increasing $|p|$, we make the approximation of restricting to $p=0$ and $p= \pm 1$. Thus,

$$
\begin{equation*}
\mathcal{H}\left(\varphi_{1}, \mathcal{J}\right) \approx \widetilde{H}_{0}(\mathcal{J})+\epsilon \hat{\tilde{V}}_{0,0}(\mathcal{J})+2 \epsilon \hat{\tilde{V}}_{r,-s}(\mathcal{J}) \cos \varphi_{1} \tag{15.283}
\end{equation*}
$$

where we have absorbed any phase in the Fourier amplitude $\hat{\tilde{V}}_{r,-s}(\mathcal{J})$ into a shift of φ_{1}, and subsequently take $\hat{\widetilde{V}}_{r,-s}(\mathcal{J})$ to be real. The fixed points $\left(\varphi_{1}^{(0)}, \mathcal{J}_{1}^{(0)}\right)$ of the $\left(\varphi_{1}, \mathcal{J}_{1}\right)$ dynamics satisfy

$$
\begin{align*}
& 0=\frac{\partial \widetilde{H}_{0}}{\partial \mathcal{J}_{1}}+\epsilon \frac{\partial \hat{\tilde{V}}_{0,0}}{\partial \mathcal{J}_{1}}+2 \epsilon \frac{\partial \hat{\tilde{V}}_{r,-s}}{\partial \mathcal{J}_{1}} \cos \varphi_{1} \tag{15.284}\\
& 0=2 \epsilon \hat{\tilde{V}}_{r,-s} \sin \varphi_{1} .
\end{align*}
$$

Thus, $\varphi_{1}=0$ or π at the fixed points. Note that

$$
\begin{equation*}
\frac{\partial \widetilde{H}_{0}}{\partial \mathcal{J}_{1}}=\frac{\partial H_{0}}{\partial J_{1}} \frac{\partial J_{1}}{\partial \mathcal{J}_{1}}+\frac{\partial H_{0}}{\partial J_{2}} \frac{\partial J_{2}}{\partial \mathcal{J}_{1}}=r \omega_{1}-s \omega_{2}=0 \tag{15.285}
\end{equation*}
$$

and therefore fixed points occur for solutions $\mathcal{J}_{1}^{(0)}$ to

$$
\begin{equation*}
\frac{\partial \hat{\tilde{V}}_{0,0}}{\partial \mathcal{J}_{1}} \pm 2 \frac{\partial \hat{\tilde{V}}_{r,-s}}{\partial \mathcal{J}_{1}}=0 \tag{15.286}
\end{equation*}
$$

where the upper sign corresponds to $\varphi_{1}^{(0)}=0$ and the lower sign to $\varphi_{1}^{(0)}=\pi$. We now consider two cases.

(i) accidental degeneracy

In the case of accidental degeneracy, the resonance condition $r \omega_{1}=s \omega_{2}$ is satisfied only for particular values of $\left(J_{1}, J_{2}\right)$, i.e. on a set $J_{2}=J_{2}\left(J_{1}\right)$. This corresponds to the case where $H_{0}\left(J_{1}, J_{2}\right)$ is a generic function of its two arguments. According to eqn. 15.283, excursions of \mathcal{J}_{1} relative to its value $\mathcal{J}_{1}^{(0)}$ at the fixed points are on the order of $\epsilon \hat{\widetilde{V}}_{r,-s}$, while excursions of φ_{1} are $\mathcal{O}(1)$. We may then expand

$$
\begin{equation*}
\widetilde{H}_{0}\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)=\widetilde{H}_{0}\left(\mathcal{J}_{1}^{(0)}, \mathcal{J}_{2}\right)+\frac{\partial \widetilde{H}_{0}}{\partial \mathcal{J}_{1}} \Delta \mathcal{J}_{1}+\frac{1}{2} \frac{\partial^{2} \widetilde{H}_{0}}{\partial \mathcal{J}_{1}^{2}}\left(\Delta \mathcal{J}_{1}\right)^{2}+\ldots \tag{15.287}
\end{equation*}
$$

Figure 15.9: Motion in the vicinity of a resonance, showing elliptical fixed point in green, hyperbolic fixed point in red, and separatrix in black.
where the derivatives are evaluated at $\mathcal{J}_{1}=\mathcal{J}_{1}^{(0)}$. Thus, we arrive at what is often called the standard Hamiltonian,

$$
\begin{equation*}
\mathcal{H}\left(\varphi_{1}, \Delta \mathcal{J}_{1}\right)=\frac{1}{2} G\left(\Delta \mathcal{J}_{1}\right)^{2}-F \cos \varphi_{1} \tag{15.288}
\end{equation*}
$$

with

$$
\begin{equation*}
G\left(\mathcal{J}_{2}\right)=\left.\frac{\partial^{2} \widetilde{H}_{0}}{\partial \mathcal{J}_{1}^{2}}\right|_{\mathcal{J}_{1}^{(0)}} \quad, \quad F\left(\mathcal{J}_{2}\right)=-2 \epsilon \hat{\tilde{V}}_{r,-s}\left(\mathcal{J}_{1}^{(0)}, \mathcal{J}_{2}\right) \tag{15.289}
\end{equation*}
$$

Thus, the motion in the vicinity of every resonance is like that of a pendulum, meaning libration, separatrix, and rotation in the phase plane. F is the amplitude of the first Fourier mode of the perturbation (i.e. $|p|=1$), and G the 'nonlinearity parameter'. For $F G>0$ the elliptic fixed point (EFP) is at $\varphi_{1}=0$ and the hyperbolic fixed point (HFP) at $\varphi_{1}=\pi$. For $F G<0$, the locations are switched. The frequency of libration about the EFP is given by $\nu_{1}=\sqrt{F G}=\mathcal{O}\left(\sqrt{\epsilon \hat{V}_{r,-s}}\right)$. The frequency decreases to zero as the separatrix is approached. The maximum excursion along the separatrix is $\left(\Delta \mathcal{J}_{1}\right)_{\max }=2 \sqrt{F / G}$ which is also $\mathcal{O}\left(\sqrt{\epsilon \hat{\tilde{V}}_{r,-s}}\right)$. The ratio of semiminor to semimajor axis lengths for motion in the vicinity of the EFP is

$$
\begin{equation*}
\frac{\left(\Delta \mathcal{J}_{1}\right)_{\max }}{\left(\Delta \varphi_{1}\right)_{\max }}=\sqrt{\frac{F}{G}}=\mathcal{O}\left(\epsilon^{1 / 2}\right) \tag{15.290}
\end{equation*}
$$

(ii) intrinsic degeneracy

In this case, $H_{0}\left(J_{1}, J_{2}\right)$ is a function of only the combination $s J_{1}+r J_{2}=r \mathcal{J}_{2}$, so

$$
\begin{equation*}
\mathcal{H}\left(\varphi_{1}, \mathcal{J}\right)=\widetilde{H}_{0}\left(\mathcal{J}_{2}\right)+\epsilon \hat{\tilde{V}}_{0,0}(\mathcal{J})+2 \epsilon \hat{\tilde{V}}_{r,-s}(\mathcal{J}) \cos \varphi_{1} \tag{15.291}
\end{equation*}
$$

In this case excursions of \mathcal{J}_{1} and φ_{1} are both $\mathcal{O}\left(\epsilon \hat{\tilde{V}}_{\bullet}, \bullet\right)$, and we are not licensed to expand in $\Delta \mathcal{J}_{1}$. However, in the vicinity of an EFP, we may expand, both in $\Delta \mathcal{J}_{1}$ and $\Delta \varphi_{1}$, resulting in

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} G\left(\Delta \mathcal{J}_{1}\right)^{2}+\frac{1}{2} F\left(\Delta \varphi_{1}\right)^{2} \tag{15.292}
\end{equation*}
$$

where

$$
\begin{equation*}
G\left(\mathcal{J}_{2}\right)=\left[\frac{\partial^{2} \widetilde{H}_{0}}{\partial \mathcal{J}_{1}^{2}}+\epsilon \frac{\partial^{2} \hat{\tilde{V}}_{0,0}}{\partial \mathcal{J}_{1}^{2}}+2 \epsilon \frac{\partial^{2} \hat{\tilde{V}}_{r,-s}}{\partial \mathcal{J}_{1}^{2}}\right]_{\left(\mathcal{J}_{1}^{(0)}, \mathcal{J}_{2}\right)} \quad, \quad F\left(\mathcal{J}_{2}\right)=-2 \epsilon \hat{\tilde{V}}_{r,-s}\left(\mathcal{J}_{1}^{(0)}, \mathcal{J}_{2}\right) \tag{15.293}
\end{equation*}
$$

For the case of intrinsic degeneracy, the first term in brackets on the RHS of the equation for $G\left(\mathcal{J}_{2}\right)$ vanishes, since \widetilde{H}_{0} is a function only of \mathcal{J}_{2}. Hence F and G are both $\mathcal{O}\left(\epsilon \hat{\tilde{V}}_{\bullet}, \bullet\right)$, hence $\nu_{1}=\sqrt{F G}=\mathcal{O}(\epsilon)$ and the ratio of semiminor to semimajor axis lengths of the motion is

$$
\begin{equation*}
\frac{\left(\Delta \mathcal{J}_{1}\right)_{\max }}{\left(\Delta \varphi_{1}\right)_{\max }}=\sqrt{\frac{F}{G}}=\mathcal{O}(1) \tag{15.294}
\end{equation*}
$$

15.9.3 Secondary resonances

By averaging over the φ_{2} motion and expanding about the EFP, we obtained the Hamiltonian in Eqns. 15.292 and 15.293. In so doing, we dropped all terms on the RHS of eqn. 15.280 with $s \ell_{1}+r \ell_{2} \neq 0$. We now restore those terms, and continue to expand about the EFP. The first step is to transform the harmonic oscillator Hamiltonian in eqn. 15.292 to action-angle variables; this was already done in §15.8.3. The canonical transformation from $\left(\Delta \varphi_{1}, \Delta \mathcal{J}_{1}\right)$ to $\left(\chi_{1}, I_{1}\right)$ is given by

$$
\begin{equation*}
\Delta \mathcal{J}_{1}=\left(2 R I_{1}\right)^{1 / 2} \cos \chi_{1} \quad, \quad \Delta \varphi_{1}=\left(2 R^{-1} I_{1}\right)^{1 / 2} \sin \chi_{1} \tag{15.295}
\end{equation*}
$$

with $R=(F / G)^{1 / 2}$. We will also define $I_{2} \equiv \mathcal{J}_{2}$ and $\chi_{2} \equiv \varphi_{2}$. Then we may write

$$
\begin{equation*}
\mathcal{H}\left(\varphi_{1}, \mathcal{J}\right) \longrightarrow \widetilde{\mathcal{H}}_{0}(\boldsymbol{I})=\widetilde{H}_{0}\left(\mathcal{J}_{1}^{(0)}, I_{2}\right)+\nu_{1}\left(I_{2}\right) I_{1}-\frac{1}{16} G\left(I_{2}\right) I_{1}^{2}+\ldots \tag{15.296}
\end{equation*}
$$

where the last term on the RHS before the ellipses is from nonlinear terms in $\Delta \varphi_{1}$. The missing terms we seek are

$$
\begin{equation*}
\widetilde{H}_{1}^{\prime}=\sum_{\ell} \hat{\tilde{V}}_{\ell}\left(\mathcal{J}_{1}^{(0)}, I_{2}\right) \exp \left[i r^{-1} \ell_{1}\left(2 R^{-1} I_{1}\right)^{1 / 2} \sin \chi_{1}\right] \exp \left[i\left(r^{-1} s \ell_{1}+\ell_{2}\right) \chi_{2}\right] \tag{15.297}
\end{equation*}
$$

Note that we set $\mathcal{J}_{1}=\mathcal{J}_{1}^{(0)}$ in the argument of $\hat{\tilde{V}}_{\ell}(\mathcal{J})$, because $\Delta \mathcal{J}_{1}$ is of order $\epsilon^{1 / 2}$. Next we invoke the Bessel function identity,

$$
\begin{equation*}
e^{i u \sin \chi}=\sum_{-\infty}^{\infty} J_{n}(u) e^{i n \chi} \tag{15.298}
\end{equation*}
$$

so we write

$$
\begin{equation*}
\widetilde{H}_{1}^{\prime} \longrightarrow \mathcal{H}_{1}(\boldsymbol{\chi}, \boldsymbol{I})=\sum_{\ell} \sum_{n} W_{\ell, n}(\boldsymbol{I}) e^{i n \chi_{1}} e^{i\left(r^{-1} s \ell_{1}+\ell_{2}\right) \chi_{2}} \tag{15.299}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{\ell, n}(\boldsymbol{I})=\hat{\tilde{V}}_{\ell}\left(\mathcal{J}_{1}^{(0)}, I_{2}\right) J_{n}\left(\frac{\ell_{1}}{r} \sqrt{\frac{2 I_{1}}{R}}\right) \tag{15.300}
\end{equation*}
$$

We now write

$$
\begin{equation*}
\mathcal{H}(\boldsymbol{\chi}, \boldsymbol{I})=\mathcal{H}_{0}(\boldsymbol{I})+\tilde{\epsilon} \mathcal{H}_{1}(\boldsymbol{\chi}, \boldsymbol{I}) \tag{15.301}
\end{equation*}
$$

Here, while $\tilde{\epsilon}=\epsilon$ it is convenient to use a new symbol since ϵ itself appears within \mathcal{H}_{0}.
We now see that a secondary resonance will occur if $r^{\prime} \nu_{1}=s^{\prime} \nu_{2}$, with $\nu_{j}(\boldsymbol{I})=\partial \mathcal{H}_{0} / \partial I_{j}$ and $r^{\prime}, s^{\prime} \in \mathbb{Z}$. But note that $\nu_{1}=\mathcal{O}\left(\epsilon^{1 / 2}\right)$ while $\nu_{2}=\mathcal{O}(1)$ in the case of an accidental primary resonance. As before, we may eliminate this new resonance by transforming to a moving frame in which the resonance shifts to zero frequency to zeroth order and then averaging over the remaining motion. That is, we canonically transform $(\boldsymbol{\chi}, \boldsymbol{I}) \rightarrow(\boldsymbol{\psi}, \boldsymbol{I})$ via a type-II generator $F_{2}^{\prime}=\left(r^{\prime} \chi_{1}-s^{\prime} \chi_{2}\right) \mathcal{I}_{1}+\chi_{2} \mathcal{I}_{2}$, yielding

$$
\begin{array}{ll}
I_{1}=\frac{\partial F_{2}^{\prime}}{\partial \chi_{1}}=r^{\prime} \mathcal{I}_{1} & \psi_{1}=\frac{\partial F_{2}^{\prime}}{\partial \mathcal{I}_{1}}=r^{\prime} \chi_{1}-s^{\prime} \chi_{2} \\
I_{2}=\frac{\partial F_{2}^{\prime}}{\partial \chi_{2}}=\mathcal{I}_{2}-s^{\prime} \mathcal{I}_{1} & \psi_{2}=\frac{\partial F_{2}^{\prime}}{\partial \mathcal{I}_{2}}=\chi_{2} . \tag{15.303}
\end{array}
$$

The phase angle in eqn. 15.299 is then

$$
\begin{equation*}
n \chi_{1}+\left(\frac{s}{r} \ell_{1}+\ell_{2}\right) \chi_{2}=\frac{n}{r^{\prime}} \psi_{1}+\left(\frac{n s^{\prime}}{r^{\prime}}+\frac{s}{r} \ell_{1}+\ell_{2}\right) \psi_{2} \tag{15.304}
\end{equation*}
$$

Averaging over $\psi_{2}(t)$ then requires $n r s^{\prime}+s r^{\prime} \ell_{1}+r r^{\prime} \ell_{2}=0$, which is satisfied when

$$
\begin{equation*}
n=j r^{\prime} \quad, \quad \ell_{1}=k r \quad, \quad \ell_{2}=-j s^{\prime}-k s \tag{15.305}
\end{equation*}
$$

for some $j, k \in \mathbb{Z}$. The result of the averaging is

$$
\begin{equation*}
\langle\mathcal{H}\rangle_{\psi_{2}}=\mathcal{H}_{0}(\boldsymbol{I}(\boldsymbol{I}))+\tilde{\epsilon} \sum_{j} \Gamma_{j r^{\prime},-j s^{\prime}}(\mathcal{I}) e^{-i j \psi_{1}} \tag{15.306}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{j r^{\prime},-j s^{\prime}}(\mathcal{I})=W_{k r,-j s^{\prime}-k s, j r^{\prime}}(\boldsymbol{I}(\mathcal{I}))=\hat{\tilde{V}}_{k r,-j s^{\prime}-k s}\left(\mathcal{J}_{1}^{(0)}, I_{2}\right) J_{j r^{\prime}}\left(k \sqrt{\frac{2 I_{1}(\mathcal{I})}{R}}\right) \tag{15.307}
\end{equation*}
$$

Since $\langle\mathcal{H}\rangle_{\psi_{2}}$ is independent of ψ_{2}, the corresponding action $\mathcal{I}_{2}=\left(s^{\prime} / r^{\prime}\right) I_{1}+I_{2}$ is the adiabatic invariant for the new oscillation.

Strength of island resonances

To assess the strength of the secondary resonances, we consider $r=s=j=k=s^{\prime}=1$, in which case $r^{\prime}=\nu_{2} / \nu_{1}=\mathcal{O}\left(\epsilon^{-1 / 2}\right)$ is parametrically large. The resulting structure in the phase plane is depicted in fig. 15.10 for $r^{\prime}=6$. The amplitude of the \mathcal{M}_{1} oscillations is proportional to

$$
\begin{equation*}
J_{r}\left(\left(2 I_{1}(\mathcal{I}) / 2 R\right)^{1 / 2}\right) \sim \frac{\left(2 I_{1}(\mathcal{I}) / 2 R\right)^{r^{\prime} / 2}}{r^{\prime}!}=\mathcal{O}\left(\frac{1}{\left(\epsilon^{-1 / 2}\right)!}\right) \tag{15.308}
\end{equation*}
$$

The frequency of the island oscillations is of the same order of magnitude. Successive higher order resonances result in an increasingly tiny island chain amplitude.

Figure 15.10: Motion in the vicinity of a secondary resonance with $r^{\prime}=6$ and $s^{\prime}=1$. Elliptical fixed points are in green, hyperbolic fixed points in red, and separatrices in black and blue.

15.10 Whither Integrability?

We are left with the following question: what happens when we perturb an integrable Hamiltonian, $H(\boldsymbol{\phi}, \boldsymbol{J})=H_{0}(\boldsymbol{J})+\epsilon H_{1}(\boldsymbol{\phi}, \boldsymbol{J})$? Two extreme conjectures, and their refutations:
(i) $H(\boldsymbol{\phi}, \boldsymbol{J})$ is always integrable, even though we may not always be able to obtain the corresponding action-angle variables. Tori are deformed but not destroyed. If this were the case, there would be n conserved quantities, i.e. the first integrals of motion I_{j}. This would violate the fundamental tenets of equilibrium statistical physics, as the canonical Gibbs distribution $\varrho=\exp (-\beta H) / Z$ would be replaced with the pseudo-Gibbs distribution, $\varrho=\exp \left(-\lambda_{j} I_{j}\right) / Z$, where $\left\{\lambda_{j}\right\}$ are a set of Lagrange multipliers ${ }^{20}$.
(ii) Integrability is destroyed for any $\epsilon>0$, in which case $E=H(\boldsymbol{\phi}, \boldsymbol{J})$ is the only conserved quantity 21. If this were the case, the solar system would be unstable, and we wouldn't be here to study Hamiltonian mechanics.

So the truth lies somewhere in between, and is the focus of the celebrated KAM theorem ${ }^{22}$. We have already encountered the problem of resonances, which arise for tori which satisfy $\boldsymbol{\ell} \cdot \boldsymbol{\omega}_{0}(\boldsymbol{J})=0$ for some integers $\ell=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$. Such tori, which are dense in the phase space \mathcal{M} yet still of Lebesgue measure zero, are destroyed by arbitrarily small perturbations, as we have seen. This observation dates back to Poincaré. For a given torus with an $(n-1)$-dimensional family of periodic orbits, $J_{n}=J_{n}\left(J_{1}, \ldots, J_{n-1}\right)$, it is generally the case that only a finite number of periodic orbits survive the perturbation. Since, in a nondegenerate system, the set of resonant tori is dense, it seems like the situation is hopeless and that arbitrarily small ϵ will induce ergodicity on each energy surface. Until the early 1950s, it was generally believed that this was the case, and the stability of the solar system was regarded as a deep mystery.

[^44]Enter Andrey Nikolaevich Kolmogorov, who in 1954 turned conventional wisdom on its head, showing that, in fact, the majority of tori survive. Specifically, Kolmogorov proved that strongly nonresonant tori survive small perturbations. A strongly nonresonant torus is one for which there exist constants $\alpha>0$ and $\tau>0$ such that $\left|\ell \cdot \omega_{0}(J)\right| \geq \alpha|\ell|^{-\tau}$, where $|\ell| \equiv\left|\ell_{1}\right|+\ldots+\left|\ell_{n}\right|$. From a measure theoretic point of view, almost all tori are strongly nonresonant for any $\tau>n-1$, but in order to survive the perturbation, it is necessary that $\epsilon \ll \alpha^{2}$. For these tori, perturbation theory converges, although not quite in the naïve form we have derived, i.e. from the generator $S(\phi, \mathcal{J})=S_{0}+\epsilon S_{1}+\epsilon^{2} S_{2}+\ldots$, but rather using the 'superconvergent' method pioneered by Kolmogorov.

Since the arithmetic of the strongly nonresonant tori is a bit unusual, let's first convince ourselves that such tori actually exist ${ }^{23}$. Let Δ_{α}^{τ} denote the set of all $\omega \in \mathbb{R}^{n}$ satisfying, for fixed α and τ, the infinitely many conditions $\boldsymbol{\ell} \cdot \boldsymbol{\omega} \geq \alpha|\boldsymbol{\ell}|^{-\tau}$, for all nonzero $\boldsymbol{\ell} \in \mathbb{Z}^{n}$. Clearly Δ_{α}^{τ} is the complement of the open and dense set $R_{\alpha}^{\tau}=\bigcup_{0 \neq \ell \in \mathbb{Z}^{n}} R_{\alpha, \ell}^{\tau}$, where

$$
\begin{equation*}
R_{\alpha, \ell}^{\tau}=\left\{\boldsymbol{\omega} \in \mathbb{R}^{n}:|\boldsymbol{\ell} \cdot \boldsymbol{\omega}|<\alpha|\ell|^{-\tau}\right\} \tag{15.309}
\end{equation*}
$$

For any bounded region $\Omega \in \mathbb{R}^{n}$, we can estimate the Lebesgue measure of the set $R_{\alpha}^{\tau} \cap \Omega$ from the calculation

$$
\begin{equation*}
\mu\left(R_{\alpha}^{\tau} \cap \Omega\right) \leq \sum_{\ell \neq 0} \mu\left(R_{\alpha, \ell}^{\tau} \cap \Omega\right)=\mathcal{O}(\alpha) \tag{15.310}
\end{equation*}
$$

The sum converges provided $\tau>n-1$ since $\mu\left(R_{\alpha, \ell}^{\tau} \cap \Omega\right)=\mathcal{O}\left(\alpha /|\ell|^{\tau+1}\right)$. Taking the intersection over all $\alpha>0$, we conclude $R^{\tau}=\bigcap_{\alpha>0} R_{\alpha}^{\tau}$ is a set of measure zero, and therefore its complement, $\Delta^{\tau}=\bigcup_{\alpha>0} \Delta_{\alpha}^{\tau}$, is a set of full measure in \mathbb{R}^{n}. This means that almost every $\omega \in \mathbb{R}^{n}$ belongs to the set Δ^{τ}, which is the set of all $\boldsymbol{\omega}$ satisfying the Diophantine condition $|\boldsymbol{\ell} \cdot \boldsymbol{\omega}| \geq \alpha|\ell|^{-\tau}$ for some value of α, again provided $\tau>n-1$.

We say that a torus survives the perturbation if for $\epsilon>0$ there exists a deformed torus in phase space homotopic to that for $\epsilon=0$, and for which the frequencies satisfy $\omega_{\epsilon}=f(\epsilon) \boldsymbol{\omega}_{0}$, with $\lim _{\epsilon \rightarrow 0} f(\epsilon)=1$. Note this says $\omega_{j} / \omega_{k}=\omega_{0, j} / \omega_{0, k}$. Only tori with frequencies in Δ_{α}^{τ} with $\alpha \gg \sqrt{\epsilon}$ survive. The KAM theorem says that the measure of the space of surviving tori approaches unity as $\epsilon \rightarrow 0$.

15.11 Appendix: Examples

15.11.1 Hamilton-Jacobi theory for point charge plus electric field

Consider a potential of the form

$$
\begin{equation*}
U(r)=\frac{k}{r}-F z \tag{15.311}
\end{equation*}
$$

which corresponds to a charge in the presence of an external point charge plus an external electric field. This problem is amenable to separation in parabolic coordinates, (ξ, η, φ) :

$$
\begin{equation*}
x=\sqrt{\xi \eta} \cos \varphi \quad, \quad y=\sqrt{\xi \eta} \sin \varphi \quad, \quad z=\frac{1}{2}(\xi-\eta) . \tag{15.312}
\end{equation*}
$$

[^45]Note that

$$
\begin{align*}
\rho & \equiv \sqrt{x^{2}+y^{2}}=\sqrt{\xi \eta} \tag{15.313}\\
r & =\sqrt{\rho^{2}+z^{2}}=\frac{1}{2}(\xi+\eta) .
\end{align*}
$$

The kinetic energy is

$$
\begin{align*}
T & =\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\varphi}^{2}+\dot{z}^{2}\right) \\
& =\frac{1}{8} m(\xi+\eta)\left(\frac{\dot{\xi}^{2}}{\xi}+\frac{\dot{\eta}^{2}}{\eta}\right)+\frac{1}{2} m \xi \eta \dot{\varphi}^{2} \tag{15.314}
\end{align*}
$$

and hence the Lagrangian is

$$
\begin{equation*}
L=\frac{1}{8} m(\xi+\eta)\left(\frac{\dot{\xi}^{2}}{\xi}+\frac{\dot{\eta}^{2}}{\eta}\right)+\frac{1}{2} m \xi \eta \dot{\varphi}^{2}-\frac{2 k}{\xi+\eta}+\frac{1}{2} F(\xi-\eta) \tag{15.315}
\end{equation*}
$$

Thus, the conjugate momenta are

$$
\begin{align*}
& p_{\xi}=\frac{\partial L}{\partial \dot{\xi}}=\frac{1}{4} m(\xi+\eta) \frac{\dot{\xi}}{\xi} \\
& p_{\eta}=\frac{\partial L}{\partial \dot{\eta}}=\frac{1}{4} m(\xi+\eta) \frac{\dot{\eta}}{\eta} \tag{15.316}\\
& p_{\varphi}=\frac{\partial L}{\partial \dot{\varphi}}=m \xi \eta \dot{\varphi}
\end{align*}
$$

and the Hamiltonian is

$$
\begin{align*}
H & =p_{\xi} \dot{\xi}+p_{\eta} \dot{\eta}+p_{\varphi} \dot{\varphi} \\
& =\frac{2}{m}\left(\frac{\xi p_{\xi}^{2}+\eta p_{\eta}^{2}}{\xi+\eta}\right)+\frac{p_{\varphi}^{2}}{2 m \xi \eta}+\frac{2 k}{\xi+\eta}-\frac{1}{2} F(\xi-\eta) \tag{15.317}
\end{align*}
$$

Notice that $\partial H / \partial t=0$, which means $d H / d t=0$, i.e. $H=E \equiv \Lambda_{1}$ is a constant of the motion. Also, φ is cyclic in H, so its conjugate momentum p_{φ} is a constant of the motion.

We write

$$
\begin{align*}
S(q, \Lambda) & =W(q, \Lambda)-E t \\
& =W_{\xi}(\xi, \Lambda)+W_{\eta}(\eta, \Lambda)+W_{\varphi}(\varphi, \Lambda)-E t \tag{15.318}
\end{align*}
$$

with $E=\Lambda_{1}$. Clearly we may take

$$
\begin{equation*}
W_{\varphi}(\varphi, \Lambda)=P_{\varphi} \varphi \tag{15.319}
\end{equation*}
$$

where $P_{\varphi}=\Lambda_{2}$. Multiplying the Hamilton-Jacobi equation by $\frac{1}{2} m(\xi+\eta)$ then gives

$$
\begin{equation*}
\xi\left(\frac{d W_{\xi}}{d \xi}\right)^{2}+\frac{P_{\varphi}^{2}}{4 \xi}+m k-\frac{1}{4} F \xi^{2}-\frac{1}{2} m E \xi=-\eta\left(\frac{d W_{\eta}}{d \eta}\right)^{2}-\frac{P_{\varphi}^{2}}{4 \eta}-\frac{1}{4} F \eta^{2}+\frac{1}{2} m E \eta \equiv \Upsilon \tag{15.320}
\end{equation*}
$$

where $\Upsilon=\Lambda_{3}$ is the third constant: $\Lambda=\left(E, P_{\varphi}, \Upsilon\right)$. Thus,

$$
\begin{align*}
S(\overbrace{\xi, \eta, \varphi}^{q} ; \underbrace{E, P_{\varphi}, \Upsilon}_{\Lambda})=\int^{\xi} d \xi^{\prime} \sqrt{\frac{1}{2} m E}+ & +\frac{\Upsilon-m k}{\xi^{\prime}}+\frac{1}{4} m F \xi^{\prime}-\frac{P_{\varphi}^{2}}{4 \xi^{\prime}} \tag{15.321}\\
& +\int^{\eta} d \eta^{\prime} \sqrt{\frac{1}{2} m E-\frac{\Upsilon}{\eta^{\prime}}-\frac{1}{4} m F \eta^{\prime}-\frac{P_{\varphi}^{2}}{4 \eta^{\prime 2}}}+P_{\varphi} \varphi-E t .
\end{align*}
$$

15.11.2 Hamilton-Jacobi theory for charged particle in a magnetic field

The Hamiltonian is

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\boldsymbol{p}-\frac{e}{c} \boldsymbol{A}\right)^{2} \tag{15.322}
\end{equation*}
$$

We choose the gauge $\boldsymbol{A}=B x \hat{\boldsymbol{y}}$, and we write

$$
\begin{equation*}
S\left(x, y, P_{1}, P_{2}\right)=W_{x}\left(x, P_{1}, P_{2}\right)+W_{y}\left(y, P_{1}, P_{2}\right)-P_{1} t \tag{15.323}
\end{equation*}
$$

Note that here we will consider S to be a function of $\left\{q_{\sigma}\right\}$ and $\left\{P_{\sigma}\right\}$.
The Hamilton-Jacobi equation is then

$$
\begin{equation*}
\left(\frac{\partial W_{x}}{\partial x}\right)^{2}+\left(\frac{\partial W_{y}}{\partial y}-\frac{e B x}{c}\right)^{2}=2 m P_{1} \tag{15.324}
\end{equation*}
$$

We solve by writing

$$
\begin{equation*}
W_{y}=P_{2} y \quad \Rightarrow \quad\left(\frac{d W_{x}}{d x}\right)^{2}+\left(P_{2}-\frac{e B x}{c}\right)^{2}=2 m P_{1} \tag{15.325}
\end{equation*}
$$

This equation suggests the substitution

$$
\begin{equation*}
x=\frac{c P_{2}}{e B}+\frac{c}{e B} \sqrt{2 m P_{1}} \sin \theta . \tag{15.326}
\end{equation*}
$$

in which case

$$
\begin{equation*}
\frac{\partial x}{\partial \theta}=\frac{c}{e B} \sqrt{2 m P_{1}} \cos \theta \tag{15.327}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial W_{x}}{\partial x}=\frac{\partial W_{x}}{\partial \theta} \cdot \frac{\partial \theta}{\partial x}=\frac{e B}{c \sqrt{2 m P_{1}}} \frac{1}{\cos \theta} \frac{\partial W_{x}}{\partial \theta} \tag{15.328}
\end{equation*}
$$

Substitution into eqn. 15.325, we have $\partial W_{x} / \partial \theta=\left(2 m c P_{1} / e B\right) \cos ^{2} \theta$ which integrates to

$$
\begin{equation*}
W_{x}=\frac{m c P_{1}}{e B} \theta+\frac{m c P_{1}}{2 e B} \sin (2 \theta) . \tag{15.329}
\end{equation*}
$$

We then have

$$
\begin{equation*}
p_{x}=\frac{\partial W_{x}}{\partial x}=\frac{\partial W_{x}}{\partial \theta} / \frac{\partial x}{\partial \theta}=\sqrt{2 m P_{1}} \cos \theta \tag{15.330}
\end{equation*}
$$

and $p_{y}=\partial W_{y} / \partial y=P_{2}$. The type-II generator we seek is then

$$
\begin{equation*}
S(q, P, t)=\frac{m c P_{1}}{e B} \theta+\frac{m c P_{1}}{2 e B} \sin (2 \theta)+P_{2} y-P_{1} t \tag{15.331}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\frac{e B}{c \sqrt{2 m P_{1}}} \sin ^{-1}\left(x-\frac{c P_{2}}{e B}\right) \tag{15.332}
\end{equation*}
$$

Note that, from eqn. 15.326 , we may write

$$
\begin{equation*}
d x=\frac{c}{e B} d P_{2}+\frac{m c}{e B} \frac{1}{\sqrt{2 m P_{1}}} \sin \theta d P_{1}+\frac{c}{e B} \sqrt{2 m P_{1}} \cos \theta d \theta \tag{15.333}
\end{equation*}
$$

from which we derive

$$
\begin{equation*}
\frac{\partial \theta}{\partial P_{1}}=-\frac{\tan \theta}{2 P_{1}} \quad, \quad \frac{\partial \theta}{\partial P_{2}}=-\frac{1}{\sqrt{2 m P_{1}} \cos \theta} \tag{15.334}
\end{equation*}
$$

These results are useful in the calculation of Q_{1} and Q_{2} :

$$
\begin{align*}
Q_{1} & =\frac{\partial S}{\partial P_{1}}=\frac{m c}{e B} \theta+\frac{m c P_{1}}{e B} \frac{\partial \theta}{\partial P_{1}}+\frac{m c}{2 e B} \sin (2 \theta)+\frac{m c P_{1}}{e B} \cos (2 \theta) \frac{\partial \theta}{\partial P_{1}}-t \tag{15.335}\\
& =\frac{\theta}{\omega_{\mathrm{c}}}-t
\end{align*}
$$

where $\omega_{\mathrm{c}}=e B / m c$ is the 'cyclotron frequency', and

$$
\begin{align*}
Q_{2} & =\frac{\partial S}{\partial P_{2}}=y+\frac{m c P_{1}}{e B}[1+\cos (2 \theta)] \frac{\partial \theta}{\partial P_{2}} \tag{15.336}\\
& =y-\frac{c}{e B} \sqrt{2 m P_{1}} \cos \theta
\end{align*}
$$

Now since $\tilde{H}(P, Q)=0$, we have that $\dot{Q}_{\sigma}=0$, which means that each Q_{σ} is a constant. We therefore have the following solution:

$$
\begin{align*}
& x(t)=x_{0}+A \sin \left(\omega_{\mathrm{c}} t+\delta\right) \tag{15.337}\\
& y(t)=y_{0}+A \cos \left(\omega_{\mathrm{c}} t+\delta\right)
\end{align*}
$$

and

$$
\begin{equation*}
x_{0}=\frac{c P_{2}}{e B} \quad, \quad y_{0}=Q_{2} \quad, \quad \delta \equiv \omega_{\mathrm{c}} Q_{1} \quad, \quad A=\frac{c}{e B} \sqrt{2 m P_{1}} . \tag{15.338}
\end{equation*}
$$

15.11.3 Action-angle variables for the Kepler problem

This is discussed in detail in standard texts, such as Goldstein. The potential is $V(r)=-k / r$, and the problem is separable. We write ${ }^{24}$

$$
\begin{equation*}
W(r, \theta, \varphi)=W_{r}(r)+W_{\theta}(\theta)+W_{\varphi}(\varphi) \tag{15.339}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+\frac{1}{2 m r^{2}}\left(\frac{\partial W_{\theta}}{\partial \theta}\right)^{2}+\frac{1}{2 m r^{2} \sin ^{2} \theta}\left(\frac{\partial W_{\varphi}}{\partial \varphi}\right)^{2}+V(r)=E \equiv \Lambda_{r} \tag{15.340}
\end{equation*}
$$

Separating, we have

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{d W_{\varphi}}{d \varphi}\right)^{2}=\Lambda_{\varphi} \quad \Rightarrow \quad J_{\varphi}=\oint_{\mathcal{C}_{\varphi}} d \varphi \frac{d W_{\varphi}}{d \varphi}=2 \pi \sqrt{2 m \Lambda_{\varphi}} \tag{15.341}
\end{equation*}
$$

Next we deal with the θ coordinate. We have

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{d W_{\theta}}{d \theta}\right)^{2}=\Lambda_{\theta}-\frac{\Lambda_{\varphi}}{\sin ^{2} \theta} \tag{15.342}
\end{equation*}
$$

and therefore

$$
\begin{align*}
J_{\theta} & =4 \sqrt{2 m \Lambda_{\theta}} \int_{\theta_{0}}^{\pi / 2} d \theta \sqrt{1-\left(\Lambda_{\varphi} / \Lambda_{\theta}\right) \csc ^{2} \theta} \tag{15.343}\\
& =2 \pi \sqrt{2 m}\left(\sqrt{\Lambda_{\theta}}-\sqrt{\Lambda_{\varphi}}\right)
\end{align*}
$$

where $\theta_{0}=\sin ^{-1}\left(\Lambda_{\varphi} / \Lambda_{\theta}\right)$. Finally, we have for the radial coordinate

$$
\begin{equation*}
\frac{1}{2 m}\left(\frac{d W_{r}}{d r}\right)^{2}=E+\frac{k}{r}-\frac{\Lambda_{\theta}}{r^{2}} \tag{15.344}
\end{equation*}
$$

and so ${ }^{25}$

$$
\begin{align*}
J_{r} & =\oint_{\mathcal{C}_{r}} d r \sqrt{2 m\left(E+\frac{k}{r}-\frac{\Lambda_{\theta}}{r^{2}}\right)} \tag{15.345}\\
& =-\left(J_{\theta}+J_{\varphi}\right)+\pi k \sqrt{\frac{2 m}{|E|}}
\end{align*}
$$

where we've assumed $E<0$, i.e. bound motion.
Thus, we find

$$
\begin{equation*}
H=E=-\frac{2 \pi^{2} m k^{2}}{\left(J_{r}+J_{\theta}+J_{\varphi}\right)^{2}} \tag{15.346}
\end{equation*}
$$

[^46]Note that the frequencies are completely degenerate:

$$
\begin{equation*}
\nu \equiv \nu_{r, \theta, \varphi}=\frac{\partial H}{\partial J_{r, \theta, \varphi}}=\frac{4 \pi^{2} m k^{2}}{\left(J_{r}+J_{\theta}+J_{\varphi}\right)^{3}}=\left(\frac{\pi^{2} m k^{2}}{2|E|^{3}}\right)^{1 / 2} \tag{15.347}
\end{equation*}
$$

This threefold degeneracy may be removed by a transformation to new AA variables,

$$
\begin{equation*}
\left\{\left(\phi_{r}, J_{r}\right),\left(\phi_{\theta}, J_{\theta}\right),\left(\phi_{\varphi}, J_{\varphi}\right)\right\} \longrightarrow\left\{\left(\chi_{1}, \mathcal{J}_{1}\right),\left(\chi_{2}, \mathcal{J}_{2}\right),\left(\chi_{3}, \mathcal{J}_{3}\right)\right\} \tag{15.348}
\end{equation*}
$$

using the type-II generator

$$
\begin{equation*}
F_{2}\left(\phi_{r}, \phi_{\theta}, \phi_{\varphi} ; \mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}\right)=\left(\phi_{\varphi}-\phi_{\theta}\right) \mathcal{J}_{1}+\left(\phi_{\theta}-\phi_{r}\right) \mathcal{J}_{2}+\phi_{r} \mathcal{J}_{3} \tag{15.349}
\end{equation*}
$$

which results in

$$
\begin{array}{llrl}
\chi_{1} & =\frac{\partial F_{2}}{\partial \mathcal{J}_{1}}=\phi_{\varphi}-\phi_{\theta} & J_{r} & =\frac{\partial F_{2}}{\partial \phi_{r}}=\mathcal{J}_{3}-\mathcal{J}_{2} \\
\chi_{2} & =\frac{\partial F_{2}}{\partial \mathcal{J}_{2}}=\phi_{\theta}-\phi_{r} & J_{\theta} & =\frac{\partial F_{2}}{\partial \phi_{\theta}}=\mathcal{J}_{2}-\mathcal{J}_{1} \\
\chi_{3} & =\frac{\partial F_{2}}{\partial \mathcal{J}_{3}}=\phi_{r} & J_{\varphi} & =\frac{\partial F_{2}}{\partial \phi_{\varphi}}=\mathcal{J}_{1} . \tag{15.352}
\end{array}
$$

The new Hamiltonian is

$$
\begin{equation*}
H\left(\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}\right)=-\frac{2 \pi^{2} m k^{2}}{\mathcal{J}_{3}^{2}} \tag{15.353}
\end{equation*}
$$

whence $\nu_{1}=\nu_{2}=0$ and $\nu_{3}=\nu$.

15.11.4 Action-angle variables for charged particle in a magnetic field

For the case of the charged particle in a magnetic field, studied above in section 15.11.2, we found

$$
\begin{equation*}
x=\frac{c P_{2}}{e B}+\frac{c}{e B} \sqrt{2 m P_{1}} \sin \theta \tag{15.354}
\end{equation*}
$$

with $p_{x}=\sqrt{2 m P_{1}} \cos \theta$ and $p_{y}=P_{2}$. The action variable J is then

$$
\begin{equation*}
J=\oint p_{x} d x=\frac{2 m c P_{1}}{e B} \int_{0}^{2 \pi} d \theta \cos ^{2} \theta=\frac{m c P_{1}}{e B} \tag{15.355}
\end{equation*}
$$

We then have

$$
\begin{equation*}
W=J \theta+\frac{1}{2} J \sin (2 \theta)+P y \tag{15.356}
\end{equation*}
$$

where $P \equiv P_{2}$. Thus,

$$
\begin{align*}
\phi=\frac{\partial W}{\partial J} & =\theta+\frac{1}{2} \sin (2 \theta)+J[1+\cos (2 \theta)] \frac{\partial \theta}{\partial J} \\
& =\theta+\frac{1}{2} \sin (2 \theta)+2 J \cos ^{2} \theta \cdot\left(-\frac{\tan \theta}{2 J}\right)=\theta . \tag{15.357}
\end{align*}
$$

The other canonical pair is (Q, P), where

$$
\begin{equation*}
Q=\frac{\partial W}{\partial P}=y-\sqrt{\frac{2 c J}{e B}} \cos \phi \tag{15.358}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
x=\frac{c P}{e B}+\sqrt{\frac{2 c J}{e B}} \sin \phi \quad, \quad y=Q+\sqrt{\frac{2 c J}{e B}} \cos \phi \tag{15.359}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{x}=\sqrt{\frac{2 e B J}{c}} \cos \phi \quad, \quad p_{y}=P . \tag{15.360}
\end{equation*}
$$

The Hamiltonian is

$$
\begin{align*}
H & =\frac{P_{x}^{2}}{2 m}+\frac{1}{2 m}\left(p_{y}-\frac{e B x}{c}\right)^{2} \\
& =\frac{e B J}{m c} \cos ^{2} \phi+\frac{e B J}{m c} \sin ^{2} \phi=\omega_{\mathrm{c}} J \tag{15.361}
\end{align*}
$$

where $\omega_{\mathrm{c}}=e B / m c$. The equations of motion are

$$
\begin{equation*}
\dot{\phi}=\frac{\partial H}{\partial J}=\omega_{\mathrm{c}} \quad, \quad \dot{J}=-\frac{\partial H}{\partial \phi}=0 \tag{15.362}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{Q}=\frac{\partial H}{\partial P}=0 \quad, \quad \dot{P}=-\frac{\partial H}{\partial Q}=0 \tag{15.363}
\end{equation*}
$$

Thus, Q, P, and J are constants, and $\phi(t)=\phi_{0}+\omega_{\mathrm{c}} t$.

15.11.5 Canonical perturbation theory for the cubic oscillator

Consider the Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} q^{2}+\frac{1}{3} \epsilon m \omega_{0}^{2} \frac{q^{3}}{a} \tag{15.364}
\end{equation*}
$$

where ϵ is a small dimensionless parameter.
(a) Show that the oscillation frequency satisfies $\nu(J)=\omega_{0}+\mathcal{O}\left(\epsilon^{2}\right)$. That is, show that the first order (in ϵ) frequency shift vanishes.

Solution: It is good to recall the basic formulae

$$
\begin{equation*}
q=\sqrt{\frac{2 J_{0}}{m \omega_{0}}} \sin \phi_{0} \quad, \quad p=\sqrt{2 m \omega_{0} J_{0}} \cos \phi_{0} \tag{15.365}
\end{equation*}
$$

as well as the results

$$
\begin{align*}
J_{0} & =\frac{\partial S}{\partial \phi_{0}}=J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}}+\ldots \tag{15.366}\\
\phi & =\frac{\partial S}{\partial J}=\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\epsilon^{2} \frac{\partial S_{2}}{\partial J}+\ldots
\end{align*}
$$

and

$$
\begin{align*}
& E_{0}(J)=\widetilde{H}_{0}(J) \\
& E_{1}(J)=\widetilde{H}_{1}\left(\phi_{0}, J\right)+\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}} \tag{15.367}\\
& E_{2}(J)=\frac{\partial \widetilde{H}_{0}}{\partial J} \frac{\partial S_{2}}{\partial \phi_{0}}+\frac{1}{2} \frac{\partial^{2} \widetilde{H}_{0}}{\partial J^{2}}\left(\frac{\partial S_{1}}{\partial \phi_{0}}\right)^{2}+\frac{\partial \widetilde{H}_{1}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}
\end{align*}
$$

Expressed in action-angle variables,

$$
\begin{align*}
\widetilde{H}_{0}\left(\phi_{0}, J\right) & =\omega_{0} J \\
\widetilde{H}_{1}\left(\phi_{0}, J\right) & =\frac{2}{3} \sqrt{\frac{2 \omega_{0}}{m a^{2}}} J^{3 / 2} \sin ^{3} \phi_{0} \tag{15.368}
\end{align*}
$$

Thus, $\nu_{0}=\frac{\partial \widetilde{H}_{0}}{\partial J}=\omega_{0}$.
Averaging the equation for $E_{1}(J)$ yields

$$
\begin{equation*}
E_{1}(J)=\left\langle\widetilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\frac{2}{3} \sqrt{\frac{2 \omega_{0}}{m a^{2}}} J^{3 / 2}\left\langle\sin ^{3} \phi_{0}\right\rangle=0 \tag{15.369}
\end{equation*}
$$

(b) Compute the frequency shift $\nu(J)$ to second order in ϵ.

Solution: From the equation for E_{1}, we also obtain

$$
\begin{equation*}
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{1}{\nu_{0}}\left(\left\langle\widetilde{H}_{1}\right\rangle-\widetilde{H}_{1}\right) \tag{15.370}
\end{equation*}
$$

Inserting this into the equation for $E_{2}(J)$ and averaging then yields

$$
\begin{equation*}
E_{2}(J)=\frac{1}{\nu_{0}}\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J}\left(\left\langle\widetilde{H}_{1}\right\rangle-\widetilde{H}_{1}\right)\right\rangle=-\frac{1}{\nu_{0}}\left\langle\widetilde{H}_{1} \frac{\partial \widetilde{H}_{1}}{\partial J}\right\rangle=-\frac{4 \nu_{0} J^{2}}{3 m a^{2}}\left\langle\sin ^{6} \phi_{0}\right\rangle \tag{15.371}
\end{equation*}
$$

In computing the average of $\sin ^{6} \phi_{0}$, it is good to recall the binomial theorem, or the Fibonacci tree. The sixth order coefficents are easily found to be $\{1,6,15,20,15,6,1\}$, whence

$$
\begin{align*}
\sin ^{6} \phi_{0} & =\frac{1}{(2 i)^{6}}\left(e^{i \phi_{0}}-e^{-i \phi_{0}}\right)^{6} \tag{15.372}\\
& =\frac{1}{64}\left(-2 \sin 6 \phi_{0}+12 \sin 4 \phi_{0}-30 \sin 2 \phi_{0}+20\right) .
\end{align*}
$$

Thus $\left\langle\sin ^{6} \phi_{0}\right\rangle=\frac{5}{16}$, whence

$$
\begin{equation*}
E(J)=\omega_{0} J-\frac{5}{12} \epsilon^{2} \frac{J^{2}}{m a^{2}} \tag{15.373}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu(J)=\frac{\partial E}{\partial J}=\omega_{0}-\frac{5}{6} \epsilon^{2} \frac{J}{m a^{2}} . \tag{15.374}
\end{equation*}
$$

(c) Find $q(t)$ to order ϵ. Your result should be finite for all times.

Solution : From the equation for $E_{1}(J)$, we have

$$
\begin{equation*}
\frac{\partial S_{1}}{\partial \phi_{0}}=-\frac{2}{3} \sqrt{\frac{2 J^{3}}{m \omega_{0} a^{2}}} \sin ^{3} \phi_{0} \tag{15.375}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{align*}
S_{1}\left(\phi_{0}, J\right) & =\frac{2}{3} \sqrt{\frac{2 J^{3}}{m \omega_{0} a^{2}}}\left(\cos \phi_{0}-\frac{1}{3} \cos ^{3} \phi_{0}\right) \tag{15.376}\\
& =\frac{J^{3 / 2}}{\sqrt{2 m \omega_{0} a^{2}}}\left(\cos \phi_{0}-\frac{1}{9} \cos 3 \phi_{0}\right)
\end{align*}
$$

Thus, with

$$
\begin{equation*}
S\left(\phi_{0}, J\right)=\phi_{0} J+\epsilon S_{1}\left(\phi_{0}, J\right)+\ldots \tag{15.377}
\end{equation*}
$$

we have

$$
\begin{align*}
\phi & =\frac{\partial S}{\partial J}=\phi_{0}+\frac{3}{2} \frac{\epsilon J^{1 / 2}}{\sqrt{2 m \omega_{0} a^{2}}}\left(\cos \phi_{0}-\frac{1}{9} \cos 3 \phi_{0}\right) \tag{15.378}\\
J_{0} & =\frac{\partial S}{\partial \phi_{0}}=J-\frac{\epsilon J^{3 / 2}}{\sqrt{2 m \omega_{0} a^{2}}}\left(\sin \phi_{0}-\frac{1}{3} \sin 3 \phi_{0}\right) .
\end{align*}
$$

Inverting, we may write ϕ_{0} and J_{0} in terms of ϕ and J :

$$
\begin{align*}
& \phi_{0}=\phi+\frac{3}{2} \frac{\epsilon J^{1 / 2}}{\sqrt{2 m \omega_{0} a^{2}}}\left(\frac{1}{9} \cos 3 \phi-\cos \phi\right) \tag{15.379}\\
& J_{0}=J+\frac{\epsilon J^{3 / 2}}{\sqrt{2 m \omega_{0} a^{2}}}\left(\frac{1}{3} \sin 3 \phi-\sin \phi\right)
\end{align*}
$$

Thus,

$$
\begin{align*}
q(t) & =\sqrt{\frac{2 J_{0}}{m \omega_{0}}} \sin \phi_{0} \\
& =\sqrt{\frac{2 J}{m \omega_{0}}} \sin \phi \cdot\left(1+\frac{\delta J}{2 J}+\ldots\right)(\sin \phi+\delta \phi \cos \phi+\ldots) \tag{15.380}\\
& =\sqrt{\frac{2 J}{m \omega_{0}}} \sin \phi-\frac{\epsilon J}{m \omega_{0} a}\left(1+\frac{1}{3} \cos 2 \phi\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{align*}
$$

with

$$
\begin{equation*}
\phi(t)=\phi(0)+\nu(J) t . \tag{15.381}
\end{equation*}
$$

Chapter 16

Maps, Strange Attractors, and Chaos

16.1 Motion on Resonant Tori

Consider an integrable Hamiltonian with two degrees of freedom. The energy $E\left(J_{1}, J_{2}\right)$ is then a function of the two action coordinates, so at fixed energy we may regard $J_{2}\left(J_{1} ; E\right)$ as being determined by J_{1}. The motion is then given by $\phi_{j}(t)=\omega_{j}\left(J_{1} ; E\right) t+\beta_{j}$, and, at fixed E, is confined to a two-torus \mathbb{T}^{2} specified by the action J_{1}, as depicted in fig. 16.1. For a system with N freedoms (i.e. a phase space of dimension $2 n$), integrable motion is confined to an n-torus $\mathbb{T}^{N}=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$. The frequencies $\omega_{j}=\partial E / \partial J_{j}=\omega_{j}\left(J_{1}, \ldots, J_{N-1} ; E\right)$ are specified, at fixed E, by $N-1$ action variables. If, on a given torus, the frequency ratios $\omega_{j} / \omega_{j^{\prime}}$ are rational numbers for all j and j^{\prime}, then the motion is periodic, and all frequencies are said to be in resonance. In this case we may write $\omega_{j}=k_{j} \omega_{0}$ for some set $\left\{k_{1}, \ldots, k_{N}\right\} \in \mathbb{Z}^{N}$, and some quantity ω_{0} which has dimensions of frequency. One can Fourier decompose the original coordinates $q_{\sigma}(\boldsymbol{\phi}, \boldsymbol{J})$ as

$$
\begin{equation*}
q_{\sigma}(\boldsymbol{\phi}, \boldsymbol{J})=\sum_{m} \hat{q}_{\sigma, m}(\boldsymbol{J}) e^{i m \cdot \phi} \tag{16.1}
\end{equation*}
$$

and similarly for $p_{\sigma}(\boldsymbol{\phi}, \boldsymbol{J})$, where $\boldsymbol{m} \in \mathbb{Z}^{N}$. Invoking the solution $\phi_{\sigma}(t)=k_{\sigma} \omega_{0} t+\beta_{\sigma}$, one sees that the motion is periodic in time with period $T=2 \pi / \omega_{0}$. That all the frequencies are in resonance further means that for some of the \boldsymbol{m} vectors, one has $\boldsymbol{m} \cdot \boldsymbol{k}=0$.

16.1.1 The twist map

Consider the motion $\phi(t)=\boldsymbol{\omega}(\boldsymbol{J}) t+\boldsymbol{\beta}$ along a resonant torus, and let us plot consecutive intersections of the trajectory with the $\left(J_{1}, \phi_{1}\right)$ plane, i.e. the subset of phase space where both E (or J_{2}) and ϕ_{2} are fixed. Such a plot is called a surface of section. Successive intersections of this surface occur at time interval $\Delta t=2 \pi / \omega_{2}$, during which the angle ϕ_{1} changes by $\Delta \phi_{1}=\omega_{1} \Delta t=2 \pi \alpha$, where $\alpha=\omega_{1} / \omega_{2}$. Focusing only on the surface of section, we write $\phi \equiv \phi_{1}$ and $J \equiv J_{1}$. The relation between (ϕ, J) values

Figure 16.1: Motion of an $n=2$ system on an invariant torus specified by action J_{1}, with $E\left(J_{1}, J_{2}\right)$ fixed.
at successive crossings of this surface is

$$
\begin{align*}
\phi_{n+1} & =\phi_{n}+2 \pi \alpha\left(J_{n+1}\right) \tag{16.2}\\
J_{n+1} & =J_{n} .
\end{align*}
$$

Formally, we may write the map as $\boldsymbol{\varphi}_{n+1}=\hat{T} \varphi_{n}$, where $\varphi_{n}=\left(\phi_{n}, J_{n}\right)$ and \hat{T} is the map. Note that the action variable is unchanged during the motion ${ }^{1}$, and hence is fixed under the map. We are left with a mapping of the circle onto itself, called the twist map. Since the map faithfully represents Hamiltonian evolution, it must be canonical, meaning

$$
\begin{equation*}
\left\{\phi_{n+1}, J_{n+1}\right\}_{\left(\phi_{n}, J_{n}\right)}=\operatorname{det} \frac{\partial\left(\phi_{n+1}, J_{n+1}\right)}{\partial\left(\phi_{n}, J_{n}\right)}=\frac{\partial \phi_{n+1}}{\partial \phi_{n}} \frac{\partial J_{n+1}}{\partial J_{n}}-\frac{\partial \phi_{n+1}}{\partial J_{n}} \frac{\partial J_{n+1}}{\partial \phi_{n}}=1, \tag{16.3}
\end{equation*}
$$

which is indeed satisfied. If $\alpha(J) \in \mathbb{Q}$ is rational, certain iterations of the map leave the circle fixed. Specifically, let $\alpha=r / s$. Then \hat{T}^{s} acts as the identity, leaving the entire circle (and indeed the entire (ϕ, J) plane) fixed.

For systems with N degrees of freedom, with $\left(\phi_{N}, J_{N}\right)$ or (ϕ_{N}, E) fixing the surface of section, one defines $\boldsymbol{\varphi}=\left(\phi_{1}, \ldots, \phi_{N-1}\right)$ and $\boldsymbol{J}=\left(J_{1}, \ldots, J_{N-1}\right)$, and with $\boldsymbol{\alpha}=\left(\omega_{1} / \omega_{N}, \ldots, \omega_{N-1} / \omega_{N}\right)$ one has

$$
\begin{align*}
\boldsymbol{\varphi}_{n+1} & =\boldsymbol{\phi}_{n}+2 \pi \boldsymbol{\alpha}\left(\boldsymbol{J}_{n+1}\right) \tag{16.4}\\
\boldsymbol{J}_{n+1} & =\boldsymbol{J}_{n} .
\end{align*}
$$

One can check that this map is also area-preserving (canonical).

16.1.2 The perturbed twist map

Now consider a perturbed Hamiltonian $H(\boldsymbol{\phi}, \boldsymbol{J})=H_{0}(\boldsymbol{J})+\epsilon H_{1}(\boldsymbol{\phi}, \boldsymbol{J})$, again for $N=2$. Once more we consider the surface of section defined by the $\left(\phi_{1}, J_{1}\right)$ plane. We expect a perturbed twist map \hat{T}_{ϵ} of the form

$$
\begin{align*}
\phi_{n+1} & =\phi_{n}+2 \pi \alpha\left(J_{n+1}\right)+\epsilon f\left(\phi_{n}, J_{n+1}\right) \tag{16.5}\\
J_{n+1} & =J_{n}+\epsilon g\left(\phi_{n}, J_{n+1}\right)
\end{align*}
$$

[^47]for some functions f and g. Is the perturbed twist map canonical? We could investigate this by computing the Poisson bracket $\left\{\phi_{n+1}, J_{n+1}\right\}$, but here we take another approach, which is to exhibit explicitly a type-II generator $F_{2}\left(\phi_{n}, J_{n+1}\right)$ which effects the canonical transformation $\left(\phi_{n}, J_{n}\right) \rightarrow\left(\phi_{n+1}, J_{n+1}\right)$. Consider the generator
\[

$$
\begin{equation*}
F_{2}\left(\phi_{n}, J_{n+1}\right)=\phi_{n} J_{n+1}+2 \pi A\left(J_{n+1}\right)+\epsilon B\left(\phi_{n}, J_{n+1}\right) . \tag{16.6}
\end{equation*}
$$

\]

The CT generated is

$$
\begin{align*}
\phi_{n+1} & =\frac{\partial F_{2}}{\partial J_{n+1}}=\phi_{n}+2 \pi \frac{\partial A}{\partial J_{n+1}}+\epsilon \frac{\partial B}{\partial J_{n+1}} \\
J_{n} & =\frac{\partial F_{2}}{\partial \phi_{n}}=J_{n+1}+\epsilon \frac{\partial B}{\partial \phi_{n}} . \tag{16.7}
\end{align*}
$$

We therefore identify $\alpha\left(J_{n+1}\right)=A^{\prime}\left(J_{n+1}\right)$ as well as

$$
\begin{equation*}
f\left(J_{n+1}, \phi_{n}\right)=\frac{\partial B}{\partial J_{n+1}} \quad, \quad g\left(J_{n+1}, \phi_{n}\right)=-\frac{\partial B}{\partial \phi_{n}} . \tag{16.8}
\end{equation*}
$$

This, in turn, requires

$$
\begin{equation*}
\frac{\partial f}{\partial \phi_{n}}+\frac{\partial g}{\partial J_{n+1}}=0 \tag{16.9}
\end{equation*}
$$

which is a necessary and sufficient condition in order that the map \hat{T}_{ϵ} be canonical.
In the case $g=g\left(\phi_{n}\right)$, the above condition requires $f=f\left(J_{n+1}\right)$, and we may absorb $f(J)$ into the definition of $\alpha(J)$. We then have the map

$$
\begin{align*}
\phi_{n+1} & =\phi_{n}+2 \pi \alpha\left(J_{n+1}\right) \\
J_{n+1} & =J_{n}+\epsilon g\left(\phi_{n}\right) . \tag{16.10}
\end{align*}
$$

For $\alpha(J)=J$ and $g(\phi)=-\sin \phi$, we obtain the standard map, about which we shall have more to say below.

16.2 From Time-Dependent Hamiltonian Systems to Maps

16.2.1 Parametric Oscillator

Consider the equation

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2}(t) x=0, \tag{16.11}
\end{equation*}
$$

where the oscillation frequency is a function of time. Equivalently,

$$
\frac{d}{d t}\binom{x}{\dot{x}}=\overbrace{\left(\begin{array}{cc}
0 & 1 \tag{16.12}\\
-\omega_{0}^{2}(t) & 0
\end{array}\right)}^{M(t)} \overbrace{\binom{x}{\dot{x}}}^{\varphi(t)}
$$

The formal solution is the path-ordered exponential,

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=\mathcal{P} \exp \left\{\int_{0}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\} \boldsymbol{\varphi}(0) . \tag{16.13}
\end{equation*}
$$

Let's consider an example in which

$$
\omega(t)= \begin{cases}(1+\epsilon) \omega_{0} & \text { if } 2 n \tau \leq t<(2 n+1) \tau \tag{16.14}\\ (1-\epsilon) \omega_{0} & \text { if }(2 n+1) \tau \leq t<(2 n+2) \tau\end{cases}
$$

Define $\varphi_{n} \equiv \boldsymbol{\varphi}(2 n \tau)$. Then

$$
\begin{equation*}
\boldsymbol{\varphi}_{n+1}=\exp \left(M_{-} \tau\right) \exp \left(M_{+} \tau\right) \boldsymbol{\varphi}_{n} \equiv \mathcal{U} \varphi_{n} \tag{16.15}
\end{equation*}
$$

where

$$
M_{ \pm}=\left(\begin{array}{cc}
0 & 1 \tag{16.16}\\
-\omega_{ \pm}^{2} & 0
\end{array}\right)
$$

with $\omega_{ \pm} \equiv(1 \pm \epsilon) \omega_{0}$. Note that $M_{ \pm}^{2}=-\omega_{ \pm}^{2} \mathbb{I}$ is a multiple of the identity. Evaluating the Taylor series for the exponential, one finds

$$
\mathcal{U}_{ \pm} \equiv \exp \left(M_{ \pm} t\right)=\left(\begin{array}{cc}
\cos \omega_{ \pm} \tau & \omega_{ \pm}^{-1} \sin \omega_{ \pm} \tau \tag{16.17}\\
-\omega_{ \pm} \sin \omega_{ \pm} \tau & \cos \omega_{ \pm} \tau
\end{array}\right)
$$

from which we derive the evolution matrix

$$
\mathcal{U} \equiv \mathcal{U}_{-} \mathcal{U}_{+}=\left(\begin{array}{cc}
\cos \omega_{-} \tau & \omega_{-}^{-1} \sin \omega_{-} \tau \\
-\omega_{-} \sin \omega_{-} \tau & \cos \omega_{-} \tau
\end{array}\right)\left(\begin{array}{cc}
\cos \omega_{+} \tau & \omega_{+}^{-1} \sin \omega_{+} \tau \\
-\omega_{+} \sin \omega_{+} \tau & \cos \omega_{+} \tau
\end{array}\right) \equiv\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with

$$
\begin{align*}
& a=\cos \omega_{-} \tau \cos \omega_{+} \tau-\frac{\omega_{+}}{\omega_{-}} \sin \omega_{-} \tau \sin \omega_{+} \tau \\
& b=\frac{1}{\omega_{+}} \cos \omega_{-} \tau \sin \omega_{+} \tau+\frac{1}{\omega_{-}} \sin \omega_{-} \tau \cos \omega_{+} \tau \tag{16.18}\\
& c=-\omega_{+} \cos \omega_{-} \tau \sin \omega_{+} \tau-\omega_{-} \sin \omega_{-} \tau \cos \omega_{+} \tau \\
& d=\cos \omega_{-} \tau \cos \omega_{+} \tau-\frac{\omega_{-}}{\omega_{+}} \sin \omega_{-} \tau \sin \omega_{+} \tau .
\end{align*}
$$

Note that $\mathcal{U}_{ \pm}$are each symplectic, hence $\operatorname{det} \exp \left(M_{ \pm} \tau\right)=1$, and therefore \mathcal{U} is also symplectic with $\operatorname{det} \mathcal{U}=1$. Also note that

$$
\begin{equation*}
P(\lambda)=\operatorname{det}(\mathcal{U}-\lambda \cdot \mathbb{I})=\lambda^{2}-T \lambda+\Delta \tag{16.19}
\end{equation*}
$$

where $T=a+d=\operatorname{Tr} \mathcal{U}$ and $\Delta=a d-b c=\operatorname{det} \mathcal{U}$. The eigenvalues of \mathcal{U} are

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4 \Delta} \tag{16.20}
\end{equation*}
$$

Figure 16.2: Phase diagram for the parametric oscillator in the (θ, ϵ) plane. Thick black lines correspond to $T= \pm 2$. Blue regions: $|T|<2$. Red regions: $T>2$. Magenta regions: $T<-2$.

In our case, $\Delta=1$. There are two cases to consider:

$$
\begin{align*}
& |T|<2: \lambda_{+}=\lambda_{-}^{*}=e^{i \delta} \quad, \quad \delta=\cos ^{-1} \frac{1}{2} T \\
& |T|>2: \lambda_{+}=\lambda_{-}^{-1}= \pm e^{\mu} \quad, \quad \mu=\cosh ^{-1} \frac{1}{2}|T| \tag{16.21}
\end{align*}
$$

When $|T|<2, \varphi$ remains bounded; when $|T|>2,|\varphi|$ increases exponentially with time. Note that phase space volumes are preserved by the dynamics.

To investigate more fully, let $\theta \equiv \omega_{0} \tau$. The period of the frequency oscillations is $\Delta t=2 \tau$, i.e. $\omega_{\text {pump }}=$ π / τ is the frequency at which the system is 'pumped', so

$$
\begin{equation*}
\frac{\theta}{\pi}=\frac{\omega_{0}}{\omega_{\text {pump }}}=\frac{T_{\text {pump }}}{T_{0}} \tag{16.22}
\end{equation*}
$$

where $T_{0}=2 \pi / \omega_{0}$ is the unperturbed natural frequency and $T_{\text {pump }}=\Delta t=2 \tau$. One finds $T=\operatorname{Tr} \mathcal{U}$ is given by

$$
\begin{equation*}
T=\frac{2 \cos (2 \theta)-2 \epsilon^{2} \cos (2 \epsilon \theta)}{1-\epsilon^{2}} . \tag{16.23}
\end{equation*}
$$

We are interested in the boundaries in the (θ, ϵ) plane where $|T|=2$. Setting $T=+2$, we write $\theta=n \pi+\delta$, which means $T_{\text {pump }} \approx n T_{0}$. Expanding for small δ and ϵ, we obtain the relation

$$
\begin{equation*}
\delta^{2}=n^{2} \pi^{2} \epsilon^{4} \quad \Rightarrow \quad \epsilon= \pm\left|\frac{\delta}{n \pi}\right|^{1 / 2} \tag{16.24}
\end{equation*}
$$

Setting $T=-2$, we write $\theta=\left(n+\frac{1}{2}\right) \pi+\delta$, i.e. $T_{\text {pump }} \approx\left(n+\frac{1}{2}\right) T_{0}$. This gives

$$
\begin{equation*}
\delta^{2}=\epsilon^{2} \quad \Rightarrow \quad \epsilon= \pm \delta . \tag{16.25}
\end{equation*}
$$

The full phase diagram in the (θ, ϵ) plane is shown in fig. 16.2. A physical example is pumping a swing. By extending your legs periodically, you effectively change the length $\ell(t)$ of the pendulum, resulting in a time-dependent $\omega_{0}(t)=\sqrt{g / \ell(t)}$.

16.2.2 Kicked dynamics

A related model is described by the kicked dynamics of the Hamiltonian

$$
\begin{equation*}
H(t)=T(p)+V(q) K(t) \tag{16.26}
\end{equation*}
$$

where

$$
\begin{equation*}
K(t)=\tau \sum_{n=-\infty}^{\infty} \delta(t-n \tau) \tag{16.27}
\end{equation*}
$$

is the kicking function. The potential thus winks on and off with period τ. Note that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0} K(t)=1 \tag{16.28}
\end{equation*}
$$

In the $\tau \rightarrow 0$ limit, the system is continuously kicked, and is equivalent to motion in a time-independent external potential $V(q)$.

The equations of motion are

$$
\begin{equation*}
\dot{q}=T^{\prime}(p) \quad, \quad \dot{p}=-V^{\prime}(q) K(t) \tag{16.29}
\end{equation*}
$$

Integrating these equations, we obtain the map

$$
\begin{align*}
& q_{n+1}=q_{n}+\tau T^{\prime}\left(p_{n}\right) \tag{16.30}\\
& p_{n+1}=p_{n}-\tau V^{\prime}\left(q_{n+1}\right),
\end{align*}
$$

where $q_{n}=q\left(t=n \tau^{+}\right)$and $p_{n}=p\left(t=n \tau^{+}\right)$. Note that the determinant of Jacobean of the map is unity:

$$
\operatorname{det} \frac{\partial\left(q_{n+1}, p_{n+1}\right)}{\partial\left(q_{n}, p_{n}\right)}=\operatorname{det}\left(\begin{array}{cc}
1 & \tau T^{\prime \prime}\left(p_{n}\right) \tag{16.31}\\
-\tau V^{\prime \prime}\left(q_{n+1}\right) & 1-\tau^{2} T^{\prime \prime}\left(p_{n}\right) V^{\prime \prime}\left(q_{n+1}\right)
\end{array}\right)=1 .
$$

This means that the map preserves phase space volumes.
Consider, for example, the Hamiltonian $H(t)=\frac{L^{2}}{2 I}-V \cos (\phi) K(t)$, where L is the angular momentum conjugate to ϕ. This results in the map

$$
\begin{align*}
\phi_{n+1} & =\phi_{n}+2 \pi \epsilon J_{n} \tag{16.32}\\
J_{n+1} & =J_{n}-\epsilon \sin \phi_{n+1},
\end{align*}
$$

Figure 16.3: Top: the standard map, as defined in the text. Three values of the ϵ parameter are shown: $\epsilon=0.01$ (left), $\epsilon=0.2$ (center), and $\epsilon=0.4$ (right). Bottom: details of the $\epsilon=0.4$ map.
where $J_{n}=L_{n} / \sqrt{2 \pi I V}$ and $\epsilon=\tau \sqrt{V / 2 \pi I}$. This is the standard map ${ }^{2}$, which we encountered earlier, albeit in a slightly different form. In the limit $\epsilon \rightarrow 0$, we may define $\dot{\phi}=\left(\phi_{n+1}-\phi_{n}\right) / \epsilon$ and $\dot{J}=\left(J_{n+1}-\right.$ $\left.J_{n}\right) / \epsilon$, and we recover the continuous time dynamics $\dot{\phi}=2 \pi J$ and $\dot{J}=-\sin \phi$. These dynamics preserve the energy function $E=\pi J^{2}-\cos \phi$. There is a separatrix at $E=1$, given by $J(\phi)= \pm \frac{2}{\pi}|\cos (\phi / 2)|$. We see from fig. 16.3 that this separatrix is the first structure to be replaced by a chaotic fuzz as ϵ increases from zero to a small finite value.

Another well-studied system is the kicked Harper model, for which

$$
\begin{equation*}
H(t)=-V_{1} \cos \left(\frac{2 \pi p}{P}\right)-V_{2} \cos \left(\frac{2 \pi q}{Q}\right) K(t) \tag{16.33}
\end{equation*}
$$

[^48]

Figure 16.4: The kicked Harper map, with $\alpha=2$, and with $\epsilon=0.01$ (upper left), $\epsilon=0.125$ (upper right), $\epsilon=0.2$ (lower left) and $\epsilon=5.0$ (lower right). The phase space here is the unit torus, $\mathbb{T}^{2}=[0,1] \times[0,1]$.

With $x=q / Q$ and $y=p / P$, Hamilton's equations generate the map

$$
\begin{align*}
& x_{n+1}=x_{n}+\epsilon \alpha \sin \left(2 \pi y_{n}\right) \\
& y_{n+1}=y_{n}-\frac{\epsilon}{\alpha} \sin \left(2 \pi x_{n+1}\right), \tag{16.34}
\end{align*}
$$

where $\epsilon=2 \pi \tau \sqrt{V_{1} V_{2}} / P Q$ and $\alpha=\sqrt{V_{1} / V_{2}}$ are dimensionless parameters. In this case, the conserved energy is

$$
\begin{equation*}
E=-\alpha^{-1} \cos (2 \pi x)-\alpha \cos (2 \pi y) . \tag{16.35}
\end{equation*}
$$

There are then two separatrices, at $E= \pm\left(\alpha-\alpha^{-1}\right)$, with equations $\alpha \cos (\pi y)= \pm \sin (\pi x)$ and $\alpha \sin (\pi y)=$ $\pm \cos (\pi x)$. Again, as is apparent from fig. 16.4, the separatrix is the first structure to be destroyed at finite ϵ. This also occurs for the standard map - there is a transition to global stochasticity at a critical value of ϵ.

Note that the kicking function may be written as

$$
\begin{equation*}
K(t)=\tau \sum_{n=-\infty}^{\infty} \delta(t-n \tau)=\sum_{m=-\infty}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right) \tag{16.36}
\end{equation*}
$$

a particularly handy result known as the Poisson summation formula. This, a kicked Hamiltonian may be written as

$$
\begin{equation*}
H(J, \phi, t)=H_{0}(J)+V(\phi) \sum_{m=-\infty}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right) \tag{16.37}
\end{equation*}
$$

The $m=0$ term generates the continuous time dynamics $\dot{\phi}=\omega_{0}(J), \dot{J}=-V^{\prime}(\phi)$. For the standard map, these are the dynamics of a simple pendulum. The $m \neq 0$ terms are responsible for resonances and the formation of so-called 'stochastic layers'.

16.3 Local Stability and Lyapunov Exponents

16.3.1 The fate of nearly separated initial conditions under iteration

Consider a map \hat{T} acting on a phase space of dimension $2 N$ (i.e. N position degrees of freedom). We ask what is the fate of two nearby initial conditions, $\boldsymbol{\xi}_{0}$ and $\boldsymbol{\xi}_{0}+d \boldsymbol{\xi}$, under the iterated map. Under the first iteration, we have $\boldsymbol{\xi}_{0} \rightarrow \boldsymbol{\xi}_{1}=\hat{T} \boldsymbol{\xi}_{0}$ and

$$
\begin{equation*}
\boldsymbol{\xi}_{0}+d \boldsymbol{\xi} \longrightarrow \boldsymbol{\xi}_{1}+M\left(\boldsymbol{\xi}_{0}\right) d \boldsymbol{\xi} \tag{16.38}
\end{equation*}
$$

where $M(\boldsymbol{\xi})$ is a matrix given by the linearization of \hat{T} at $\boldsymbol{\xi}$, viz.

$$
\begin{equation*}
M_{i j}(\boldsymbol{\xi})=\frac{\partial(\hat{T} \boldsymbol{\xi})_{i}}{\partial \xi_{j}} \tag{16.39}
\end{equation*}
$$

Let's iterate again. Clearly $\boldsymbol{\xi}_{1} \rightarrow \boldsymbol{\xi}_{2}=\hat{T}^{2} \boldsymbol{\xi}_{0}$ and

$$
\begin{equation*}
\boldsymbol{\xi}_{1}+M\left(\boldsymbol{\xi}_{0}\right) d \boldsymbol{\xi} \longrightarrow \boldsymbol{\xi}_{2}+M\left(\boldsymbol{\xi}_{1}\right) M\left(\boldsymbol{\xi}_{0}\right) d \boldsymbol{\xi} \tag{16.40}
\end{equation*}
$$

After n iterations, we clearly have $\hat{T}^{n} \boldsymbol{\xi}_{0}=\boldsymbol{\xi}_{n}$ and

$$
\begin{equation*}
\hat{T}^{n}\left(\boldsymbol{\xi}_{0}+d \boldsymbol{\xi}\right)=\boldsymbol{\xi}_{n}+M\left(\boldsymbol{\xi}_{n-1}\right) \cdots M\left(\boldsymbol{\xi}_{0}\right) d \boldsymbol{\xi} \tag{16.41}
\end{equation*}
$$

and we define $R^{(n)}(\boldsymbol{\xi})=M\left(\hat{T}^{(n-1)} \boldsymbol{\xi}\right) \cdots M(\hat{T} \boldsymbol{\xi}) M(\boldsymbol{\xi})$, a linear operator - i.e. a matrix - whose matrix elements are given by $R_{i j}^{(n)}(\boldsymbol{\xi})=\partial\left(\hat{T}^{n} \boldsymbol{\xi}\right)_{i} / \partial \xi_{j}$.

Since the map \hat{T} is presumed to be canonical, at each stage $M\left(\boldsymbol{\xi}_{j}\right) \in \operatorname{Sp}(2 N)$, and since the product of symplectic matrices is a symplectic matrix, $R^{(n)}(\boldsymbol{\xi}) \in \operatorname{Sp}(2 N)$. It is easy to see that for any real symplectic matrix R, the eigenvalues come in unimodular conjugate pairs $\left\{e^{i \delta}, e^{-i \delta}\right\}$, in real pairs $\left\{\lambda, \lambda^{-1}\right\}$ with $\lambda \in \mathbb{R}$, or in quartets $\left\{\lambda, \lambda^{-1}, \lambda^{*}, \lambda^{*-1}\right\}$ with $\lambda \in \mathbb{C}$, where λ^{*} is the complex conjugate of λ. This
follows from analysis of the characteristic polynomial $P(\lambda)=\operatorname{det}(\lambda-R)$ given the symplectic condition ${ }^{3}$ $R^{\mathrm{t}} \mathbb{J} R=\mathbb{J}$. Let $\left\{\lambda_{j}^{(n)}(\boldsymbol{\xi})\right\}$ be the eigenvalues of $R^{(n)}(\boldsymbol{\xi})$, with $j \in\{1, \ldots, 2 N\}$. One defines the Lyapunov exponents,

$$
\begin{equation*}
\nu_{j}(\boldsymbol{\xi})=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left|\lambda_{j}^{(n)}(\boldsymbol{\xi})\right| . \tag{16.42}
\end{equation*}
$$

These may be ordered such that $\nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{2 N}$. Positive Lyapunov exponents correspond to an exponential stretching (as a function of the iteration number n), while negative ones correspond to an exponential squeezing.

As an example, consider the Arnol'd cat map, which is an automorphism of the torus $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$, given by ${ }^{4}$

$$
\begin{align*}
& q_{n+1}=(K+1) q_{n}+p_{n} \tag{16.43}\\
& p_{n+1}=K q_{n}+p_{n},
\end{align*}
$$

where $K \in \mathbb{Z}$, and where both q_{n} and p_{n} are defined modulo unity, so $\left(q_{n}, p_{n}\right) \in[0,1] \times[0,1]$. Note that K must be an integer in order for the map to be smooth on the torus, i.e. it is left unchanged by displacing either coordinate by an integer distance. The map is already linear, hence we can read off

$$
M=\frac{\partial\left(q_{n+1}, p_{n+1}\right)}{\partial\left(q_{n}, p_{n}\right)}=\left(\begin{array}{cc}
K+1 & 1 \tag{16.44}\\
K & 1
\end{array}\right)
$$

which is independent of $\left(q_{n}, p_{n}\right)$. The inverse map also has integer coefficients:

$$
M^{-1}=\left(\begin{array}{cc}
1 & -1 \tag{16.45}\\
-K & K+1
\end{array}\right)
$$

Since $\operatorname{det} M=1$, the cat map is canonical, i.e. it preserves phase space volumes. The eigenvalues of M are the roots of the characteristic polynomial $P(\lambda)=\lambda^{2}-(K+2) \lambda-K$, and are given by

$$
\begin{equation*}
\lambda_{ \pm}=1+\frac{1}{2} K \pm \sqrt{K+\frac{1}{4} K^{2}} \tag{16.46}
\end{equation*}
$$

Thus, for $K \in\{-4,-3,-2,-1,0\}$, the eigenvalues come in pairs $e^{ \pm i \delta_{K}}$, with $\delta_{-4}=\pi, \delta_{-3}=\frac{2}{3} \pi, \delta_{-2}=$ $\frac{1}{2} \pi, \delta_{-1}=\frac{1}{3} \pi$, and $\delta_{0}=0$. For $K<-4$ or $K>0$, the eigenvalues are $\left(\lambda, \lambda^{-1}\right)$ with $|\lambda|>1$ and $0<|\lambda|^{-1}<1$, corresponding, respectively, to stretching and squeezing. The Lyapunov exponents are $\nu_{ \pm}=\ln \left|\lambda_{ \pm}\right|$.

16.3.2 Kolmogorov-Sinai entropy

Let $\Gamma<\infty$ be our phase space (at constant energy, for a Hamiltonian system), and $\left\{\Delta_{j}\right\}$ a partition of disjoint sets whose union is Γ. The simplest arrangement to think of is for each Δ_{j} to correspond to a little hypercube; stacking up all the hypercube builds the entire phase space. Now apply the inverse

[^49]

Figure 16.5: The baker's transformation involves stretching/squeezing and 'folding' (cutting and restacking).
map \hat{T}^{-1} to each Δ_{j}, and form the intersections $\Delta_{j k} \equiv \Delta_{j} \cap \hat{T}^{-1} \Delta_{k}$. If $\sum_{j} \mu\left(\Delta_{j}\right)=\mu(\Gamma) \equiv 1$, then $\sum_{j, k} \mu\left(\Delta_{j k}\right)=1$. Iterating further, we obtain $\Delta_{j k l} \equiv \Delta_{j} \cap \hat{T}^{-1} \Delta_{k} \cap \hat{T}^{-2} \Delta_{l}$, etc.
The entropy of a distribution $\left\{p_{a}\right\}$ is defined to be $S=-\sum_{a} p_{a} \ln p_{a}$. Accordingly we define

$$
\begin{equation*}
S_{L}(\boldsymbol{\Delta})=-\sum_{j_{1}} \cdots \sum_{j_{L}} \mu\left(\Delta_{j_{1} \cdots j_{L}}\right) \ln \mu\left(\Delta_{j_{1} \cdots j_{L}}\right) \tag{16.47}
\end{equation*}
$$

This is a function of both the iteration number L as well as the initial set $\boldsymbol{\Delta}=\left\{\Delta_{1}, \ldots, \Delta_{r}\right\}$, where r is the number of subregions in our original partition. We then define the Kolmogorov-Sinai entropy to be

$$
\begin{equation*}
h_{\mathrm{KS}} \equiv \sup _{\boldsymbol{\Delta}} \lim _{L \rightarrow \infty} \frac{1}{L} S_{L}(\boldsymbol{\Delta}) \tag{16.48}
\end{equation*}
$$

Here sup stands for supremum, meaning we maximize over all partitions $\boldsymbol{\Delta}$.
Consider, for example, the baker's transformation (see fig. 16.5), which stretches, cuts, stacks, and compresses the torus according to

$$
\left(q^{\prime}, p^{\prime}\right)=\hat{T}(q, p)= \begin{cases}\left(2 q, \frac{1}{2} p\right) & \text { if } 0 \leq p<\frac{1}{2} \tag{16.49}\\ \left(2 q-1, \frac{1}{2} p+\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq p<1\end{cases}
$$

It is not difficult to convince oneself that the KS entropy for the baker's transformation is $h_{\mathrm{KS}}=\ln 2$. On the other hand, for a simple translation map which takes $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)=(q+\alpha, p+\beta)$, it is easy to see that $h_{\text {KS }}=0$. The KS entropy is related to the Lyapunov exponents through the formula

$$
\begin{equation*}
h_{\mathrm{KS}}=\sum_{j} \nu_{j} \Theta\left(\nu_{j}\right) \tag{16.50}
\end{equation*}
$$

The RHS is the sum over all the positive Lyapunov exponents $\gamma_{j}>0$. Actually, this formula presumes that the γ_{j} do not vary in phase space, but in general this is not the case. The more general result is known as Pesin's entropy formula,

$$
\begin{equation*}
h_{\mathrm{KS}}=\int_{\Gamma} d \mu(\boldsymbol{\xi}) \sum_{j} \nu_{j}(\boldsymbol{\xi}) \Theta\left(\nu_{j}(\boldsymbol{\xi})\right) . \tag{16.51}
\end{equation*}
$$

16.4 The Poincaré-Birkhoff Theorem

Let's return to our discussion of the perturbed twist map,

$$
\begin{equation*}
\binom{\phi_{n+1}}{J_{n+1}}=\hat{T}_{\epsilon}\binom{\phi_{n}}{J_{n}}=\binom{\phi_{n}+2 \pi \alpha\left(J_{n+1}\right)+\epsilon f\left(\phi_{n}, J_{n+1}\right)}{J_{n}+\epsilon g\left(\phi_{n}, J_{n+1}\right)}, \tag{16.52}
\end{equation*}
$$

with $\frac{\partial f}{\partial \phi_{n}}+\frac{\partial g}{\partial J_{n+1}}=0$ in order that the map be canonical. For $\epsilon=0$, the map \hat{T}_{0} leaves J invariant, and takes circles to circles. If $\alpha(J) \neq \mathbb{Q}$, the images of the iterated map become dense on the circle.

Consider now a circle with fixed J for which $\alpha(J)=r / s$ is rational (may assume r and s are relatively prime), and without loss of generality let us presume $\alpha^{\prime}(J)>0$ so that on circles $J_{ \pm}=J \pm \Delta J$ we have $\alpha\left(J_{+}\right)>r / s$ and $\alpha\left(J_{-}\right)<r / s$. Under \hat{T}_{0}^{s}, all the points on the circle $\mathcal{C}=\mathcal{C}(J)$ are fixed, whereas those on \mathcal{C}_{+}rotate slightly counterclockwise, and those on \mathcal{C}_{-}slightly clockwise (see left panel of fig. 16.6), where $\mathcal{C}_{ \pm}=\mathcal{C}\left(J_{ \pm}\right)$. Now consider the action of the iterated perturbed map \hat{T}_{ϵ}^{s}. Acting on \mathcal{C}_{+}, the action is still a net counterclockwise shift (assuming $\epsilon \ll \frac{\Delta J}{J}$), with some small $\mathcal{O}(\epsilon)$ radial component. Similarly,

Figure 16.6: Left: The action of the iterated map \hat{T}_{0}^{s} leaves the circle with $\alpha(J)=r / s$ invariant (dotted curve), but rotates slightly counterclockwise and clockwise on the circles $J=J_{+}$and $J=J_{-}$, respectively. Right: The blue curve $J_{\epsilon}(\phi)$ is the locus of points where \hat{T}_{ϵ}^{s} acts purely radially and preserves ϕ, resulting in the red curve $\tilde{J}_{\epsilon}(\phi)$. Since \hat{T}_{ϵ}^{s} is volume-preserving, these curves must intersect in an alternating sequence of elliptic and hyperbolic fixed points.

Figure 16.7: Self-similar structures in the iterated twist map.
acting on \mathcal{C}_{-}, the action is a net clockwise shift plus $\mathcal{O}(\epsilon)$ radial component. By the intermediate value theorem, for a given fixed ϕ, as one proceeds radially outward from \mathcal{C}_{-}to \mathcal{C}_{+}, there must be a point $J=J_{\epsilon}(\phi)$ where the angular shift vanishes. This defines an entire curve $J_{\epsilon}(\phi)$ along which the action of \hat{T}_{ϵ}^{s} is purely radial. Now consider the curve $\tilde{J}_{\epsilon}(\phi)=\hat{T}_{\epsilon}^{s} J_{\epsilon}(\phi)$, i.e. the action of \hat{T}_{ϵ}^{s} on the curve $J_{\epsilon}(\phi)$. We know that each point along $J_{\epsilon}(\phi)$ is displaced radially, but we also know that T_{ϵ}^{s} is volume-preserving. Therefore, the curves $J_{\epsilon}(\phi)$ and $\tilde{J}_{\epsilon}(\phi)$ must intersect at an even number of points ${ }^{5}$. These intersections are fixed points of the map \hat{T}_{ϵ}^{s}. The situation is depicted in the right panel of fig. 16.6. From the figure, it is clear that the set $J_{\epsilon}(\phi) \cap \tilde{J}_{\epsilon}(\phi)$ consists of alternating elliptic and hyperbolic fixed points (EFPs and HFPs).

What we have just described is the content of the Poincaré-Birkhoff theorem: A small perturbation of a resonant torus with $\alpha(J)=r / s$ results in an equal number elliptic and hyperbolic fixed points for the iterated map \hat{T}_{ϵ}^{s}. Since T_{ϵ} has period s acting on these fixed points, the number of EFPs and HFPs must be equal and also a multiple of s. In the vicinity of the EFPs, this structure repeats, as depicted above in fig. 16.7.

Stable/unstable manifolds and homoclinic/heteroclinic intersections

Now consider the HFPs. Emanating from a given HFP $\boldsymbol{\xi}^{*}$ are stable and unstable manifolds, $\Sigma^{\mathrm{S} / \mathrm{U}}\left(\boldsymbol{\xi}^{*}\right)$, defined by:

$$
\begin{array}{ll}
\boldsymbol{\xi} \in \Sigma^{\mathrm{S}}\left(\boldsymbol{\xi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{+n s} \boldsymbol{\xi}=\boldsymbol{\xi}^{*} & \text { (to } \left.\boldsymbol{\xi}^{*}\right) \tag{16.53}\\
\boldsymbol{\xi} \in \Sigma^{\mathrm{U}}\left(\boldsymbol{\xi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{-n s} \boldsymbol{\xi}=\boldsymbol{\xi}^{*} & \left(\text { from } \boldsymbol{\xi}^{*}\right) .
\end{array}
$$

Note that $\Sigma^{\mathrm{U}}\left(\boldsymbol{\xi}_{i}^{*}\right)$ can never intersect $\Sigma^{\mathrm{U}}\left(\boldsymbol{\xi}_{j}^{*}\right)$ for any i and j, nor can $\Sigma^{\mathrm{S}}\left(\boldsymbol{\xi}_{i}^{*}\right)$ ever intersect $\Sigma^{\mathrm{S}}\left(\boldsymbol{\xi}_{j}^{*}\right)$. However, $\Sigma^{\mathrm{U}}\left(\boldsymbol{\xi}_{i}^{*}\right)$ can intersect $\Sigma^{\mathrm{S}}\left(\boldsymbol{\xi}_{j}^{*}\right)$. If $i=j$, such an intersection is called a homoclinic point, while for

[^50]

Figure 16.8: Homoclinic tangle for the map $x_{n+1}=y_{n}$ and $y_{n+1}=\left(a+b y_{n}^{2}\right) y_{n}-x_{n}$ for parameters $a=2.693, b=-104.888$. Stable (blue) and unstable (red) manifolds emanating from the HFP at $(0,0)$ are shown.
$i \neq j$ the intersection is called a heteroclinic point. Because \hat{T}_{ϵ}^{s} is continuous and invertible, its action at a homoclinic/heteroclinic point will produce a new homoclinic/heteroclinic point, ad infinitum! For homoclinic intersections, the resulting structure is known as a homoclinic tangle, an example of which is shown in fig. 16.8.

16.5 One-dimensional Maps

Consider now an even simpler case of a purely one-dimensional map,

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right) \tag{16.54}
\end{equation*}
$$

A fixed point of the map satisfies $x=f(x)$. Writing the solution as x^{*} and expanding about the fixed point, we write $x=x^{*}+u$ and obtain

$$
\begin{equation*}
u_{n+1}=f^{\prime}\left(x^{*}\right) u_{n}+\mathcal{O}\left(u^{2}\right) \tag{16.55}
\end{equation*}
$$

Thus, the fixed point is stable if $\left|f^{\prime}\left(x^{*}\right)\right|<1$, since successive iterates of u then get smaller and smaller. The fixed point is unstable if $\left|f^{\prime}\left(x^{*}\right)\right|>1$.

Perhaps the most important and most studied of the one-dimensional maps is the logistic map, where $f(x)=r x(1-x)$, defined on the interval $x \in[0,1]$. This has a fixed point at $x^{*}=1-r^{-1}$ if $r>1$. We then have $f^{\prime}\left(x^{*}\right)=2-r$, so the fixed point is stable if $r \in(1,3)$. What happens for $r>3$? We can explore the behavior of the iterated map by drawing a cobweb diagram, shown in fig. 16.9. We sketch, on the same graph, the curves $y=x$ (in blue) and $y=f(x)$ (in black). Starting with a point x on the line

Figure 16.9: Cobweb diagram showing iterations of the logistic map $f(x)=r x(1-x)$ for $r=2.8$ (upper left), $r=3.4$ (upper right), $r=3.5$ (lower left), and $r=3.8$ (lower right). Note the single stable fixed point for $r=2.8$, the stable two-cycle for $r=3.4$, the stable four-cycle for $r=3.5$, and the chaotic behavior for $r=3.8$.
$y=x$, we move vertically until we reach the curve $y=f(x)$. To iterate, we then move horizontally to the line $y=x$ and repeat the process. We see that for $r=3.4$ the fixed point x^{*} is unstable, but there is a stable two-cycle, defined by the equations

$$
\begin{align*}
& x_{2}=r x_{1}\left(1-x_{1}\right) \\
& x_{1}=r x_{2}\left(1-x_{2}\right) . \tag{16.56}
\end{align*}
$$

The second iterate of $f(x)$ is then

$$
\begin{equation*}
f^{(2)}(x)=f(f(x))=r^{2} x(1-x)\left(1-r x+r x^{2}\right) \tag{16.57}
\end{equation*}
$$

Setting $x=f^{(2)}(x)$, we obtain a cubic equation. Since $x-x^{*}$ must be a factor, we can divide out by this

Figure 16.10: Iterates of the logistic map $f(x)=r x(1-x)$.
monomial and obtain a quadratic equation for x_{1} and x_{2}. We find

$$
\begin{equation*}
x_{1,2}=\frac{1+r \pm \sqrt{(r+1)(r-3)}}{2 r} . \tag{16.58}
\end{equation*}
$$

How stable is this 2-cycle? We find

$$
\begin{equation*}
\frac{d}{d x} f^{(2)}(x)=r^{2}\left(1-2 x_{1}\right)\left(1-2 x_{2}\right)=-r^{2}+2 r+4 . \tag{16.59}
\end{equation*}
$$

The condition that the 2-cycle be stable is then

$$
\begin{equation*}
-1<r^{2}-2 r-4<1 \quad \Longrightarrow \quad r \in[3,1+\sqrt{6}] . \tag{16.60}
\end{equation*}
$$

At $r=1+\sqrt{6}=3.4494897 \ldots$ there is a bifurcation to a 4 -cycle, as can be seen in fig. 16.10.

Figure 16.11: Lyapunov exponent (in red) for the logistic map.

16.5.1 Lyapunov Exponents

The Lyapunov exponent $\lambda(x)$ of the iterated map $f(x)$ at point x is defined to be

$$
\begin{equation*}
\lambda(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left|\frac{d f^{(n)}(x)}{d x}\right|=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \ln \left|f^{\prime}\left(x_{j}\right)\right| \tag{16.61}
\end{equation*}
$$

where $x_{j+1} \equiv f\left(x_{j}\right)$. The significance of the Lyapunov exponent is the following. If $\operatorname{Re}(\lambda(x))>0$ then two initial conditions near x will exponentially separate under the iterated map. For the tent map,

$$
f(x)= \begin{cases}2 r x & \text { if } x<\frac{1}{2} \tag{16.62}\\ 2 r(1-x) & \text { if } x \geq \frac{1}{2}\end{cases}
$$

one easily finds $\lambda(x)=\ln (2 r)$ independent of x. Thus, if $r>\frac{1}{2}$ the Lyapunov exponent is positive, meaning that every neighboring pair of initial conditions will eventually separate exponentially under repeated application of the map. The Lyapunov exponent for the logistic map is depicted in fig. 16.11.

16.5.2 Chaos in the logistic map

What happens in the logistic map for $r>1+\sqrt{6}$? At this point, the 2-cycle becomes unstable and a stable 4 -cycle develops. However, this soon goes unstable and is replaced by a stable 8 -cycle, as the right hand panel of fig. 16.10 shows. The first eight values of r where bifurcations occur are given by

$$
\begin{align*}
& r_{1}=3 \quad, r_{2}=1+\sqrt{6}=3.4494897 \quad, r_{3}=3.544096 \quad, r_{4}=3.564407, \tag{16.63}\\
& r_{5}=3.568759 \quad, r_{6}=3.569692 \quad, r_{7}=3.569891 \quad, r_{8}=3.569934 \quad, \ldots
\end{align*}
$$

Feigenbaum noticed that these numbers seemed to be converging exponentially. With the Ansatz

$$
\begin{equation*}
r_{\infty}-r_{k}=\frac{c}{\delta^{k}} \tag{16.64}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\delta=\frac{r_{k}-r_{k-1}}{r_{k+1}-r_{k}} \tag{16.65}
\end{equation*}
$$

and taking the limit $k \rightarrow \infty$ from the above data one finds

$$
\begin{equation*}
\delta=4.669202 \quad, \quad c=2.637 \quad, \quad r_{\infty}=3.5699456 \tag{16.66}
\end{equation*}
$$

There's a very nifty way of thinking about the chaos in the logistic map at the special value $r=4$. If we define $x_{n} \equiv \sin ^{2} \theta_{n}$, then we find

$$
\begin{equation*}
\theta_{n+1}=2 \theta_{n} \tag{16.67}
\end{equation*}
$$

Now let us write

$$
\begin{equation*}
\theta_{0}=\pi \sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}} \tag{16.68}
\end{equation*}
$$

where each b_{k} is either 0 or 1 . In other words, the $\left\{b_{k}\right\}$ are the digits in the binary decimal expansion of θ_{0} / π. Now $\theta_{n}=2^{n} \theta_{0}$, hence

$$
\begin{equation*}
\theta_{n}=\pi \sum_{k=1}^{\infty} \frac{b_{n+k}}{2^{k}} \tag{16.69}
\end{equation*}
$$

We now see that the logistic map has the effect of shifting to the left the binary digits of θ_{n} / π to yield θ_{n+1} / π. With each such shift, leftmost digit falls off the edge of the world, as it were, since it results in an overall contribution to θ_{n+1} which is zero modulo π. This very emphatically demonstrates the sensitive dependence on initial conditions which is the hallmark of chaotic behavior, for eventually two very close initial conditions, differing by $\Delta \theta \sim 2^{-m}$, will, after m iterations of the logistic map, come to differ by $\mathcal{O}(1)$.

16.5.3 Intermittency

Successive period doubling is one route to chaos, as we've just seen. Another route is intermittency. Intermittency works like this. At a particular value of our control parameter r, the map exhibits a stable periodic cycle, such as the stable 3-cycle at $r=3.829$, as shown in the bottom panel of fig. 16.13. If we then vary the control parameter slightly in a certain direction, the periodic behavior persists for a finite number of iterations, followed by a burst, which is an interruption of the regular periodicity, followed again by periodic behavior, ad infinitum. There are three types of intermittent behavior, depending on whether the Lyapunov exponent λ goes through $\operatorname{Re}(\lambda)=0$ while $\operatorname{Im}(\lambda)=0$ (type-I intermittency), or with $\operatorname{Im}(\lambda)=\pi$ (type-III intermittency), or, as is possible for two-dimensional maps, with $\operatorname{Im}(\lambda)=\eta$, a general real number.

Figure 16.12: Iterates of the sine map $f(x)=r \sin (\pi x)$.

16.6 Attractors

An attractor of a dynamical system $\dot{\varphi}=\boldsymbol{V}(\varphi)$ is the set of φ values that the system evolves to after a sufficiently long time. For $N=1$ the only possible attractors are stable fixed points. For $N=2$, we have stable nodes and spirals, but also stable limit cycles. For $N>2$ the situation is qualitatively different, and a fundamentally new type of set, the strange attractor, emerges.

A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there exists at least one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like a piece of chewing gum. Now fold the rectangle over, stretch it, and squash it so that it maintains its original volume. Keep doing this. Two points which started out nearby to each other will eventually, after a sufficiently large number of folds and stretches, grow far apart. Formally, a strange attractor is a fractal, and may have noninteger Hausdorff dimension. (We won't discuss fractals and Hausdorff dimension here.)

16.7 The Lorenz Model

The canonical example of an $N=3$ strange attractor is found in the Lorenz model. E. N. Lorenz, in a seminal paper from the early 1960 's, reduced the essential physics of the coupled partial differential

Figure 16.13: Intermittency in the logistic map in the vicinity of the 3-cycle Top panel: $r=3.828$, showing intermittent behavior. Bottom panel: $r=3.829$, showing a stable 3 -cycle.
equations describing Rayleigh-Benard convection (a fluid slab of finite thickness, heated from below - in Lorenz's case a model of the atmosphere warmed by the ocean) to a set of twelve coupled nonlinear ordinary differential equations. Lorenz's intuition was that his weather model should exhibit recognizable patterns over time. What he found instead was that in some cases, changing his initial conditions by a part in a thousand rapidly led to totally different behavior. This sensitive dependence on initial conditions is a hallmark of chaotic systems.
The essential physics (or mathematics?) of Lorenz's $N=12$ system is elicited by the reduced $N=3$ system,

$$
\begin{align*}
\dot{X} & =-\sigma X+\sigma Y \\
\dot{Y} & =r X-Y-X Z \tag{16.70}\\
\dot{Z} & =X Y-b Z
\end{align*}
$$

where σ, r, and b are all real and positive. Here t is the familiar time variable (appropriately scaled), and (X, Y, Z) represent linear combinations of physical fields, such as global wind current and poleward temperature gradient. These equations possess a symmetry under $(X, Y, Z) \rightarrow(-X,-Y, Z)$, but what is most important is the presence of nonlinearities in the second and third equations.

The Lorenz system is dissipative because phase space volumes contract:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{V}=\frac{\partial \dot{X}}{\partial X}+\frac{\partial \dot{Y}}{\partial Y}+\frac{\partial \dot{Z}}{\partial Z}=-(\sigma+b+1) \tag{16.71}
\end{equation*}
$$

Figure 16.14: (a) Evolution of the Lorenz equations for $\sigma=10, b=\frac{8}{3}$, and $r=15$, with initial conditions $(X, Y, Z)=(0,1,0)$, projected onto the (X, Z) plane. The attractor is a stable spiral. (b) - (d) Chaotic regime $(r=28)$ evolution showing sensitive dependence on initial conditions. The magenta and green curves differ in their initial X coordinate by 10^{-5}. (Source: Wikipedia)

Thus, volumes contract under the flow. Another property is the following. Let

$$
\begin{equation*}
F(X, Y, Z)=\frac{1}{2} X^{2}+\frac{1}{2} Y^{2}+\frac{1}{2}(Z-r-\sigma)^{2} . \tag{16.72}
\end{equation*}
$$

Then

$$
\begin{align*}
\dot{F} & =X \dot{X}+Y \dot{Y}+(Z-r-\sigma) \dot{Z} \\
& =-\sigma X^{2}-Y^{2}-b\left(Z-\frac{1}{2} r-\frac{1}{2} \sigma\right)^{2}+\frac{1}{4} b(r+\sigma)^{2} . \tag{16.73}
\end{align*}
$$

Thus, $\dot{F}<0$ outside an ellipsoid, which means that all solutions must remain bounded in phase space for all times.

16.7.1 Fixed point analysis

Setting $\dot{X}=\dot{Y}=\dot{Z}=0$, we find three solutions. One solution which is always present is $X^{*}=Y^{*}=$ $Z^{*}=0$. If we linearize about this solution, we obtain

$$
\frac{d}{d t}\left(\begin{array}{l}
\delta X \tag{16.74}\\
\delta Y \\
\delta Z
\end{array}\right)=\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
r & -1 & 0 \\
0 & 0 & -b
\end{array}\right)\left(\begin{array}{l}
\delta X \\
\delta Y \\
\delta Z
\end{array}\right)
$$

The eigenvalues of the linearized dynamics are found to be

$$
\begin{align*}
\lambda_{1,2} & =-\frac{1}{2}(1+\sigma) \pm \frac{1}{2} \sqrt{(1+\sigma)^{2}+4 \sigma(r-1)} \tag{16.75}\\
\lambda_{3} & =-b
\end{align*}
$$

and thus if $0<r<1$ all three eigenvalues are negative, and the fixed point is a stable node. If, however, $r>1$, then $\lambda_{2}>0$ and the fixed point is attractive in two directions but repulsive in a third, corresponding to a three-dimensional version of a saddle point.

Figure 16.15: Left: Evolution of the Lorenz equations for $\sigma=10, b=\frac{8}{3}$, and $r=28$, with initial conditions $\left(X_{0}, Y_{0}, Z_{0}\right)=(0,1,0)$, showing the 'strange attractor'. Right: The Lorenz attractor, projected onto the (X, Z) plane. (Source: Wikipedia)

For $r>1$, a new pair of solutions emerges, with

$$
\begin{equation*}
X^{*}=Y^{*}= \pm \sqrt{b(r-1)} \quad, \quad Z^{*}=r-1 \tag{16.76}
\end{equation*}
$$

Linearizing about either one of these fixed points, we find

$$
\frac{d}{d t}\left(\begin{array}{l}
\delta X \tag{16.77}\\
\delta Y \\
\delta Z
\end{array}\right)=\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
1 & -1 & -X^{*} \\
X^{*} & X^{*} & -b
\end{array}\right)\left(\begin{array}{c}
\delta X \\
\delta Y \\
\delta Z
\end{array}\right)
$$

The characteristic polynomial of the linearized map is

$$
\begin{equation*}
P(\lambda)=\lambda^{3}+(b+\sigma+1) \lambda^{2}+b(\sigma+r) \lambda+2 b(r-1) \tag{16.78}
\end{equation*}
$$

Since b, σ, and r are all positive, $P^{\prime}(\lambda)>0$ for all $\lambda \geq 0$. Since $P(0)=2 b(r-1)>0$, we may conclude that there is always at least one eigenvalue λ_{1} which is real and negative. The remaining two eigenvalues are either both real and negative, or else they occur as a complex conjugate pair: $\lambda_{2,3}=\alpha \pm i \beta$. The fixed point is stable provided $\alpha<0$. The stability boundary lies at $\alpha=0$. Thus, we set

$$
\begin{equation*}
P(i \beta)=\left[2 b(r-1)-(b+\sigma+1) \beta^{2}\right]+i\left[b(\sigma+r)-\beta^{2}\right] \beta=0 \tag{16.79}
\end{equation*}
$$

which results in two equations. Solving these two equations for $r(\sigma, b)$, we find

$$
\begin{equation*}
r_{\mathrm{c}}=\frac{\sigma(\sigma+b+3)}{\sigma-b-1} \tag{16.80}
\end{equation*}
$$

Figure 16.16: $X(t)$ for the Lorenz equations with $\sigma=10, b=\frac{8}{3}, r=28$, and initial conditions $\left(X_{0}, Y_{0}, Z_{0}\right)=(-2.7,-3.9,15.8)$, and initial conditions $\left(X_{0}, Y_{0}, Z_{0}\right)=(-2.7001,-3.9,15.8)$.

The fixed point is stable for $r \in\left[1, r_{c}\right]$. These fixed points correspond to steady convection. The approach to this fixed point is shown in fig. 16.14.

The Lorenz system has commonly been studied with $\sigma=10$ and $b=\frac{8}{3}$. This means that the volume collapse is very rapid, since $\boldsymbol{\nabla} \cdot \boldsymbol{V}=-\frac{41}{3} \approx-13.67$, leading to a volume contraction of $e^{-41 / 3} \simeq 1.16 \times$ 10^{-6} per unit time. For these parameters, one also has $r_{\mathrm{c}}=\frac{470}{19} \approx 24.74$. The capture by the strange attractor is shown in fig. 16.15.

In addition to the new pair of fixed points, a strange attractor appears for $r>r_{\mathrm{s}} \simeq 24.06$. In the narrow interval $r \in[24.06,24.74]$ there are then three stable attractors, two of which correspond to steady convection and the third to chaos. Over this interval, there is also hysteresis. I.e. starting with a convective state for $r<24.06$, the system remains in the convective state until $r=24.74$, when the convective fixed point becomes unstable. The system is then driven to the strange attractor, corresponding to chaotic dynamics. Reversing the direction of r, the system remains chaotic until $r=24.06$, when the strange attractor loses its own stability.

16.7.2 Poincaré section

One method used by Lorenz in analyzing his system was to plot its Poincaré section. This entails placing one constraint on the coordinates (X, Y, Z) to define a two-dimensional surface Σ, and then considering the intersection of this surface Σ with a given phase curve for the Lorenz system. Lorenz chose to set $\dot{Z}=0$, which yields the surface $Z=b^{-1} X Y$. Note that since $\dot{Z}=0, Z(t)$ takes its maximum and minimum values on this surface; see the left panel of fig. 16.17. By plotting the values of the maxima Z_{N} as the integral curve successively passed through this surface, Lorenz obtained results such as those shown in the right panel of fig. 16.17, which has the form of a one-dimensional map and may be analyzed as such. Thus, chaos in the Lorenz attractor can be related to chaos in a particular onedimensional map, known as the return map for the Lorenz system.

Figure 16.17: Left: Lorenz attractor for $b=\frac{8}{3}, \sigma=10$, and $r=28$. Maxima of Z are depicted by stars. Right: Relation between successive maxima Z_{N} along the strange attractor.

16.7.3 Rössler System

The strange attractor is one of the hallmarks of the Lorenz system. Another simple dynamical system which possesses a strange attractor is the Rössler system. This is also described by $N=3$ coupled ordinary differential equations, viz.

$$
\begin{align*}
\dot{X} & =-Y-Z \\
\dot{Y} & =Z+a Y \tag{16.81}\\
\dot{Z} & =b+Z(X-c)
\end{align*}
$$

typically studied as a function of c for $a=b=\frac{1}{5}$. In fig. 16.19, we present results from work by Crutchfield et al. (1980). The transition from simple limit cycle to strange attractor proceeds via a sequence of period-doubling bifurcations, as shown in the figure. A convenient diagnostic for examining this period-doubling route to chaos is the power spectral density, or PSD, defined for a function $F(t)$ as

$$
\begin{equation*}
\Phi_{F}(\omega)=\left|\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} F(t) e^{-i \omega t}\right|^{2}=|\hat{F}(\omega)|^{2} \tag{16.82}
\end{equation*}
$$

As one sees in fig. 16.19, as c is increased past each critical value, the PSD exhibits a series of frequency halvings (i.e. period doublings). All harmonics of the lowest frequency peak are present. In the chaotic region, where $c>c_{\infty} \approx 4.20$, the PSD also includes a noisy broadband background.

Figure 16.18: Period doubling bifurcations of the Rössler attractor, projected onto the (x, y) plane, for nine values of c, with $a=b=\frac{1}{10}$.

Figure 16.19: Period doubling bifurcations of the Rössler attractor with $a=b=\frac{1}{5}$, projected onto the (X, Y) plane, for eight values of c, and corresponding power spectral density for $\mathrm{Z}(\mathrm{t})$. (a) $c=2.6$; (b) $c=3.5$; (c) $c=4.1$; (d) $c=4.18$; (e) $c=4.21$; (f) $c=4.23$; (g) $c=4.30$; (h) $c=4.60$.

[^0]: ${ }^{1}$ If \mathcal{C} is multiply connected, then $\partial \mathcal{C}$ is a set of closed paths. For example, if \mathcal{C} is an annulus, $\partial \mathcal{C}$ is two circles, corresponding to the inner and outer boundaries of the annulus.

[^1]: ${ }^{2}$ If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right and left eigenvectors differ, although the set of corresponding eigenvalues is the same.

[^2]: ${ }^{1}$ Different texts often use different conventions for Fourier and inverse Fourier transforms. Sometimes the factor of $(2 \pi)^{-1}$ is associated with the time integral, and sometimes a factor of $(2 \pi)^{-1 / 2}$ is assigned to both frequency and time integrals. The convention I use is obviously the best.

[^3]: ${ }^{2}$ In this section, we use the notation $\hat{\chi}(\omega)$ for the susceptibility, rather than $\hat{G}(\omega)$

[^4]: ${ }^{2}$ Note that $-\sum_{\sigma} q_{\sigma} F_{\sigma}=-\sum_{\sigma} q_{\sigma}\left(\partial L / \partial q_{\sigma}\right) \neq \sum_{\sigma} q_{\sigma}\left(\partial U / \partial q_{\sigma}\right)$ in general because $T=\frac{1}{2} \sum_{\sigma \sigma^{\prime}} \mathrm{T}_{\sigma \sigma^{\prime}}(q) \dot{q}_{\sigma} \dot{q}_{\sigma^{\prime}}$, and so the inequality holds whenever $\mathrm{T}_{\sigma \sigma^{\prime}}(q)$ is q-dependent. In a Cartesian coordinate system, however, we have $T=\frac{1}{2} \sum_{j} m_{j} \dot{\boldsymbol{x}}_{j}^{2}$ and therefore eqn. 3.188 holds

[^5]: ${ }^{3}$ Indeed, we should be demanding that S only change by a function of the endpoint values.

[^6]: ${ }^{4}$ See the appendix in $\S 3.18$ for more on Legendre transformations.

[^7]: ${ }^{5}$ A homogeneous function of degree k satisfies $f\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{k} f\left(x_{1}, \ldots, x_{n}\right)$. It is then easy to prove Euler's theorem, $\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=k f$.

[^8]: ${ }^{7}$ For N rigid bodies, the number of degrees of freedom is $n^{\prime}=\frac{1}{2} d(d+1) N$, corresponding to d center-of-mass coordinates and $\frac{1}{2} d(d-1)$ angles of orientation for each particle. The dimension of the group of rotations in d dimensions is $\frac{1}{2} d(d-1)$, corresponding to the number of parameters in a general rank-d orthogonal matrix (i.e. an element of the group $O(d)$).

[^9]: ${ }^{8}$ Note that $g(p)$ may be a negative number, if the line $y=p x$ lies everywhere below $f(x)$.

[^10]: ${ }^{1}$ There is a very nice discussion in the Barger and Olsson book on 'Grand Tours of the Outer Planets'. Here I reconstruct and extend their discussion.

[^11]: ${ }^{1}$ The label defective has a distastefully negative connotation. In modern parlance, we should instead refer to such a matrix as determinantally challenged.

[^12]: ${ }^{2}$ For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real space ("direct") lattice. For example, the reciprocal lattice of a face-centered cubic structure is a body-centered cubic lattice.

[^13]: ${ }^{3}$ For a proper limit, we demand μ and τ be neither infinite nor infinitesimal.
 ${ }^{4} \mathcal{L}$ may also depend explicitly on x and t.

[^14]: ${ }^{1}$ The earth is a layered like a Mozartkugel, with a solid outer shell, an inner fluid shell, and a solid (iron) core.

[^15]: ${ }^{2} \mathrm{SO}(3)$ is a Lie group, meaning that it is a manifold with a group structure such that the group operations of multiplication and inverse are smooth.
 ${ }^{3}$ About two hours after the Apollo 11 moon landing on July 20, 1969, NASA Mission Control in Houston contacted Command Module pilot Michael Collins to inform him that he was "maneuvering very close to gimbal lock" and suggesting he back away, whereupon Collins replied saying that he was trying to avoid this situation, adding wryly, "How about sending me a fourth gimbal for Christmas?"

[^16]: ${ }^{4}$ Gravity of course produces no net torque about the CM.

[^17]: ${ }^{1}$ As an example of a string with a position-dependent tension, consider a string of length ℓ freely suspended from one end at $z=0$ in a gravitational field. The tension is then $\tau(z)=\mu g(\ell-z)$.

[^18]: ${ }^{2}$ We raise and lower indices using the Minkowski metric $g_{\mu \nu}=\operatorname{diag}(+,-,-,-)$.

[^19]: ${ }^{3}$ In the nonrelativistic case, there is no utility in defining $x^{0}=c t$, so we simply define $x^{0}=t$.

[^20]: ${ }^{4}$ Note in particular that there is no longer any divergence at the location of the original poles of $G_{\omega}^{0}\left(x, x^{\prime}\right)$. These poles are cancelled.

[^21]: ${ }^{1}$ Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat, etc.

[^22]: ${ }^{2}$ Unlike rotations, the boosts do not themselves define a subgroup of $\mathrm{O}(3,1)$.

[^23]: ${ }^{1}$ A diffeomorphism $F: \mathcal{M} \rightarrow \mathcal{N}$ is a differentiable map with a differentiable inverse. This is a special type of homeomorphism, which is a continuous map with a continuous inverse.

[^24]: ${ }^{2}$ When I say 'never' I mean 'sometimes' - see the section 11.3.
 ${ }^{3}$ The system $f\left(u^{*}\right)=0$ and $f^{\prime}\left(u^{*}\right)=0$ is overdetermined, with two equations for the single variable u^{*}.

[^25]: ${ }^{4}$ If $\left[M_{1}, M_{2}\right]=0$ then $A=A_{\mathcal{P}}$.

[^26]: ${ }^{1}$ This is a model for the dynamics of the spruce budworm population, taken from ch. 1 of J. D. Murray, Mathematical Biology ($2^{\text {nd }}$ edition, Springer, 1993).

[^27]: ${ }^{2}$ It is always the case that f is bounded from below, on physical grounds. Were b negative, we'd have to consider higher order terms in the Landau expansion.

[^28]: ${ }^{3}$ We needn't waste our time considering the $m=m_{-}$solution, since the cubic term prefers positive m.

[^29]: ${ }^{1}$ If phase space itself is multiply connected, e.g. a circle, then the system can oscillate by moving around the circle.

[^30]: ${ }^{2}$ Technically, we should weight the index at each enclosed singularity by the signed number of times the curve \mathcal{C} encloses that singularity. For simplicity and clarity, we assume that the curve \mathcal{C} is homeomorphic to the circle \mathbb{S}^{1}.

[^31]: ${ }^{1}$ We could, of course, linearize about the fixed point in (x, \dot{x}) space and obtain the same results.

[^32]: ${ }^{1}$ We must have that the relation $Q_{\sigma}=Q_{\sigma}(\boldsymbol{q}, t)$ is invertible.

[^33]: ${ }^{3}$ Note that the rank of a symplectic matrix is always even. Note also $M \mathbb{J} M^{\mathrm{t}}=\mathbb{J}$ implies $M^{\mathrm{t}} \mathbb{J} M=\mathbb{J}$.
 ${ }^{4}$ Solutions of eqn. 15.53 with $\lambda \neq 1$ are known as extended canonical transformations. We can always rescale coordinates and / or momenta to achieve $\lambda=1$.

[^34]: ${ }^{5}$ Here we assume complete separability. A given system may only be partially separable.
 ${ }^{6}$ Note that $H_{\sigma}\left(q_{\sigma}, p_{\sigma}\right)$ may itself depend on several of the constants Λ_{α}. For example, eqn. 15.111 is of the form $H_{r}\left(r, \partial_{r} W_{r}, \Lambda_{3}\right)=\Lambda_{1}$.

[^35]: ${ }^{7} \mathcal{C}_{\sigma}$ may correspond to a separatrix, but this is a nongeneric state of affairs.

[^36]: $\overline{{ }^{8} \text { In general, we should write } d\left(\frac{\partial F_{2}}{\partial J_{\sigma}}\right)=\frac{\partial^{2} F_{2}}{\partial J_{\sigma} \partial q_{\alpha}} d q_{\alpha}}$ with a sum over α. However, in eqn. 15.125 all coordinates and momenta other than q_{σ} and p_{σ} are held fixed. Thus, $\alpha=\sigma$ is the only term in the sum which contributes.

[^37]: ${ }^{11}$ Clearly if $\boldsymbol{\ell} \cdot \boldsymbol{\nu}(\boldsymbol{J})=0$, then replacing $\boldsymbol{\ell}$ by $p \boldsymbol{\ell}$ for any $p \in \mathbb{Z}$ also satisfies the resonance condition.

[^38]: ${ }^{12}$ Two first integrals I_{k} and I_{l} whose Poisson bracket $\left\{I_{k}, I_{l}\right\}=0$ vanishes are said to be in involution.
 ${ }^{13}$ See chapter 1 of http://www.damtp.cam.ac.uk/user/md327/ISlecture_notes_2012.pdf for a proof.

[^39]: ${ }^{14}$ Here $S(\boldsymbol{q}, \boldsymbol{P}, t)$ is not meant to signify Hamilton's principal function.

[^40]: ${ }^{15}$ This is always true, in fact, for $n=1$.
 ${ }^{16} \mathrm{We}$ assume the motion is bounded, so action-angle variables may be used.

[^41]: ${ }^{17}$ In $\S 15.11 .5$ below, we discuss the case of a cubic nonlinearity.

[^42]: ${ }^{18}$ Note that the argument of J_{n} in eqn. 15.261 is λ and not Λ. This arises because we are computing the new action \mathcal{J} in terms of the old variables (ϕ, J) and (ψ, K).

[^43]: ${ }^{19}$ In this section we write $\partial H_{0} / \partial J=\omega_{0}(J)$ rather than $\nu_{0}(J)$ in order to obviate any confusion between the frequency ν_{0} and the potential \hat{V}_{1} and its various Fourier components.

[^44]: ${ }^{20}$ The corresponding microcanonical distribution would be $\prod_{j=1}^{n} \delta\left(I_{j}-\left\langle I_{j}\right\rangle\right)$, as opposed to $\delta(H-E)$.
 ${ }^{21}$ Without loss of generality, we may assume $\epsilon \geq 0$.
 ${ }^{22}$ KAM $=$ Kolmogorov-Arnol'd-Moser, who developed the theory in a series of papers during the 1950s and 1960s. For a "friendly introduction to the content, history, and significance" of KAM, I highly recommend H. Scott Dumas, The KAM Story (World Scientific, 2014).

[^45]: ${ }^{23}$ See J. Pöschel, A Lesson on the Classical KAM Theorem, Proc. Symp. Pure Math. 69, 707 (2001), in §1.d.

[^46]: ${ }^{24} \mathrm{We}$ denote the azimuthal angle by φ to distinguish it from the AA variable ϕ.
 ${ }^{25}$ The details of performing the integral around \mathcal{C}_{r} are discussed in e.g. Goldstein.

[^47]: ${ }^{1}$ It is for this reason that we may write $\alpha\left(J_{n+1}\right)$ in the first equation, rather than $\alpha\left(J_{n}\right)$. The reason will soon be apparent.

[^48]: ${ }^{2}$ The standard map us usually written in the form $x_{n+1}=x_{n}+\mathcal{J}_{n}$ and $\mathcal{J}_{n+1}=\mathcal{J}_{n}-k \sin \left(2 \pi x_{n+1}\right)$. We can recover our version by rescaling $\phi_{n}=2 \pi x_{n}, \mathcal{J}_{n} \equiv \sqrt{k} J_{n}$ and defining $\epsilon \equiv \sqrt{k}$.

[^49]: ${ }^{3}$ One has $P(\lambda)=\operatorname{det}(\lambda-R)=\operatorname{det}\left(\lambda-R^{\mathrm{t}}\right)=\operatorname{det}\left(\lambda+\mathbb{J} R^{-1} \mathbb{J}\right)=\operatorname{det}\left(\lambda^{-1}-R\right) \cdot \lambda^{2 N} / \operatorname{det} R$ and therefore if λ is a root of the characteristic polynomial, then so is λ^{-1}. Since $R=R^{*}$, one also has $P\left(\lambda^{*}\right)=[P(\lambda)]^{*}$, hence if λ is a root, then so is λ^{*}. From $\operatorname{Pf}\left(R^{\mathrm{t}} \mathbb{J} R\right)=\operatorname{det}(R) \operatorname{Pf}(\mathbb{d})$, where Pf is the Pfaffian, one has det $R=1$.
 ${ }^{4}$ The map in eqn. 16.43 is a generalized version of Arnol'd's original cat map, which had $K=1$.

[^50]: ${ }^{5}$ Tangency is nongeneric and broken by a small change in ϵ.

