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Chapter 1

Elementary Mechanics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a system means that
we know the coordinates of all its constituent particles as functions of time. For a single point particle
moving in three-dimensional space, this means we want to know its position vector r(t) as a function of

time. If there are many particles, the motion is described by a set of functions ri(t), where i labels which
particle we are talking about. So generally speaking, solving for the motion means being able to predict

where a particle will be at any given instant of time. Of course, knowing the function ri(t) means we

can take its derivative and obtain the velocity vi(t) = dri/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded in a set of differential
equations, called the equations of motion. An example of an equation of motion is

m
d2x

dt2
= −mg (1.1)

with the solution
x(t) = x0 + v0t− 1

2gt
2 (1.2)

where x0 and v0 are constants corresponding to the initial boundary conditions on the position and veloc-
ity: x(0) = x0, v(0) = v0. This particular solution describes the vertical motion of a particle of mass m
moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of motion may be obtained,
and methods for solving them. That “general framework” is Lagrangian Dynamics, which itself is really
nothing more than an elegant restatement of Isaac Newton’s Laws of Motion.

1.1.1 Newton’s laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their natural state.
Thus, a rock falls because rocks belong on the earth, and flames rise because fire belongs in the heavens.

1



2 CHAPTER 1. ELEMENTARY MECHANICS

To paraphrase Wolfgang Pauli, such notions are so vague as to be “not even wrong.” It was only with the
publication of Newton’s Principia in 1687 that a theory of motion which had detailed predictive power
was developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant (possibly zero) velocity
if it is subjected to no forces. Now this cannot be true in general, for suppose we encounter such a “free”
particle and that indeed it is in uniform motion, so that r(t) = r0 + v0t. Now r(t) is measured in some
coordinate system, and if instead we choose to measure r(t) in a different coordinate system whose
originRmoves according to the functionR(t), then in this new “frame of reference” the position of our
particle will be

r′(t) = r(t)−R(t)

= r0 + v0t−R(t) . (1.3)

If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference we have apparently
falsified Newton’s First Law – a free particle does not move in uniform rectilinear motion when viewed
from an accelerating frame of reference. Thus, together with Newton’s Laws comes an assumption
about the existence of frames of reference – called inertial frames – in which Newton’s Laws hold. A
transformation from one frame K to another frame K′ which moves at constant velocity V relative to K
is called a Galilean transformation. The equations of motion of classical mechanics are invariant (do not
change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with this, we will
try to build some intuition by solving mechanics problems assuming we are in an inertial frame. The
earth’s surface, where most physics experiments are done, is not an inertial frame, due to the centripetal
accelerations associated with the earth’s rotation about its own axis and its orbit around the sun. In this
case, not only is our coordinate system’s origin – somewhere in a laboratory on the surface of the earth
– accelerating, but the coordinate axes themselves are rotating with respect to an inertial frame. The
rotation of the earth leads to fictitious “forces” such as the Coriolis force, which have large-scale con-
sequences. For example, hurricanes, when viewed from above, rotate counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Later on in the course we will devote ourselves
to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv of a particle’s mass
m (how much stuff there is) and its velocity (how fast it is moving). In order to convert the Second Law
into a meaningful equation, we must know how the force F depends on the coordinates (or possibly



1.1. INTRODUCTION AND REVIEW 3

velocities) themselves. This is known as a force law. Examples of force laws include:

Constant force: F = −mg

Hooke’s Law: F = −kx

Gravitation: F = −GMm r̂/r2

Lorentz force: F = qE + q
v

c
×B

Fluid friction (v small): F = −bv .

Note that for an object whose mass does not change we can write the Second Law in the familiar form
F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most of our initial efforts will lie in using
Newton’s Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will discuss in great
detail later on. Newtonian gravity – the force which makes the planets orbit the sun – is a central force.
One consequence of the Third Law is that in free space two isolated particles will accelerate in such a
way that F1 = −F2 and hence the accelerations are parallel to each other, with

a1
a2

= −m2

m1
, (1.4)

where the minus sign is used here to emphasize that the accelerations are in opposite directions. We can
also conclude that the total momentum P = p1 + p2 is a constant, a result known as the conservation of
momentum.

1.1.2 Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force law, which

says that the force Fij exerted by a particle i by another particle j is

Fij = −Gmimj

ri − rj
|ri − rj |3

, (1.5)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the value

G = (6.6726 ± 0.0008) × 10−11N ·m2/kg2 . (1.6)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and special feature of this
“inverse square law” force is that a spherically symmetric mass distribution has the same force on an
external body as it would if all its mass were concentrated at its center. Thus, for a particle of mass m

near the surface of the earth, we can take mi = m and mj = Me, with ri − rj ≃ Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.7)
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where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R2
e ≃ 9.8m/s2 is the

acceleration due to gravity at the earth’s surface. Newton’s Second Law now says that a = −g, i.e.
objects accelerate as they fall to earth. However, it is not a priori clear why the inertial mass which enters
into the definition of momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m′. In this case, Newton’s
Second Law would predict

a = −m′

m
g (1.8)

and unless the ratio m′/m were the same number for all objects, then bodies would fall with different
accelerations. The experimental fact that bodies in a vacuum fall to earth at the same rate demonstrates
the equivalence of inertial and gravitational mass, i.e. m′ = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we consider some phys-
ically relevant examples of one-dimensional motion.

1.2.1 Uniform force

With F = −mg, appropriate for a particle falling under the influence of a uniform gravitational field,
we have md2x/dt2 = −mg, or ẍ = −g. Notation:

ẋ ≡ dx

dt
, ẍ ≡ d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.9)

With v = ẋ, we solve dv/dt = −g:

v(t)∫

v(0)

dv =

t∫

0

ds (−g)

v(t)− v(0) = −gt .

(1.10)

Note that there is a constant of integration, v(0), which enters our solution.

We are now in position to solve dx/dt = v:

x(t)∫

x(0)

dx =

t∫

0

ds v(s)

x(t) = x(0) +

t∫

0

ds
[
v(0)− gs

]

= x(0) + v(0)t − 1
2gt

2 .

(1.11)

Note that a second constant of integration, x(0), has appeared.
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1.2.2 Uniform force with linear frictional damping

In this case,

m
dv

dt
= −mg − γv (1.12)

which may be rewritten

dv

v +mg/γ
= − γ

m
dt

d ln(v +mg/γ) = −(γ/m)dt .

(1.13)

Integrating then gives

ln

(
v(t) +mg/γ

v(0) +mg/γ

)

= −γt/m

v(t) = −mg

γ
+

(

v(0) +
mg

γ

)

e−γt/m .

(1.14)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant of integration, v(0).

One can further integrate to obtain the motion

x(t) = x(0) +
m

γ

(

v(0) +
mg

γ

)

(1− e−γt/m)− mg

γ
t . (1.15)

The solution to the second order ODE mẍ = −mg− γẋ thus entails two constants of integration: v(0) and

x(0). Notice that as t goes to infinity the velocity tends towards the asymptotic value v = −v∞, where

v∞ = mg/γ. This is known as the terminal velocity. Indeed, solving the equation v̇ = 0 gives v = −v∞.
The initial velocity is effectively “forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a terminal velocity. In this
case the force is not F = −mg but rather F = −eE, where −e is the electron charge (e > 0) and E is the
electric field. The terminal velocity is then obtained from

v∞ = eE/γ = eτE/m . (1.16)

The current density is a product:

current density = (number density) × (charge) × (velocity) ,

thus

j = n · (−e) · (−v∞) =
ne2τ

m
E . (1.17)

The ratio j/E is called the conductivity of the metal, σ. According to our theory, σ = ne2τ/m. This is one
of the most famous equations of solid state physics! The dissipation is caused by electrons scattering off
impurities and lattice vibrations (“phonons”). In high purity copper at low temperatures (T <∼ 4K), the
scattering time τ is about a nanosecond (τ ≈ 10−9 s).
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1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity. The frictional
force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of v: sgn (v) = +1 if v > 0 and sgn (v) = −1
if v < 0. (Note one can also write sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble
with sgn (v)? Because it is important that the frictional force dissipate energy, and therefore that Ff be
oppositely directed with respect to the velocity v. We will assume that v < 0 always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g + (c/m)v2 = 0 gives v = ±v∞, where

v∞ =
√

mg/c. One can write the equation of motion as

dv

dt
=

g

v2∞
(v2 − v2∞) (1.18)

and using
1

v2 − v2∞
=

1

2v∞

[
1

v − v∞
− 1

v + v∞

]

(1.19)

we obtain

dv

v2 − v2∞
=

1

2v∞

dv

v − v∞
− 1

2v∞

dv

v + v∞

=
1

2v∞
d ln

(
v∞ − v

v∞ + v

)

=
g

v2∞
dt .

(1.20)

Assuming v(0) = 0, we integrate to obtain

1

2v∞
ln

(
v∞ − v(t)

v∞ + v(t)

)

=
gt

v2∞
(1.21)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.22)

Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (1.23)

Again, as t → ∞ one has v(t) → −v∞ , i.e. v(∞) = −v∞.

Advanced Digression: To gain an understanding of the constant c, consider a flat surface of area S
moving through a fluid at velocity v (v > 0). During a time ∆t, all the fluid molecules inside the volume
∆V = S · v∆t will have executed an elastic collision with the moving surface. Since the surface is
assumed to be much more massive than each fluid molecule, the center of mass frame for the surface-
molecule collision is essentially the frame of the surface itself. If a molecule moves with velocity u is the
laboratory frame, it moves with velocity u− v in the center of mass (CM) frame, and since the collision
is elastic, its final CM frame velocity is reversed, to v − u. Thus, in the laboratory frame the molecule’s
velocity has become 2v−u and it has suffered a change in velocity of ∆u = 2(v−u). The total momentum
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change is obtained by multiplying ∆u by the total mass M = ̺∆V , where ̺ is the mass density of the
fluid. But then the total momentum imparted to the fluid is

∆P = 2(v − u) · ̺S v∆t (1.24)

and the force on the fluid is

F =
∆P

∆t
= 2S ̺ v(v − u) . (1.25)

Now it is appropriate to average this expression over the microscopic distribution of molecular velocities
u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S̺v2, where 〈· · · 〉 denotes a microscopic
average over the molecular velocities in the fluid. (There is a subtlety here concerning the effect of
fluid molecules striking the surface from either side – you should satisfy yourself that this derivation is
sensible!) Newton’s Third Law then states that the frictional force imparted to the moving surface by
the fluid is Ff = −〈F 〉 = −cv2, where c = 2S̺. In fact, our derivation is too crude to properly obtain
the numerical prefactors, and it is better to write c = µ̺S, where µ is a dimensionless constant which
depends on the shape of the moving object.

1.2.4 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge q moving in mutually perpendicular
E and B fields. We’ll throw in gravity for good measure. We take E = Ex̂, B = Bẑ, and g = −gẑ. The
equation of motion is Newton’s 2nd Law again:

m r̈ = mg + qE + q
c ṙ ×B . (1.26)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus the Lorentz
force of a moving particle in an electromagnetic field. In component notation, we have

mẍ = qE +
qB

c
ẏ

mÿ = −qB

c
ẋ

mz̈ = −mg .

(1.27)

The equations for coordinates x and y are coupled, while that for z is independent and may be immedi-
ately solved to yield

z(t) = z(0) + ż(0) t− 1
2gt

2 . (1.28)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + uD)

v̇y = −ωc vx ,
(1.29)

where ωc = qB/mc is the cyclotron frequency and uD = cE/B is the drift speed for the particle. As we shall
see, these are the equations for a harmonic oscillator. The solution is

vx(t) = vx(0) cos(ωct) +
(
vy(0) + uD

)
sin(ωct)

vy(t) = −uD +
(
vy(0) + uD

)
cos(ωct)− vx(0) sin(ωct) .

(1.30)
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Integrating again, the full motion is given by:

x(t) = x(0) +A sin δ +A sin(ωct− δ)

y(r) = y(0)− uD t−A cos δ +A cos(ωct− δ) ,
(1.31)

where

A =
1

ωc

√

ẋ2(0) +
(
ẏ(0) + uD

)2
, δ = tan−1

(
ẏ(0) + uD

ẋ(0)

)

. (1.32)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.33)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and ẏ(0).

1.2.5 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a corresponding second
order ODE. The full solution of the motion of the system entails two constants of integration for each
degree of freedom.

1.3 Work-Energy Theorem

Consider a system of many particles, with positions ri and velocities ṙi. The kinetic energy of this
system is

T =
∑

i

Ti =
∑

i

1
2miṙ

2
i . (1.34)

Now let’s consider how the kinetic energy of the system changes in time. Assuming each mi is time-
independent, we have

dTi

dt
= mi ṙi · r̈i . (1.35)

Here, we’ve used the relation
d

dt

(
A2
)
= 2A · dA

dt
. (1.36)

We now invoke Newton’s 2nd Law, mir̈i = Fi, to write eqn. 1.35 as Ṫi = Fi · ṙi. We integrate this

equation from time tA to tB:

T (B)

i − T (A)

i =

tB∫

tA

dt
dTi

dt
=

tB∫

tA

dtFi · ṙi ≡
∑

i

W (A→B)

i , (1.37)

where W (A→B)

i is the total work done on particle i during its motion from state A to state B, Clearly the
total kinetic energy is T =

∑

i Ti and the total work done on all particles is W (A→B) =
∑

iW
(A→B)

i . Eqn.
1.37 is known as the work-energy theorem. It says that In the evolution of a mechanical system, the change
in total kinetic energy is equal to the total work done: T (B) − T (A) = W (A→B).
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Figure 1.1: Two paths joining points A and B.

1.4 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy T = 1
2mṙ

2. The work done on
the particle during its mechanical evolution is

W (A→B) =

tB∫

tA

dtF · v , (1.38)

where v = ṙ. This is the most general expression for the work done. If the force F depends only on the
particle’s position r, we may write dr = v dt, and then

W (A→B) =

rB∫

rA

dr · F (r) . (1.39)

Consider now the force
F (r) = K1 y x̂+K2 x ŷ , (1.40)

where K1,2 are constants. Let’s evaluate the work done along each of the two paths in fig. 1.1:

W (I) = K1

xB∫

xA

dx yA +K2

yB∫

yA

dy xB = K1 yA (xB − xA) +K2 xB (yB − yA)

W (II) = K1

xB∫

xA

dx yB +K2

yB∫

yA

dy xA = K1 yB (xB − xA) +K2 xA (yB − yA) .

(1.41)
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Note that in general W (I) 6= W (II). Thus, if we start at point A, the kinetic energy at point B will depend
on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

W (I) −W (II) = (K2 −K1) (xB − xA) (yB − yA) . (1.42)

Thus, we see that if K1 = K2, the work is the same for the two paths. In fact, if K1 = K2, the work
would be path-independent, and would depend only on the endpoints. This is true for any path, and
not just piecewise linear paths of the type depicted in fig. 1.1. The reason for this is Stokes’ theorem:

∮

∂C

dℓ · F =

∫

C

dS n̂ ·∇× F . (1.43)

Here, C is a connected region in three-dimensional space, ∂C is mathematical notation for the boundary
of C, which is a closed path1, dS is the scalar differential area element, n̂ is the unit normal to that
differential area element, and ∇× F is the curl of F :

∇× F = det





x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz





=

(
∂Fz

∂y
− ∂Fy

∂z

)

x̂+

(
∂Fx

∂z
− ∂Fz

∂x

)

ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)

ẑ .

(1.44)

For the force under consideration, F (r) = K1 y x̂+K2 x ŷ, the curl is

∇× F = (K2 −K1) ẑ , (1.45)

which is a constant. The RHS of eqn. 1.43 is then simply proportional to the area enclosed by C. When

we compute the work difference in eqn. 1.42, we evaluate the integral
∮

C

dℓ · F along the path γ−1
II ◦ γI,

which is to say path I followed by the inverse of path II. In this case, n̂ = ẑ and the integral of n̂ ·∇×F
over the rectangle C is given by the RHS of eqn. 1.42.

When ∇ × F = 0 everywhere in space, we can always write F = −∇U , where U(r) is the potential
energy. Such forces are called conservative forces because the total energy of the system, E = T +U , is then
conserved during its motion. We can see this by evaluating the work done,

W (A→B) =

rB∫

rA

dr · F (r) = −
rB∫

rA

dr ·∇U = U(rA)− U(rB) . (1.46)

The work-energy theorem then gives

T (B) − T (A) = U(rA)− U(rB) , (1.47)

which says

E(B) = T (B) + U(rB) = T (A) + U(rA) = E(A) . (1.48)

Thus, the total energy E = T + U is conserved.

1If C is multiply connected, then ∂C is a set of closed paths. For example, if C is an annulus, ∂C is two circles, corresponding to
the inner and outer boundaries of the annulus.
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1.4.1 Example : integrating F = −∇U

If ∇× F = 0, we can compute U(r) by integrating, viz.

U(r) = U(0)−
r∫

0

dr′ · F (r′) . (1.49)

The integral does not depend on the path chosen connecting 0 and r. For example, we can take

U(x, y, z) = U(0, 0, 0) −
(x,0,0)∫

(0,0,0)

dx′ Fx(x
′, 0, 0) −

(x,y,0)∫

(x,0,0)

dy′ Fy(x, y
′, 0) −

(x,y,z)∫

(z,y,0)

dz′ Fz(x, y, z
′) . (1.50)

The constant U(0, 0, 0) is arbitrary and impossible to determine from F alone.

As an example, consider the force

F (r) = −ky x̂− kx ŷ − 4bz3 ẑ , (1.51)

where k and b are constants. We have

(
∇× F

)

x
=

(
∂Fz

∂y
− ∂Fy

∂z

)

= 0

(
∇× F

)

y
=

(
∂Fx

∂z
− ∂Fz

∂x

)

= 0

(
∇× F

)

z
=

(
∂Fy

∂x
− ∂Fx

∂y

)

= 0 ,

(1.52)

so ∇× F = 0 and F must be expressible as F = −∇U . Integrating using eqn. 1.50, we have

U(x, y, z) = U(0, 0, 0) +

(x,0,0)∫

(0,0,0)

dx′ k · 0 +

(x,y,0)∫

(x,0,0)

dy′ kxy′ +

(x,y,z)∫

(z,y,0)

dz′ 4bz′
3

= U(0, 0, 0) + kxy + bz4 .

(1.53)

Another approach is to integrate the partial differential equation ∇U = −F . This is in fact three equa-
tions, and we shall need all of them to obtain the correct answer. We start with the x̂-component,

∂U

∂x
= ky . (1.54)

Integrating, we obtain

U(x, y, z) = kxy + f(y, z) , (1.55)
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where f(y, z) is at this point an arbitrary function of y and z. The important thing is that it has no x-
dependence, so ∂f/∂x = 0. Next, we have

∂U

∂y
= kx =⇒ U(x, y, z) = kxy + g(x, z) . (1.56)

Finally, the z-component integrates to yield

∂U

∂z
= 4bz3 =⇒ U(x, y, z) = bz4 + h(x, y) . (1.57)

We now equate the first two expressions:

kxy + f(y, z) = kxy + g(x, z) . (1.58)

Subtracting kxy from each side, we obtain the equation f(y, z) = g(x, z). Since the LHS is independent
of x and the RHS is independent of y, we must have

f(y, z) = g(x, z) = q(z) , (1.59)

where q(z) is some unknown function of z. But now we invoke the final equation, to obtain

bz4 + h(x, y) = kxy + q(z) . (1.60)

The only possible solution is h(x, y) = C + kxy and q(z) = C + bz4, where C is a constant. Therefore,

U(x, y, z) = C + kxy + bz4 . (1.61)

Note that it would be very wrong to integrate ∂U/∂x = ky and obtain U(x, y, z) = kxy+C ′, where C ′ is a
constant. As we’ve seen, the ‘constant of integration’ we obtain upon integrating this first order PDE is
in fact a function of y and z. The fact that f(y, z) carries no explicit x dependence means that ∂f/∂x = 0,
so by construction U = kxy + f(y, z) is a solution to the PDE ∂U/∂x = ky, for any arbitrary function
f(y, z).

1.4.2 Conservative Fofrces in many-particle systems

T =
∑

i

1
2miṙ

2
i

U =
∑

i

V (ri) +
∑

i<j

v
(
|ri − rj|

)
.

(1.62)

Here, V (r) is the external (or one-body) potential, and v(r − r′) is the interparticle potential, which we
assume to be central, depending only on the distance between any pair of particles. The equations of
motion are

mi r̈i = F
(ext)

i + F (int)

i , (1.63)
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with

F
(ext)

i = −∂V (ri)

∂ri

F
(int)

i = −
∑

j

∂v
(
|ri − rj |

)

ri
≡
∑

j

F
(int)

ij .
(1.64)

Here, F (int)

ij is the force exerted on particle i by particle j:

F
(int)

ij = −∂v
(
|ri − rj |

)

∂ri
= − ri − rj

|ri − rj |
v′
(
|ri − rj|

)
. (1.65)

Note that F (int)

ij = −F (int)

ji , otherwise known as Newton’s Third Law. It is convenient to abbreviate
rij ≡ ri − rj , in which case we may write the interparticle force as

F
(int)

ij = −r̂ij v′
(
rij
)

. (1.66)

1.4.3 Linear and angular momentum

Consider now the total momentum of the system, P =
∑

i pi. Its rate of change is

dP

dt
=
∑

i

ṗi =
∑

i

F
(ext)

i +

F
(int)
ij

+F
(int)
ji

=0
︷ ︸︸ ︷
∑

i 6=j

F
(int)

ij = F (ext)

tot , (1.67)

since the sum over all internal forces cancels as a result of Newton’s Third Law. We write

P =
∑

i

miṙi = MṘ

M =
∑

i

mi (total mass)

R =

∑

imi ri
∑

i mi
(center-of-mass) .

(1.68)

Next, consider the total angular momentum,

L =
∑

i

ri × pi =
∑

i

miri × ṙi . (1.69)
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The rate of change of L is then

dL

dt
=
∑

i

{
miṙi × ṙi +miri × r̈i

}

=
∑

i

ri × F
(ext)

i +
∑

i 6=j

ri × F
(int)

ij

=
∑

i

ri × F
(ext)

i +

r
ij
×F

(int)
ij

=0
︷ ︸︸ ︷

1
2

∑

i 6=j

(ri − rj)× F
(int)

ij

=N (ext)

tot .

(1.70)

Finally, it is useful to establish the result

T = 1
2

∑

i

mi ṙ
2
i = 1

2MṘ2 + 1
2

∑

i

mi

(
ṙi − Ṙ

)2
, (1.71)

which says that the kinetic energy may be written as a sum of two terms, those being the kinetic energy
of the center-of-mass motion, and the kinetic energy of the particles relative to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

0 =

final∫

initial

dE =

final∫

initial

dT +

final∫

initial

dU

= T (B) − T (A) −
∑

i

∫

dri · Fi ,

(1.72)

which is to say

∆T = T (B) − T (A) =
∑

i

∫

dri · Fi = −∆U . (1.73)

In other words, the total energy E = T + U is conserved:

E =
∑

i

1
2miṙ

2
i +

∑

i

V (ri) +
∑

i<j

v
(
|ri − rj |

)
. (1.74)

Note that for continuous systems, we replace sums by integrals over a mass distribution, viz.

∑

i

mi φ
(
ri
)
−→

∫

d3r ρ(r)φ(r) , (1.75)

where ρ(r) is the mass density, and φ(r) is any function.
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1.5 Scaling of Solutions for Homogeneous Potentials

1.5.1 Euler’s theorem for homogeneous functions

In certain cases of interest, the potential is a homogeneous function of the coordinates. This means

U
(
λ r1, . . . , λ rN

)
= λk U

(
r1, . . . , rN

)
. (1.76)

Here, k is the degree of homogeneity of U . Familiar examples include gravity,

U
(
r1, . . . , rN

)
= −G

∑

i<j

mimj

|ri − rj |
; k = −1 , (1.77)

and the harmonic oscillator,

U
(
q1, . . . , qn

)
= 1

2

∑

σ,σ′

Vσσ′ qσ qσ′ ; k = +2 . (1.78)

The sum of two homogeneous functions is itself homogeneous only if the component functions them-
selves are of the same degree of homogeneity. Homogeneous functions obey a special result known as

Euler’s Theorem, which we now prove. Suppose a multivariable function H(x1, . . . , xn) is homogeneous:

H(λx1, . . . , λ xn) = λk H(x1, . . . , xn) . (1.79)

Then
d

dλ

∣
∣
∣
∣
∣
λ=1

H
(
λx1, . . . , λ xn

)
=

n∑

i=1

xi
∂H

∂xi
= kH . (1.80)

1.5.2 Scaled equations of motion

Now suppose the we rescale distances and times, defining

ri = α r̃i , t = β t̃ . (1.81)

Then
dri
dt

=
α

β

dr̃i

dt̃
,

d2ri
dt2

=
α

β2

d2r̃i

dt̃2
. (1.82)

The force Fi is given by

Fi = − ∂

∂ri
U
(
r1, . . . , rN

)

= − ∂

∂(αr̃i)
αk U

(
r̃1, . . . , r̃N

)
= αk−1 F̃i .

(1.83)

Thus, Newton’s 2nd Law says
α

β2
mi

d2r̃i

dt̃2
= αk−1 F̃i . (1.84)
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If we choose β such that

We now demand
α

β2
= αk−1 ⇒ β = α1− 1

2
k , (1.85)

then the equation of motion is invariant under the rescaling transformation! This means that if r(t) is

a solution to the equations of motion, then so is α r
(
α

1
2
k−1 t

)
. This gives us an entire one-parameter

family of solutions, for all real positive α.

If r(t) is periodic with period T , the ri(t;α) is periodic with period T ′ = α1− 1
2
k T . Thus,

(
T ′

T

)

=

(
L′

L

)1− 1
2
k

. (1.86)

Here, α = L′/L is the ratio of length scales. Velocities, energies and angular momenta scale accordingly
Thus

[
v
]
=

L

T
⇒ v′

v
=

L′

L

/
T ′

T
= α

1
2
k (1.87)

and

[
E
]
=

ML2

T 2
⇒ E′

E
=

(
L′

L

)2/(T ′

T

)2

= αk (1.88)

and

[
L
]
=

ML2

T
⇒ |L′|

|L| =

(
L′

L

)2/T ′

T
= α(1+ 1

2
k) . (1.89)

As examples, consider:

(i) Harmonic Oscillator : Here k = 2 and therefore

qσ(t) −→ qσ(t;α) = α qσ(t) . (1.90)

Thus, rescaling lengths alone gives another solution.

(ii) Kepler Problem : This is gravity, for which k = −1. Thus,

r(t) −→ r(t;α) = α r
(
α−3/2 t

)
. (1.91)

Thus, r3 ∝ t2, i.e.
(
L′

L

)2

=

(
T ′

T

)2

, (1.92)

also known as Kepler’s Third Law.
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1.6 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mẍ = F (x) . (1.93)

A system is conservative if the force is derivable from a potential: F = −dU/dx. The total energy,

E = T + U = 1
2mẋ2 + U(x) , (1.94)

is then conserved. This may be verified explicitly:

dE

dt
=

d

dt

[
1
2mẋ2 + U(x)

]

=
[

mẍ+ U ′(x)
]

ẋ = 0 .

(1.95)

Conservation of energy allows us to reduce the equation of motion from second order to first order:

dx

dt
= ±

√
√
√
√

2

m

(

E − U(x)

)

. (1.96)

Note that the constant E is a constant of integration. The ± sign above depends on the direction of
motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (1.97)

where U−1 is the inverse function, are called turning points. When the total energy is E, the motion of
the system is bounded by the turning points, and confined to the region(s) U(x) ≤ E. We can integrate
eqn. 1.96 to obtain

t(x)− t(x0) = ±
√

m

2

x∫

x0

dx′
√

E − U(x′)
. (1.98)

This is to be inverted to obtain the function x(t). Note that there are now two constants of integration, E

and x0. Since

E = E0 =
1
2mv20 + U(x0) , (1.99)

we could also consider x0 and v0 as our constants of integration, writing E in terms of x0 and v0. Thus,
there are two independent constants of integration.

For motion confined between two turning points x±(E), the period of the motion is given by

T (E) =
√
2m

x+(E)∫

x−(E)

dx′
√

E − U(x′)
. (1.100)
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1.6.1 Example : harmonic oscillator

In the case of the harmonic oscillator, we have U(x) = 1
2kx

2, hence

dt

dx
= ±

√
m

2E − kx2
. (1.101)

The turning points are x±(E) = ±
√

2E/k, for E ≥ 0. To solve for the motion, let us substitute

x =

√

2E

k
sin θ . (1.102)

We then find

dt =

√
m

k
dθ , (1.103)

with solution
θ(t) = θ0 + ωt , (1.104)

where ω =
√

k/m is the harmonic oscillator frequency. Thus, the complete motion of the system is given
by

x(t) =

√

2E

k
sin(ωt+ θ0) . (1.105)

Note the two constants of integration, E and θ0.

1.6.2 One-dimensional mechanics as a dynamical system

Rather than writing the equation of motion as a single second order ODE, we can instead write it as two
coupled first order ODEs, viz.

dx

dt
= v

dv

dt
=

1

m
F (x) .

(1.106)

This may be written in matrix-vector form, as

d

dt

(
x
v

)

=

(
v

1
m F (x)

)

. (1.107)

This is an example of a dynamical system, described by the general form

dϕ

dt
= V (ϕ) , (1.108)

where ϕ = (ϕ1, . . . , ϕN ) is an N -dimensional vector in phase space. For the model of eqn. 1.107, we
evidently have N = 2. The object V (ϕ) is called a vector field. It is itself a vector, existing at every point
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in phase space, RN . Each of the components of V (ϕ) is a function (in general) of all the components of
ϕ:

Vj = Vj(ϕ1, . . . , ϕN ) (j = 1, . . . , N) . (1.109)

Solutions to the equation ϕ̇ = V (ϕ) are called integral curves. Each such integral curve ϕ(t) is uniquely
determined by N constants of integration, which may be taken to be the initial valueϕ(0). The collection
of all integral curves is known as the phase portrait of the dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve for its motion, starting from
arbitrary initial conditions. In general this is a difficult problem, which can only be treated numeri-
cally. But for conservative mechanical systems in d = 1, it is a trivial matter! The reason is that energy
conservation completely determines the phase portraits. The velocity becomes a unique double-valued

function of position, v(x) = ±
√

2
m

(
E − U(x)

)
. The phase curves are thus curves of constant energy.

1.6.3 Sketching phase curves

To plot the phase curves,

(i) Sketch the potential U(x).

(ii) Below this plot, sketch v(x;E) = ±
√

2
m

(
E − U(x)

)
.

(iii) When E lies at a local extremum of U(x), the system is at a fixed point.

(a) For E slightly above Emin, the phase curves are ellipses.

(b) For E slightly below Emax, the phase curves are (locally) hyperbolae.

(c) For E = Emax the phase curve is called a separatrix.

(iv) When E > U(∞) or E > U(−∞), the motion is unbounded.

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T (E) has a simple geometric interpretation. The area A in phase space enclosed
by a bounded phase curve is

A(E) =

∮

E

v dx =
√

8
m

x+(E)∫

x−(E)

dx′
√

E − U(x′) . (1.110)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (1.111)
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Figure 1.2: A potential U(x) and the corresponding phase portraits (with separatrices in red).

1.6.4 Fixed points and their vicinity

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. Taylor’s theorem then allows us
to expand U(x) in the vicinity of x∗:

U(x) = U(x∗) + U ′(x∗) (x− x∗) + 1
2U

′′(x∗) (x− x∗)2 + 1
6U

′′′(x∗) (x− x∗)3 + . . . . (1.112)

Since U ′(x∗) = 0 the linear term in δx = x − x∗ vanishes. If δx is sufficiently small, we can ignore the
cubic, quartic, and higher order terms, leaving us with

U(δx) ≈ U0 +
1
2k(δx)

2 , (1.113)

where U0 = U(x∗) and k = U ′′(x∗) > 0. The solutions to the motion in this potential are:

U ′′(x∗) > 0 : δx(t) = δx0 cos(ωt) +
δv0
ω

sin(ωt)

U ′′(x∗) < 0 : δx(t) = δx0 cosh(γt) +
δv0
γ

sinh(γt) ,

(1.114)

where ω =
√

k/m for k > 0 and γ =
√

−k/m for k < 0. The energy is

E = U0 +
1
2m (δv0)

2 + 1
2k (δx0)

2 . (1.115)
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For a separatrix, we have E = U0 and U ′′(x∗) < 0. From the equation for the energy, we obtain δv0 =

±γ δx0. Let’s take δv0 = −γ δx0, so that the initial velocity is directed toward the unstable fixed point

(UFP). I.e. the initial velocity is negative if we are to the right of the UFP (δx0 > 0) and positive if we are

to the left of the UFP (δx0 < 0). The motion of the system is then

δx(t) = δx0 exp(−γt) . (1.116)

The particle gets closer and closer to the unstable fixed point at δx = 0, but it takes an infinite amount of

time to actually get there. Put another way, the time it takes to get from δx0 to a closer point δx < δx0 is

t = γ−1 ln

(
δx0
δx

)

. (1.117)

This diverges logarithmically as δx → 0. Generically, then, the period of motion along a separatrix is infinite.

1.6.5 Linearized dynamics in the vicinity of a fixed point

Linearizing in the vicinity of such a fixed point, we write δx = x− x∗ and δv = v − v∗, obtaining

d

dt

(
δx
δv

)

=

(
0 1

− 1
m U ′′(x∗) 0

)(
δx
δv

)

+ . . . , (1.118)

This is a linear equation, which we can solve completely.

Consider the general linear equation ϕ̇ = Aϕ, where A is a fixed real matrix. Now whenever we have
a problem involving matrices, we should start thinking about eigenvalues and eigenvectors. Invariably,
the eigenvalues and eigenvectors will prove to be useful, if not essential, in solving the problem. The
eigenvalue equation is

Aψα = λαψα . (1.119)

Here ψα is the αth right eigenvector2 of A. The eigenvalues are roots of the characteristic equation P (λ) =
0, where P (λ) = det(λ · I−A). Let’s expand ϕ(t) in terms of the right eigenvectors of A:

ϕ(t) =
∑

α

Cα(t)ψα . (1.120)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its eigenvectors span RN ,

the dynamical system can be written as a set of decoupled first order ODEs for the coefficients Cα(t):

Ċα = λαCα , (1.121)

with solutions
Cα(t) = Cα(0) exp(λαt) . (1.122)

If Re (λα) > 0, Cα(t) flows off to infinity, while if Re (λα) > 0, Cα(t) flows to zero. If |λα| = 1, then Cα(t)

oscillates with frequency Im (λα).

2If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right and left eigenvectors differ,
although the set of corresponding eigenvalues is the same.



22 CHAPTER 1. ELEMENTARY MECHANICS

Figure 1.3: Phase curves in the vicinity of centers and saddles.

For a two-dimensional matrix, it is easy to show – an exercise for the reader – that

P (λ) = λ2 − Tλ+D , (1.123)

where T = Tr(A) and D = det(A). The eigenvalues are then

λ± = 1
2T ± 1

2

√

T 2 − 4D . (1.124)

We’ll study the general case in Physics 110B. For now, we focus on our conservative mechanical system
of eqn. 1.118. The trace and determinant of the above matrix are T = 0 and D = 1

m U ′′(x∗). Thus, there
are only two (generic) possibilities: centers, when U ′′(x∗) > 0, and saddles, when U ′′(x∗) < 0. Examples
of each are shown in fig. 1.2.

1.7 Appendix: Examples of Conservative One-Dimensional Systems

1.7.1 Harmonic oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy is U(x) = 1
2kx

2. The
equation of motion is

m
d2x

dt2
= −dU

dx
= −kx , (1.125)

where m is the mass and k the force constant (of a spring). With v = ẋ, this may be written as the N = 2
system,

d

dt

(
x
v

)

=

(
0 1

−ω2 0

)(
x
v

)

=

(
v

−ω2 x

)

, (1.126)



1.7. APPENDIX: EXAMPLES OF CONSERVATIVE ONE-DIMENSIONAL SYSTEMS 23

Figure 1.4: Phase curves for the harmonic oscillator.

where ω =
√

k/m has the dimensions of frequency (inverse time). The solution is well known:

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt)

v(t) = v0 cos(ωt)− ω x0 sin(ωt) .
(1.127)

The phase curves are ellipses:

ω0 x
2(t) + ω−1

0 v2(t) = C , (1.128)

where C is a constant, independent of time. A sketch of the phase curves and of the phase flow is shown
in fig. 1.4. Note that the x and v axes have different dimensions.

Energy is conserved:

E = 1
2mv2 + 1

2kx
2 . (1.129)

Therefore we may find the length of the semimajor and semiminor axes by setting v = 0 or x = 0, which
gives

xmax =

√

2E

k
, vmax =

√

2E

m
. (1.130)

The area of the elliptical phase curves is thus

A(E) = π xmax vmax =
2πE√
mk

. (1.131)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π

√
m

k
, (1.132)

which is independent of E.
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1.7.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of
length ℓ. The potential is U(θ) = −mgℓ cos θ, hence

mℓ2 θ̈ = −dU

dθ
= −mgℓ sin θ . (1.133)

This is equivalent to

d

dt

(
θ
ω

)

=

(
ω

−ω2
0 sin θ

)

, (1.134)

where ω = θ̇ is the angular velocity, and where ω0 =
√

g/ℓ is the natural frequency of small oscillations.

The conserved energy is

E = 1
2 mℓ2 θ̇2 + U(θ) . (1.135)

Assuming the pendulum is released from rest at θ = θ0,

2E

mℓ2
= θ̇2 − 2ω2

0 cos θ = −2ω2
0 cos θ0 . (1.136)

The period for motion of amplitude θ0 is then

T
(
θ0
)
=

√
8

ω0

θ0∫

0

dθ√
cos θ − cos θ0

=
4

ω0
K
(
sin2 1

2θ0
)

, (1.137)

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we have

T
(
θ0
)
=

2π

ω0

{

1 + 1
4 sin2

(
1
2θ0
)
+ 9

64 sin4
(
1
2θ0
)
+ . . .

}

. (1.138)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized equation θ̈ = −ω2
0 θ.

As θ0 → π
2 , the period diverges logarithmically.

The phase curves for the pendulum are shown in fig. 1.5. The small oscillations of the pendulum are
essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation,
sin θ ≈ θ, and the pendulum equations of motion are exactly those of the harmonic oscillator. These
oscillations are called librations. They involve a back-and-forth motion in real space, and the phase
space motion is contractable to a point, in the topological sense. However, if the initial angular velocity
is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In
this case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see in a later
lecture, the total energy is sufficiently large. The phase curve which separates these two topologically
distinct motions is called a separatrix.
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Figure 1.5: Phase curves for the simple pendulum. The separatrix divides phase space into regions of
rotation and libration.

1.7.3 Other potentials

Using the phase plotter application written by Ben Schmidel, available on the Physics 110A course web
page, it is possible to explore the phase curves for a wide variety of potentials. Three examples are
shown in the following pages. The first is the effective potential for the Kepler problem,

Ueff(r) = −k

r
+

ℓ2

2µr2
, (1.139)

about which we shall have much more to say when we study central forces. Here r is the separation

between two gravitating bodies of masses m1,2, µ = m1m2/(m1 + m2) is the ‘reduced mass’, and k =

Gm1m2, where G is the Cavendish constant. We can then write

Ueff(r) = U0

{

− 1

x
+

1

2x2

}

, (1.140)

where r0 = ℓ2/µk has the dimensions of length, and x ≡ r/r0, and where U0 = k/r0 = µk2/ℓ2. Thus,

if distances are measured in units of r0 and the potential in units of U0, the potential may be written in
dimensionless form as U(x) = − 1

x + 1
2x2 .

The second is the hyperbolic secant potential,

U(x) = −U0 sech
2(x/a) , (1.141)
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Figure 1.6: Phase curves for the Kepler effective potential U(x) = −x−1 + 1
2x

−2.

which, in dimensionless form, is U(x) = −sech2(x), after measuring distances in units of a and potential

in units of U0.
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Figure 1.7: Phase curves for the potential U(x) = −sech2(x).

The final example is

U(x) = U0

{

cos
(x

a

)

+
x

2a

}

. (1.142)
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Figure 1.8: Phase curves for the potential U(x) = cos(x) + 1
2x.

Again measuring x in units of a and U in units of U0, we arrive at U(x) = cos(x) + 1
2x.
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1.8 Appendix: Curvilinear Orthogonal Coordinates

The standard cartesian coordinates are {x1, . . . , xd}, where d is the dimension of space. Consider a dif-

ferent set of coordinates, {q1, . . . , qd}, which are related to the original coordinates xµ via the d equations

qµ = qµ
(
x1, . . . , xd

)
. (1.143)

In general these are nonlinear equations.

Let ê0i = x̂i be the Cartesian set of orthonormal unit vectors, and define êµ to be the unit vector perpen-

dicular to the surface dqµ = 0. A differential change in position can now be described in both coordinate
systems:

ds =

d∑

i=1

ê0i dxi =

d∑

µ=1

êµ hµ(q) dqµ , (1.144)

where each hµ(q) is an as yet unknown function of all the components qν . Finding the coefficient of dqµ
then gives

hµ(q) êµ =

d∑

i=1

∂xi
∂qµ

ê0i ⇒ êµ =

d∑

i=1

Mµ i ê
0
i , (1.145)

where

Mµi(q) =
1

hµ(q)

∂xi
∂qµ

. (1.146)

The dot product of unit vectors in the new coordinate system is then

êµ · êν =
(
MM t

)

µν
=

1

hµ(q)hν(q)

d∑

i=1

∂xi
∂qµ

∂xi
∂qν

. (1.147)

The condition that the new basis be orthonormal is then

d∑

i=1

∂xi
∂qµ

∂xi
∂qν

= h2µ(q) δµν . (1.148)

This gives us the relation

hµ(q) =

√
√
√
√

d∑

i=1

(
∂xi
∂qµ

)2

. (1.149)

Note that

(ds)2 =

d∑

µ=1

h2µ(q) (dqµ)
2 . (1.150)

For general coordinate systems, which are not necessarily orthogonal, we have

(ds)2 =

d∑

µ,ν=1

gµν(q) dqµ dqν , (1.151)

where gµν(q) is a real, symmetric, positive definite matrix called the metric tensor.
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Figure 1.9: Volume element Ω for computing divergences.

1.8.1 Example : spherical coordinates

Consider spherical coordinates (ρ, θ, φ):

x = ρ sin θ cosφ , y = ρ sin θ sinφ , z = ρ cos θ . (1.152)

It is now a simple matter to derive the results

h2ρ = 1 , h2θ = ρ2 , h2φ = ρ2 sin2θ . (1.153)

Thus,
ds = ρ̂ dρ+ ρ θ̂ dθ + ρ sin θ φ̂ dφ . (1.154)

1.8.2 Vector calculus : grad, div, curl

Here we restrict our attention to d = 3. The gradient ∇U of a function U(q) is defined by

dU =
∂U

∂q1
dq1 +

∂U

∂q2
dq2 +

∂U

∂q3
dq3

≡ ∇U · ds . (1.155)

Thus,

∇ =
ê1

h1(q)

∂

∂q1
+

ê2

h2(q)

∂

∂q2
+

ê3

h3(q)

∂

∂q3
. (1.156)

For the divergence, we use the divergence theorem, and we appeal to fig. 1.9:
∫

Ω

dV ∇ ·A =

∫

∂Ω

dS n̂ ·A , (1.157)
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where Ω is a region of three-dimensional space and ∂Ω is its closed two-dimensional boundary. The
LHS of this equation is

LHS = ∇ ·A · (h1 dq1) (h2 dq2) (h3 dq3) . (1.158)

The RHS is

RHS = A1 h2 h3

∣
∣
∣

q1+dq1

q1

dq2 dq3 +A2 h1 h3

∣
∣
∣

q2+dq2

q2

dq1 dq3 +A3 h1 h2

∣
∣
∣

q1+dq3

q3

dq1 dq2

=

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)
]

dq1 dq2 dq3 .

(1.159)

We therefore conclude

∇ ·A =
1

h1 h2 h3

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)
]

. (1.160)

To obtain the curl ∇×A, we use Stokes’ theorem again,
∫

Σ

dS n̂ ·∇×A =

∮

∂Σ

dℓ ·A , (1.161)

where Σ is a two-dimensional region of space and ∂Σ is its one-dimensional boundary. Now consider a

differential surface element satisfying dq1 = 0, i.e. a rectangle of side lengths h2 dq2 and h3 dq3. The LHS
of the above equation is

LHS = ê1 ·∇×A (h2 dq2) (h3 dq3) . (1.162)

The RHS is

RHS = A3 h3

∣
∣
∣

q2+dq2

q2

dq3 −A2 h2

∣
∣
∣

q3+dq3

q3

dq2

=

[
∂

∂q2

(
A3 h3

)
− ∂

∂q3

(
A2 h2

)
]

dq2 dq3 .

(1.163)

Therefore

(∇×A)1 =
1

h2 h3

(
∂(h3 A3)

∂q2
− ∂(h2 A2)

∂q3

)

. (1.164)

This is one component of the full result

∇×A =
1

h1 h2 h3
det






h1 ê1 h2 ê2 h3 ê3
∂
∂q1

∂
∂q2

∂
∂q3

h1 A1 h2 A2 h3 A3




 . (1.165)

The Laplacian of a scalar function U is given by

∇2U = ∇ ·∇U

=
1

h1 h2 h3

{

∂

∂q1

(
h2 h3
h1

∂U

∂q1

)

+
∂

∂q2

(
h1 h3
h2

∂U

∂q2

)

+
∂

∂q3

(
h1 h2
h3

∂U

∂q3

)}

.
(1.166)
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Rectangular coordinates

In rectangular coordinates (x, y, z), we have

hx = hy = hz = 1 . (1.167)

Thus
ds = x̂ dx+ ŷ dy + ẑ dz (1.168)

and the velocity squared is
ṡ2 = ẋ2 + ẏ2 + ż2 . (1.169)

The gradient is

∇U = x̂
∂U

∂x
+ ŷ

∂U

∂y
+ ẑ

∂U

∂z
. (1.170)

The divergence is

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (1.171)

The curl is

∇×A =

(
∂Az

∂y
− ∂Ay

∂z

)

x̂+

(
∂Ax

∂z
− ∂Az

∂x

)

ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)

ẑ . (1.172)

The Laplacian is

∇2U =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
. (1.173)

Cylindrical coordinates

In cylindrical coordinates (ρ, φ, z), we have

ρ̂ = x̂ cosφ+ ŷ sinφ , x̂ = ρ̂ cosφ− φ̂ sinφ , dρ̂ = φ̂ dφ (1.174)

and
φ̂ = −x̂ sinφ+ ŷ cosφ , ŷ = ρ̂ sinφ+ φ̂ cosφ , dφ̂ = −ρ̂ dφ . (1.175)

The metric is given in terms of

hρ = 1 , hφ = ρ , hz = 1 . (1.176)

Thus
ds = ρ̂ dρ+ φ̂ ρ dφ+ ẑ dz (1.177)

and the velocity squared is
ṡ2 = ρ̇2 + ρ2φ̇2 + ż2 . (1.178)

The gradient is

∇U = ρ̂
∂U

∂ρ
+
φ̂

ρ

∂U

∂φ
+ ẑ

∂U

∂z
. (1.179)
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The divergence is

∇ ·A =
1

ρ

∂(ρAρ)

∂ρ
+

1

ρ

∂Aφ

∂φ
+

∂Az

∂z
. (1.180)

The curl is

∇×A =

(
1

ρ

∂Az

∂φ
− ∂Aφ

∂z

)

ρ̂+

(
∂Aρ

∂z
− ∂Az

∂ρ

)

φ̂+

(
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ

∂φ

)

ẑ . (1.181)

The Laplacian is

∇2U =
1

ρ

∂

∂ρ

(

ρ
∂U

∂ρ

)

+
1

ρ2
∂2U

∂φ2
+

∂2U

∂z2
. (1.182)

Spherical coordinates

In spherical coordinates (r, θ, φ), we have

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ sin θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ cos θ
φ̂ = −x̂ sinφ+ ŷ cosφ ,

(1.183)

for which

r̂ × θ̂ = φ̂ , θ̂ × φ̂ = r̂ , φ̂× r̂ = θ̂ . (1.184)

The inverse is

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ .

(1.185)

The differential relations are

dr̂ = θ̂ dθ + sin θ φ̂ dφ

dθ̂ = −r̂ dθ + cos θ φ̂ dφ

dφ̂ = −
(
sin θ r̂ + cos θ θ̂

)
dφ

(1.186)

The metric is given in terms of

hr = 1 , hθ = r , hφ = r sin θ . (1.187)

Thus

ds = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ (1.188)

and the velocity squared is

ṡ2 = ṙ2 + r2θ̇2 + r2 sin2θ φ̇2 . (1.189)
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The gradient is

∇U = r̂
∂U

∂r
+
θ̂

r

∂U

∂θ
+

φ̂

r sin θ

∂U

∂φ
. (1.190)

The divergence is

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θ Aθ)

∂θ
+

1

r sin θ

∂Aφ

∂φ
. (1.191)

The curl is

∇×A =
1

r sin θ

(
∂(sin θ Aφ)

∂θ
− ∂Aθ

∂φ

)

r̂ +
1

r

(
1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

)

θ̂

+
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)

φ̂ .

(1.192)

The Laplacian is

∇2U =
1

r2
∂

∂r

(

r2
∂U

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂U

∂θ

)

+
1

r2 sin2θ

∂2U

∂φ2
. (1.193)

Kinetic energy

Note the form of the kinetic energy of a point particle:

T = 1
2m

(
ds

dt

)2

= 1
2m
(
ẋ2 + ẏ2 + ż2

)
(3D Cartesian) (1.194)

= 1
2m
(
ρ̇2 + ρ2φ̇2

)
(2D polar)

= 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
(3D cylindrical)

= 1
2m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
(3D polar) .
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