[1] Consider a planar pendulum consisting of a point mass m at the end of a massless rigid rod of length ℓ. Treat the problem using 2D polar coordinates (r, ϕ) along with the constraint $r = \ell$.

(a) What are the equations of motion?

(b) Identify all conserved quantities.

(c) Suppose the pendulum is released from rest from an angle ϕ_0. Find the force of constraint, i.e. the tension in the rod, as a function of the angular position ϕ.

SOLUTION :

(a) The Lagrangian is

$$ L = \frac{1}{2} m (\ddot{r}^2 + r^2 \dot{\phi}^2) + mgr \cos \phi $$

and the constraint is $G(r, \phi) = r - \ell = 0$. The equations of motion are

$$ m \ddot{r} = mr \dot{\phi}^2 + mg \cos \phi + \lambda $$

$$ mr^2 \ddot{\phi} + 2mr \dot{r} \dot{\phi} = -mgr \sin \phi. $$

(b) The only conserved quantity is the total energy $E = T + U$. Implementing the constraint, this says

$$ E = \frac{1}{2} m \dot{\phi}^2 - m g \ell \cos \phi. $$

With initial conditions $\phi(0) = \phi_0$ and $\dot{\phi}(0) = 0$, we have $E = -mg \ell \cos \phi_0$.

(c) The tension is $T = -\lambda$, hence

$$ T = m \ell \dot{\phi}^2 + mg \cos \phi $$

$$ = (3 \cos \phi - 2 \cos \phi_0) mg. $$
A mass m moves frictionlessly under the influence of gravity along the curve $y = x^2/2a$. Attached to the mass is a massless rigid rod of length ℓ, at the end of which is an identical mass m. The rod is constrained to swing in the (x, y) plane, as depicted in the figure below.

(a) Choose as generalized coordinates x and ϕ. Find the kinetic energy T and potential energy U.

(b) For small oscillations, find the T and V matrices. It may be convenient to define $\Omega_1 \equiv \sqrt{g/a}$ and $\Omega_2 \equiv \sqrt{g/\ell}$.

(c) Find the eigenfrequencies of the normal modes of oscillation.

(d) Suppose $\Omega_1 = \sqrt{3}\Omega_0$ and $\Omega_2 = 2\Omega_0$, where Ω_0 has dimensions of frequency. Find the modal matrix.

SOLUTION:

(a) The coordinates of the mass on the curve are $(x_1, y_1) = (x, x^2/2a)$. Note $\dot{y} = (x/a) \dot{x}$. The coordinates for the hanging mass are $(x_2, y_2) = (x + \ell \sin \phi, x^2/2a - \ell \cos \phi)$. The kinetic energy is

$$
T = \frac{1}{2} m (\dot{x}_1^2 + \dot{y}_1^2 + \dot{x}_2^2 + \dot{y}_2^2) \\
= m \left(1 + \frac{a^2}{x^2} \right) x^2 + \frac{1}{2} m \ell^2 \dot{\phi}^2 + m \ell \left(\cos \phi + \frac{x}{a} \sin \phi \right) \dot{x} \dot{\phi}
$$

The potential energy is

$$
U = mg(y_1 + y_2) = \frac{mg}{a} x^2 - mgl \cos \phi
$$

(b) Equilibrium occurs for $x = \phi = 0$, hence

$$
T_{\sigma\sigma'} = \left. \frac{\partial^2 T}{\partial \dot{q}_\sigma \partial \dot{q}_{\sigma'}} \right|_{\dot{q}} = \begin{pmatrix} 2m & m\ell \\ m\ell & m\ell^2 \end{pmatrix}
$$
and

\[V_{\sigma\sigma'} = \left. \frac{\partial^2 T}{\partial q_\sigma \partial q_{\sigma'}} \right|_q = \begin{pmatrix} 2m\Omega^2_1 & 0 \\ 0 & ml^2\Omega^2_2 \end{pmatrix} . \]

(c) We set \(P(\omega^2) = \det(\omega^2 T - V) = 0 \), with

\[\omega^2 T - V = \begin{pmatrix} 2m(\omega^2 - \Omega^2_1) \\ ml\omega^2 \\ ml(\omega^2 - \Omega^2_2) \end{pmatrix} \]

Thus,

\[P(\omega^2) = m^2 l^2 \left\{ \omega^4 - 2(\Omega^2_1 + \Omega^2_2)\omega^2 + 2\Omega^2_1\Omega^2_2 \right\} . \]

Solving the quadratic equation, we have the two normal mode frequencies

\[\omega^2_{\pm} = \Omega^2_1 + \Omega^2_2 \pm \sqrt{\Omega^4_1 + \Omega^4_2} . \]

(d) With \(\Omega_1 = \sqrt{3} \Omega_0 \) and \(\Omega_2 = 2\Omega_0 \), we have \(\omega^2_+ = 12\Omega^2_0 \) and \(\omega^2_- = 2\Omega^2_0 \). We then solve for the eigenvectors using \((\omega^2_i T - V)_{\sigma\sigma'} A_{\sigma' i} = 0 \). From the form of \(\omega^2 T - V \), we see that

\[A_{2,i} = \frac{\ell^{-1}\omega^2_i}{\Omega^2_2 - \omega^2_i} A_{1,i} \]

and imposing the normalization \(A^T A = I \), we have

\[A = \frac{1}{\sqrt{5m}} \begin{pmatrix} -3\ell^{-1} & 1 \\ 2 & \ell^{-1} \end{pmatrix} . \]