University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 7

Announcements

• The 130B web site is:

http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week we're going to discuss scattering problems and the Born approximation.

Problems

The basic set-up of scattering is to suppose you have some incoming state $|\psi_0\rangle$ which a planewave/free particle which then interacts with a potential V to produce a scattered state $|\psi_s\rangle$. You want construct the solution to the full Hamiltonian so that in the limit of $V \to 0$ you recover a state with the same energy.

To start you have $(E - H_0) |\psi_0\rangle = 0$ where $H_0 = \frac{k^2}{2m}$ and $\langle x | \psi_0 \rangle = \frac{1}{\sqrt{2\pi}} e^{\mathbf{i} \mathbf{k} \cdot \mathbf{x}}$

We must solve $(E - H_0 - V)|\psi\rangle = 0$ where for each energy E there's a different incoming and outgoing state. Define $|\psi_s\rangle = |\psi\rangle - |\psi_0\rangle$ and plug in: $(E - H_0)|\psi_s\rangle = V|\psi\rangle$

One can 'solve' for $|\psi_s\rangle$ by defining the formal inverse $(E - H_0)^{-1}$ and then construct the full solution as:

$$|\psi\rangle = |\psi_s\rangle + |\psi_0\rangle = \frac{V}{(E - H_0)}|\psi\rangle + |\psi_0\rangle \tag{1}$$

This formal inverse is called a 'Green's function'. You'll note however that this expression is singular when the eigenvalue of H_0 is E so we can redefine things with an infinitesimal correction:

$$G_0(E) = \lim_{\epsilon \to 0} (E - H_0 + \mathbf{i}\epsilon)^{-1}$$
(2)

Just as in our discussion of time-dependent perturbation theory, you can recursively substitute expression 1 into itself to generate an expansion in V. This is the Born series:

$$|\psi\rangle = (\mathbb{1} + G_0 V + G_0 V G_0 V + \cdots) |\psi_0\rangle$$
(3)

OK! So now you should ask, how can I actually calculate G_0 ? Answer: Multiply by 1

$$G_0 = G_0 \mathbb{1} = \sum_{E'} G_0 |E'\rangle \langle E'| = \sum_{E'} \frac{|E'\rangle \langle E'|}{E - E' + \mathbf{i}\epsilon}$$
(4)

The sum is schematic and we're sliding over difficulties like the continuum, degeneracy, and boundstates but it is correct. We've reduced the problem to some sum/integral.

1. Simplest Case

Consider a one dimensional particle incident on a potential $V(x) = V_0 \delta(x - x_0)$

- (a) Construct $G_0(x, x') \equiv \langle x | G_0 | x' \rangle$ for a free particle of $E = \frac{k^2}{2m}$ using 4 For this choice of potential we needn't resort to perturbation theory.
- (b) Using 1 write a form of $\psi(x) = \langle x | \psi \rangle$ in terms of $G_0(x, x_0)$ Hint: Write $\psi(x_0)$ in terms of $G_0(x_0, x_0)$
- (c) Using the form of G_0 you derived in part (a) express $\psi(x)$ directly in terms of k
- (d) Solve for the transmission probability $|\psi(x \to \infty)|^2$