University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 7

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to discuss scattering problems and the Born approximation.

Problems

The basic set-up of scattering is to suppose you have some incoming state $\left|\psi_{0}\right\rangle$ which a planewave/free particle which then interacts with a potential V to produce a scattered state $\left|\psi_{s}\right\rangle$. You want construct the solution to the full Hamiltonian so that in the limit of $V \rightarrow 0$ you recover a state with the same energy.

To start you have $\left(E-H_{0}\right)\left|\psi_{0}\right\rangle=0$ where $H_{0}=\frac{k^{2}}{2 m}$ and $\left\langle x \mid \psi_{0}\right\rangle=\frac{1}{\sqrt{2 \pi}} e^{\mathbf{i} k \cdot x}$
We must solve $\left(E-H_{0}-V\right)|\psi\rangle=0$ where for each energy E there's a different incoming and outgoing state. Define $\left|\psi_{s}\right\rangle=|\psi\rangle-\left|\psi_{0}\right\rangle$ and plug in: $\left(E-H_{0}\right)\left|\psi_{s}\right\rangle=V|\psi\rangle$

One can 'solve' for $\left|\psi_{s}\right\rangle$ by defining the formal inverse $\left(E-H_{0}\right)^{-1}$ and then construct the full solution as:

$$
\begin{equation*}
|\psi\rangle=\left|\psi_{s}\right\rangle+\left|\psi_{0}\right\rangle=\frac{V}{\left(E-H_{0}\right)}|\psi\rangle+\left|\psi_{0}\right\rangle \tag{1}
\end{equation*}
$$

This formal inverse is called a 'Green's function'. You'll note however that this expression is singular when the eigenvalue of H_{0} is E so we can redefine things with an infinitesimal correction:

$$
\begin{equation*}
G_{0}(E)=\lim _{\epsilon \rightarrow 0}\left(E-H_{0}+\mathbf{i} \epsilon\right)^{-1} \tag{2}
\end{equation*}
$$

Just as in our discussion of time-dependent perturbation theory, you can recursively substitute expression 1 into itself to generate an expansion in V. This is the Born series:

$$
\begin{equation*}
|\psi\rangle=\left(\mathbb{1}+G_{0} V+G_{0} V G_{0} V+\cdots\right)\left|\psi_{0}\right\rangle \tag{3}
\end{equation*}
$$

OK! So now you should ask, how can I actually calculate G_{0} ? Answer: Multiply by $\mathbb{1}$

$$
\begin{equation*}
G_{0}=G_{0} \mathbb{\|}=\sum_{E^{\prime}} G_{0}\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|=\sum_{E^{\prime}} \frac{\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|}{E-E^{\prime}+\mathbf{i} \epsilon} \tag{4}
\end{equation*}
$$

The sum is schematic and we're sliding over difficulties like the continuum, degeneracy, and boundstates but it is correct. We've reduced the problem to some sum/integral.

1. Simplest Case

Consider a one dimensional particle incident on a potential $V(x)=V_{0} \delta\left(x-x_{0}\right)$
(a) Construct $G_{0}\left(x, x^{\prime}\right) \equiv\langle x| G_{0}\left|x^{\prime}\right\rangle$ for a free particle of $E=\frac{k^{2}}{2 m}$ using 4 For this choice of potential we needn't resort to perturbation theory.
(b) Using 1 write a form of $\psi(x)=\langle x \mid \psi\rangle$ in terms of $G_{0}\left(x, x_{0}\right)$

Hint: Write $\psi\left(x_{0}\right)$ in terms of $G_{0}\left(x_{0}, x_{0}\right)$
(c) Using the form of G_{0} you derived in part (a) express $\psi(x)$ directly in terms of k
(d) Solve for the transmission probability $|\psi(x \rightarrow \infty)|^{2}$

