University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 6 – Solutions

Announcements

• The 130B web site is:

http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week we're going to kick the harmonic oscillator and talk about spontaneous emission.

Problems

1. Give it a Kick

Consider the D = 1 simple harmonic oscillator in it's groundstate. Suppose something kicks the system imparting an additional momentum p_0 . What's the probability the system remains in the ground state?

(a) What's the new Hamiltonian for the system? Express this in terms of the usual ladder operators \hat{a} and \hat{a}^{\dagger}

 $H_{new} = \frac{(p+p_0)^2}{2m} + \frac{1}{2}m\omega^2 x^2 = H_{old} + \frac{p}{m} \frac{p_0}{2m} + \frac{p_0^2}{2m} = \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) + \mathbf{i}\frac{p_0}{m}\sqrt{\frac{m\omega}{2}}(\hat{a}^{\dagger} - \hat{a}) + \frac{p_0^2}{2m}$

- (b) Define a new operator $\hat{A} \equiv \hat{a} \beta$ where $\beta \equiv \frac{1}{i\omega} \frac{p_0}{m} \sqrt{\frac{m\omega}{2}}$. Show that the \hat{A} are ladder operators: $[\hat{A}, \hat{A}^{\dagger}] = 1$ This follows immediately from $[\hat{a}, \hat{a}^{\dagger}] = 1$ and that β is a constant.
- (c) Rewrite the new Hamiltonian in terms of these operators, what do you find? $H_{new} = \omega(\hat{A}^{\dagger}\hat{A} + \frac{1}{2})$
- (d) Relate the original groundstate $|0\rangle$ to the new groundstate $|\beta\rangle$ Since the new Hamiltonian is another harmonic oscillator it must be that: $\hat{A}|\beta\rangle = 0 = (\hat{a} - \beta)|\beta\rangle$ or in other words $\hat{a}|\beta\rangle = \beta|\beta\rangle$ this is a *coherent* state.
- (e) Using $|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle$ compute $P = |\langle 0|\beta\rangle|^2$ Hint: Insert identity and use the relation above. $|\beta\rangle = 1 |\beta\rangle = \sum_n |n\rangle \langle n|\beta\rangle = \sum_n |n\rangle \langle 0| \frac{(\hat{a})^n}{\sqrt{n!}} |\beta\rangle = (\sum_n \frac{\beta^n}{\sqrt{n!}} |n\rangle) \langle 0|\beta\rangle$

Knowing this consider $\langle \beta | \beta \rangle = 1 = (\sum_{n} \frac{(|\beta|^2)^n}{n!} \langle n | n \rangle) |\langle 0 | \beta \rangle|^2 = e^{|\beta|^2} |\langle 0 | \beta \rangle|^2$ Therefore: $|\langle 0 | \beta \rangle|^2 = e^{-|\beta|^2}$

2. Multipole transitions

Consider an electric field of the form:

$$\vec{E}(r,t) = E_0(\cos\omega t + (k \cdot r)\sin\omega t)\hat{n}$$
(1)

which is coupling to a particle of charge q. Recall from lecture that the interaction Hamiltonian is: $H' = -qE(r,t)\hat{n} \cdot r$ and that the spatially independent term produces a spontaneous decay rate of:

$$R_{f \to i} = \frac{\omega^3 q^2 |\langle f|(\hat{n} \cdot r)|i\rangle}{\pi \epsilon_0 \hbar c^3} \tag{2}$$

- (a) Write the expression analogous to 2 for the spatially varying piece Everything is the same except the matrix element gives you $R_{f\to i} = \frac{\omega^3 q^2 |\langle f|(\hat{n}\cdot r)(k\cdot r)|i\rangle|^2}{\pi\epsilon_0 \hbar c}$ If you then pull out $|k| = \frac{\omega}{c}$ you then find $R \propto \frac{\omega^5}{c^5}$
- (b) Consider this problem where the particle is in a D = 1 oscillator potential with frequency Ω . Calculate the transition rate from n to n-2; don't calculate the averaging over \hat{n} or \hat{k}

Choose the oscillator in the \hat{x} -direction so that $\hat{n} \cdot r = x \hat{n}_x$ and $\hat{k} \cdot r = x \hat{k}_x$ One finds $R \propto |\langle n - 2|x^2|n \rangle|^2$ which $x^2 \propto (a^2 + aa^{\dagger} + a^{\dagger}a + (a^{\dagger})^2)$ and only the \hat{a}^2 term contributes