University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 6

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to kick the harmonic oscillator and talk about spontaneous emission.

Problems

1. Give it a Kick

Consider the $D=1$ simple harmonic oscillator in its groundstate. Suppose something kicks the system imparting an additional momentum p_{0}. What's the probability the system remains in the ground state?
(a) What's the new Hamiltonian for the system? Express this in terms of the usual ladder operators \hat{a} and \hat{a}^{\dagger}
(b) Define a new operator $\hat{A} \equiv \hat{a}-\beta$ where $\beta \equiv \frac{1}{\mathrm{i} \omega} \frac{p_{0}}{m} \sqrt{\frac{m \omega}{2}}$. Show that the \hat{A} are ladder operators: $\left[\hat{A}, \hat{A}^{\dagger}\right]=1$
(c) Rewrite the new Hamiltonian in terms of these operators, what do you find?
(d) Relate the original groundstate $|0\rangle$ to the new groundstate $|\beta\rangle$
(e) Using $|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle$ compute $P=|\langle 0 \mid \beta\rangle|^{2}$

Hint: Insert identity and use the relation above.

2. Multipole transitions

Consider an electric field of the form:

$$
\begin{equation*}
\vec{E}(r, t)=E_{0}(\cos \omega t+(k \cdot r) \sin \omega t) \hat{n} \tag{1}
\end{equation*}
$$

which is coupling to a particle of charge q. Recall from lecture that the interaction Hamiltonian is: $H^{\prime}=-q E(r, t) \hat{n} \cdot r$ and that the spatially independent term produces a spontaneous decay rate of:

$$
\begin{equation*}
R_{f \rightarrow i}=\frac{\omega^{3} q^{2} \mid\langle f|(\hat{n} \cdot r)|i\rangle}{\pi \epsilon_{0} \hbar c^{3}} \tag{2}
\end{equation*}
$$

(a) Write the expression analogous to 2 for the spatially varying piece
(b) Consider this problem where the particle is in a $D=1$ oscillator potential with frequency Ω. Calculate the transition rate from n to $n-2$; don't calculate the averaging over \hat{n} or \hat{k}

