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Quantum Mechanics B (Physics 130B) Fall 2014
Worksheet 5 – Solutions

Announcements

• The 130B web site is:

http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week we’re going to add angular momentum.

Problems

1. Combine?

Consider a system of two particles, one of spin-1 and another of spin-2. Let {s1,m1; s2,m2}
denote their spins and H1 and H2 their Hilbert spaces respectively.

Suppose they interact with a Hamiltonian of the form:

H = −ε~S1 · ~S2 (1)

Let’s understand the space of states for these particles

(a) How many different spin states are allowed for particle 1? Equivalently, what is
the dimension of H1? Particle 2?

Particle 1 has s1 = 1 and thus m1 ∈ {−1, 0, 1} thus dim H1 = 3

Particle 2 has s2 = 2 and thus m2 ∈ {−2,−1, 0, 1, 2} thus dim H1 = 5

What’s the dimension of H = H1 ⊗H2 ?

dim H = 3× 5 = 15

One possible basis for H is the tensor product of the bases for H1 and H2

Denote this as:
|m1;m2〉 ≡ |s1 = 1,m1〉 ⊗ |s2 = 2,m2〉 (2)

Another possible basis is that of a combined angular momentum operator:

~S ≡ ~S1 + ~S2 (3)
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This operator allows us to analyze the Hamiltonian 1 in terms of better quantum
numbers. It also makes physical sense as the spin of the composite system.

A basis |S,M〉 associated with S2 and Sz of the combined pair is:

S2|S,M〉 = S(S + 1)|S,M〉 Sz|S,M〉 = M |S,M〉 (4)

The values of S are not independent of s1 and s2; they can be thought of as the
lengths allowed by adding independent Si vectors.

The allowed range is thus1:

|s1 − s2| ≤ S ≤ s1 + s2 (5)

The M quantum number is also directly determinable from the mi of the tensor
product states as we’ll see.

(b) Determine the number of independent |S,M〉 states. Does this match the value
for dim H obtained previously?

S = 1 =⇒ M ∈ {−1, 0, 1}
S = 2 =⇒ M ∈ {−2,−1, 0, 1, 2}
S = 3 =⇒ M ∈ {−3,−2,−1, 0, 1, 2, 3}
The number of |S,M〉 states is then 3 + 5 + 7 = 15, this is consistent.

(c) Rewrite the Hamiltonian 1 in terms of S2. What are the energies associated with
the |S,M〉 states?

H = −ε ~S1 · ~S2 where we note that S2 = S2
1 + S2

2 + 2~S1 · ~S2

ThereforeH = − ε
2
(S2−S2

1−S2
2) which we can replace the S2

i with their eigenvalues
because we’re acting on states with definite si
H = − ε

2
(S2 − s1(s1 + 1)1 − s2(s2 + 1)1) = − ε

2
(S2 − 81)

Note that the spectrum is degenerate in M

S = 1 =⇒ E = − ε
2
(2− 8) = 3ε , S = 2 =⇒ E = ε and S = 3 =⇒ E = −2ε

Now let’s derive explicit relations between the two bases we’ve constructed.

Recall that we define S± ≡ Sx ± iSy = S1,± + S2,± such that:

S±|S,M〉 =
√
S(S + 1)−M(M ± 1)|S,M ± 1〉 (6)

The highest weight state is |3, 3〉 ≡ |m1 = 1;m2 = 2〉 such that S+|3, 3〉 = 0

(d) Using the S− operator and normalization/orthogonality constraints determine the
values a, b for which:

|3, 2〉 = a|1; 1〉+ b|0; 2〉 (7)

First we note a2 + b2 = 1 by normalization. Then S−|3, 3〉 =
√

6|3, 2〉
We can also decompose S− = S1,− + S2,− to infer

√
6|3, 2〉 = (S1,− + S2,−)|1; 2〉

(S1,− + S2,−)|1; 2〉 =
√

2|0; 2〉+ 2|1; 1〉 =⇒ |3, 2〉 =
√

1
3
|0; 2〉+

√
2
3
|1; 1〉

These are known as Clebsch-Gordan coefficients

1This is the same fact as 1⊗ 2 = 1⊗ 2⊗ 3; we’re multiplying different SU(2) representations
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