University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 5

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to add angular momentum.

Problems

1. Combine?

Consider a system of two particles, one of spin-1 and another of spin-2. Let $\left\{s_{1}, m_{1} ; s_{2}, m_{2}\right\}$ denote their spins and \mathcal{H}_{1} and \mathcal{H}_{2} their Hilbert spaces respectively.
Suppose they interact with a Hamiltonian of the form:

$$
\begin{equation*}
H=-\epsilon \vec{S}_{1} \cdot \vec{S}_{2} \tag{1}
\end{equation*}
$$

Let's understand the space of states for these particles
(a) How many different spin states are allowed for particle 1? Equivalently, what is the dimension of \mathcal{H}_{1} ? Particle 2?
What's the dimension of $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$?
One possible basis for \mathcal{H} is the tensor product of the bases for \mathcal{H}_{1} and \mathcal{H}_{2}
Denote this as:

$$
\begin{equation*}
\left|m_{1} ; m_{2}\right\rangle \equiv\left|s_{1}=1, m_{1}\right\rangle \otimes\left|s_{2}=2, m_{2}\right\rangle \tag{2}
\end{equation*}
$$

Another possible basis is that of a combined angular momentum operator:

$$
\begin{equation*}
\vec{S} \equiv \vec{S}_{1}+\vec{S}_{2} \tag{3}
\end{equation*}
$$

This operator allows us to analyze the Hamiltonian 1 in terms of better quantum numbers. It also makes physical sense as the spin of the composite system.
A basis $|S, M\rangle$ associated with S^{2} and S_{z} of the combined pair is:

$$
\begin{equation*}
S^{2}|S, M\rangle=S(S+1)|S, M\rangle \quad S_{z}|S, M\rangle=M|S, M\rangle \tag{4}
\end{equation*}
$$

The values of S are not independent of s_{1} and s_{2}; they can be thought of as the lengths allowed by adding independent S_{i} vectors.
The allowed range is thus ${ }^{1}$:

$$
\begin{equation*}
\left|s_{1}-s_{2}\right| \leq S \leq s_{1}+s_{2} \tag{5}
\end{equation*}
$$

The M quantum number is also directly determinable from the m_{i} of the tensor product states as we'll see.
(b) Determine the number of independent $|S, M\rangle$ states. Does this match the value for $\operatorname{dim} \mathcal{H}$ obtained previously?
(c) Rewrite the Hamiltonian 1 in terms of S^{2}. What are the energies associated with the $|S, M\rangle$ states?
Now let's derive explicit relations between the two bases we've constructed.
Recall that we define $S_{ \pm} \equiv S_{x} \pm \mathbf{i} S_{y}=S_{1, \pm}+S_{2, \pm}$ such that:

$$
\begin{equation*}
S_{ \pm}|S, M\rangle=\sqrt{S(S+1)-M(M \pm 1)}|S, M \pm 1\rangle \tag{6}
\end{equation*}
$$

The highest weight state is $|3,3\rangle \equiv\left|m_{1}=1 ; m_{2}=2\right\rangle$ such that $S_{+}|3,3\rangle=0$
(d) Using the S_{-}operator and normalization/orthogonality constraints determine the values a, b for which:

$$
\begin{equation*}
|3,2\rangle=a|1 ; 1\rangle+b|0 ; 2\rangle \tag{7}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ This is the same fact as $1 \otimes 2=1 \otimes 2 \otimes 3$; we're multiplying different $S U(2)$ representations

