University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 4 - Solutions

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to discover why bra-ket notation is useful and do perturbation theory for a spin.

Problems

1. Don't Give In

Suppose you're walking down the street and a man approaches you with well-prepared quantum state of the form:

$$
\begin{equation*}
\psi(\theta, \phi)=2 \sqrt{\frac{15}{16 \pi}} \cos \theta \sin \theta \cos \phi \tag{1}
\end{equation*}
$$

He then asks you to predict average value of various angular momentum quantities. Snickering, he offers only one piece of advice:

$$
\begin{equation*}
Y_{2, \pm 1}(\theta, \phi) \equiv \mp \sqrt{\frac{15}{8 \pi}} \cos \theta \sin \theta e^{ \pm \mathbf{i} \phi} \tag{2}
\end{equation*}
$$

Can you figure out the answers to these questions without doing any integrals?
It will be helpful to split ψ as the following:
$\psi(\theta, \phi)=\frac{1}{\sqrt{2}}\left(Y_{2,-1}-Y_{2,1}\right) \Longrightarrow|\psi\rangle=\frac{1}{\sqrt{2}}(|2,-1\rangle-|2,1\rangle)$
(a) Calculate $\left\langle L_{z}\right\rangle$ for the state 1 . If you need $L_{z}=-\mathbf{i} \partial_{\phi}$ $\left\langle L_{z}\right\rangle=0$ from several points of view.
Most intuitively note that $\left\langle L_{z}\right\rangle=\int \psi^{*}\left(-\mathbf{i} \partial_{\phi}\right) \psi$ which since ψ is real $\left\langle L_{z}\right\rangle \propto \mathbf{i}$ which just isn't physical so the whole thing must vanish.

We can also do an explicit check with the form of $|\psi\rangle$ using $L_{z}|\ell, m\rangle=m|\ell, m\rangle$ $\left\langle L_{z}\right\rangle=\langle\psi| L_{z}|\psi\rangle=\frac{1}{2}(\langle 2,-1|-\langle 2,1|)(-|2,1\rangle-|2,-1\rangle)=\frac{1}{2}(1-1)=0$
where in the above I've used orthogonality. You could also do the integral but I wouldn't.
(b) Calculate $\left\langle L^{2}\right\rangle$ again for 1. If you need $L^{2}=-\nabla^{2}$ restricted to the 2-sphere.

Here it's easiest to use the form of $|\psi\rangle$ and the fact $L^{2}|\ell, m\rangle=\ell(\ell+1)|\ell, m\rangle$
$\left\langle L^{2}\right\rangle=\frac{1}{2}(\langle 2,-1|-\langle 2,1|)\left(-2(2+1)|2,1\rangle+2(2+1)|2,-1\rangle=\frac{1}{2}(6+6)=6\right.$
You can also do the integral. I've attached a Mathematica notebook where this is done and confirms my result.

2. Sanity Check

Consider a spin- $\frac{1}{2}$ particle in a magnetic field $\vec{B}=\left\{B_{x}, 0, B_{z}\right\}$
Generically the Hamiltonian to describe such a situation is:

$$
\begin{equation*}
\hat{H}=-\mu_{B} \vec{B} \cdot \overrightarrow{\boldsymbol{\sigma}} \tag{3}
\end{equation*}
$$

where μ_{B} is the Bohr magneton and $\overrightarrow{\boldsymbol{\sigma}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ is a vector of Pauli matrices.
(a) Suppose $B_{x}=0$, find the eigenstates and energies associated with 3
$E_{\uparrow, \downarrow}=\mp \mu_{B} B_{z}$ and for $\{|\uparrow\rangle,|\downarrow\rangle\}$ respectively
(b) Now suppose $B_{z} \gg B_{x} \neq 0$ and compute the first and second order corrections to the energy using perturbation theory.
$E_{\uparrow}^{(1)}=\langle\uparrow|\left(-\mu_{B} B_{x} \sigma_{x}\right)|\uparrow\rangle=0$ and similar for $|\downarrow\rangle$ where we use $\sigma_{x}|\uparrow\rangle=|\downarrow\rangle$
The second order shifts are more interesting:
$E_{\uparrow}^{(2)}=\sum_{k \neq \uparrow} \frac{\left.\left|\langle k|\left(-\mu_{B} B_{x} \sigma_{x}\right)\right| \uparrow\right\rangle\left.\right|^{2}}{E_{\uparrow}^{(0)}-E_{k}^{(0)}}=\left(\mu_{B} B_{x}\right)^{2} \frac{\left.\left|\langle\downarrow| \sigma_{x}\right| \uparrow\right\rangle\left.\right|^{2}}{E_{\uparrow}^{(0)}-E_{\downarrow}^{(0)}}=-\frac{\mu_{B} B_{x}^{2}}{2 B_{z}}$
and similarly $E_{\downarrow}^{(2)}=-E_{\uparrow}^{(2)}$
Putting it all together the energy up to second order is:
$E_{\uparrow, \downarrow}=\mp \mu_{B} B_{z}\left(1+\frac{1}{2}\left(\frac{B_{x}}{B_{z}}\right)^{2}\right)$
(c) Now it turns out 3 is exactly solvable. Compute the energies of the exact eigenstates by direct diagonalization. Show by second order Taylor expansion this agrees with the above.
$\hat{H}=-\mu_{B}\left(\begin{array}{cc}B_{z} & B_{x} \\ B_{x} & -B_{z}\end{array}\right)=\left(\begin{array}{cc}E_{\uparrow} & 0 \\ 0 & E_{\downarrow}\end{array}\right)$ where $E_{\uparrow, \downarrow}=\mp \mu_{B} \sqrt{B_{x}^{2}+B_{z}^{2}}=\mp \mu_{B} B_{z} \sqrt{1+\left(\frac{B_{x}}{B_{z}}\right)^{2}}$
The Taylor expansion of $\sqrt{1+\epsilon^{2}} \approx 1+\frac{1}{2} \epsilon^{2}$ which validates the above.

