University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 4

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to discover why bra-ket notation is useful and do perturbation theory for a spin.

Problems

1. Don't Give In

Suppose you're walking down the street and a man approaches you with a well-prepared quantum state of the form:

$$
\begin{equation*}
\psi(\theta, \phi)=2 \sqrt{\frac{15}{16 \pi}} \cos \theta \sin \theta \cos \phi \tag{1}
\end{equation*}
$$

He then asks you to predict the average value of various angular momentum quantities. Snickering, he offers only one piece of advice:

$$
\begin{equation*}
Y_{2, \pm 1}(\theta, \phi) \equiv \mp \sqrt{\frac{15}{8 \pi}} \cos \theta \sin \theta e^{ \pm \mathbf{i} \phi} \tag{2}
\end{equation*}
$$

Can you figure out the answers to these questions without doing any integrals?
(a) Calculate $\left\langle L_{z}\right\rangle$ for the state 1. If you need $L_{z}=-\mathbf{i} \partial_{\phi}$
(b) Calculate $\left\langle L^{2}\right\rangle$ again for 1. If you need $L^{2}=-\nabla^{2}$ restricted to the 2-sphere.

2. Sanity Check

Consider a spin- $\frac{1}{2}$ particle in a magnetic field $\vec{B}=\left\{B_{x}, 0, B_{z}\right\}$
Generically the Hamiltonian to describe such a situation is:

$$
\begin{equation*}
\hat{H}=-\mu_{B} \vec{B} \cdot \overrightarrow{\boldsymbol{\sigma}} \tag{3}
\end{equation*}
$$

where μ_{B} is the Bohr magneton and $\overrightarrow{\boldsymbol{\sigma}}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ is a vector of Pauli matrices.
(a) Suppose $B_{x}=0$, find the eigenstates and energies associated with 3
(b) Now suppose $B_{z} \gg B_{x} \neq 0$ and compute the first and second order corrections to the energy using perturbation theory.
(c) Now it turns out 3 is exactly solvable. Compute the energies of the exact eigenstates by direct diagonalization. Show by second order Taylor expansion this agrees with the above.

