University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 3 – Solutions

Announcements

• The 130B web site is:

http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week we're going to learn about spin, rotations, representations, and all that jazz.

Problems

Suppose we are studying a system with a rotational symmetry. So we need understand how to *represent* this symmetry on our Hilbert space of states. This involves creating matrices which do all the things we expect.

1. Do a Barrel Roll

Recall that in 3-dimensional space¹ we can derive the following rotation matrices from geometry:

$$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \quad R_y = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \quad R_z = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(1)

where R_i is a rotation about the *i*-th axis by an angle θ . Consider a rotation with an infinitesimal $\theta = \delta \theta$.

(a) Express each rotation in 1 as $R_i(\theta = \delta \theta) = 1 - i(\delta \theta) X_i$ for some matrices X_i . These are the *generators* of rotations as we'll see in a moment.²

Use small angle approximation $\cos \theta \approx 1$ and $\sin \theta \approx \theta$

¹Euclidean. Over \mathbb{R} . Don't get cheeky.

²Note that the factor of **i** is conventional.

Spoilers. The form of X_i is simply:

$$X_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{pmatrix} \quad X_{2} = \begin{pmatrix} 0 & 0 & \mathbf{i} \\ 0 & 0 & 0 \\ -\mathbf{i} & 0 & 0 \end{pmatrix} \quad X_{3} = \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(2)

- (b) Show explicitly that each X_i is Hermitian: $X^{\dagger} = X$ Obvious
- (c) I claim that the X_i of 2 satisfy the following algebra³

$$[X_i, X_j] = \mathbf{i}\epsilon^{ijk} X_k \tag{3}$$

Convince yourself of this by checking a few examples.

$$X_1 X_2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $X_2 X_1 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

This implies
$$[X_1, X_2] = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{i}X_3$$
 and so on.

Given a hermitian matrix X one can construct a unitary matrix $U = e^{-iXa}$ which 'evolves' a state by an amount a. For example the Hamiltonian \hat{H} is hermitian and leads to the 'time-evolution' operator $U = e^{-i\hat{H}t}$.

In this way \hat{H} generates time evolution. Can you guess where this is going?

(d) Consider the unitary matrices given by $U_i = e^{-iX_i\theta}$ for each X_i in 2. Show, using Taylor's theorem, that $U_i = R_i$; they are the rotation matrices of 1. Let's do this for X_1 , the rest follow very similarly.

$$U_1 = e^{-iX_1\theta} = e^{\theta A}$$
 for $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$. Now let's Taylor expand:

 $e^{\theta A} = \sum_{n=0}^{\infty} \frac{\theta^n A^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{\theta^n A^n}{n!}$ where now we need to note the following facts:

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \equiv -B \qquad A^3 = -A \qquad A^4 = B \qquad A^5 = A \text{ and so on.}$$

This allows us to split the infinite sum into evens and odds and then pull out our A and B matrices.

$$e^{\theta A} = 1 + \sum_{n,even} \frac{\theta^n A^n}{n!} + \sum_{n,odd} \frac{\theta^n A^n}{n!} = 1 + \sum_{n,even} \frac{(-1)^{\frac{n}{2}} \theta^n}{n!} B + \sum_{n,odd} \frac{(-1)^{\frac{n-1}{2}} \theta^n}{n!} A$$

$$= 1 + (\cos \theta - 1)B + \sin \theta A = R_x$$

2. What is Spin?

The fact there are spin- $\frac{1}{2}$ particles is one of the most deeply quantum features of nature.

³This is known as a Lie algebra

We can think of the spin of an electron as an additional degree of freedom. This is represented quantum mechanically is a two dimensional Hilbert space \mathcal{H}_2 spanned by two vectors $\{|\uparrow\rangle, |\downarrow\rangle\}$

Now, how can we represent rotations on this space?

Consider the following matrices:

$$S_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad S_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (4)

These, up to that factor of $\frac{1}{2}$, are known as the Pauli matrices.

(a) Show that S_i are hermitian. Show explicitly that the following algebra is satisfied:

$$[S_i, S_j] = \mathbf{i}\epsilon^{ijk} S_k \tag{5}$$

This is the same algebra as 3, between the generators of rotations!⁴ Together these imply we are constructing something like angular momentum.

Just do it.

Now let's construct the analog of rotation matrices for these objects.

- (b) Define $U_i = e^{-\mathbf{i}\theta S_i}$ and write a simple matrix expression for it. Hint: Use the fact $\sigma_i^2 = 1$ where σ_i is a Pauli matrix. $e^{-\mathbf{i}\theta S_i} = e^{-\mathbf{i}\frac{\theta}{2}\sigma_i} = 1 \cos\frac{\theta}{2} - \mathbf{i}\sigma_i \sin\frac{\theta}{2}$
- (c) Now consider $U_i(\theta = 2\pi)$, what has happened? $U_i(\theta = 2\pi) = 1 \cos \pi \mathbf{i}\sigma_i \sin \pi = -1$

We have gone around a complete rotation and picked up a minus sign!

⁴Fancy math point, this is the statement SO(3) and SU(2) have the same Lie algebra.