University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 3

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to learn about spin, rotations, representations, and all that jazz.

Problems

Suppose we are studying a system with a rotational symmetry. So we need understand how to represent this symmetry on our Hilbert space of states. This involves creating matrices which do all the things we expect.

1. Do a Barrel Roll

Recall that in 3-dimensional space ${ }^{1}$ we can derive the following rotation matrices from geometry:

$$
R_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \quad R_{z}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where R_{i} is a rotation about the i-th axis by angle θ. Consider a rotation with an infinitesimal $\theta=\delta \theta$.
(a) Express each rotation in 1 as $R_{i}(\theta=\delta \theta)=\mathbb{1}-\mathbf{i}(\delta \theta) X_{i}$ for some matrices X_{i}. These are the generators of rotations as we'll see in a moment. ${ }^{2}$

[^0]Spoilers. The form of X_{i} is simply:

$$
X_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2}\\
0 & 0 & -\mathbf{i} \\
0 & \mathbf{i} & 0
\end{array}\right) \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & \mathbf{i} \\
0 & 0 & 0 \\
-\mathbf{i} & 0 & 0
\end{array}\right) \quad X_{3}=\left(\begin{array}{ccc}
0 & -\mathbf{i} & 0 \\
\mathbf{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(b) Show explicitly that each X_{i} is Hermitian: $X^{\dagger}=X$
(c) I claim that the X_{i} of 2 satisfy the following algebra ${ }^{3}$

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=\mathbf{i} \epsilon^{i j k} X_{k} \tag{3}
\end{equation*}
$$

Convince yourself of this by checking a few examples.
Given a hermitian matrix X one can construct a unitary matrix $U=e^{-\mathbf{i} X a}$ which 'evolves' a state by an amount a. For example the Hamiltonian \hat{H} is hermitian and leads to the 'time-evolution' operator $U=e^{-\mathbf{i} \hat{H} t}$.
In this way \hat{H} generates time evolution. Can you guess where this is going?
(d) Consider the unitary matrices given by $U_{i}=e^{-\mathbf{i} X_{i} \theta}$ for each X_{i} in 2. Show, using Taylor's theorem, that $U_{i}=R_{i}$; they are the rotation matrices of 1 .

2. What is Spin?

The fact there are spin- $\frac{1}{2}$ particles is one of the most deeply quantum features of nature. We can think of the spin of an electron as an additional degree of freedom. This is represented quantum mechanically is a two dimensional Hilbert space \mathcal{H}_{2} spanned by two vectors $\{|\uparrow\rangle,|\downarrow\rangle\}$
Now, how can we represent rotations on this space?
Consider the following matrices:

$$
S_{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \tag{4}\\
1 & 0
\end{array}\right) \quad S_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These, up to that factor of $\frac{1}{2}$, are known as the Pauli matrices.
(a) Show that S_{i} are hermitian. Show explicitly that the following algebra is satisfied:

$$
\begin{equation*}
\left[S_{i}, S_{j}\right]=\mathbf{i} \epsilon^{i j k} S_{k} \tag{5}
\end{equation*}
$$

This is the same algebra as 3, between the generators of rotations! ${ }^{4}$ Together these imply we are constructing something like angular momentum.
Now let's construct the analog of rotation matrices for these objects.
(b) Define $U_{i}=e^{-\mathbf{i} \theta S_{i}}$ and write a simple matrix expression for it.

Hint: Use the fact $\sigma_{i}^{2}=\mathbb{1}$ where σ_{i} is a Pauli matrix.
(c) Now consider $U_{i}(\theta=2 \pi)$, what has happened?

[^1]
[^0]: ${ }^{1}$ Euclidean. Over \mathbb{R}. Don't get cheeky.
 ${ }^{2}$ Note that the factor of \mathbf{i} is conventional.

[^1]: ${ }^{3}$ This is known as a Lie algebra
 ${ }^{4}$ Fancy math point, this is the statement $S O(3)$ and $S U(2)$ have the same Lie algebra.

