University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Worksheet 2 - Solutions

Announcements

- The 130B web site is:
http://physics.ucsd.edu/students/courses/fall2014/physics130b/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week we're going to remind ourselves about Hydrogen.

For this worksheet I'll do my best to keep factors of \hbar.

Problems

1. Quantum Gravity?

Let's do something silly. Consider the Earth-Sun as a hydrogen atom like system.
(a) What potential should enter the Hamiltonian? What replacement does one need to make compared to the hydrogen atom?
$U(r)=-G \frac{M m}{r}$ so replace $\frac{e^{2}}{4 \pi \epsilon_{0}} \rightarrow G M m$ where M is the Sun's mass and m is the Earth's mass.
(b) What is the quantity analogous to the 'Bohr radius' a_{g} for this system? What is it numerically?
Recall the Hydrogen Bohr radius is $a_{0} \equiv \frac{4 \pi \epsilon_{0}}{e^{2}} \frac{\hbar^{2}}{\mu}$ where $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass. Using the above substitution $a_{g}=\frac{\hbar^{2}}{G M m \mu}$ using Sun/Earth masses in μ Chugging in numbers $a_{g} \approx 10^{-138}[\mathrm{~m}]$
(c) Write down the expression for the energy spectrum E_{n}. Equate this quantity to the classical result for energy in simple circular motion to show $n^{2}=\frac{r_{0}}{a_{g}}$. What is an estimate for n at r_{0} the current orbiting radius?
$E_{n}=-\frac{\mu}{2 \hbar^{2}}(G M m)^{2} \frac{1}{n^{2}}$ doing the same as before. Recall the total energy classically is $E=\frac{1}{2} m v^{2}-\frac{G M m}{r_{0}^{2}}$ where centripetal motion implies $\frac{G M m}{r_{0}^{2}}=\frac{m v^{2}}{r_{0}}$, let's rewrite $E=-\frac{G M m}{2 r_{0}}=E_{n} \Longrightarrow n^{2}=r_{0} \frac{G M m \mu}{\hbar^{2}}=\frac{r_{0}}{a_{g}}$ which with the numbers $n \approx 10^{74}$
(d) Suppose Earth transitioned from n to $n-1$ at the value of n predicted above. What would the wavelength of the emitted excitation be?
We need $E_{n}-E_{n-1}=-\frac{\mu}{2 \hbar^{2}}(G M m)^{2}\left(\frac{1}{n^{2}}-\frac{1}{(n-1)^{2}}\right) \approx \frac{\mu}{2 \hbar^{2}}(G M m)^{2} \frac{2}{n^{3}}$
With the above values $\Delta E \approx 10^{-41}[J]$ which implies $\lambda=\frac{h c}{\Delta E} \approx 10^{15}[m]$ which is one lightyear.

2. Expectations

Let's compare the Bohr radius to the average groundstate position of the electron.
Recall the groundstate wavefunction for the electron is

$$
\begin{equation*}
\Psi_{1,0,0}=R_{10} Y_{0}^{0}=\frac{2}{\sqrt{a}} \frac{1}{a} e^{-\frac{r}{a}} \frac{1}{\sqrt{4 \pi}} \tag{1}
\end{equation*}
$$

(a) Compute $\langle\hat{r}\rangle$ in the groundstate and compare to the Bohr radius.

$$
\begin{aligned}
& \langle r\rangle=\int_{0}^{\infty} d r \int_{0}^{\pi} d \phi \int_{0}^{2 \pi} d \theta r^{2} \sin \theta \Psi^{*} r \Psi=\frac{4}{a^{3}} \int_{0}^{\infty} d r r^{3} e^{-\frac{2 r}{a}}=\frac{-4}{a^{3}} \frac{\partial^{3}}{\partial \alpha^{3}}\left[\frac{1}{\alpha}\right] \text { for } \alpha \equiv \frac{2}{a} \\
& =\frac{4}{a^{3}} \frac{6}{\alpha^{4}}=\frac{3}{2} a
\end{aligned}
$$

(b) Compute $\left\langle\hat{r}^{2}\right\rangle$ and the uncertainty $\sigma^{2} \equiv\left\langle\hat{r}^{2}\right\rangle-\langle\hat{r}\rangle^{2}$
$\left\langle r^{2}\right\rangle=\int_{0}^{\infty} d r \int_{0}^{\pi} d \phi \int_{0}^{2 \pi} d \theta r^{2} \sin \theta \Psi^{*} r^{2} \Psi=3 a^{2}$ similar to above. $\sigma^{2}=\frac{3 a^{2}}{4}$
Hint: Use $\int_{0}^{\infty} d r r^{n} e^{-\alpha r}=(-1)^{n} \frac{\partial^{n}}{\partial \alpha^{n}} \int_{0}^{\infty} d r e^{-\alpha r}=(-1)^{n} \frac{\partial^{n}}{\partial \alpha^{n}}\left[\frac{1}{\alpha}\right]$

