University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics B (Physics 130B) Fall 2014 Quiz - Solutions

Problems

1. What is the wavelength of the so-called Balmer transition which involves an electron which transitions from an $\mathrm{n}=5$ level to an $\mathrm{n}=2$ for hydrogen?

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \approx 1.1 * 10^{7}\left[\mathrm{~m}^{-1}\right] *\left(\frac{1}{4}-\frac{1}{25}\right) \approx 2.3 * 10^{6}\left[\mathrm{~m}^{-1}\right] \Longrightarrow \lambda \approx 430[\mathrm{~nm}]
$$

2. The energy of the hydrogen atom in its ground state is -13.6 eV . What is the ionization energy of the atom in the $\mathrm{n}=4$ state?
$\Delta E=-\frac{m_{e} e^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \approx-13.6[\mathrm{eV}]\left(0-\frac{1}{4^{2}}\right) \approx .85[\mathrm{eV}]$
3. A muon is a subatomic particle that behaves like electron except that its mass is 207 times higher than that of the electron. If a muon were bound to a proton to make muonium how are the energy levels in the Bohr model related to those for Hydrogen? $E_{n}=-\frac{m_{e} e^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}} \frac{1}{n^{2}}$ where m_{e} is approximately the mass of an electron.
Replace this with $m_{\mu}=207 m_{e}$.
4. Write down the wave functions for hydrogen including all three primary quantum numbers n, ℓ, m and explain the physical meaning of each of these three quantum numbers.
$\psi_{n \ell m}(r, \theta, \phi)=R_{n, \ell}(r) Y_{\ell, m}(\theta, \phi)$ by separation of variables.
$Y_{\ell, m}$ are the spherical harmonics and depend on the orbital angular momentum ℓ and it's z-component m.
$R_{n, \ell}$ are the associated Laguerre polynomials times an exponentially decaying factor of $e^{-\frac{r}{n a}}$ where n is a quantum number associated with the energy levels.
5. A hydrogen atom in its $\mathrm{n}=1$ state absorbs a 12.09 eV photon. To what level is the electron promoted?
$E_{n}=E_{1}+E_{\text {photon }} \approx-13.6+12.1[\mathrm{eV}]=-\frac{13.6}{n^{2}}[\mathrm{eV}]$
$\Longrightarrow n^{2} \approx \frac{13.6}{1.51} \approx 9$ so the electron is moved to $n=3$
6. Lithium has atomic number 3. What is the energy needed to change a $\mathrm{Li}++$ doublyionized ion in its ground state to a triply ionized lithium atom: $\mathrm{Li}+++$?
Doubly ionized Li has only one electron so this problem is equivalent to the ionization energy of the Bohr atom where $e_{\text {proton }} \rightarrow 3 e_{\text {proton }}$ which appears as e^{2} in the formula for the spectrum.
$E_{\text {ionization }}=Z^{2} \frac{m_{e} e^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}} \frac{1}{n^{2}} \approx 9 * 13.6[\mathrm{eV}]$
7. If the principal quantum number for hydrogen is 5 , which one of the following is not a permitted orbital angular quantum number? Explain your answer briefly.
$\{\ell=2, \ell=5, \ell=3, \ell=4\}$
$\ell=5$ is not allowed when $n=5$ as the range of permissible $\ell \in\{0,1, \cdots, n-1\}$
8. What is the highest value of the orbital quantum number ℓ for an electron in Krypton's $(Z=36)$ outer shell when in its ground state?
(Hint: Filled shells have $2 n^{2}$ distinct states)
The factor of 2 in the state counting is due to the fact elecrons have a spin quantum number in addition to n, ℓ, m
Krypton should have 36 electrons and in its ground state they occupy the various orbitals/shells starting from the lowest energies and ascending.
$n=1,2,3$ are completely filled as there are $2+8+18=28$ states.
The remaining 8 electrons occupy the $4 s$ and $4 p$ orbitals. This is the 'outer shell'. The $4 p$ orbital has $\ell=1$ so that is the highest ℓ occupied by any electron in this shell.
Note that this completely fills the $4 p$ orbital. This is to be expected as Krypton is a noble gas.
One possible pitfall is to correctly conclude $n=4$ is the outer shell but then say $\ell=n-1=3$ is the highest value of ℓ.

While certainly it is the largest angular momentum available to any electron at $n=4$ the degeneracy in ℓ is broken by generic perturbation/interactions. Thus they will prefer lower ℓ states as they will be lower in energy. This can be quite dramatic; electrons will sooner occupy $4 s$ than $3 d$ for simple atoms.

Partial credit was awarded for the answer of $\ell=3$

