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Quantum Mechanics B (Physics 130B) Fall 2014
Midterm – Solutions

Problems

1. Spin

(a) How many components does the wavefunction of a spin-1
2

particle have?

The spin Hilbert space is 2D spanned by {| ↑〉, | ↓〉} which are eigenstates of Sz.
Therefore one needs at least two components; along | ↑〉 and another along | ↓〉

(b) Give an example of a spin-1
2

particle besides an electron

For the standard model particles any quark, neutrino, or other lepton work.

Composite particle examples include the proton, neutron, and other baryons as
well as various nuclei like He3.

(c) Apply the spin lowering operator S− to the state |χ+〉 =

(
−1
0

)
What do you get?

S− = Sx − iSy and |χ+〉 = −| ↑〉
S−| ↑〉 = Sx| ↑〉 − iSy| ↑〉 = 1

2
(| ↓〉 − i2| ↓〉) = | ↓〉

Therefore S−|χ+〉 = −| ↓〉 =

(
0
−1

)
2. Fine Structure

(a) Write down the two components of the fine structure Hamiltonian for hydrogen
and briefly explain what causes them. How big are they compared to the unper-
turbed ground state energy?

One term comes relativistic corrections: ∆Hrel = − p4

8m3c2

The other from spin-orbit coupling: ∆HSO = e2

8πε0m2c2
~L·~S
r3

The unperturbed Egs = −1
2
α2mc2 where α = e2

4πε0~c ≈
1

137
is the fine structure

constant. Corrections from the terms above are suppressed by an additional α2

(b) What happens when a large magnetic field is applied to the hydrogen atom? De-
scribe what happens to each of the two components of the fine structure Hamil-
tonian.

A strong B-field is associated with Zeeman splitting/corrections to the hydrogen
spectra. Corrections from ∆HZeeman are much larger than the above.

Since the B-field couples directly to the spin ~S a sufficiently strong field can
decouple ~L and ~S in ∆HSO
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(c) The fine structure effects depend on two quantum numbers: n and j. Evaluating
corrections out to first order, how many (degenerate) ground states will there be?

mj = m` + ms = 0 ± 1
2

is unaffected and so there is a two-fold ground state
degeneracy due to the spin states.

(d) What does it mean to ’lift’ or ’break’ degeneracy in general? How could one,
experimentally, lift the degeneracy arising in part (c)?

Splitting a degeneracy requires a perturbation to the original Hamiltonian which
gives differing energy contributions to the otherwise degenerate states.

A fancy point: Often degeneracy arises from a symmetry of the system which
is spontaneously broken by the ground state(s). For example in Hydrogen the
operator which flips the spin of the electron Sx is a symmetry because [H,Sx] = 0;
the energy doesn’t depend on the spin orientation. However this operator acting
on groundstates takes you to different states: Sx| ↑〉 = | ↓〉 6= | ↑〉
The way to remove this degeneracy is to explicitly break the symmetry. For
example, adding a term to H which depends on Sz. Then [H ′, Sx] 6= 0 because
[Sz, Sx] 6= 0

Experimentally one can create such a term by introducing a magnetic field which
will then energetically prefer one spin configuration over another.

3. Linear Perturbation to SHO

Consider a perturbation to the simple harmonic oscillator of the form H ′ = bx̂

Calculate the first order correction to the ground state energy.

x̂ ∝ â+ â† so E
(1)
n = 〈n|H ′|n〉 ∝ 〈n|â|n〉+ 〈n|â†|n〉

But â|n〉 =
√
n− 1|n− 1〉 and 〈m|n〉 = δmn so E

(1)
n ∝ 〈n|n− 1〉+ 〈n− 1|n〉 = 0

4. Delta Square

Consider a particle of mass M in an infinite square well of length a. Suppose at t = 0
we perturb the system by placing a delta function bump of the form H ′ = αδ(x − a

2
)

in the middle of the well.

Assume the bump is sufficiently small that first order time-independent perturbation
theory is valid.

(a) What does sufficiently small mean, quantitatively?

E
(1)
n ∝ α

a
� E

(0)
n

(b) What is the first order energy of the ground state to the perturbed system? What
about excited states?

The unperturbed wavefunctions can be labelled by n as ψn(x) ≡ 〈x|n〉 =
√

2
a

sin(nπ
a
x)

E
(1)
n = 〈n|H ′|n〉 =

∑
x〈n|x〉〈x|H ′|n〉 ≡

∫
dx ψn(x)∗H ′ψn(x)

=
∫

dx ψn(x)∗H ′ψn(x) = 2α
a

∫ a
0

dx sin2(nπ
a
x)δ(x− a

2
) = 2α

a
sin2(nπ

2
)

The total energy expression, to first order, is then En = E
(0)
n + 2α

a
sin2(nπ

2
) where

E
(0)
n = ~2

2M
(nπ
a

)2
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