LATE HOMEWORK INCURS -10\%/WEEKDAY LATE, UP TO 50\% MAXIMUM

The purpose of this homework set is to make sure you are familiar with the basic "tools" of quantum mechanics.

1 Angular Momentum
Using the quantum mechanical angular momentum operators expressed in Cartesian coordinates:
(i) Prove that $\left[L_{x}, L_{y}\right]=L_{x} L_{y}-L_{y} L_{x}=i \hbar L_{z}$.
(ii) Prove that $\left[\mathbf{A}^{2}, \mathbf{B}\right]=\mathbf{A}[\mathbf{A}, \mathbf{B}]+[\mathbf{A}, \mathbf{B}] \mathbf{A}$, where \mathbf{A}, \mathbf{B} are quantum operators that do not commute.
(iii) Prove that $\left[L^{2}, L_{z}\right]=0$
(iv) Discuss briefly the physical significance of the results derived in parts (i) (ii) and (iii).

2 Central potential
Solutions to the Schrodinger equation for all central potentials can be written using separation of variables into a radial part $R(r)$ multiplying an angular part $Y_{\ell}^{m}(\theta, \phi)$. Using the radial equation for the hydrogen atom as given in the text
(i) By substituting into the radial equation and collecting terms, find the values of a, ℓ and E for which the function $R(r)=C r^{2} \exp [-r / a]$ is a solution. Here, C is a normalization constant.
(ii) What is the magnitude of the angular momentum for the state with this wave function?
(iii) What are the physical significances of the terms a and E ?

3 Griffiths Problem 4.33

