
Physics 161: Black Holes: Lecture 5: 22 Jan 2013

Professor: Kim Griest

5 Equivalence Principle, Gravitational Redshift and Geodesics
of the Schwarzschild Metric

5.1 Gravitational Redshift from the Schwarzschild metric

We already discussed the curvature of time in the Schwarzschild metric. Clocks run slower in a gravitation
field (at smaller values of r). This is one of the more measurable effects of GR. Measurements are possible
because atomic transitions act like small clocks which send messengers (photons) to us here at Earth.
Recall the proper time in the Schwarzschild metric:

dτ = dt

√
1− 2GM

rc2
,

where dτ is tick of a clock measured at r, and dt is the length of that same tick measured far away
(r →∞).

Now consider some atomic transition, for example, the n = 3 to n = 2 transition of atomic Hydrogen.
This is called the H-alpha transition and results in emission of a photon with energy Eγ = 13.6eV( 1

32 −
1
22 ) = 1.89 eV. Using λ = c/ν, and Eγ = hν, we find the corresponding wavelength Hα : 6563.5
Angstroms. Now in the frame at r, the photon has a fixed frequency ν0, and each oscillation is like a
little clock ticking with period dτ0 = 1/ν0. Thus the time between crests in the outgoing photon measures
dτ . That same photon travels out to us at r = ∞. Then that same period is observed as dt. Thus the
dτ∞ ≡ dτobs = dt = dτ0/

√
1− 2GM/rc2 is longer. Using the definitions above of ν and λ we see that

the frequency decreases by the same factor and the more easily observed wavelength is longer at when
observed at infinity than the emitted wavelength at r by

λobs =
λ0√

1− 2GM
rc2

=
λ0√

1− rS

r

,

where we used the definition of the Schwarzschild radius rS .
The redshift of an emission line is defined as

z =
∆λ
λ0

=
λobs − λ0

λ0
= (1− rS

r
)−1/2 − 1,

where λ0 is the emitted wavelength in the rest frame of the atom. Note for small values of 2GM/rc2 =
rS/r, this expression can be Taylor expanded as z ≈ GM/rc2 = 1

2rS/r.
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This gravitational redshift is totally different from either the normal Doppler shift redshift caused by
an atom moving away from the observer, or the cosmological redshift caused by the expanding Universe.
Let’s see how big the effect is by calculating it for some typical astronomical objects. First how about
emission from the surface of the Sun? We expect the wavelengths recieved by us on Earth to be longer
than the emitted wavelengths since the emitted photons have to climb out of the potential well of the
Sun where clocks run slower. Using the approximation above z� ≈ 1

23km/7 × 105km ≈ 2 × 10−6. This
is not a very big effect; a clock on the surface of the Sun loses about 30 seconds/year. For H-alpha the
line redshift would be only 0.014 Angstroms.

How about for a white dwarf star? The mass of a white dwarf is about 0.6M�, and the radius is about
5500 km, near to the Earth radius. Thus z ≈ 1

2 (.6)(3km)/5500km ≈ 1.6×10−4, and the wavelength of H-
alpha emission recieved on Earth would be 6563.5(1+z) = 6564.6 Angstroms, quite easily distinguishable
from local H-alpha lines. This result agrees well with the measurements from the nearby white dwarf
star Sirius B. A clock on the surface of Sirius B would lose about 0.6 second/hour.

Next consider the case of a neutron star, with M = 1.4M� and R = 10 km. Now rS = (1.4)(3km) =
4.2 km, so really should not use the approximation, but calculate z = [1−(4.2km/10km)]−1/2−1 = 0.313.
This is big shift: the H-alpha line would appear at 8618.3 Angstroms and clocks would run 31% slower.

Finally what about light emitted from the Schwarzschild radius of a black hole? With r = rS ,
z →∞! Light would be invisible since it would be redshifted to infinitely low energies. Clocks sitting at
that location would appear to have stopped!

5.2 Light bending and the Equivalence Principle

To find proper answers in GR we calculate using the metric, in our case the Schwarzschild metric, but
there is an interesting, more intuitive way that uses the Equivalence Principle directly. Let’s look briefly
at two examples. Imagine someone in a falling elevator. The equivalence principle says that experiments
done in this falling frame will give the same results as experiments done floating in free space far from
any massive object. Suppose the guy in the falling elevator shines a laser beam horizonally from one
side of the elevator to the other. That light must follow geodesics and therefore go “straight” across
the elevator; if the beam leaves from a height of 3 feet above the elevator floor, it must arrive on the
other side also three feet above the floor. From the point of view of the elevator man, the light must
travel exactly horizontally. But now think of someone watching through the (glass) walls of the elevator.
The man shoots the laser from a height of 3 feet above the floor, but then while the light is traveling
across, the elevator continues to fall. Thus when the light hits the opposite wall 3 feet above the floor,
the wall has moved down. Therefore the light cannot go straight in the Earth frame. The light must
also fall. This gedanken experiment shows the light must fall in a gravitational field in the same way
as everything else. Of course, from the point of view of GR, light is just following the geodesic through
a curved spacetime; we will calculate those soon, but here we forsee what that calculation will give. In
particular, light from distant stars travelling near the limb of the Sun must be “deflected” towards the
Sun. Sir Author Eddington did this experiment in 1919, and it garnered world wide fame for Albert
Einstein, because it was one of the first proofs of Einstein’s GR theory. In the homework, I am asking
you to calculate how far the light falls in a gravitational field, that is how much it bends.

5.3 Gravitational Redshift again

The equivalence principle can also be used to show that light must gravitationally redshift. Again consider
our man in a falling elevator. This time he shoots his laser from the floor to the ceiling.
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First think about it from the point of view of someone outside watching through the glass walls. In
the Earth frame the freely falling elevator picks up speed while the light is in transit, and so there is
Doppler shift caused by the speeding elevator ceiling. The time the photons spend in transit is t = h/c,
where h is the height of the elevator, and the speed increase of the elevator is ∆v = gt = gh/c, where
g = GMEarth/r

2 = 9.8m/s2. We could find the expected Doppler shift from the relativistically correct
formula νobs = ν0

√
(1 + ∆v)/(1−∆v), but a Taylor expansion of this is good enough for the slow speeds

involved here: νobs ≈ ν0(1 + 1
2∆v)(1 + 1

2∆v) ≈ ν0(1 + ∆v), or ∆ν = νobs − ν0 = ∆vν0 Thus in the Earth
frame we expect the light beam to be blue shifted by ∆ν/ν0 = ∆v/c = gh/c2, where I put the c′s back in.
However, the equivalence principle says that this cannot be! The man in the elevator can’t tell whether
he is falling or floating freely in deep space, so he expects correctly that the frequency of light recieved
at the elevator’s ceiling is the same as the frequency he sent from the floor. Thus there must be another
effect to cancel this one! The light traveling up must be gravitationally redshifted to counterbalance this
effect. Thus there must be a factor of ∆ν/ν0 = −v/c = −gh/c2 = −GMh/r2c2. This is not quite the
result we got before from the metric, since there is a factor of r−2 rather than r−1, but before we found
the redshift between r = r0 and far away (r = ∞) and here we found it only between r0 and r. So we
can continue with this derivation by integrating the small redshift we found ∆z ∼ ∆ν/ν0 from r0 to ∞.

z ∼
∫ ν∞

ν0

dν

ν
≈
∫ ∞
r0

−GM
r2c2

dr.

This gives ln(ν∞/ν0) ≈ −GM/r0c
2, or λ∞ = λ0 exp (GM/r0c

2). This is still not the correct answer,
but if we assume the factor in the exponential is small and Taylor expand the exponential using ex ≈
1 + x+ x2/2 + ..., we do find λ∞/λ0 ≈ 1 +GM/rc2, or z = GM/rc2 = 1

2rS/r, the Schwarzschild result
for small z.

5.4 Geodesics of Schwarzschild metric from Euler-Langrange

Let’s return to our work on geodesics and apply the Euler-Lagrange equations to find the geodesics of the
Schwarzschild metric. Remember that the Schwarzschild metric is the unique metric around stationary,
spherically symmetric, uncharged objects, so what these geodesics do is tell us how thing move around
the Earth, around the Sun, and around uncharged, non-spinning black holes. These are the General
Relativistic extension of Newton’s and Kepler’s laws of motion. Recall the Schwarzschild metric is

ds2 = −
(

1− 2GM
rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2.

As above, we set c = 1, and take affine paramter λ = s = τ , and extremize s =
∫
Ldτ , with

L = 1 =

[(
1− 2GM

r

)
ṫ2 − ṙ2

1− 2GM
r

− r2θ̇2 − r2 sin2 θφ̇2

]1/2

The Euler-Lagrange equation for t is then

d

dτ

∂L

∂ṫ
− ∂L

∂t
= 0,

which since ∂L/∂t = 0, implies there is a conserved quantity we will call energy per unit mass:

∂L

∂ṫ
≡ E

m
.
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Calculating,
∂L

∂ṫ
=

1
2

[· · ·]−1/2(1− 2GM
r

)2ṫ,

where we abbreviated L = [· · ·]1/2. Using L = 1, we find our t equation(
1− 2GM

r

)
ṫ =

E

m
.

We don’t yet know that the constant has anything to with energy, but we call it E/m, because of our
experience with the Minkowski metric. For r → ∞, the Schwarzschild metric goes to the Minkowski
metric and for the Minkowski metric ṫ = E/m.

Next we find the φ equation:
d

dτ

∂L

∂φ̇
=
∂L

∂φ
= 0,

so again we have a conserved quantity pφ = ∂L/∂φ̇ ≡ −l/m, where we will call this conserved quantity
the angular momentum per unit mass. Recall Noether’s theorem which says if physics is unchanged by a
rotation then angular momentum is conserved. Since the metric does not depend explicitly on the angle
φ, we get that result here. Doing the differentiation we find

∂L

∂φ̇
=

1
2

[· · ·]−1/2(−r2 sin2 θ2φ̇) = −r2 sin2 θφ̇.

Thus our φ equation reads
l

m
= r2 sin2 θφ̇.

Note that it makes sense that we called the constant of motion l/m, since this matches the normal
definition of angular momentum, l = ~r × ~P , with v = r sin θφ̇.

Next, we consider the θ equation. Here we find that

d

dτ

∂L

∂θ̇
=
∂L

∂θ
6= 0,

thus we do not have a conserved quantity for this equation. We find

∂L

∂θ
=

1
2

[· · ·]−1/2(−r2φ̇22 sin θ cos θ) = −r2φ̇2 sin θ cos θ,

and
∂L

∂θ̇
=

1
2

[· · ·]−1/2(−r22θ̇) = −r2θ̇.

Thus our θ equation reads:
d

dτ
(r2θ̇) = r2φ̇2 sin θ cos θ.

Finally we come do the r equation, which is kind of messy because of all the explicit r dependence in
the metric. However, we don’t have to do it, because we can get the fourth equation we need to specify
the equations of motion from our definition of the Lagrangian, L2 = 1:

1 = (1− 2GM
r

)ṫ2 − ṙ2

(1− 2GM
r )
− r2θ̇2 − r2 sin2 θφ̇2.
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Since our object and metric are spherically symmetric we can simplify things by only considering motion
in the equatorial plane (θ = π/2, and θ̇ = 0). Of course we have to remember that we made this
assumption later when we use our equations! If we try to consider motion that has a changing θ, or
which is not in this plane we would need to come back to the equation above. In this case then, the
equation L = 1 becomes:

1 = (1− 2GM
r

)ṫ2 − ṙ2

(1− 2GM
r )
− r2φ̇2.

Now eliminate variables other than r, using the constants of motion we have from the above equations:
l/m = r2φ̇, and E/m = (1− 2GM

r )ṫ, to get:

1 =
E2

m2(1− 2GM
r )
− ṙ2

(1− 2GM
r )
− l2

m2r2
.

We can write this in a nicer form by solving for mṙ2,

mṙ2 =
E2

m
−
(
m+

l2

mr2

)
(1− 2GM

r
),

Remembering the definition of ṙ and using dimensional analysis to put back the c’s, we can write this as:

m

(
dr

dτ

)2

=
E2

mc2
−
(

1− 2GM
rc2

)(
mc2 +

l2

mr2

)
.

Notice that, as I mentioned in my handwaving description, a step in proper time dτ forces a step dr in
the r direction. Thus this geodesic equation shows that things fall due to the spacetime curvature of the
metric. We will look at these geodesic equations in some detail, but for now let’s just take one limit of
this last equation.

Suppose the angular momentum l = 0, which we might expect for radial infall towards a spherical
mass. Our equation then is:

m(
dr

dτ
)2 =

E2

mc2
−
(

1− 2GM
rc2

)
mc2 = 0.

Next consider a case where you start at rest far from the object so that at proper time τ = 0, m(dr/dτ)2 =
0, and r →∞. Our equation becomes:

E2

mc2
− (1− 2GM

∞
)mc2 = 0,

or E2/mc2 = mc2, or simply E = mc2! So at τ = 0 the total energy is just E = mc2. In Newtonian
mechanics the energy at infinity is usually defined as E = 0. Isn’t it nice how these important results
are just built right into the general relativistic view of spacetime. Also since energy E is conserved along
geodesics we know that E = m always. This E is not the Newtonian energy; it is the conserved quantity,
which is better than the sum of 1

2mv
2 +V . Finally note that if we would have started with some velocity

at r =∞ then E > mc2 but it still would have been conserved.
At later times during this radial infall from rest, our equation becomes:

m(
dr

dτ
)2 =

E2

mc2
−mc2 +

2GM
rc2

mc2 =
2GMm

r
.
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That is simply
1
2
m(

dr

dτ
)2 − GMm

r
= 0,

which looks remarkably like the Newtonian case 1
2mv

2−GMm/r = 0! But this is not the same equation.
It is fully relativistic and the time derivative is τ not t (remember t = γτ in SR). In general you integrate
these 4 equations to get the complete picture of motion near the Earth, Sun, or Black Hole. We will
come back to these soon.
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