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Professor: Kim Griest

14 Rotating Black Holes: the Kerr Metric

14.1 Kerr Metric

Almost all stars rotate. Thus when massive stars collapse into black holes at the end of their lives
the resulting black holes should also be rotating. Thus the Schwarzschild metric we have been using is
probably not the metric of most real black holes! This was known for a long time, but not until 1963
was the metric for a rotating black hole found by Kerr. For a black hole rotating in the φ direction the
metric in Boyer-Lindquist coordinates is:

ds2 = −∆− a2 sin2 θ

Σ
dt2 − 4aGMr sin2 θ

Σ
dtdφ+

Σ
∆
dr2 + Σdθ2 +

(r2 + a2)2 + a2∆ sin2 θ

Σ
sin2 θdφ2,

where
a = J/M

is the angular momentum per unit mass of the spinning hole,

Σ = r2 + a2 cos2 θ,

and
∆ = r2 − 2GMr + a2.

Actually the charged rotating black hole metric is nearly the same. Just replace ∆ by

∆ = r2 − 2GMr + a2 +Q2/G,

where Q is the charge of the hole (in the proper units (esu)), and one has to add the c’s back in to use
this equation.

Let’s analyze this metric some. First note what happens if we take a = 0. Then Σ = r2, and
∆ = r2 − rrS , so the metric becomes

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rS

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,

which is just the Schwarzschild metric.
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Next, notice the cross term, dtdφ. In the tensor formulation this would correspond to a non-diagonal
term in gµν . It means that there is a blending of the the coordinates φ and t; the forced motion we all
must take in time will somehow be blended with motion in the φ direction. We will come back to this in
a minute. Finally, note one needs caution using these coordinates since for a 6= 0 surfaces of constant t
and constant r do not have the metric of a 2-sphere!

14.2 Horizon of Kerr metric: maximum rotation and charge of black holes

Next, how do we find the horizon, that is, the trapped surface or distance from which light can’t escape?
The proper way is to find the regions of the metric where all future lightcones converge. This requires
more differential geometry than we have, but earlier for the Schwazschild metric we found the horizon
by when the sign of the dr term changed. Looking at the metric above, this will happen when the sign
of ∆ changes. Thus the horizon is at ∆ = 0. Solving ∆ = r2 − 2GMr+ a2 = 0, we find two solutions for
the horizon of a Kerr hole:

r± = GM ±
√

(GM)2 − a2 =
rS
2
±
√(rs

2

)2

− a2.

These are called the inner and outer horizons, and the larger one r+, turns out to be the trapped surface.
The smaller one is called the inner or Cauchy horizon. Note that if we take a = 0, r+ = rS as
expected, and that for a 6= 0, r+ is always smaller than the Schwarzschild radius. Thus rotating black
holes are smaller! Since there is no θ dependence in this equation we see that the horizons are both
spherical.

Also note that if a2 > (GM)2, then there is no solution. A more careful analysis shows that when
a2 > (GM)2 a black hole (trapped surface) cannot form. Thus there is a maximum angular momentum
that a black hole can have:

amax = GM =
rS
2
, or Jmax =

GM2

c

This is called the maximal black hole. Also note that from the brief description of the charged rotating
black hole above, there is also a maximal charge, which can be found from the condition that a horizon
exists. (

GM

c2

)2

≥ G
(
Q

c2

)2

+
(
J

Mc

)2

,

where I put the c’s back in to help with the units, each term is in units of meter2, and cgs units must
be used (with charge in esu). If this inequality is violated no horizon can form. The maximally charged
black hole is therefore non-rotating, and the maximally rotating black hole is non-charged. In practice
most of the Universe is not heavily charged, and for real black holes we expect the Kerr metric to obtain,
and the maximally rotating black hole to be given by Jmax above. Note for maximal black holes the
horizon is a sphere of radius r+ = GM = rS/2, half the size of a non-rotating black hole of the same
mass.

14.3 Singularity of Kerr metric

We would like to find the singularity in this metric, that is, the point that corresponds to r = 0 in
the Schwarzschild metric. The proper way to do this is to calculate the curvature, as I discussed in a
previous lecture, and then look for the places where it goes to infinity. The answer, which makes sense
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from inspection of the metric is that the singularity occurs at Σ = 0, or r2sing + a2 cos2 θ = 0. If a = 0,
we have rsing = 0 as we should, but if a 6= 0, we have the singularity only at θ = π/2 and r = 0. This
is peculiar, since why should it matter what θ is when r = 0? Actually there is a problem with the
coordinates inside the black hole, which means that this is not really the right answer. Consider the
region Σ = 0 in limit M → 0, and a 6= 0. Then since there is no mass we know the metric must be
equivalent to the Minkowski flat space metric; which it is in fact in spheroidal coordinates. Then Σ = 0 is
just a coordinate singularity of the type we have seen before. So it takes some coordinate transformations
and fairly subtle analysis to show that the actual singularity at Σ = 0 is actually a ring of radius a in
the x-y plane. For maximal black holes both the horizon and a = rS/2. Thus the ring singularity is just
inside the horizon. If one entered the black hole at the equator one would hit the singularity immediately,
but one entered from the north pole, one could all the way to the center without hitting the singularity.

14.4 The Ergosphere

Next, let’s find a very interesting new property of spinning black holes. Consider a photon traveling in φ
direction, so ds2 = 0, and dθ = dr = 0. The Kerr metric gives us the equation:

0 = −∆− a2 sin2 θ

Σ
dt2 − 4aGMr sin2 θ

Σ
dtdφ+

(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θdφ2.

Divide this equation through by dt2, and we get a quadratic equation for φ̇ = dφ/dt:

Aφ̇2 +Bφ̇+ C = 0,

where

A =

[
(r2 − a2)2 − a2∆ sin2 θ

]
Σ

sin2 θ,

B = −4GMar sin2 θ

Σ
,

and

C = −∆− a2 sin2 θ

Σ
.

This has solution:
dφ

dt
=
−B ±

√
B2 − 4AC
2A

.

Notice now that if C = 0, we have φ̇ = (−B ± B)/(2A), which has φ̇ = 0 as a solution. In this case
we have that light itself, traveling in the φ direction stands still! (The other solution, φ̇ = −B/A is
for light traveling in the same direction as the hole is spinning, while the solution φ̇ = 0 is for light
traveling opposite to the spin. If even light cannot move against the direction of the hole spin, then
massive particles that must move slower than light obviously can’t stay still no matter what they do.
This “stationary light” solution occurs when C = 0, or ∆ = a2 sin2 θ, or r20 − 2GMR+ a2− a2 sin2 θ = 0,
or r20 − 2GMR+ a2 cos2 θ = 0, or

r0 = GM +
√
G2M2 − a2 cos2 θ.

This is an ellipoidally shaped region region that has a minimum radius of r0 = GM +
√
G2M2 − a2 at

θ = 0 (north and south poles), and a maximum radius of r0 = 2GM = rS at θ = π/2 (equator). The
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region inside this ellipsoid is called the ergosphere. Inside this region nothing can stand still. Everything
rotates with the hole. The spinning hole actually drags the spacetime around it with it! Light itself going
against the rotation direction will be carried backward around the hole. This is called “frame dragging”.
If you drop something straight down into a spinning black hole, it will start orbiting the hole even though
there is nothing but empty space outside the hole. Actually, this frame dragging occurs even outside
the ergosphere, but it is possible to overcome it by using rockets. It actually occurs not just around
black holes, but around any spinning object, since the Kerr metric is the description of spacetime in the
space around any spinning object. It falls off as r−3. Thus if you put a very precise gyroscope in orbit
around the Earth, the frame dragging will cause it to precess. This is called the Lense-Thirring effect.
The size of the precession is very small, only about 0.042 arcsec per year, but there was a NASA satellite
called Gravity Probe-B, that was in orbit trying to measure this effect. It seemed to have failed due to
experimental errors.

We can now picture a spinning hole from the top and from the side.
Fig: Spinning Black hole: Kerr metric: Ergosphere, and horizon

Considering a maximally spinning hole with a = GM = rS/2, from the top there is the horizon at
r = GM = rS/2, just half the normal Schwarzschild radius. Then there is the ergosphere which from the
top is a circle of radius 2GM = rS , but from the side goes from just touching the horizon at the north
and south poles, to being out at rS at the equator. We will discuss in a minute, why the ergosphere is
called by that name.

14.5 Light orbits, inmost stable orbits for Kerr metric

In the same way we used the Euler-Langrange formalism to find the geodesics (orbit equations) for the
Schwarzschild metric, we can find the geodesics for the Kerr metric. We can then go through the effective
potential treatment and find the types of orbits. We won’t spend the time to do this, but the result
is that there are two closest stable orbits for massive particles and also two for light rays. Recall for
the Schwarzschild metric the light orbit was at r = 1.5rS = 3GM , and the closest stable orbit was at
r = 3rS = 6GM .

For the Kerr hole these orbits depend upon the value of angular momentum a = J/M , but for
maximally rotating holes (a = GM) the light orbit for light rays going in the same direction as the spin
is at r = GM = rS/2 (prograde light orbit), This is the same r as the horizon and the singularity!
For light rays going opposite to the spin the light orbit is at r = 4GM = 2rS (retrograde light orbit).

For massive particles around a maximally spinning hole, the innermost stable orbit is at R = GM =
rS/2 (prograde), and at r = 9GM = 4.5rS for retrograde orbits. Again the prograde (innermost stable
circular orbit (ISCO) is at the same r as the horizon.

For reference, the effective potential for the Kerr metric is

Veff = −κGM
r

+
L2

2r2
+

1
2

(κ− E2)(1 +
a2

r2
)− GM

r3
(L− aE)2,

where L is the conserved angular momentum per unit mass of the test particle (not J the angular
momentum of the hole!), and E is the conserved energy per unit mass of the test particle, and where
κ = 0 for light ray geodesicis and κ = 1 for massive particles.

Recall that we calculated earlier the amount of energy that could be extracted by throwing garbage
into a Schwarzschild black hole. We used the geodesic equations to find that a fraction of the rest mass
could be converted to useful energy by gradually bringing the garbage down to the innermost stable orbit
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and collecting the energy that had to be radiated away to get there. Finally the garbage goes down the
hole, but we get out the difference between the energy E = mc2 far away and the energy at that last
stable circular orbit. For the Schwarzschild case, we found a rest energy fraction fSC = 1−

√
8/9 = 5.7%

could be obtained. Doing a similar calculation for a maximally spinning rotating black hole we find the
maxmimal energy that can be extracted is a rest energy fraction of f = 1 −

√
1/3 = 42.2% for the

prograde inmost stable orbit and f = 1 −
√

25/27 = 3.7% for the inmost retrograde stable orbit. Thus
we have discovered an even more efficient way of producing energy. Throw garbage into a spinning black
hole making sure to do it in the same direction as the hole is spinning. This is the most efficient energy
producing device I have heard of.

14.6 Energy extraction from rotating black holes; ergosphere and Penrose
process

A very interesting property of rotating black holes is that there exist negative energy particle trajectories.
If one finds the geodesics and effective potential as described above one finds the energy to be: (Shapiro
and Teukolsky equation 12.7.26)

E =
2aGML+ (L2r2∆ +m2r∆ + r3ṙ2)1/2

r3 + a2r + 2GMa2
,

where E and L are the conserved quantities found from the Euler-Lagrange treatment of the Kerr metric.
If one solves for the regions where E < 0, one finds that it corresponds to what we called the ergosphere.
This property is why it is called the ergosphere, since ergo is the Greek word for energy. The ergosphere is
also called the static limit, since particles cannot stay at rest inside this surface. The particles which are
retrograde inside the ergosphere can have negative energy, but only particles inside the ergosphere can be
scattered into geodesics with negative energies. Such negative energy particles always have trajectories
that carry them into the black hole, so we can never see them. However, this gives rise to an interesting
possible process called the Penrose process that allows one, in principle, to extract energy from a rotating
black hole. Suppose, one shoots a massive particle inside the ergosphere, and then at a preprogrammed
time it splits into to two particles, one of which has negative energy and one of which has positive energy.
Penrose showed that the negative energy particle would go down the hole, but the positive energy particle
could escape, carrying with it more energy that it came in with!

Ein = Eout + Edown,

or Eout = Ein − Edown, which implies Eout > Ein since Edown < 0. This does not violate energy
conservation, since it turns out the negative energy particle will slow down the spinning of the hole and
reduce its energy. Thus this is a way to extract energy from a spinning hole. In fact, this particular
process is probably not too useful astrophysically, because in order to get it to work the relative velocity
of the pieces of the splitting particle must be greater than c/2.

Fig: Penrose process of extracting energy from rotating black hole

14.7 Inside the Kerr black hole

Recall that the singularity at Σ = 0 was a ring of radius a in the equatorial plane. In order to properly
investigate the properties inside the Kerr black hole we need some coordinates analogous to the Kruskal-
Szekeres coordinates for the Schwarzschild metric. These were found by Kerr and Schild in 1965. They
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proved that singularity is a ring as described above and also showed that there were other regions inside
just like in the Schwarzschild case.

They found that the ring singularity has some very weird properties. As one passes through it one
goes through r = 0 to negative values of r! And since r becomes timelike near the ring, for small values of
r and θ near π/2, they found orbits in the the φ direction that were timelike. Since φ a periodic function,
this means looping around in φ near the ring means looping around in time; time becomes periodic inside
the ring! That means that closed time-like loops must exist near the singularity. This is thus a time
machine!

Even weirder would be the case the case discussed above where Q2/G+a2 > G2M2, and there would
be no solution for a horizon. This would of course violate the cosmic censorship “no naked singularity”
conjecture, but this is only a conjecture at this point. So in the pure Kerr solution, there would be no
horizon, but there might still be a singularity! In this case, this would seem to be a “naked singularity”;
that is a singularity not protected by a horizon. Because of the closed timelike loops, one can in principle
make use of the causality violation occuring near the ring singularity to go “backwards in time” by an
arbitrary amount as measured by t coordinate. However, people think that in real stars this can’t happen
for reasons we will discuss below.

The full geometry of the Kerr black hole is more complicated and rich than the Schwarzschild geometry,
so we want to simply the drawing of the Kruskal-Szekeres coordinates, by using what are called Penrose
diagrams. Here we stretch time and space some and draw infinity as an edge. Lightcones stay the same,
but the edges represent going all the out to infinity in time or space.

Fig: Penrose diagram of Schwarzschild Black hole
Recall region I is where we start and region II is inside the black hole; once here you have to hit

the squiggly line which represents the singularity. Region III is the white hole, and region IV is another
asymptotically flat region of space time, which you can’t get to without traveling faster than c.

Fig: Penrose diagram of Kerr Black hole
The Penrose diagram of the Kerr geometry starts out the same as the Schwarzschild diagram, but

the inner horizon and the ring singularity makes a difference. The inside of the inner horizon (r < r−) is
split into two regions V and VI. Once you pass through the inner horizon you have have a choice. You
can either hit the singularity and die, or go through the ring and come out into other regions labeled V’
and VI’. Regions V and VI are still inside the black hole, but regions V’ or VI’ are other asymptotically
flat spacetimes, similar to region IV. In these new asymptotically flat regions, the ring singularity is
completely “naked” and has negative mass. With respect to the original region II, the singularity of
course is inside the black hole, but for someone in region V’ or VI’ there is no black hole and it is possible
to escape to any distance. At this point one can actually go through the ring again and get a region VII
identical in structure to region III, and continue the process ad infinitum! In theory one can extend the
structure downward as well through what used to be the white hole.

Note that in the Schwarzschild case one could not travel from region I to region III because the future
lightcones all contained the singularity. In the Kerr metric however, this is not true! By going through
the ring singularity one can reach another asymptotically flat spacetime without hitting any singularity.
So is this a real wormhole? Can a rotating black hole be used as both a wormhole and a time machine?
The answer is not yet proved one way or the other! The conjecture is that all the inner structure we have
been discussing is unstable. An actual collapse of the spinning star is not perfectly symmetric or smooth.
The “no hair” theorems say that one gets to the pure Kerr geometry only after the spacetime settles
down. In particular, it is conjectured that the ring singularity is unstable and it is the inner horizon at
r = r− that becomes the actual singularity. In this case, anything going into a Kerr black hole would
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have to be destroyed. There are several reasons for this and Wald’s book has a long description on page
318. One reason is that any small perturbations (light rays or particles) entering the black hole would
get an infinite redshift by the time they get to the inner horizon. These would then have to be put into
the stress-energy tensor and would destroy the perfect symmetry needed to maintain the ring singularity.
The same thing would be true of anyone trying to go through the singularity into another spacetime.
Their mass would change the metric so much as to destroy it.
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