Contents

Contents i
List of Tables iii
List of Figures iii
4 Statistical Ensembles 1
41 References . . . . . . . o e e 1
4.2  Microcanonical Ensemble (uCE) . . . . . . . . . 2
421  The microcanonical distribution function. . . . . . ... ... ... ... ... .. 2

422 Densityofstates . . .. ... ... . 3

423  Arbitrariness in the definitionof S(E) . . ... ... ... ... ... . ... .. 6

424  Ultra-relativisticideal gas . . . .. .. ... ... ... .. ... . 6

425 Discretesystems . . . . ... ... e 6

4.3 The Quantum Mechanical Trace . . . . . . . . . . . . . . . . e 7
43.1 Thedensitymatrix . ... .. ... . ... ... 7

432 AveragingtheDOS . ... ... ... . .. ... o 8

433 Coherentstates. . . . . . . . . . . L 9

44 Thermal Equilibrium . . . . . . ... . 11
441 Twosystemsinthermalcontact . . ... ... ... .. ... . ... ... . ... .. 11

442  Thermal, mechanical and chemical equilibrium . . . . ... ............. 13

443 Gibbs-Duhemrelation . . ... ... ... ... . . ... . 13



ii

4.5

4.6

4.7

4.8

49

CONTENTS

Ordinary Canonical Ensemble (OCE) . . ... ... ... .. ... ... ... . ... ... 14
45.1 Canonical distribution and partition function . . . ... .. ... ... .. ... .. 14
45.2  The difference between P(E,)and P, . . . .. .. ...« ... 15
453 Additionalremarks . . . . . ... 15
454  Averageswithinthe OCE . . . . ... ... ... ... .. .. ... .. .. ... ... 16
455 Entropyandfreeenergy . ... ... ... ... .. ... e 16
456  Fluctuationsinthe OCE . . . ... . ... . . . . .. 17
45.7 Thermodynamicsrevisited . . . . ... ... ... ... .. ... . oo 18
458  Generalized susceptibilities . . . ... ... ... ... ... . o o0 oL 19
Grand Canonical Ensemble (GCE) . . . . . . .. ... o o 20
4.6.1  Grand canonical distribution and partition function . ... ... .......... 20
4.6.2 Entropy and Gibbs-Duhem relation . . . . ... .................... 22
4.6.3 Generalized susceptibilitiesinthe GCE . . . .. .. ... ... ... .. .. ... ... 23
464 Fluctuationsinthe GCE. . . . .. . . ... . .. 23
465 Gibbsensemble . .. ... ... 24
Statistical Ensembles from Maximum Entropy . . . ... ......... ... .. .. ... 25
471  pCE e 25
472  OCE . . . e 25
473  GCE . . . e e 26
Ideal Gas Statistical Mechanics . . . . . . . . . .. L 27
481  Maxwell velocity distribution . . . ... ... .. ... o oo o L 27
482 Equipartition . . . . .. ... e 29
Selected Examples . . . . . .. . .. . 30
49.1 Spinsin an external magneticfield . . ... ... ... .. ... ... . 000 30
49.2 Negativetemperature (!) . . .. ... ... ... L o oo 32
493 Adsorption . . .. ... e 33
494 Elasticityofwool . .. ... ... .. ... 34

4.9.5 Noninteracting spin dimers . . . . .. e e 36



4.10 Statistical Mechanics of Molecular Gases . . . . ... ... ... .....
410.1 Separation of translational and internal degrees of freedom . . .
4102 Idealgaslaw . . ... ... ... ... . ... o
4.10.3 The internal coordinate partition function . . ... ... ... ..
4104 Rotations . . . .. ...
4105 Vibrations. . . . .. . ...
410.6 Two-level systems : Schottky anomaly . . ... ..........
4.10.7 Electronic and nuclear excitations . . . . . ... ..... ... ..

411 AppendixI: Additional Examples . . . .. ... ... ... .. ......
411.1 Threestatesystem . . . . ... ..... ... ... .. ... .. ..
411.2 Spinsand vacancies onasurface . ... ..............
411.3 Fluctuatinginterface . ... ... ... ... ... .. ... ...,

4114 Dissociation of molecular hydrogen. . . . ... ... .......

List of Tables

4.1 Rotational and vibrational temperatures of common molecules . . . . . .

4.2 Nuclear angular momentum states for homonuclear diatomic molecules

List of Figures

4.1 Complex integration contours C for inverse Laplace transform . . . . . .

ii



iv

LIST OF FIGURES
42 Asystem Sincontact witha‘world W . .. .. ... ... ... . o o L. 8
4.3 Averaging the quantum mechanical discrete density of states . . . . . ... ... ... ... 9
44 Twosystemsinthermalcontact . . . .. ... .. ... .. ... .. .. . o L. 12
4.5 Microscopic interpretation of the First Law of Thermodynamics . . . ... ... ... ... 19
4.6 Maxwell distribution of speeds p(v/vg) . . . . ... 28
4.7 Entropy versus energy foraspinsystem . .. .. ... ... ... L oo oL 32
4.8 A crude model for the elasticityof wool . . . ... ... .. ... .. .. .. ... ... 34
49 Length versus temperatureand force . . . .. ... ... .. .. .. L oL oo 35
410 Noninteracting spin dimersonalattice . .. .. ... ... ... ... ... .. .. .... 38

4.11 Heat capacity per molecule as a function of temperature . . ... ... ... ... ..... 44



Chapter 4

Statistical Ensembles

4.1 References

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

— A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

— D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I've come across, but only 40% of the book
treats statistical mechanics.

— C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key con-
cepts and examples. Published by Dover, so you can’t beat the price.

— M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts.

— M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rGl edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

— E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3 edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated,
it still contains a wealth of information and physical insight.
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4.2 Microcanonical Ensemble (1. CE)

4.2.1 The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space aver-
ages:

ergodicity <= (f(®)), = (f(¥))g (4.1)
where
T
(o), = Jim 7 [def(elt) (42)
0
and
~ [austors(e - ) [ [ans(e - i) - @)

Here H(p) = H(q,p) is the Hamiltonian, and where () is the Dirac 6-function'. Thus, averages are
taken over a constant energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution o(A,, ..., 4;) which is a function of conserved quan-
titied A,(¢p) is automatically a stationary (time-independent) solution to Liouville’s equation. Note that
the microcanonical distribution,

esle) =0(E~ ilg) / [dns(e - ite) . @4)

is of this form, since H () is conserved by the dynamics. Linear and angular momentum conservation
generally are broken by elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

(4) =

where Tr means ‘trace’, which entails an integration over all phase space:

Tr AS(E — H)

Tr §(E — ﬁ) ’ *5)

d
Trqu——H/ddpd’ ) (4.6)

Here N is the total number of particles and d is the dimension of physical space in which each particle
moves. The factor of 1/N!, which cancels in the ratio between numerator and denominator, is present for

'We write the Hamiltonian as H (classical or quantum) in order to distinguish it from magnetic field, H. In chapter 2, we
used the symbol H for enthalpy and wrote the magnetic field as H, but since enthalpy doesn’t get a mention in this chapter,
we shift notation slightly.
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indistinguishable particles’. The normalization factor (27h) "¢ renders the trace dimensionless. Again,
this cancels between numerator and denominator. These factors may then seem arbitrary in the defini-
tion of the trace, but we’ll see how they in fact are required from quantum mechanical considerations.
So we now adopt the following metric for classical phase space integration:

ddp dd
= i H o 4.7)
4.2.2 Density of states
The denominator,
D(E)=Tré(E—H) (4.8)

is called the density of states. It has dimensions of inverse energy, such that

E+AFE

/dE /d,u I(FE /d,u (4.9)

E<H<E+AE
= # of states with energies between F and E + AE

Let us now compute D(FE) for the nonrelativistic ideal gas. The Hamiltonian is

N
P}
H(q,p) = E —m (4.10)

We assume that the gas is enclosed in a region of volume V', and we’ll do a purely classical calculation,
neglecting discreteness of its quantum spectrum. We must compute

1 [ d, d, N p?
E):m/[[1 o 5<E—Z;§’—m> . (4.11)

We shall calculate D(E) in two ways. The first method utilizes the Laplace transform, Z(3):

Z(8) = L[D(E)] = / dE e PED(E) =Tr e PH . (4.12)
0
The inverse Laplace transform is then
c+iood5
a1 _ [ AP sE
D(E) = £7[2(8)] = / B ap) (4.13)

More on this in chapter 5.
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Im 3 Im 3
S <
:: +—Ref e Re 3
.\ E branch’cut +
e, : “\“ :
Nd even Nd sdd

Figure 4.1: Complex integration contours C for inverse Laplace transform £7*[Z(8)] = D(E). When
the product dN is odd, there is a branch cut along the negative Re 3 axis.

where c is such that the integration contour is to the right of any singularities of Z(3) in the complex
B-plane. We then have

N
Z(B) = N1 H/ e~ PP/
i=1

(2mh)d
o (Fa N e (4.14)
= — /_ e~ PP /2m S (e g—Nd/2
N! 27h N! \ 27h?

The inverse Laplace transform is then

D(E) = VA m e j{ﬁ B g=Nd/2
N! \ 2rh? 271

VN /o \Nd/2 E%Nd—l
- NI <27rh2> I(Nd/2)
exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite
semicircle in the left half S-plane. When Nd is even, the function 5~N%?2 has a simple pole of order
Nd/2 at the origin. When Nd is odd, there is a branch cut extending along the negative Re 3 axis, and
the integration contour must avoid the cut, as shown in fig. 4.1. One can check that this results in the

same expression above, i.e. we may analytically continue from even values of Nd to all positive values
of Nd.

(4.15)

For a general system, the Laplace transform, Z(8) = L[D(E)] also is called the partition function. We
shall again meet up with Z(5) when we discuss the ordinary canonical ensemb]e.

Our final result, then, is

D(E,V,N) =

LNd—1
N Nd/2 p2
4 < mn > (4.16)

NI \ 2nh? [(Nd/2)
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Here we have emphasized that the density of states is a function of £, V, and N. Using Stirling’s
approximation,

InN!'=NInN—-N+ilnN+Lilm@2r)+0(N"Y) (4.17)
we may define the statistical entropy,
E Vv
S(E,V,N)=k;InD(E,V,N) = Nk;Bqﬁ(N, N) +O(nN) (4.18)
where E Vv d E Vv d
— ) =m(= A DL Ry i 1
¢<N, N) 2ln<N>+ln<N>—|—2 ln<dﬂh2>—|—(1+2d) . (4.19)

Recall k; = 1.3806503 x 10~ 16 erg /K is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale p$* = v2mE uf*. We then have

Nd
VN (V2mE 1
D(E):W<T> E/dMua(u%+u§+...+u§4—1) . (4.20)
Here we have written u = (uy,u,,...,u,,) with M = Nd as a M-dimensional vector. We’ve also used

the rule 6(Ex) = E~'§(x) for §-functions. We can now write

dMy=uMtdud,, (4.21)

where df2,, is the M-dimensional differential solid angle. We now have our answer:*

Nd
vy <v2m> 1Nd—1

D(E) = = E? ORI (4.22)

h

What remains is for us to compute (2,,, the total solid angle in M dimensions. We do this by a nifty
mathematical trick. Consider the integral

0 (4.23)

where s = 42, and where

I'(z) = / dtt*"le™t (4.24)

’The factor of 3 preceding 2, in eqn. 4.22 appears because §(u® — 1) = 2 §(u — 1) + 2 §(u + 1). Since u = |u| > 0, the

second term can be dropped.
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is the Gamma function, which satisfies 2 I'(z) = I'(z + 1).* On the other hand, we can compute Z,, in
Cartesian coordinates, writing

. M
IM< / du, e“?) = (Vo) . (4.25)

Therefore

Thus we obtain (2, = 27, {2; = 47, 2, = 272, etc., the first two of which are familiar.

4.2.3 Arbitrariness in the definition of S(F)

Note that D(E) has dimensions of inverse energy, so one might ask how we are to take the logarithm
of a dimensionful quantity in eqn. 4.18. We must introduce an energy scale, such as AE in eqn. 4.9,
and define D(E; AE) = D(E) AE and S(E; AE) = ky In D(E; AE). The definition of statistical entropy
then involves the arbitrary parameter AE, however this only affects S(F) in an additive way. That is,

S(E,V,N;AE,) = S(E,V,N; AE,) + ki, ln<%> . (4.27)
2

Note that the difference between the two definitions of S depends only on the ratio AE, /AE,, and is
independent of £, V, and N.

4.2.4 Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion (p) = c¢p. We then have

~ N

VN QN Dl e VN (T(d) 24\Y

Z(5) = Fr g (/dpp e’ :ﬁ<m> - (4.28)
0

The statistical entropy is S(E,V,N) = k, In D(E,V,N) = Nk, ¢(%. %), with
E VY _ E v 04T(d)
¢<N,N>_dln<N>+ln<N>+ln<(dhc)d>+(d+1) (4.29)
4.2.5 Discrete systems

For classical systems where the energy levels are discrete, the states of the system | o) are labeled by a
set of discrete quantities {0, 05, ...}, where each variable o, takes discrete values. The number of ways

*Note that for integer argument, I'(k) = (k — 1)!
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of configuring the system at fixed energy FE is then

Q(E,N) = Z5g<a>, s (4.30)

o

where the sum is over all possible configurations. Here N labels the total number of particles. For
example, if we have N spin- particles on a lattice which are placed in a magnetic field H, so the indi-
vidual particle energy is ¢; = —yHo, where o = +1, then in a configuration in which N, particles have
0, = +land N| = N — N, particles have o, = —1, the energy is £ = (N, — N,)u,H. The number of
configurations at fixed energy F is

N N!
Q(E,N) = < > - , (4.31)
NT (%_2M§H)!(g+2u§H)!

since N, | = L F % The statistical entropy is S(E, N) = k; InQ(E, N).

4.3 The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamil-
tonian flow which is ergodic is one in which time averages can be replaced by phase space averages
using the microcanonical ensemble. What happens, though, if our system is quantum mechanical, as all
systems ultimately are?

4.3.1 The density matrix

First, let us consider that our system S will in general be in contact with a world W. We call the union
of S and W the universe, U = W U S. Let ‘ N > denote a quantum mechanical state of IV, and let | n>
denote a quantum mechanical state of S. Then the most general wavefunction we can write is of the
form
wy=> v, |N)®|n) . (4.32)
Nmn

Now let us compute the expectation value of some operator A which acts as the identity within W,
meaning ( N | A |N) = A5\, where A is the ‘reduced’ operator which acts within S alone. We then
have

(ULA|T) =" Uy, Uy dyn (n] A0y =Tr (3 A) | (4.33)
N,N’ n,n’
where
6= Ux, Uy, |n)(n| (4.34)
N nmn'

is the density matrix. The time-dependence of ¢ is easily found:

é(t) = Z Z \II*N,n \I’N,n’

N n.n'

Tl/(t) > <7’L(t) ‘ _ 6—iﬁt/ﬁ ée+th/ﬁ 7 (435)
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WORLD W

Figure 4.2: A system S in contact with a ‘world” W. The union of the two, universe U = W U S, is said
to be the ‘universe’.

where H is the Hamiltonian for the system S. Thus, we find

. 0p N
zhaz [H,0] . (4.36)

Note that the density matrix evolves according to a slightly different equation than an operator in the
Heisenberg picture, for which

A(t) = erin gty 04 [A,H] =—[H,A4] . (4.37)

For Hamiltonian systems, we found that the phase space distribution (g, p, t) evolved according to the
Liouville equation, i p/0t = L p, where the Liouvillian L is the differential operator

Nd
OH 0 O0H 0
L— i - - =2 (4.38)
; {8pj 8qj 8qj apj }
Accordingly, any distribution o(A,, ..., 4,) which is a function of constants of the motion A,(q,p) is
a stationary solution to the Liouville equation: 9, o(4,,...,4,) = 0. Similarly, any quantum mechan-

ical density matrix which commutes with the Hamiltonian is a stationary solution to eqn. 4.36. The
corresponding microcanonical distribution is ¢, = §(E — H) .

4.3.2 Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather
than continuous, and the density of states (DOS) will be of the form

DE)=Tr§(E-H)=> §E-E) , (4.39)
l
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i

Figure 4.3: Averaging the quantum mechanical discrete density of states yields a continuous curve.

where {E,} are the eigenvalues of the Hamiltonian H. In the thermodynamic limit, V' — oo, and the
discrete spectrum of kinetic energies remains discrete for all finite V but must approach the continuum
result. To recover the continuum result, we average the DOS over a window of width AE:

1 E+AFE / /
D(E) = 17 /dE D(E') . (4.40)
E

If we take the limit AE — 0 but with AE > 0E, where §E is the spacing between successive quantized
levels, we recover a smooth function, as shown in fig. 4.3. We will in general drop the bar and refer to
this function as D(E). Note that E ~ 1/D(E) = e~ N¢(v) is (typically) exponentially small in the size
of the system, hence if we took AE V~1 which vanishes in the thermodynamic limit, there are still
exponentially many energy levels within an interval of width AE.

4.3.3 Coherent states

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-
dimensional harmonic oscillator Hamiltonian may be written

2
Hy = 2p_m + %mw% ¢* = hw, (aTa +3) (4.41)

where a and a' are ladder operators satisfying [a,a'] = 1, which can be taken to be

0 q 1 0 q
-y — 4 L 442
a—€5q+2€ , a £5q+2€ , ( )

with ¢ = \/h/2mw, .Notethatq=~/(a+a')andp= % (a —al).
The ground state satisfies a ¢y(¢) = 0, which yields

bolq) = (2me?)~Vhe a1 (4.43)
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The normalized coherent state | z ) is defined as
12) = e 2 ezl ) = 2"22 . (4.44)

The overlap of coherent states is given by

gl o=glal o2
(z1|2z0) = e 2M e721%20 5172 (4.45)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states
allow a simple resolution of the identity,

1= /27” ;1_;22 _ dRezﬂdImz (4.46)
which is straightforward to establish.
To gain some physical intuition about the coherent states, define
=2 7 (4.47)
and write | z) = | @, P ). One finds (exercise!)
¢Q,P(Q) =(q|z) = (2w€2)_1/4 e~ 1PQ/2h (iPq/h ,—(q—Q)%/4¢? ’ (4.48)

hence the coherent state 1, 5(¢) is a wavepacket Gaussianly localized about ¢ = @, but oscillating with
average momentum P.

For example, we can compute

(Q.P|q|Q,P)=(z|t(a+al)|z)=2Rez=Q (4.49)

(QPp|@.P)= (2|55 (@—ah|z)=Tm-=p (4.50)
as well as

(Q.P|?|Q.P)Yy=(z|(a+a)?|z)=0Q*+ ¢ (4.51)

(Q,P|p*|Q,P)= <|Z22a—aT)2\z> P2+4h—; . (4.52)

Thus, the root mean square fluctuations in the coherent state | @), P ) are

h ap o [l

Ag=1(= _
1 omw, 20 2

(4.53)

and Aq - Ap = % fi. Thus we learn that the coherent state AwQ’ p(q) is localized in phase space, i.e. in both
position and momentum. If we have a general operator A(q, p), we can then write

(Q,P|A(q,p)|Q,P)=A(Q,P)+O(h) , (4.54)
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where A(Q, P) is formed from fl(q, p) by replacing ¢ — @ and p — P.

Since
d_2z _ dRezdImz  dQdP

= = 4.
27i v 2nh (4:55)
we can write the trace using coherent states as
A 1 7 7 A
TrA:ﬁ/dQ/dP<Q,P\A\Q,P> . (4.56)

We now can understand the origin of the factor 27/ in the denominator of each (g;,p;) integral over
classical phase space in eqn. 4.6.

Note that w is arbitrary in our discussion. By increasing w, the states become more localized in ¢ and
more plane wave like in p. However, so long as wj, is finite, the width of the coherent state in each
direction is proportional to 4'/2, and thus vanishes in the classical limit.

4.4 Thermal Equilibrium

4.41 Two systems in thermal contact

Consider two systems in thermal contact, as depicted in fig. 4.4. The two subsystems #1 and #2 are
free to exchange energy, but their respective volumes and particle numbers remain fixed. We assume
the contact is made over a surface, and that the energy associated with that surface is negligible when
compared with the bulk energies E, and E,. Let the total energy be £ = E, + E,. Then the density of
states D(FE) for the combined system is

D(E) = / dE, D,(E,) Dy(E — E}) . (4.57)

The probability density for system #1 to have energy E, is then

Py(E,) = Dl(El)l?é;E_El) : (4.58)

Note that P, (E,) is normalized: [dFE; P,(E;) = 1. We now ask: what is the most probable value of E;?
We find out by differentiating P, (E;) with respect to E; and setting the result to zero. This requires

1 dP(E,) 0
P(E,) dE,  0E,
d

0
= 8—E'1 lnDl(El) + 8—E'1 111D2(E— El)

(4.59)

We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

08, _ 05,

9B, _ OE, (4.60)
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Figure 4.4: Two systems in thermal contact.

This guarantees that
S(E,Ey) = 5,(Ey) + S5(E — Ey) (4.61)

is a maximum with respect to the energy F,, at fixed total energy E.

The temperature T is defined as
1 oS

7= (8, e

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the
entropy. When the total entropy S is maximized, we have that 7} = T,. Once again, two systems in
thermal contact and can exchange energy will in equilibrium have equal temperatures.

According to eqns. 4.19 and 4.29, the entropies of nonrelativistic and ultrarelativistic ideal gases in d
space dimensions are given by

E Vv
Syr = 3Ndky ln<ﬁ> + Nk, ln<ﬁ> + const. (4.63)
E Vv
Syr = Ndkgln N + NkyIn N + const. . (4.64)

Invoking eqn. 4.62, we then have E; = %Nd kgT and Ey = Ndk,T .

We saw that the probability distribution P, (E;) is maximized when T} = T}, but how sharp is the peak
in the distribution? Let us write I, = ET 4+ AE,, where EJ is the solution to eqn. 4.59. We then have

1%,
2k, OE?

2
(AE1)2 + L %

In P, (Ef + AE,) = In P (EY) + o 2k, OE2

(AE))?+... (4.65)
125

where E5 = E — Ef. We must now evaluate
’ 1 1 [oT 1
o5 _ 9 (1y_ Loy 1 (4.66)
92~ QE\T T \0E ),y T°C,
where Cy, = (DE/9T),,  is the heat capacity. Thus,

P, = Py e (BB /2 T°Cy (4.67)
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where C. o
Cy=_—rt-%2 (4.68)
Cyq+Cyy

The distribution is therefore a Gaussian, and the fluctuations in AE; can now be computed:

((AE))?) = k,T*Cy, — (AEY) s = ks T/ Cy kg (4.69)

The individual heat capacities Cy,; and C\,, scale with the volumes V; and V;, respectively. If V, > V],
then Cy,, > Cy,, in which case Cy ~ Cy1- Therefore the RMS fluctuations in AE, are proportional to
the square root of the system size, whereas E| itself is extensive. Thus, the ratio (AFE})ys/F; o< V=12

scales as the inverse square root of the volume. The distribution P, (E)) is thus extremely sharp.

4.4.2 Thermal, mechanical and chemical equilibrium

We have dS|,, = +dE, but in general S = S(E,V, N). Equivalently, we may write E = E(S,V, N).

The full differential of £(S,V, N) is then dE = T'dS — pdV + ndN, with T = (45, (%8)s v
OF

and 1 = (%%) s - As we shall discuss in more detail, p is the pressure and y is the chemical potential. We
may thus write the total differential dS as

andp = —

! D %
ds = TdE+TdV TdN . (4.70)

Employing the same reasoning as in the previous section, we conclude that entropy maximization for
two systems in contact requires the following;:

o If two systems can exchange energy, then T, = T,,. This is thermal equilibrium.
e If two systems can exchange volume, then p, /T, = p,/T,. This is mechanical equilibrium.

e If two systems can exchange particle number, then y, /T} = p5/T,. This is chemical equilibrium.

44.3 Gibbs-Duhem relation

The energy E(S,V, N) is an extensive function of extensive variables, i.e. it is homogeneous of degree
one in its arguments. Therefore E(AS, \V, AN) = AE, and taking the derivative with respect to \ yields

oF oF oFE
pog(%E +v<—> +N<—>
<35 >V,N oV Jsn ON Jgv (4.71)

=TS —pV +uN

Taking the differential of each side, using the Leibniz rule on the RHS, and plugging in dE' = T'dS —
pdV + pdN, we arrive at the Gibbs-Duhem relation®,

Sdl'—Vdp+ Ndu=0 . 4.72)

5See §2.7.4.
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This, in turn, says that any one of the intensive quantities (7', p, 1) can be written as a function of the
other two, in the case of a single component system.

4.5 Ordinary Canonical Ensemble (OCE)

4.5.1 Canonical distribution and partition function

Consider a system S in contact with a world W, and let their union U = W U S be called the “universe’.
The situation is depicted in fig. 4.2. The volume V and particle number Vg of the system are held fixed,
but the energy is allowed to fluctuate by exchange with the world W. We are interested in the limit
Ny — 00, Ny, — oo, with Ny <« Ny, with similar relations holding for the respective volumes and
energies. We now ask what is the probability that S is in a state | n ) with energy E,,. This is given by the
ratio

DW(EU B En) AE

P, =1
" AES0  Dy(E,)AE
. . (4.73)
_ #of states accessible to IV given that £, = E,
B total # of states in U
Then
InP,=InDy(E, —E,) —InD,(E,)
Oln Dy, (E
Dy (B,) — In Dy(B,) — B, 2BDwE) (4.74)
OE E_E
U
=—-a—pE,
The constant f3 is given by
Oln Dy, (E) 1
g= 0wl _ : (4.75)
OF  |pep, Kl
Thus, we find P, = e=® ¢~?En. The constant « is fixed by the requirement that > P, = 1:
1 N
— _— o BE, - —BE, _ —BH
P,=e , Z(T,V,N) = zn: e =Tre . (4.76)

We've already met Z(3) in eqn. 4.12 — it is the Laplace transform of the density of states. It is also
called the partition function of the system S. Quantum mechanically, we can write the ordinary canonical
density matrix as

e—BH

Tr e—BH

which is known as the Gibbs distribution. Note that [@, H } = 0, hence the ordinary canonical distribution
is a stationary solution to the evolution equation for the density matrix. Note that the OCE is specified
by three parameters: T, V, and V.

0= : (4.77)
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4.5.2 The difference between P(E,) and P,

Let the total energy of the Universe be fixed at £,. The joint probability density P(Eq, E\;) for the system
to have energy Fq and the world to have energy F\; is

P(Esa Ew) = Ds(Es) DW(EW) 5(EU - Es - EW)/DU(EU) ) (4.78)
where
DU(EU) = /dEs DS(ES) DW(EU - ES) ) (4.79)

which ensures that [dEg [dE\, P(Eg, Ey) = 1. The probability density P(Ey) is defined such that P(E) dE
is the (differential) probability for the system to have an energy in the range [Eg, Eg + dEg]. The units
of P(E,) are E~!. To obtain P(E,), we simply integrate the joint probability density P(E, E,) over all
possible values of E.,, obtaining

DS(ES) DW(EU — ES)

PUE) = =5 (&) ’

(4.80)

as we have in eqn. 4.73. Suppose we wish to know the probability P, that the system is in a particular
state | n) with energy E,,. Clearly

probability that E; € [E,,, E,, + AFE] P(E,)AE  Dy(FE,—-E,)

n T ABS0 #0f S states with E, € |E,, E, + AE]  Dy(E,)AE D, (E,) (481)

4.5.3 Additional remarks

The formula of eqn. 4.73 is quite general and holds in the case where N/N,, = O(1), so long as we are
in the thermodynamic limit, where the energy associated with the interface between S and W may be
neglected. In this case, however, one is not licensed to perform the subsequent Taylor expansion, and
the distribution P, is no longer of the Gibbs form. It is also valid for quantum systems®, in which case
we interpret P, = (n|gg|n) as a diagonal element of the density matrix p4. The density of states functions
may then be replaced by

Ey—E,+AE
Dy (B, — E,) AE — Sw(Fu=Fn, AF) = Tra / dE §(E — Hy,)

EU_En
Ey+AE

Dy(E,) AE — SuFu, AF) = TLrJa/dE §(E — Hy)
E

(4.82)

U

The off-diagonal matrix elements of g5 are negligible in the thermodynamic limit.

%See T.-C. Lu and T. Grover, arXiv 1709.08784.
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4.5.4 Averages within the OCE

To compute averages within the OCE,

: ) i) e~ 0Fn
(A)=Tr (3 4) = 2 gﬂ_g; : (4.83)

where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we
have

olp) = L -Bie) g Ty B / dp e P (4.84)

— N

with du = V HjV: 1(ddqj dp ; /h?) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

Jdp A(p) e~ (9

A) =Tr(oA) = - 4.85
) =Tr (o) = T (4.85)
4.5.5 Entropy and free energy
The Boltzmann entropy is defined by
S=—kyTr(0lng) = —ky ZP InP, . (4.86)

The Boltzmann entropy and the statistical entropy S = kg In D(E) are identical in the thermodynamic
limit. We define the Helmholtz free energy F(T',V, N) as

FT,V,N)=—k;TInZ(T,V,N) (4.87)
hence P, = ¢?¥ ¢=#Fn and In P, = BF — BE,, . The entropy is then

F o (H)
S = —ky En P, (BF — BE,) = T + T (4.88)
which is to say F' = E — T'S, where
Tr He BH
E = E P E,=——F 4.89
— Tr e=PH (*.59)
is the average energy. We also see that
N _BEn a
T e B _ N BB, _ 2w B 0
Z=Tre P =%"¢ = E= S8, = 27 InZ = ﬁ(ﬁF) : (4.90)

Thus, F/(T,V, N) is a Legendre transform of E(S,V, N), with
dFF = -=SdT —pdV 4+ pdN (4.91)

oF oF oF
S <0T>VN P <aV>T,N M +<8N>Tv (492

) )

which means
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4.5.6 Fluctuations in the OCE

In the OCE, the energy is not fixed. It therefore fluctuates about its average value E = (H). Note that
2
OB 0F 0z
B3 oT op?
. - . A\2
T B (Tr He Pl > (4.93)

Tr e—BH Tr e—BH
(i) - (i’

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4.4:

oF 1 9 )
Cy = (0_T>V,N e (¢a2) - (ir)*) (4.94)
For the nonrelativistic ideal gas, we found C|, = 5 d kg, hence the ratio of RMS fluctuations in the
energy to the energy itself is
(AFI )2)  /ET2C,
_ \/d _ \/ 2 (4.95)
> SNkT Nd

and the ratio of the RMS ﬂuctuatlons to the mean value vanishes in the thermodynamic limit.
The full distribution function for the energy is

r _BH
PE)={5E—-H)) = T ‘5(_‘; ei; :%D(g)e_ﬁg . (4.96)

Thus,
e—BIE-TS(E)]

j‘dgle—ﬁ[é"—TS(é")} ’
where S(£) = kyzInD(E) is the statistical entropy. Let’s write £ = E + §&, where E extremizes the

combination £ — T'S(£), i.e. the solution to 7' S’(E) = 1, where the energy derivative of S is performed
at fixed volume V' and particle number N. We now expand S(E + §€) to second order in §&, obtaining

P(E) =

(4.97)

5 (68)°
S(E+468)=5(F)+ T 972 Cy (4.98)
) —
Recall that S”(E) = 4% (7) = —ﬁ. Thus,
(66)? 3
E-TSE)=E-TS(E)+ +0((66)%) . (4.99)
2T C,
Applying this to both numerator and denominator of eqn. 4.97, we obtain’
_ (66)°

"In applying eqn. 4.99 to the denominator of eqn. 4.97, we shift £’ by E and integrate over the difference &’ = £’ —
retaining terms up to quadratic order in 6£’ in the argument of the exponent.
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where N = (27rkBT2CV)_1/ ? is a normalization constant which guarantees [d€ P(£) = 1. Once again,

we see that the distribution is a Gaussian centered at (£) = F, and of width (A€)pys = 1/k;T? Cy,. This
is a consequence of the Central Limit Theorem.

4.5.7 Thermodynamics revisited

The average energy within the OCE is

E— ZEnPn 7 (4.101)
and therefore
dE =) E,dP,+ > P,dE,=dQ—dW |, (4.102)
where
iQ=> E,dp, , dW=-> PB,dE, . (4.103)
Finally, from P, = Z ~1e=En/ksT we can write
E,=—-k,TInZ — k,TInP, (4.104)
with which we obtain
dQ=> E,dp,
= —k,TInZ>» dP, - k,TY InP,dP, (4.105)

- Td(— kBiPnlnPn) = TdS

Note also that
aw =->Y_P,dE,

OE,
=" an< _ 9%, dXz‘) (4.106)
OH _
:_;Pﬁn\a—)dmdxi :Zi:FidXi :
so the generalized force F; conjugate to the generalized displacement d.X is
OF, OH
Fi__znzpna—&__<3—&> . (4.107)

This is the force acting on the system®. In the chapter on thermodynamics, we defined the generalized
force conjugate to X; as y; = —F;.

SIn deriving eqn. 4.107, we have used the so-called Feynman-Hellman theorem of quantum mechanics: d(n|H|n) =
(n| dH |n), if |n) is an energy eigenstate.
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dW =-> P,dE, dQ=> E,dP,

Figure 4.5: Microscopic, statistical interpretation of the First Law of Thermodynamics.

Thus we see from eqn. 4.102 that there are two ways that the average energy can change; these are
depicted in the sketch of fig. 4.5. Starting from a set of energy levels {E, } and probabilities { P, }, we
can shift the energies to { £}, }. The resulting change in energy (AE), = —W is identified with the work
done on the system. We could also modify the probabilities to { P, } without changing the energies. The
energy change in this case is the heat absorbed by the system: (AE),, = . This provides us with a
statistical and microscopic interpretation of the First Law of Thermodynamics.

4.5.8 Generalized susceptibilities

Suppose our Hamiltonian is of the form
H=HM\=Hy,—-\Q , (4.108)
where )\ is an intensive parameter, such as magnetic field. Then Z()\) = Tr e~ (Hy=2Q) and

% g_f _ 5. %Tr (Qe 1) =5(Q) . (4.109)

But then from Z = ¢ #F we have

oF

QAT)=(Q)=— <§>T : (4.110)
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Typically we will take @ to be an extensive quantity. We can now define the susceptibility X as

10Q 1 0%

X=X =2 (4.111)

The volume factor in the denominator ensures that X is intensive.

It is important to realize that we have assumed here that [ﬁo, Q] = 0, i.e. the ‘bare’ Hamiltonian A,

and the operator Q commute. If they do not commute, then the response functions must be computed
within a proper quantum mechanical formalism, which we shall not discuss here.

Note also that we can imagine an entire family of observables {Qk} satisfying [Qk , Qk,] = 0 and
[ﬁo e k] = 0, for all £ and %’. Then for the Hamiltonian

HX) =Hy =Y MQp (4.112)
k
we have that
- 5 OF
QAT) =(Qy) =— (aT) (4.113)
kT, Noy Ay

and we may define an entire matrix of susceptibilities,

10Q 1 O%F
X = k=

=V -V onon (4114)

4.6 Grand Canonical Ensemble (GCE)

4.6.1 Grand canonical distribution and partition function

Consider once again the situation depicted in fig. 4.2, where a system S is in contact with a world W,
their union U = W U S being called the “universe’. We assume that the system’s volume V7 is fixed, but
otherwise it is allowed to exchange energy and particle number with W. Hence, the system’s energy E
and particle number Ny will fluctuate. We ask what is the probability that S is in a state | n ) with energy
E,, and particle number N,,. This is given by the ratio

P = lim DW(EU_En7NU_Nn)AE
" AE—0 Dy(Ey, Ny) AE

4115
_ #of states accessible to W given that £, = E,, and Ny = N,, ( )

total # of statesin U
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Then
lnPn = lnl)W(E‘U - Erm NU - Nn) - 1nDU(E‘Uvj\TU)
=In Dy (Ey,, Ny) —InDy(Ey, Ny)
(4.116)
> Oln Dy, (E,N) N OlnDy(E,N) n
" aE E:EU " aN E:EU '
N:NU N:NU
= —a— BE, + BuN, .
The constants 3 and p are given by
Oln Dy (E,N) 1
= 4117
& OE B=py kT ( )
N=Ny
InDy(E,N
y= g, I Dw(EN)

ON

bp, (4.118)
N:NU

The quantity ;¢ has dimensions of energy and is called the chemical potential. Nota bene: Some texts
define the ‘grand canonical Hamiltonian’ K as K = H — uN . Thus, P, = e~ e #(Fa=#Na)_ Once again
the constant « is fixed by the requirement that  , P, =1

P_

—B(E,—uN,
3 e BBy —pN,)

| —

) (4.119)
=B,V ) = Ze BE,—p =Tre PE .

Thus, the quantum mechanical grand canonical density matrix is given by

. e PK
Q =

. (4.120)
Tr e=PK

Note that [9, K| = 0. The quantity = (7, V, ) is called the grand partition function. It stands in relation to

a corresponding free energy in the usual way:

E(T,V,p) = e PV — Q=—k,TIn=

, (4.121)
where (T, V, ) is the grand potential, also known as the Landau free energy. The dimensionless quantity
z = P! is called the fugacity.

If [H, N] = 0, the grand potential may be expressed as a sum over contributions from each N sector, viz

E(T,V,pu) = ZJW (T,V,N)

(4.122)
When there is more than one species, we have several chemical potentials {y,}, and accordingly we
define
K=H— Z ta Ny

(4.123)
a
with = = Tr e 5K as before.

21
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4.6.2 Entropy and Gibbs-Duhem relation

In the GCE, the Boltzmann entropy is

S=-ky» P,InP,

= —ky Y P, (59 - BE, + 5,UNn> (4.124)
_ 2, #\) pN)
T T T ’
which says
Q=E-TS—uN |, (4.125)
where

E=) E,P,=Tr(0H)
n

. (4.126)
N=> N,P,=Tr (oN)
Therefore, 2(T, V, i) is a double Legendre transform of E(S,V, N), with
dQ = —SdT —pdV — Ndu | (4.127)
which entails
S=_ (@) = <@> . N=— <@> . (4.128)
T )y, vV Jr, o Jry

Since 2(T,V, ) is an extensive quantity, we must be able to write 2 = Vw(T, ). We identify the
function w(T, p) as the negative of the pressure:

02 kT <05> L~ 9By (5, -un,)

—_

ov - = \ov),, = oV
- o " (4.129)
= (5] =-p1n)
<8V )T“u
Therefore, 2 = —pV, and p = p(T, p) is an equation of state. This is consistent with the result from

thermodynamics that G = F — T'S + pV = uN. Taking the differential, we recover the Gibbs-Duhem
relation,

dQ=—SdT —pdV — Ndp=—pdV —Vdp = SdT —Vdp+Ndu=0 . (4.130)
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4.6.3 Generalized susceptibilities in the GCE

We can appropriate the results from §4.5.8 and apply them, mutatis mutandis, to the GCE. Suppose we
have a family of observables {Qk} satisfying [Qk , Qk,] =0and [HO , Qk] =0and |N, [ o, Qk} =0 for all
k, k', and a. Then for the grand canonical Hamiltonian

= mNa =D NQ (4.131)
a k
we have that
- . o0
QA T)=(Qy) = W (4.132)
KT s At )

and we may define the matrix of generalized susceptibilities,

10Q, 1 9’0

WEY oy, TV on oN

(4.133)

4.6.4 Fluctuations in the GCE

Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle num-

ber. We have ()
. 7 o —B(H—pN

N=(N)= Tr Ne DG l

Tr e—B(H_NN) ,8

o . _
9 % (4.134)

Therefore,

1 ON  Tr N2e—B-uN) [Ty N e—BH—p) Y’
Bon  TrebU-uN)  \ Ty e-Bl—uN)

(4.135)
= (V) — (N’
Note now that . o
N2Y — (N
(N2) - g ) _ kT (3_N> &L (4.136)
<N> N o Jp v v
where k. is the isothermal compressibility. Note:
<<9_N> _OWN,T,V) _ OIN,T,V)
o Jpy O, T,V) oV, T, )
1
——
_ O, TVV) ON,T,p) O(V,T,p) O(N,T,p) (4.137)

(N, T,p) 9(V,T,p) 9(N,T,n) (V,T,nu)

_ NPV N
- V2 \op )y VT
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Thus,

(AN)pus _ kT fop (4.138)

which again scales as V 1/,

4.6.5 Gibbs ensemble

Let the system’s particle number N be fixed, but let it exchange energy and volume with the world W.
Mutatis mutandis, we have

Dy (B, —E, .V, ~V,) AEAV

P, = 1i li 4.139
n T B0 AVS0 Dy (Ey, Vo) AEAV (1139)
Then
In P, =InDy(E, — E,, Vy; = V) —InDy(Ey, V)
=1In Dy (E,,Vy) —InDy(Ey, Vy)
(4.140)
_p 9Dy (B.V) 9D (BV)
n aE E:EU " aV E:EU
V:VU V:VU
=—a—pE, - ppV,
The constants 3 and p are given by
Oln Dy (E,V) 1
— = 4.141
B aE E:EU kBT ( )
V:VU
B OlnDy(E,V)
p=k,T oV |ees, (4.142)
V:VU
The corresponding partition function is
A 1 ®
Y(T,p,N) = Tr e PH+PV) = v / dv e PPV Z(T,V,N) = ¢ PETPN) (4.143)
0
0

where V, is a constant which has dimensions of volume. The factor V; ! in front of the integral renders
Y dimensionless. Note that G(V)) = G(V,)) + k,T In(V{/V,), so the difference is not extensive and can
be neglected in the thermodynamic limit. In other words, it doesn’t matter what constant we choose for
V, since it contributes subextensively to G. Moreover, in computing averages, the constant V;, divides
out in the ratio of numerator and denominator. Like the Helmholtz free energy, the Gibbs free energy
G(T,p, N) is also a double Legendre transform of the energy E(S,V, N), viz.

G=FE-TS+pV

(4.144)
dG = —SdT + Vdp+ pdN
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which entails
oG oG oG
oT o N op TN ON T.p

4.7 Statistical Ensembles from Maximum Entropy

The basic principle: maximize the entropy,

S=—ky» P,InP,

471 uCE

We maximize S subject to the single constraint
C=> P,—1=0
We implement the constraint C' = 0 with a Lagrange multiplier, A = k, A, writing
S*=8—kz;AC
and freely extremizing over the distribution { P, } and the Lagrange multiplier . Thus,

05* =68 — kyA6C — ky C oA
= [mpn 41 +A}5Pn —k,COA=0
We conclude that C' = 0 and that

mP,=—(1+2) ,
and we fix A by the normalization condition ) ,, P, = 1. This gives P, = 1/, with

Q=) O(E+AE-E,)O(E,-E) |

i.e. the total number of energy states lying in the interval [E, E + AE].

4.7.2 OCE

We maximize S subject to the two constraints

C,=» P,-1=0 , Cy=>» E,B,—-E=0
n n

25

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)
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We now have two Lagrange multipliers. We write
2
S =8—ky> NCj o,
j=1
and we freely extremize over {F,} and {C;}. We therefore have

2
08" =68 —ky > (M + XM E,) 0P, —ky > C; ),

Jj=1

2
= [1nPn+1+A1 +A2En}5pn —kBZICjaAj =
n =

Thus, C; = Cy = 0 and
InP,=—(14+X+X\E,)

We define A\, = § and we fix A\; by normalization. This yields

1 ~
Pn:§e_BE" , Z:Ze_BE" =Tre P
n

4.7.3 GCE

We maximize S subject to the three constraints
C;=>» PB,-1=0 , Cy=>» E,B,-E=0 , C3=» N,P,-N=0

We now have three Lagrange multipliers. We write
3
j=1
and hence

3
05" =068 —ky Y (M + A E, + X N,) 6B, — ky 3 C;0),
n 7=1

3
= [lnPn+1+)\1+)\2En+)\3Nn]5Pn—kBZ:le6)\jEO
n =

Thus, C; = Cy = C3 = 0 and
We define A\, = f and \; = —fu, and we fix A\; by normalization. This yields

—
—

Pn — é e_ﬁ(En_iu‘Nn) = = Z e_B(En_/J'Nn) = Tr e_B(IA{_:U'N)
n

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)
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4.8 Ideal Gas Statistical Mechanics

The ordinary canonical partition function for the ideal gas was computed in eqn. 4.14. We found

N d
1 d%.
2(T.V.N) = 1] /d 24Dy oyt o
Ti=1

(27h)d
N Nd N (4.162)
N
_v /d_p —oem | _ 1 (V
N! 2rh NI\ N ’
where A\ is the thermal wavelength:
Ap =/ 21h? /mk, T . (4.163)

The physical interpretation of A} is that it is the de Broglie wavelength for a particle of mass m which
has a kinetic energy of k7T

In the GCE, we have
(T, V) =Y PN Z(T,V,N)
N=0
4.164
£ (wu/kﬂ)N (v/> a1eh
= — ] =exp| ——
= N! 2 A
From = = e~“/ks7 we have the grand potential is
QT,V,p) = —Vk,TetksT /X% (4.165)
Since 2 = —pV (see §4.6.2), we have
p(T, 1) = kT A4 et/ sl (4.166)
The number density can also be calculated:
N 1 /012 —d
=_—=__ (= = A4t/ ks 4.167
" Vv Vv < op )T,V re ( )

Combined, the last two equations recapitulate the ideal gas law, pV' = Nk, T.

4.8.1 Maxwell velocity distribution

The distribution function for momenta is given by

N
op) = (5 > 6m, ) (4.168)
=1
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Figure 4.6: Maxwell distribution of speeds ¢(v/vg). The most probable speed is vyax = V2 vy. The
average speed is Vaye = \/g vg. The RMS speed is vgys = V3 .

Note that g(p) = (6(p; — p)) is the same for every particle, independent of its label i. We compute the

average (A) = Tr (Ae_ﬁﬁ )/ Tr e~BH  Setting i = 1, all the integrals other than that over p, divide out
between numerator and denominator. We then have

_ Jd%, 8(p, —p) e~Ppi/2m
[d3p, e=Bpi/2m (4.169)
= (2rmk,T)3/? e~ Pp*/2m

9(p)

Textbooks commonly refer to the velocity distribution f(v), which is related to g(p) by

f)d=g(p)d’p . (4.170)
Hence,
m i 29k, T
f(v :< ) e~ /2keT (4.171)
() 2wk T

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, viz.
/d3p 9(p) = /dgvf(v) =1 . (4.172)

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define the
Maxwell speed distribution, f(v), as

) 3/2
f(v) = 4w v?f(v) = 471(2 ?T) 02 o= /2kgT (4.173)
™ B
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~ 0 ~
Note that f(v) is normalized according to [dv f(v) = 1. It is convenient to represent v in units of

0
vy = \/kzT/m, in which case

Fo)= et . el =2 @174

0

The distribution ¢(s) is shown in fig. 4.6. Computing averages, we have

T 2
— (k k k
C’k:(s>:/dss <p(s):2/2-ﬁf(%—l—g) . (4.175)
0
Thus, C, =1,C, = \/g, Cy = 3, etc. The speed averages are
k/2
() = ¢, (k;T> (4.176)

Note that the average velocity is (v) = 0, but the average speed is (v) = \/8k,T/mm. The speed distribu-
tion is plotted in fig. 4.6.

4.8.2 Equipartition

The Hamiltonian for ballistic (i.e. massive nonrelativistic) particles is quadratic in the individual com-
ponents of each momentum p,. There are other cases in which a classical degree of freedom appears
quadratically in H as well. For example, an individual normal mode ¢ of a system of coupled oscillators
has the Lagrangian

L=3g2-1u2¢ | (4.177)

where the dimensions of ¢ are [¢] = M'/2L by convention. The Hamiltonian for this normal mode is

then
2

H= % +1a3e? (4.178)
from which we see that both the kinetic as well as potential energy terms enter quadratically into the
Hamiltonian. The classical rotational kinetic energy is also quadratic in the angular momentum compo-
nents.

Let us compute the contribution of a single quadratic degree of freedom in H to the partition function.
We'll call this degree of freedom ¢ — it may be a position or momentum or angular momentum — and
we’ll write its contribution to H as H. c= 2K (?, where K is some constant. Integrating over ¢ yields the
following factor in the partition function:

7d< e PEC/2 - <2—7T>1/2 . (4.179)
Kp
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The contribution to the Helmholtz free energy is then

K
=1
AF, = 2kBT1n<27rkBT> , (4.180)
and therefore the contribution to the internal energy E is
AE—aﬁAF—l—lkT 4.181
¢ = g5 BAF) =55 =2kT (4.181)

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

To each degree of freedom which enters the Hamiltonian quadratically is associated a contri-
bution 1k,T to the internal energy of the system. This results in a concomitant contribution
of $ky to the heat capacity.

We now see why the internal energy of a classical ideal gas with f degrees of freedom per molecule is
E = 1fNk,T, and C,, = 1Nk,. This result also has applications in the theory of solids. The atoms
in a solid possess kinetic energy due to their motion, and potential energy due to the spring-like in-
teratomic potentials which tend to keep the atoms in their preferred crystalline positions. Thus, for
a three-dimensional crystal, there are six quadratic degrees of freedom (three positions and three mo-
menta) per atom, and the classical energy should be & = 3Nk,T, and the heat capacity C|, = 3Nk;.
As we shall see, quantum mechanics modifies this result considerably at temperatures below the high-
est normal mode (i.e. phonon) frequency, but the high temperature limit is given by the classical value
Cy, = 3vR (where v = N/N, is the number of moles) derived here, known as the Dulong-Petit limit.

4.9 Selected Examples

4.9.1 Spins in an external magnetic field

Consider a system of N, spins , each of which can be either up (¢ = +1) or down (¢ = —1). The
Hamiltonian for this system is

NS
H=—pH> o0; | (4.182)
j=1

where now we write H for the Hamiltonian, to distinguish it from the external magnetic field H, and s,
is the magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The

partition function is
Z=> > e =N (4.183)

where ( is the single particle partition function:

H
(=Y erollo/keT - 2005h<':0T> : (4.184)
o==+1

B
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The Helmholtz free energy is then

H
F(T,H,Ny) = —k,TInZ = —N k;T In|2cosh <ILI::OT ) (4.185)
B
The magnetization is
OF poH
M=—-|-= = Nj 1o tanh . 4.186
(@), =Yoo (7 19
The energy is
0 o H
E = — (BF) = —N, uoH tanh . 4.187
(95 (5 ) s Mo an </€BT> ( )
Hence, E = —H M, which we already knew, from the form of H itself.
Each spin here is independent. The probability that a given spin has polarization o is
eﬁﬂoHU
P, = o —neH (4.188)

The total probability is unity, i.e. P, + P = 1, and the average polarization is a weighted average of
o = +1and o = —1 contributions:

_ _ troH
(o) =P, — P = tanh< kBT> . (4.189)

At low temperatures T' < pgH/k,, we have P, ~ 1 — e~ 2o H/ksT - At high temperatures T > juoH /ky,

the two polarizations are equally likely, and P, ~ } (1 + 0,:307[3( ) .

The isothermal magnetic susceptibility is defined as

1 (oM 113 of Mo
_ (9 _ h , 4190
=N <8H >T kT O\ kT (4.150)

(Typically this is computed per unit volume rather than per particle.) At H = 0, we have X = u3/k,T,
which is known as the Curie law.

Aside

The energy £ = —H M here is not the same quantity we discussed in our study of thermodynamics.
In fact, the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll
need to invoke a new symbol for the thermodynamic energy, £. Recall that the thermodynamic energy
£ is a function of extensive quantities, meaning £ = £(S, M, N). It is obtained from the free energy
F(T, H, N,) by a double Legendre transform:

E(S,M,N,) = F(T,H,N,)+ TS+ HM . (4.191)
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Figure 4.7: When entropy decreases with increasing energy, the temperature is negative. Typically,
kinetic degrees of freedom prevent this peculiarity from manifesting in physical systems.

Now from eqn. 4.185 we derive the entropy

S = _or = N, kyIn [2 cosh<'u0H>

_ N, ol tanh<“OH > . (4.192)

oT ks T T ey T

Thus, using eqns. 4.185 and 4.186, we obtain (S, M, N,) = 0.

The potential confusion here arises from our use of the expression F'(T, H, N;). In thermodynamics, it is
the Gibbs free energy G(T', p, N) which is a double Legendre transform of the energy: G = £ —T'S +pV.
By analogy, with magnetic systems we should perhaps write G = £ — T'S — HM, but in keeping with
many textbooks we shall use the symbol F' and refer to it as the Helmholtz free energy. The quantity
we’ve called E in eqn. 4.187 is in fact E = £— H M, which means £ = 0. The energy £(.S, M, N,) vanishes
here because the spins are noninteracting.

4.9.2 Negative temperature (!)

Consider again a system of IV, spins, each of which can be either up (+) or down (—). Let N, be the
number of sites with spin o, where o = £1. Clearly N, + N_ = N_. We now treat this system within the
microcanonical ensemble.

The energy of the system is & = —H M, where H is an external magnetic field, and M = (N, — N_)
is the total magnetization. We now compute S(E) using the ordinary canonical ensemble. The number
of ways of arranging the system with IV, up spins is

NS
Q= <N+> , (4.193)
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hence the entropy is
S=k;InQ=—-N, k?B{:L'ln:L'—I—(l —z)In(1 —3:)} (4.194)

in the thermodynamic limit: N, — oo, N, — oo, x = N, /N constant. Now the magnetization is
M = (N, — N_)ug = (2N, — Ny) g, hence if we define the maximum energy E, = Nj jioH, then

) M E,—F
= —-1-9 — 0 4.1
B, N g x = x 2F, (4.195)
We therefore have
E,—F E,—F E,+FE E,+FE
E,N)=—-N.k u ] u o ] u 4.196
S(E.N,) =P < 2E, ) n( 2E, >+< 2E), ) n( 2E, ( )
We now have
1 oS 0S 0r  Njkg E,—E
— = =— s | . 4.197
T <8E> ~ 0z 0E _ 2E, n(EO —|—E> (4.197)

We see that the temperature is positive for —E; < E < 0 and is negative for 0 < £ < E,,.

What has gone wrong? The answer is that nothing has gone wrong — all our calculations are perfectly

correct. This system does exhibit the possibility of negative temperature. It is, however, unphysical in

that we have neglected kinetic degrees of freedom, which result in an entropy function S(E, N,) which

is an increasing function of energy. In this system, S(E, N,) achieves a maximum of S, ,, = N, k;In2
1

at £ = 0 (i.e. z = 3), and then turns over and starts decreasing. In fact, our results are completely
consistent with eqn. 4.187 : the energy E is an odd function of temperature. Positive energy requires

negative temperature! Another example of this peculiarity is provided in the appendix in §4.11.2.

4.9.3 Adsorption

PROBLEM: A surface containing N, adsorption sites is in equilibrium with a monatomic ideal gas. Atoms
adsorbed on the surface have an energy —A and no kinetic energy. Each adsorption site can accommo-
date at most one atom. Calculate the fraction f of occupied adsorption sites as a function of the gas
density n, the temperature 7', the binding energy A, and physical constants.

The grand partition function for the surface is

NS

= _ kT < > J(u+A)/kgT
surf ]Z (4.198)

( eu/kBT eA/kBT)Ns

The fraction of occupied sites is
N, 1 09 u/keT
f — ( surf> - _ surf __ e’s . (4:199)
Ns Ns a:u eu/kBT + E_A/kBT



34 CHAPTER 4. STATISTICAL ENSEMBLES
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Figure 4.8: The monomers in wool are modeled as existing in one of two states. The low energy unde-
formed state is A, and the higher energy deformed state is B. Applying tension induces more monomers
to enter the B state.

Since the surface is in equilibrium with the gas, its fugacity z = exp(u/k,T") and temperature 7" are the
same as in the gas.

SOLUTION: For a monatomic ideal gas, the single particle partition function is ¢ = VA\;*, where A\, =
\/2mh? /mk,T is the thermal wavelength. Thus, the grand partition function, for indistinguishable par-
ticles, is

Z...=exp (VA2 etksT) (4.200)
gas T

The gas density is

L (Na) 1 004

_ — )\ =3 pH/kgT
% V o Ap” ettt (4.201)

We can now solve for the fugacity: z = e#/*sT = n)\3.. Thus, the fraction of occupied adsorption sites is

n)\gl
/= n)\i} AT (4.202)

Interestingly, the solution for f involves the constant A.

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas
density tends to zero at fixed 7" and A, we have f — 0. On the other hand, if n — co we have f — 1,
which also makes sense. At fixed n and T, if the adsorption energy is (—A) — —oo, then once again
f = 1 since every adsorption site wants to be occupied. Conversely, taking (—A) — +oo results in
n — 0, since the energetic cost of adsorption is infinitely high.

4.9.4 Elasticity of wool

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but
reversibly so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins
by assuming they can exist in one of two states, which we will call A and B, with energies ¢, and ¢
and lengths ¢, and /. The situation is depicted in fig. 4.8. We model these conformational degrees of
freedom by a spin variable 0 = +1 for each molecule, where 0 = +1 in the A state and 0 = —1 in the B
state. Suppose a chain consisting of N monomers is placed under a tension 7. We then have
N
=3 [EA b, 1+ e 5%_1] . (4.203)
j=1
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Figure 4.9: Upper panel: length L(7,T') for kzT'/¢ = 0.01 (blue), 0.1 (green), 0.5 (dark red), and 1.0 (red).
Bottom panel: dimensionless force constant k/N (Af)? versus temperature.

Similarly, the length is

L=

M-

[eA O 1+ 5%_1} . (4.204)
1

J

The Gibbs partition functionis Y = Tr e~ K/ ksT with K=H—-7L:

N
K=Y [5A 5, 41+ 2 5%_7_1} , (4.205)

whereé, =¢, — 7¢, and £, = ¢, — 7¢,. At 7 = 0 the A state is preferred for each monomer, but when 7
exceeds 7%, defined by the relation €, = &, the B state is preferred. One finds

=BT (4.206)

Once again, we have a set of N noninteracting spins. The partition function is Y = ¢V, where  is the
single monomer partition function, ¢ = Tr e P where

h=¢g, 0p 1+ E50 (4.207)

crj,—l
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is the single “spin” Hamiltonian. Thus,
C=TrePh = Fen B (4.208)
It is convenient to define the differences
Ae=ey—¢, , AM=l—-4, , Aé=¢e;—¢, (4.209)
in which case the partition function Y is
Y(T,7,N) = e~ NBéa [1 n e—fﬂé] " (4.210)
G(T,7,N) = N&, — Nk, Tl [1 + e—Af/’“BT} (4.211)

The average length is

L=l)=- <86_f>T,N

(4.212)
_ Ny NAY
=Nt e(Ae—TAO/kyT 4 |
The polymer behaves as a spring, and for small 7 the spring constant is
_or _ AkgT of Ae
k= 9L _, = N2 cosh <2kBT> . (4.213)

The results are shown in fig. 4.9. Note that length increases with temperature for 7 < 7* and decreases
with temperature for 7 > 7*. Note also that £ diverges at both low and high temperatures. Atlow T, the
energy gap Ae dominates and L = N/,, while at high temperatures kT dominates and L = N (¢, +(y,).

4.9.5 Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in fig. 4.10. Each dimer contains two spins,
and is described by the Hamiltonian

Hyimer = —J 0105 — pioH (07 +05) (4.214)

Here, J is an interaction energy between the spins which comprise the dimer. If J > 0 the interaction
is ferromagnetic, which prefers that the spins are aligned. That is, the lowest energy states are |11 ) and
|4l). If J < 0 the interaction is antiferromagnetic, which prefers that spins be anti-aligned: |1|) and
[41)7

?Nota bene we are concerned with classical spin configurations only — there is no superposition of states allowed in this
model!
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Suppose there are N, dimers. Then the OCE partition function is Z = ("4, where ((T, H) is the single
dimer partition function. To obtain ((7', H), we sum over the four possible states of the two spins,
obtaining

C =Tr e_Hdimer/kBT

=2e /R8T 1 9 ¢/kBT ¢osh 2l
k,T

Thus, the free energy is

F(T,H,N;) = =Ny k,TIn2 — Nyk,TIn|e™7/*sT 4 ¢//ksT cosh(%) (4.215)
B
The magnetization is
J/ksT ginh (2o
OF erEn s ( kT >
M=—- <—> = 2Ng4 po - = (4.216)
oH T.Nq e~ //keT 4 ¢J/kpT cosh(—?éf)
It is instructive to consider the zero field isothermal susceptibility per spin,
LooM| - _ g 2eln (4.217)

X = — —— = .
T 72N, 0H |py_y kT e/keT 4 o= J/kpT

The quantity p2/k,T is simply the Curie susceptibility for noninteracting classical spins. Note that we
correctly recover the Curie result when J = 0, since then the individual spins comprising each dimer
are in fact noninteracting. For the ferromagnetic case, if J > k,T, then we obtain

Xp(J > k,T) ~ 205 (4.218)

T B ~ k‘BT : .
This has the following simple interpretation. When J > k T, the spins of each dimer are effectively
locked in parallel. Thus, each dimer has an effective magnetic moment p g = 2/,. On the other hand,
there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is

2 % (2p0)? kT

When —J > kT, the spins of each dimer are effectively locked in one of the two antiparallel configu-
rations. We then have

2 2
Xp(—J > k,T) ~ HO e=211/keT (4.219)
kT
In this case, the individual dimers have essentially zero magnetic moment.

4.10 Statistical Mechanics of Molecular Gases

4.10.1 Separation of translational and internal degrees of freedom

The states of a noninteracting atom or molecule are labeled by its total momentum p and its internal
quantum numbers, which we will simply write with a collective index «, specifying rotational, vibra-
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Figure 4.10: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin
for which o; = 1.

tional, and electronic degrees of freedom. The single particle Hamiltonian is then

2

h=2_1h. | (4.220)
2m
with
5 h2k?
h|k,a>:<%+sa>‘k,a> . (4.221)
The partition function is
(=Tre Pl = Z e~ Pp?/2m Zgj e Pei (4.222)
p J

Here we have replaced the internal label a with a label j of energy eigenvalues, with g; being the de-
generacy of the internal state with energy ;. To do the p sum, we quantize in a box of dimensions
L, x Ly x --- x L, using periodic boundary conditions. Then

(4.223)

2whn, 2mhng 2mhny
Ll ) L2 PR Ld )

where each n, is an integer. Since the differences between neighboring quantized p vectors are very tiny,
we can replace the sum over p by an integral:

dp
2}; . / N (4.224)

where the volume in momentum space of an elementary rectangle is

orh)d 27h)?
Apl”'Apd:L(l---)L :( V) . (4.225)
d
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Thus,
C . / ddp e_p2/2mk;BT Z g e—ej/kBT _ V)\;dé. (4 226)
d J - :
(27h) -
(4.227)

§1) =Yg/
J

Here, £(T') is the internal coordinate partition function. The full N-particle ordinary canonical partition
(4.228)

function is then N
1/V N
Zy = N <E> §N(T)

Using Stirling’s approximation, we find the Helmholtz free energy F' = —k,T'In Z is

F(T,V,N) = —Nk,T ln<N‘;d> +1 4 Ing(T)
g (4.229)
v
(4.230)

where
(T) = —kxTIn&(T)

is the internal coordinate contribution to the single particle free energy. We could also compute the

partition function in the Gibbs (7, p, N) ensemble:

Y(T,p,N) = e #GTPN) — Vi / dV e PPV Z(T,V,N)
°% (4.231)
kTN (k,T\Y
() Gg) ¢
2% PAT

Thus, in the thermodynamic limit,

G(T,p, N 2
w(T,p) = ( ]\]; ) —kBTln<Z %) — ks TIn&(T)
. (4.232)
_ bAr
= kBTln(k‘BT> +¢(T)

4.10.2 Ideal gas law
Since the internal coordinate contribution to the free energy is volume-independent, we have

<@>  NkT
Op TN p 7

(4.233)
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and the ideal gas law applies. The entropy is

oG kT
S =— <—> = Nk ln<B—> +143d| —=N(T) |, (4.234)
OT JpN B[ 2% ? w
and therefore the heat capacity is
C, =T 95 = (3d+1)Nk, — NT ¢"(T) (4.235)
P o Jyn 2 " '
a8 1 "
Cy=T(==) =2LdNk, - NT"(T) . (4.236)
T Jy

Thus, any temperature variation in C,, must be due to the internal degrees of freedom.

4.10.3 The internal coordinate partition function

At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

A~

hint = ilrot + ilvib + ileloc (4237)

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of free-
dom. Then

éint = grot " Svib ” gelec . (4238)

Associated with each class of excitation is a characteristic temperature ©. Rotational and vibrational
temperatures of a few common molecules are listed in table tab. 4.1.

4.10.4 Rotations

Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamil-
tonian is then

L2+

YA 21,
RL(L+1 1 1

2, a, o, )b

(4.239)

where i, (t) are the principal axes, with 7, the symmetry axis, and L, ;, . are the components of the
angular momentum vector L about these instantaneous body-fixed principal axes. The components of
L along space-fixed axes {x,y, z} are written as L**¥*. Note that

(L, L) =nZ [L*, L] + [L*, nf] LY = i€, \nf L+, ng LY =0 (4.240)
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[molecule |  0,,(K) [ 0,(K) |
H, 85.4 6100
N, 2.86 3340
H,0 | 13.7,21.0,39.4 | 2290, 5180, 5400

Table 4.1: Some rotational and vibrational temperatures of common molecules.

which is equivalent to the statement that L, = 7, - L is a rotational scalar. We can therefore simul-
taneously specify the eigenvalues of {L? L* L.}, which form a complete set of commuting observ-
ables (CSCO)!". The eigenvalues of L* are mh with m € {—L,..., L}, while those of L, are ki with
ke{—L,...,L}. Thereisa (2L + 1)-fold degeneracy associated with the L* quantum number.

We assume the molecule is prolate, so that I; < I;. We can the define two temperature scales,

h? ~ h?

0= o0k, 0= 21k,

(4.241)

Prolateness then means 6 > @. We conclude that the rotational partition function for an axisymmetric
molecule is given by

00 L _
Eot(T) = Y (2L + 1) e LUEADO/T N7 =k (6-6)/T (4.242)
L=0 k=—L

In diatomic molecules, I, is extremely small, and © > k,T at all relevant temperatures. Only the k = 0
term contributes to the partition sum, and we have

e}

Eot(T) =D (2L +1)e HEFDEMT (4.243)
L=0

When T' <« ©, only the first few terms contribute, and
Et(T) =1+43e720/T 4 5760/T 1 (4.244)

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation
formula may be used to evaluate such a series:

n

n < B, . .
Z F, = /dk F(k)+ 3[F(0) + F(n)] + Z (2?;, [F(zg_l)(n) ~ F@I=(g) (4.245)
k=0 0 j=1 J):
where B; is the j'" Bernoulli number where
By=1 B, =-3% By =1 B, = —+ Bs =& (4.246)
0 ) 1 2 2 6 4 30 6 42 - :

"Note that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed in space, we
can simultaneously specify the components of L along one axis fixed in space and one axis rotating with a body. See Landau
and Lifshitz, Quantum Mechanics, §103.
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Thus,
o o0 1
> F, / dz F(z) + 2F(O)—%F’(O)—%F’”(O)Jp.. . (4.247)
k=0 0

We have F(z) = (22 + 1) e *(*+1O/T for which [dx F(z) = &, hence
0

T 16 4 [0V
5r0t‘§+3+1_5f+T<?>+"' . (4.248)

Recall that o(T) = —k,TIn&(T). We conclude that o, (T) ~ —3k,T e 20/T for T <« O and ¢, (T) ~
—k,T'In(T/O) for T' > O©. We have seen that the internal coordinate contribution to the heat capacity
is ACy, = —NT¢"(T). For diatomic molecules, then, this contribution is exponentially suppressed for
T < O, while for high temperatures we have AC, = Nk,;. One says that the rotational excitations are
‘frozen out” at temperatures much below ©. Including the first few terms, we have

2
ACy(T < 6) =12 Nk, (g) e 20/T 4 .. (4.249)

1/6\V 16 [0V
ACV(T>>@)_NkB{1+45< >+%<?>+...} . (4.250)

Note that 'y, overshoots its limiting value of Nk, and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd L
states are allowed, depending on the total nuclear spin. This is discussed below in §4.10.7.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rota-
tions can be considered classically. We then have

L2 13 L2
E(La, Lb7 LC) = ﬁ + ﬁ + ﬁ . (4:251)
3

We then have
érot( )

1 /dL adbydLedddfdy 1, )y (4.252)

(2mh)3

g rot

where (¢,01) are the Euler angles. Recall ¢ € [0,27], § € [0,7], and ¢ € [0,27]. The factor g,,; ac-
counts for physically indistinguishable orientations of the molecule brought about by rotations, which
can happen when more than one of the nuclei is the same. We then have

2k, T\
Erot(T) = < 72 ) vl . (4.253)

This leads to ACy, = 3 Nk
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4.10.5 Vibrations

Vibrational frequencies are often given in units of inverse wavelength, such as cm™!, called a wavenum-
ber. To convert to a temperature scale T, we write k,T* = hv = hc/), hence T* = (hc/k,) A™!, and we
multiply by
h
€ _1436K -cm (4.254)
kB
For example, infrared absorption (~ 50 cm™ to 10? ecm™?) reveals that the ‘asymmetric stretch’ mode of
the H,O molecule has a vibrational frequency of v = 3756 cm~!. The corresponding temperature scale

is T" = 5394 K.
Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form
7 p? 1,22 1
h = o +5gmw g = hw(aTa + 5) . (4.255)

In general there are many vibrational modes, hence many normal mode frequencies w,. We then must
sum over all of them, resulting in

Ean =[5 (4.256)

«

For each such normal mode, the contribution is

€= i e—(n+%)FwJ/kBT — o hw/2kpT i (e_f“/’fBT>"
n=0 n—0

(4.257)
B e—ﬁ/.u/ZkBT B 1
1 — e tw/ksT T 2sinh(6/2T)
where © = hw/k,. Then
o=k, Tln (2 sinh(c—)/zT)) w258)
= 1k,0 + k,Tln (1 — e_Q/T)
The contribution to the heat capacity is
O\?2 /T
acy = (3 ) o=
(4.259)

| Nk (0/T)? exp(—0/T) (T — 0)
| Nk, (T — o)

4.10.6 Two-level systems : Schottky anomaly

Consider now a two-level system, with energies ¢, and ;. We define A = ¢, — ¢, and assume without
loss of generality that A > 0. The partition function is

(=ePope P =ePo(lpe PPy | (4.260)
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Figure 4.11: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic
gases, (b) a single vibrational mode, and (c) a single two-level system.

The free energy is

f=—k,TIn¢ =¢ey—k,Tln (1 +e &/kT) (4.261)
The entropy for a given two level system is then
_of ATy, A 1
s_—a—T_kBln(1+e B H?'eA/kBTH (4.262)
and the heat capacity is = T' (9s/0T), i.e.
A2 eA/kBT
oT) = PR N 1)2 (4.263)
Thus,
? A/kgT
c(TkwA)= R T e B (4.264)
A2

We find that ¢(7") has a characteristic peak at 7% ~ 0.42 A/k,. The heat capacity vanishes in both the
low temperature and high temperature limits. At low temperatures, the gap to the excited state is much
greater than k,7', and it is not possible to populate it and store energy. At high temperatures, both
ground state and excited state are equally populated, and once again there is no way to store energy.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum
over the individual Schottky functions:

%

C(T) = Y (A, /kyT) = N / dA P(A)EA/T) (4.266)
0
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where N is the number of two level systems, ¢(z) = k, 22 ¢®/(e®+1)%, and where P(A) is the normalized
distribution function, which satisfies the normalization condition

/ dAP(A) =1 . (4.267)
0

N, is the total number of two level systems. If P(A) o A" for A — 0, then the low temperature heat
capacity behaves as C(T) « T'*". Many amorphous or glassy systems contain such a distribution
of two level systems, with r ~ 0 for glasses, leading to a linear low-temperature heat capacity. The
origin of these two-level systems is not always so clear but is generally believed to be associated with
local atomic configurations for which there are two low-lying states which are close in energy. The
paradigmatic example is the mixed crystalline solid (KBr);_, (KCN), which over the range 0.1 <z < 0.6
forms an ‘orientational glass” at low temperatures. The two level systems are associated with different
orientation of the cyanide (CN) dipoles.

4.10.7 Electronic and nuclear excitations

For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear
degrees of freedom. Let’s first consider the electronic degrees of freedom. We assume that k7" is small
compared with energy differences between successive electronic shells. The atomic ground state is then
computed by filling up the hydrogenic orbitals until all the electrons are used up. If the atomic number
is a ‘magic number’ (A = 2 (He), 10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), etc.) then the atom has all shells filled
and L = 0 and S = 0. Otherwise the last shell is partially filled and one or both of L and S will be
nonzero. The atomic ground state configuration /1 L is then determined by Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L — S|. If
the shell is more than half-filled, then J = L + S.

The last of Hund's rules distinguishes between the (25+1)(2L+ 1) states which result upon fixing S and
L as per rules #1 and #2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian
may be written H = AL - S, where A is the Russell-Saunders coupling. If the last shell is less than or
equal to half-filled, then A > 0 and the ground state has J = |L — S|. If the last shell is more than
half-filled, the coupling is inverted, i.e. A < 0, and the ground statehas J = L + S A

The electronic contribution to £ is then

L+S
e = D (2T + 1) e 85T/ hsT (4.268)
J=|L—5|

!See e.g. §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book
ever written.
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where
Ae(L, 8, J) = %A[J(J +1) - L(L+1) - S(S+1)| . (4.269)

Athigh temperatures, kT is larger than the energy difference between the different J multiplets, and we
have ¢ .. ~ (2L+1)(2S+1) e P50, where ¢, is the ground state energy. At low temperatures, a particular
value of J is selected — that determined by Hund’s third rule — and we have &, ~ (2J + 1) e #%. If, in
addition, there is a nonzero nuclear spin /, then we also must include a factor £, . = (21 + 1), neglecting
the small hyperfine splittings due to the coupling of nuclear and electronic angular momenta.

For heteronuclear diatomic molecules, i.e. molecules composed from two different atomic nuclei, the in-
ternal partition function simply receives a factor of £, - 51(&1)0 . I(fl)c, where the first term is a sum over
molecular electronic states, and the second two terms arise from the spin degeneracies of the two nuclei.
For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry operation, and does
not represent a distinct quantum state. To correctly count the electronic states, we first assume that the
total electronic spin is S = 0. This is generally a very safe assumption. Exchange symmetry now puts re-
strictions on the possible values of the molecular angular momentum L, depending on the total nuclear
angular momentum I, ;. If I, ; is even, then the molecular angular momentum L must also be even.
If the total nuclear angular momentum is odd, then L must be odd. This is so because the molecular

ground state configuration is 'X".'?

The total number of nuclear states for the molecule is (21 + 1)2, of which some are even under nuclear
exchange, and some are odd. The number of even states, corresponding to even total nuclear angular
momentum is written as g, where the subscript conventionally stands for the (mercifully short) German
word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is written g,,. Table 4.2 gives the
values of g, ,, corresponding to half-odd-integer / and integer /.

The final answer for the rotational component of the internal molecular partition function is then

grot (T) = gg Cg + Gu Cu ) (4270)

where

Cg — Z (2L + 1) e_L(LJ’_l) @rot/T

L oven (4.271)
Cu — Z (2_[/ + 1) €_L(L+1) O..:/T

L odd

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those
with the smaller statistical weight are called parahydrogen. For H,, we have I = ; hence the ortho state
has g, = 3 and the para state has g, = 1. In D,, we have I = 1 and the ortho state has g, = 6 while the
para state has g, = 3. In equilibrium, the ratio of ortho to para states is then

ortho ortho
Mit, " g 3¢, b, " 996 _ 2 (4.272)
‘ZVII‘)IZ‘ra g g Cg Cg ’ N]gzra Gu Cu Cu

12Gee Landau and Lifshitz, Quantum Mechanics, §86.
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L2r [ 9 | o |
odd I(2I +1) (I+1)(2I+1)
even | (I +1)(21 +1) I(2I+1)

Table 4.2: Number of even (g,) and odd (g,,) total nuclear angular momentum states for a homonuclear
diatomic molecule. [ is the ground state nuclear spin.

Incidentally, how do we derive the results in Tab. 4.2 ? The total nuclear angular momentum I is
the quantum mechanical sum of the two individual nuclear angular momenta, each of which are of
magnitude /. From elementary addition of angular momenta, we have

IQI=001602d - G2 . (4.273)

The right hand side of the above equation lists all the possible multiplets. Thus, I,,, € {0,1,...,2I}.
Now let us count the total number of states with even I, . If 21 is even, which is to say if I is an integer,
we have

I
gir=even) — 37 {2 - (2n) + 1} —(I+1)@eI+1) (4.274)

n=0

because the degeneracy of each multiplet is 21, + 1. It follows that
gF=even) = (21 +1)2 — g, = 1(21 +1) . (4.275)

On the other hand, if 21 is odd, which is to say I is a half odd integer, then

-}
g21=odd) = 3 {2 - (2n) + 1} —I2I+1) . (4.276)
n=0
It follows that
g£2I:odd) _ (21 + 1)2 —g, = (I—l— 1)(2[ + 1) . (4277)

411 AppendixI: Additional Examples

4.11.1 Three state system

Consider a spin-1 particle where o = —1,0, 1. We model this with the single particle Hamiltonian
h=—pHo+A(l-0?) . (4.278)

We can also interpret this as describing a spin if o = +1 and a vacancy if 0 = 0. The parameter A then
represents the vacancy formation energy. The single particle partition function is

¢=Tr e Bh = =80 4 2cosh(BugH) . (4.279)
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With NV, distinguishable noninteracting spins (e.g. at different sites in a crystalline lattice), we have Z =
¢Ns and
F=Nf=—-kTInZ =—-N,k;TIn [e_BA + 2cosh(5,u0H)] , (4.280)

where f = —k,;T In( is the free energy of a single particle. Note that

X Oh
fy=1-0%= A (4.281)
) Oh
=g =~ (4.282)
are the vacancy number and magnetization, respectively. Thus,
B f e~ A [kgT
g N = — = 4-283
my = (i) OA  e=A/ksT 12 cosh(p H/kyT) ( )
and 0 2p sinh(uoH/k,T
m=<m>=——f= to sinh(jto H/ksT) (4.284)
OH  e=A/ksT 1 2 cosh(pgH/kyT)
At weak fields we can compute
2
2
Xy = 2m o t (4.285)

~H|, " kT 21 AT

We thus obtain a modified Curie law. At temperatures 7' < A/k,, the vacancies are frozen out and we
recover the usual Curie behavior. At high temperatures, where 7' > A/k;, the low temperature result
is reduced by a factor of 2 which accounts for the fact that one third of the time the particle is in a
nonmagnetic state with o = 0.

4.11.2 Spins and vacancies on a surface

PROBLEM: A collection of spin-3 particles is confined to a surface with N sites. For each site, let o = 0 if
there is a vacancy, o = +1 if there is particle present with spin up, and o = —1 if there is a particle present
with spin down. The particles are non-interacting, and the energy for each site is given by ¢ = —Wo?,
where —W < 0 is the binding energy.

(a) Let @ = N, + N, be the number of spins, and N, be the number of vacancies. The surface mag-
netization is M = NT - N I Compute, in the microcanonical ensemble, the statistical entropy

S(Q,M).

(b) Let ¢ = Q/N and m = M/N be the dimensionless particle density and magnetization density,
respectively. Assuming that we are in the thermodynamic limit, where N, @, and M all tend to
infinity, but with ¢ and m finite, Find the temperature 7'(q, m). Recall Stirling’s formula

In(N!) = NInN — N+ O(InN)



4.11. APPENDIXI: ADDITIONAL EXAMPLES

49

(c) Show explicitly that 7" can be negative for this system. What does negative 7' mean? What physical

degrees of freedom have been left out that would avoid this strange property?

SOLUTION: There is a constraint on NT’ N,, and N¢:
The total energy of the systemis £ = —WQ.

(@) The number of states available to the system is

N!
2= | | |
NINyIN,!

(4.286)

(4.287)

Fixing @ and M, along with the above constraint, is enough to completely determine { N, N, N, }:

whence N
3@+ M [3(Q - MJHN - Q)!

The statistical entropy is S = k, In {2:

QQ,M) =

S(Q, M) =kyIn(N!) — kyIn [3(Q + M) — kyIn [3(Q — M)!] — kyIn [(N — Q)]
(b) Now we invoke Stirling’s rule,
I(N!) = NInN — N+ O(InN) ,
to obtain
mQQ,M)=NInN—-N-LQ+M)n[2(Q+M)]+1(Q+M)
~3(@Q=M)In[3(Q - M)] +3(Q ~ M)
~(N=-Q)In(N-Q)+ (N -Q)

Q+M
o)

= NInN - 3@ [4(@% - M?)| - %Mln<
Combining terms,

InQ(Q,M) =—-Ngqln {%\/cﬂ —mz} - %len<q+_m> —N(1-¢)In(1—gq) ,

q—m

(4.288)

(4.289)

(4.290)

(4.291)

(4.292)

(4.293)
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where ) = Ngand M = Nm. Note that the entropy S = k;In( is extensive. The statistical
entropy per site is thus

s(qg,m) = —kgqln [%\/qz - m2] - %k‘Bmln<q + m> —ky;(1—¢q)In(1—¢q) . (4.294)

q—m

The temperature is obtained from the relation

1_(98y _ 1 (%
T \9E), W \dq),

_ L - L Lo /a2 —m?2
—Wln(l q) Wln[zx/q m}

(4.295)

Thus,
W/ks

T =
ln[Q(l — )/ —m2]

(c) Wehave 0 < ¢ <1land —g < m < ¢, so T is real (thank heavens!). But it is easy to choose {g, m}
such that T < 0. For example, when m = 0 we have T' = W/k,In(2¢~! — 2) and T < 0 for all
q € (%, 1} . The reason for this strange state of affairs is that the entropy S is bounded, and is not an
monotonically increasing function of the energy E (or the dimensionless quantity ()). The entropy
is maximized for N 1= N, = N| = 1, which says m = 0 and ¢ = 2. Increasing ¢ beyond this
point (with m = 0 fixed) starts to reduce the entropy, and hence (0S5/0F) < 0 in this range, which
immediately gives 7' < 0. What we’ve left out are kinetic degrees of freedom, such as vibrations

and rotations, whose energies are unbounded, and which result in an increasing S(£) function.

(4.296)

4.11.3 Fluctuating interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the
denser fluid is on the bottom. Let z = z(x,y) be the height the interface between the fluids, relative to
equilibrium. The potential energy is a sum of gravitational and surface tension terms, with

z

Ugray = / d%x / dz Apg? (4.297)
0

Uguet = 30 / d?z (Vz)? . (4.298)

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t
so clear how to model it a priori so we will assume a rather general form

/
T = / 4% / & Lp(x, o) azg’;’t) az(gt’t) . (4.299)

We assume that the (z,y) plane is a rectangle of dimensions L, x L,. We also assume yu(x, ') = p(|z —
x’ ]) We can then Fourier transform

(@) = (L, L) P ge® (4.300)
k
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where the wavevectors k are quantized according to

k=""tgy " Yy | (4.301)

with integer n,, and n,, if we impose periodic boundary conditions (for calculational convenience). The

Lagrangian is then
1

L=5>" [Mk\ék\z— (9 2p + ok?) \zk\z] : (4.302)
k

where
U = /dzx u(]a:\) e kT (4.303)

Since z(x, t) is real, we have the relation z_,, = zj, therefore the Fourier coefficients at k and —k are not
independent. The canonical momenta are given by

oL . OL

P = o5 = [ 2k : P = 95, = Uy 2, (4.304)
The Hamiltonian is then
A /
i= Z [pk 5+l zk] ) (4.305)
— Z [‘pk‘ (9Ap + ok?) |zk|2} , (4.306)

where the prime on the k sum indicates that only one of the pair {k, —k} is to be included, for each k.

We may now compute the ordinary canonical partition function:

Z = H /dQZfTZ “k —p|? /1 kg T e~ (g Aptok?) |z |* /kgT

- 1;[/ ( ;h > <9Apu4]i ak2>

F=—k TZI (250 > , (4.308)

(4.307)

Thus,

where!? /o
A k?
2, = <w> . (4.309)
Foge
is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is

appropriate to take y;,, = Ap / |k|, where Ap = p, — p, =~ p,, is the difference between the densities of
water and air.

3Note that there is no prime on the k sum for F, as we have divided the logarithm of Z by two and replaced the half sum
by the whole sum.
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It is now easy to compute the thermal average

(lanl*) = /d22k |2 |2 e~ (0 Ar k) Zk|2/kBT/ /dzzk o~ (9 8p+0k?) |22 /T

kT
~ gAp+ ok?

(4.310)

Note that this result does not depend on 14, i.e. on our choice of kinetic energy. One defines the correlation
function

: d% kyT .
C(m) = <Z($) Z(O) > = 7 1L Z < |zk|2 > elk'm _ /(27T)2 <9Apl:_ O_k2> ezk-m
aty T

o) .
kT eflel T

= q =
dro 2 2 4o
) Vet §

where { = \/gAp/o is the correlation length, and where K (z) is the Bessel function of imaginary
argument. The asymptotic behavior of K(z) for small z is K,(z) ~ In(2/z), whereas for large z one has
Ky(2) ~ (m/22)'/% e=*. We see that on large length scales the correlations decay exponentially, but on
small length scales they diverge. This divergence is due to the improper energetics we have assigned
to short wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the
integral, or by insisting that the shortest distance scale is a molecular diameter.

(4.311)

Ko(‘w’/f) )

4.11.4 Dissociation of molecular hydrogen

Consider the reaction
In equilibrium, we have
PH = Myt He - (4.313)

What is the relationship between the temperature 7" and the fraction = of hydrogen which is dissociated?

Let us assume a fraction z of the hydrogen is dissociated. Then the densities of H, p, and e are then

ng=(1—-2)n , n, = n , ne=axn . (4.314)

The single particle partition function for each species is

N N

_9 14 —Ney/kpT

4’ — ﬁ <>\_3> e amt/ B , (4315)
T

where g is the degeneracy and ¢, the internal energy for a given species. We have ¢;, = 0 for p and

e, and ¢, = —A for H, where A = ¢?/2a, = 13.6eV, the binding energy of hydrogen. Neglecting

hyperfine splittings'*, we have gy = 4, while g, = gp = 2 because each has spin S = 1. Thus, the

"The hyperfine splitting in hydrogen is on the order of (m./m,) a* m.c®> ~ 10~¢ eV, which is on the order of 0.01 K. Here
o = e?/hc is the fine structure constant.
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associated grand potentials are

Oy = —gu VhT A}y et 8/ FsT (4.316)
0, = —g, Vi A5 etw/FsT (4.317)
0y = —go VEsT Ap2 ete/FsT (4.318)

where

| 2mh?
Ar = 4.319
Toa my kT ( )

for species a. The corresponding number densities are

L (08 ) =3 (u=ci) T
n=—|— = g \.° eV Eme)/Fpt 4.320
1% <8,u TV T ( )

and the fugacity z = e#/¥s” of a given species is given by

2z =g 'n b efm/RT (4.321)
We now invoke uy = p,, + p, which says 2y = z, 2, or
g n N e T = (g0 0y M) (g0 e M) (4.322)
which yields
(1””_:) Ay = e BksT (4.323)

where Ay = /27h2/m*k,T, with m* = m,m,/my ~ m,. Note that

~ 4tm A
N = a H , (4.324)
r="s \/ m, \/ kT

where a; = 0.529 A is the Bohr radius. Thus, we have

2 3/2
<1 r w) . (477)3/2 V= <T£> e_TO/T R (4:325)
- 0

where T, = A/k, = 1.578 x 10°K and v = na}. Consider for example a temperature T' = 3000 K, for
which T, /T = 52.6, and assume that z = 1. We then find v = 1.69 x 10~27, corresponding to a density
of n = 1.14 x 1072 ecm~3. At this temperature, the fraction of hydrogen molecules in their first excited
(2s) state is 2/ ~ e~ 70/?T = 3.8 x 1072, This is quite striking: half the hydrogen atoms are completely
dissociated, which requires an energy of A, yet the number in their first excited state, requiring energy
A, is twelve orders of magnitude smaller. The student should reflect on why this can be the case.
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