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Preface

So, ultimately, in order to understand nature it may be resrggo have a deeper understand-
ing of mathematical relationships. But the real reasondsttie subject is enjoyable, and although
we humans cut nature up in different ways, and we have diff@eurses in different departments,
such compartmentalization is really artificial, and we dtiaake our intellectual pleasures where
we find them Richard Feynman, The Laws of Thermodynamics.

Why a preface you may ask? Isn't that just a mere expositicmfison détre of an author’s choice of
material, preferences, biases, teaching philosophy &tcadarge extent | can answer in the affirmative to that.
A preface ought to be personal. Indeed, what you will seegrvédrious chapters of these notes represents how
| perceive computational physics should be taught.

This set of lecture notes serves the scope of presentingu@yd train you in an algorithmic approach
to problems in the sciences, represented here by the unitigreé disciplines, physics, mathematics and
informatics. This trinity outlines the emerging field of cpatational physics.

Our insight in a physical system, combined with numericalhamatics gives us the rules for setting up an
algorithm, viz. a set of rules for solving a particular praol. Our understanding of the physical system under
study is obviously gauged by the natural laws at play, thigaintonditions, boundary conditions and other
external constraints which influence the given system. itpspelled out the physics, for example in the form
of a set of coupled partial differential equations, we neffidient numerical methods in order to set up the
final algorithm. This algorithmis in turn coded into a comgrytrogram and executed on available computing
facilities. To develop such an algorithmic approach, yoll e exposed to several physics cases, spanning
from the classical pendulum to quantum mechanical syst®veswill also present some of the most popular
algorithms from numerical mathematics used to solve a ptatbf problems in the sciences. Finally we will
codify these algorithms using some of the most widely used@mming languages, presently C, C++ and
Fortran and its most recent standard Fortran EOBB)wever, a high-level and fully object-oriented language
like Python is now emerging as a good alternative although &3d Fortran still outperform Python when it
comes to computational speed. In this text we offer an agbredoere one can write all programs in C/C++
or Fortran. We will also show you how to develop large progsamPython interfacing C++ and/or Fortran
functions for those parts of the program which are CPU intensSuch an approach allows you to structure
the flow of data in a high-level language like Python whil&ksasf a mere repetitive and CPU intensive nature
are left to low-level languages like C++ or Fortran. Pyththoves you also to smoothly interface your program
with other software, such as plotting programs or operayrsgem instructions. A typical Python program you
may end up writing contains everything from compiling andming your codes to preparing the body of a file
for writing up your report.

Computer simulations are nowadays an integral part of copéeary basic and applied research in the
sciences. Computation is becoming as important as thedrgxgreriment. In physics, computational physics,
theoretical physics and experimental physics are all égimaportantin our daily research and studies of phys-
ical systems. Physics is the unity of theory, experimentczmdputatioﬂ. Moreover, the ability "to compute”
forms part of the essential repertoire of research scisnt8everal new fields within computational science
have emerged and strengthened their positions in the lass y&ich as computational materials science, bioin-
formatics, computational mathematics and mechanics, atatipnal chemistry and physics and so forth, just
to mention a few. These fields underscore the importanceraflations as a means to gain novel insights into
physical systems, especially for those cases where notar@golutions can be found or an experiment is too

1Throughout this text we refer to Fortran 2003 as Fortran lying the latest standard. Fortran 2008 will only add minbamges to
Fortran 2003.

2We mentioned previously the trinity of physics, mathensatiad informatics. Viewing physics as the trinity of theagyperiment
and simulations is yet another example. It is obviously timgpto go beyond the sciences. History shows that triun@sfiés and
for example triple deities permeate the Indo-Europearurest (and probably all human cultures), from the ancientsGeid Hindus to
modern days. The ancient Celts revered many such trinugis vibrld was divided into earth, sea and air, nature wasidiviin animal,
vegetable and mineral and the cardinal colours were rethwelnd blue, just to mention a few. As a curious digressiowas a Gaulish
Celt, Hilary, philosopher and bishop of Poitiers (AD 315736n his work De Trinitate who formulated the Holy Trinity concept of
Christianity, perhaps in order to accomodate millenia afibn divination practice.



complicated or expensive to carry out. To be able to simidaigee quantal systems with many degrees of free-
dom such as strongly interacting electrons in a quantum dbbe of great importance for future directions
in novel fields like nano-techonology. This ability oftenngbines knowledge from many different subjects,
in our case essentially from the physical sciences, nu@mariathematics, computing languages, topics from
high-performace computing and some knowledge of computers

In 1999, when | started this course at the department of phaysiOslo, computational physics and com-
putational science in general were still perceived by th@ritg of physicists and scientists as topics dealing
with just mere tools and number crunching, and not as sudb@their own. The computational background of
most students enlisting for the course on computationasipbycould span from dedicated hackers and com-
puter freaks to people who basically had never used a PC. afarity of undergraduate and graduate students
had a very rudimentary knowledge of computational techescand methods. Questions like 'do you know of
better methods for numerical integration than the trapdaule’ were not uncommon. | do happen to know
of colleagues who applied for time at a supercomputing edngécause they needed to invert matrices of the
size of10* x 10* since they were using the trapezoidal rule to compute iatsghVith Gaussian quadrature
this dimensionality was easily reduced to matrix problefrite@size ofl 02 x 102, with much better precision.

Less than ten years later most students have now been exfmoaddirly uniform introduction to com-
puters, basic programming skills and use of numerical és@sc Practically every undergraduate student in
physics has now made a Matlab or Maple simulation of for exartipe pendulum, with or without chaotic
motion. Nowadays most of you are familiar, through variondergraduate courses in physics and mathemat-
ics, with interpreted languages such as Maple, Matlab andidthematica. In addition, the interest in scripting
languages such as Python or Perl has increased considerabbent years. The modern programmer would
typically combine several tools, computing environmemid programming languages. A typical example is
the following. Suppose you are working on a project which deds extensive visualizations of the results.
To obtain these results, that is to solve a physics problé&m®btaining the density profile of a Bose-Einstein
condensate, you need however a program which is fairly fastmeomputational speed matters. In this case
you would most likely write a high-performance computinggram using Monte Carlo methods in languages
which are tailored for that. These are represented by pnogiiag languages like Fortran and C++. However,
to visualize the results you would find interpreted langsdges Matlab or scripting languages like Python
extremely suitable for your tasks. You will therefore endanting for example a script in Matlab which calls
a Fortran ot C++ program where the number crunching is dodetzm visualize the results of say a wave
equation solver via Matlab’s large library of visualizatitools. Alternatively, you could organize everything
into a Python or Perl script which does everything for yolisadhe Fortran and/or C++ programs and performs
the visualization in Matlab or Python. Used correctly, thesols, spanning from scripting languages to high-
performance computing languages and vizualization pragrapeed up your capability to solve complicated
problems. Being multilingual is thus an advantage whichardy applies to our globalized modern society
but to computing environments as well. This text shows yow tmuse C++ and Fortran as programming
languages.

There is however more to the picture than meets the eye. édihdnterpreted languages like Matlab,
Mathematica and Maple allow you nowadays to solve very caragdd problems, and high-level languages
like Python can be used to solve computational problemspotational speed and the capability to write an
efficient code are topics which still do matter. To this e najority of scientists still use languages like
C++ and Fortran to solve scientific problems. When you embark master or PhD thesis, you will most
likely meet these high-performance computing languagéss dourse emphasizes thus the use of program-
ming languages like Fortran, Python and C++ instead of iméded ones like Matlab or Maple. You should
however note that there are still large differences in capime between for example numerical Python and
a corresponding C++ program for many numerical applicatiarthe physical sciences, with a code in C++
or Fortran being the fastest.

Computational speed is not the only reason for this choiggagramming languages. Another important
reason is that we feel that at a certain stage one needs tosbawe insights into the algorithm used, its
stability conditions, possible pitfalls like loss of prsicin, ranges of applicability, the possibility to improve
the algorithm and taylor it to special purposes etc etc. Graupmajor aims here is to present to you what
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we would dub 'the algorithmic approach’, a set of rules fomngomathematics or a precise description of
how to solve a problem. To device an algorithm and thereaftiée a code for solving physics problems is a
marvelous way of gaining insight into complicated physgyatems. The algorithm you end up writing reflects
in essentially all cases your own understanding of the glsyand the mathematics (the way you express
yourself) of the problem. We do therefore devote quite sopaees to the algorithms behind various functions
presented in the text. Especially, insight into how erraoppgate and how to avoid them is a topic we would
like you to pay special attention to. Only then can you avoiabfems like underflow, overflow and loss of
precision. Such a control is not always achievable withrprieted languages and canned functions where the
underlying algorithm and/or code is not easily accesibléh@dugh we will at various stages recommend the
use of library routines for say linear alg%raur belief is that one should understand what the giventfonc
does, at least to have a mere idea. With such a starting peinstrongly believe that it can be easier to
develope more complicated programs on your own using For€a+ or Python.

We have several other aims as well, namely:

— We would like to give you an opportunity to gain a deeper ustderding of the physics you have learned
in other courses. In most courses one is normally confromtddsimple systems which provide exact
solutions and mimic to a certain extent the realistic cabéany are however the comments like 'why
can’t we do something else than the particle in a box poténtian several of the projects we hope
to present some more ‘realistic’ cases to solve by variousarical methods. This also means that we
wish to give examples of how physics can be applied in a muchder context than it is discussed in
the traditional physics undergraduate curriculum.

— To encourage you to "discover" physics in a way similar to hhegearchers learn in the context of
research.

— Hopefully also to introduce numerical methods and new aoégdysics that can be studied with the
methods discussed.

— To teach structured programming in the context of doingrexee

— The projects we propose are meant to mimic to a certain etttersituation encountered during a thesis
or project work. You will tipically have at your disposal 2a&eks to solve numerically a given project.
In so doing you may need to do a literature study as well. Binake would like you to write a report
for every project.

Our overall goal is to encourage you to learn about sciencmutfh experience and by asking questions.
Our objective is always understanding and the purpose ofoating is further insight, not mere numbers!
Simulations can often be considered as experiments. Rexgiarsimulation need not be as costly as rerunning
an experiment.

Needless to say, these lecture notes are upgraded corglgifoom typos to new input. And we do always
benefit from your comments, suggestions and ideas for mdkiege notes better. It's through the scientific
discourse and critics we advance. Moreover, | have berfittemensely from many discussions with fellow
colleagues and students. In particular | must mention migagle Torgeir Engeland, whose input through the
last years has considerably improved these lecture notes.

Finally, | would like to add a petit note on referencing. Themtes have evolved over many years and
the idea is that they should end up in the format of a web-bleseding environment for doing computational
science. It will be fully free and hopefully represent a muaabre efficient way of conveying teaching material
than traditional textbooks. | have not yet settled on a djefdrmat, so any input is welcome. At present
however, it is very easy for me to upgrade and improve the mahten say a yearly basis, from simple typos
to adding new material. When accessing the web page of theseoyou will have noticed that you can
obtain all source files for the programs discussed in the tékiny people have thus written to me about
how they should properly reference this material and whethey can freely use it. My answer is rather

3Such library functions are often taylored to a given machiaechitecture and should accordingly run faster than ps®rided ones.

\



simple. You are encouraged to use these codes, modify tinetade them in publications, thesis work, your
lectures etc. As long as your use is part of the dialecticgiehse you can use this material freely. However,
since many weekends have elapsed in writing several of theggams, testing them, sweating over bugs,
swearing in front of a f*@7%g code which didn’t compile prdgeen minutes before monday morning’s
eight o’clock lecture etc etc, | would dearly appreciate ase you find these codes of any use, to reference
them properly. That can be done in a simple way, refer to MrtHjdensenl_ecture Notes on Computational
Physics University of Oslo (2010). The weblink to the course shalkb be included. Hope it is not too much
to ask for. Enjoy!

%,

‘gww/ﬁ/‘m’/)}/ﬂ‘%{gMW/é%%i i

S T
R DB

vi



Contents

| e —— o] L
[ Introduction] 3

[1.1__Choice of pro i 08 o e i 5
igni S e 6

[2__Introduction to C++ and Fortran| 9
R Introductioh . . . . . .. ... e 9
2 Gefing Star@d . . . . . . . 9

P21 Scienfifichellowordd . . . .. ..... ... .. ... ... 10
2.3 Representation of integer numbers . . . . . . ... e 15
P31 Fortrancodes . . ... ... ... 17
2.4 Real numbers and numerical preciion . . . . . . o e e 18
.41 Representation of realnumbers . . . . .. .. .. ... 19
.42 Machinenumbeérs. . . . .. ...... ... ... ... . 21

P52 Fortrancadbs . . . . ... 26
.53 Furtherexamples . . . . . . o v v 28
iti ++ 0 R 31
R.6.1  0Operatorsin CH+ . . v v v e 31
2.6.2 Pointersandarraysin Ch+.. . . . . . o oo 33
P63 Macrosin Ca+ . . .. ... 34
in C++ AN . e e e 36

B Introductioh . . .. ... ... .. e 41

B2 Numericaldifferentiafidn . . . . . .. . ... ... 41
ivative efp () . . . . . . . e 45

B.22 Erroranalydis . . . . . .o 54

B4 ClassesinCl+ . . . . e 59
B.41 TheComplexXcClass . . . . . o o v v o 60
B42 Thevectorcldss. . . . . oo oo 66

B5 ModulesinFOrtrdn . . . . . .. 80




Contents

viii

135
135
136
137
139
142
144

147



Contents

|Z,2 Eigenvalue RIODIEMNS .« . o s e 197

2.3 Similarity transformatiohs . . . . . . . .. .. e 198

.z SQh[Qdmgers eguation throug.h_d.l.a.g.o.n.a.l.lzétlon
[2.7.1_Numerical solution of the Schrédinger equation bg.dlmllza.tmh ........... 207

18.6.2 Damning_oj_h_a.mmnj_c_as_dllali_o_ns_and_exmnal_tdnces ............... 231

I8.6.3 The pendulum, a nonlinear differential equation . ...... . . . . ... ....... 233

8.6.4 _SpINNINGMAGHEt . . . . o o 235

[8.7 Physics Project: the pendulum . . . . . . . . 235
8.7.1 Analyticresultsforthe pendullim . . . . . . .. .. ... 235
872 Thependulumcade . . . . . . o v vt 238

[8.8 Exercisesand projelctS . . . . . . oo ot e 249
B.8.1 Fauilibriumequatiohs . . . ... ... ... ... ... .. 254
[0 Two point boundary value problem$ 261
.1 Introductioh . . . . ... .. .. e 261
i S i e e e e e e 262

0.2.1 Improved approximation to the second derivative, Brows methdd . . . . . . . . . 262

[0.2.2 Wave equation with constant accelertion . . . . . . . oo 264

er equation for spherical poteftials . . ...... . . . . ... ... 267

(9.3 _Numerical procedure shooting_a_n_d_m_a,t_dhing .......................... 269

i i adi ! jon . ... ... 269

0.4 Green'sfunction approdch . . . . . . o o 271

j DS . . . e e e 274
[10 Partial differential equatignsl 277
0.1 IntrodUCton . . . . o o o 277
[10.2 Diffusionequatidn . . . . . . . ... 279
[10.2.1 Explicitscheme . . . . . . . . o e 280




Contents

- = 285
1024 Numericaltruncatibn . . . .. ... .. .. ... ... ... . ... . ... .. 288
[10.2.5 Analytic solution for the one-dimensional diffusiequation . . . . . ... ... ... 289
[10.3 | aplace’s and POiSSON'S @qUAONS . . . . .« . v i e e e e 290
[10.3.1 Jacobi Algorithm for solving Laplace’s equation . . .. ... ........... 291
[10.4 Wave equation in two dimensibns . . . . . ... ... ... 292
041 Analyticsolutidn . . . . . . .. ... e 293
05 Exercisesandprojdets. . . . . . .. ... 295
lv__Monte Carlo Methods| 301
[11_Qutline of the Monte Carlo strategy 303
M11 Introduction . . . . . . .. e 303
[1.1.1 Definitiods . . .. .. ... ... ... ... ..., 305
[11.1.2 First illustration of the use of Monte-Carlo methartside integratian . . . . . . . . . 308
[11.1.3 Second illustration, particlesinabox . .. ... ... ............... 311
[1.1.4 Radioactivededay . .. ... ...... .. . ... ... ... 313
[11.1.5 Program example for radioactive decay of one typeiolenbs . . . . . . .. ... .. 314
(116 Briefsummaly . . ... ... ... . 316
[11.2_Probability distribution functions . . . . . . . . .. ... e 316
[11.2.1 Multivariable Expectation Vallles . . . . . . ... ................. 319
[11.2.2 The centrallimittheor®m . . . . . .. .. .. .. ... ... ..uoui.io.o... 321
[11.2.3 Definition of correlations functions and standargiaféon . . . . .. ... ... ... 323
(1.3 Randomnumb@rs . . . . . . .. ... 324
[11.3.1 Properties of selected random number gendrators .. .. ... 327
[11.4 Improved Monte Carlointegration . . . . . . .. . ... ... ... 328
1.41 Changeofvariables. . . . ... ... ... .. ... . . ... .. ........ 330
142 Importancesampling . . . . . . . . ... 333
[11.4.3 Acceptance-Rejectionmethod . . . . ... .................. 335
[11.5 Monte Carlo integration of multidimensionalintegral. . . . . ... ............. 335
151 Bruteforceintegratibn . . . . .. ... ... ... 336
152 Importancesampling . . . . . . . ... 337
[11.6 Classes for random numbergenerhtors . . . . . . . . . .. .. 339
1.7 Exercises and projECtS . . . . . . v v o ov e e e 340
[12_Random walks and the Metropolis algorithm 343
M2 Motivatioh . . . ... ... .. 343
2.2 Diffusion equation and randomwalks . . . . . .. ... ... e 344
[2.2.1 Diffusionequation . . . . .. . ... ... ... 344
222 Randomwalks . ... ....... ... .. .. ... ... 347
[12.3 Microscopic derivation of the diffusionequafion . . . . . ... . ... ... ... ..... 349
2.3.1 Discretized diffusion equation and Markavchains..... . . . . ... ........ 351
232 Continuousequations . . . . . . . . . . oot 355
[12.3.3 Numerical SIMUIAtION . . . . . . . oo oo 357
[12.4 Entropy and Equilibrium Features . . . . . .. .. ...t 360
[12.5 The Metropolis algorithm and detailed baldnce . . . . ... ... ... L. 361
251 Briefsummaly . ... ... ... .. 365
2.6 Exercisesandprojdcts. . . . . . . .. ... 365



Contents




Contents

[16 Improved Monte Carlo approaches to systems of fermiohs 6
[L6.1 Splitting the Slater deferminAnt . . . . . . . . . ... 467
[16.2 Computational optimization of the Metropolis/hagtiatio . . . . . . . . . . . . . o . . ... 468

[L6.2.1 Evaluating the determinant-determinantlratio . ...... . ... ........... 468
[16.3 Optimizing theV W /Wap 1At0 . . . . o o o oottt 470
i ient- i -10- inatio . ... ... 470
[16.4 Optimizing theZ2We /T ALG . . . . o o v v e oo e 471

i i tX . . e e 471

ing the computational cost fo the correlationdfor. . . . . . . . . .. .. .. .. ... 472

[16.7 Computin ion-to- ' {10 YA 472

Xii



Part |

Introduction to Programming and
Numerical Methods






Chapter 1

Introduction

... Die Untersuchungsmethode, deren ich mich bedient habeieraliflékonomische Prob-
leme noch nicht angewandt wurde, macht die Lektiire derrekspitel ziemlich schwierig, und
es ist zu befiirchten, daf3 das franzésische Publikum, stgesduldig nach dem Ergebnis und be-
gierig, den Zusammenhang zwischen den allgemeinen Grirstisénd den Fragen zu erkennen,
die es unmittelbar bewegen, sich abschrecken laf3t, weithssofort weiter vordringen kann.

Das ist ein Nachteil, gegen den ich nichts weiter unternehkagn, als die nach Wahrheit
strebenden Leser von vornherein darauf hinzuweisen uraigefi machen. Es gibt keine Land-
straf3e fUr die Wissenschaft, und nur diejenigen haben,i¢htsghre lichten Hohen zu erreichen,
die die Miihe nicht scheuen, ihre steilen Pfade zu erklimni&ar! Marx, preface to the french
edition of 'Das Kapital’, Vol. |

In the physical sciences we often encounter problems ofiatialy various properties of a given functiff).
Typical operations are differentiation, integration amdifing the roots off (). In most cases we do not have
an analytical expression for the functigiu:) and we cannot derive explicit formulae for derivatives &een

if an analytical expression is available, the evaluatiooastain operations ofi(z) are so difficult that we need
to resort to a numerical evaluation. More frequenflfy) is the result of complicated numerical operations
and is thus known only at a set of discrete points and needsapproximated by some numerical methods in
order to obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introductioeeiected numerical methods which are
encountered in the physical sciences. Several exampl#syaiying degrees of complexity, will be used in
order to illustrate the application of these methods.

The text gives a survey over some of the most used methodshiputational physics and each chapter
ends with one or more applications to realistic systemsnfitee structure of a neutron star to the description
of quantum mechanical systems through Monte-Carlo methéaeng the algorithms we discuss, are some
of the top algorithms in computational science. In recemieys by Dongarra and Sullivan [1] and Cipra [2],
the list over the ten top algorithms of the 20th century idelu

1. The Monte Carlo method or Metropolis algorithm, devisgdbhn von Neumann, Stanislaw Ulam, and
Nicholas Metropolis, discussed in chapferiIIL-14.

2. The simplex method of linear programming, developed bgrge Dantzig.

3. Krylov Subspace lIteration method for large eigenvalwsblams in particular, developed by Magnus
Hestenes, Eduard Stiefel, and Cornelius Lanczos, disdusshaptef]r.

4. The Householder matrix decomposition, developed byoalstouseholder and discussed in chapkter 7.
5. The Fortran compiler, developed by a team lead by JohniBaclkodes used throughout this text.

6. The QR algorithm for eigenvalue calculation, developgdde Francis, discussed in chajifler 7
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7. The Quicksort algorithm, developed by Anthony Hoare.
8. Fast Fourier Transform, developed by James Cooley amdTakey.
9. The Integer Relation Detection Algorithm, developed ®fdthan Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Gigamnl and Viadimir Rokhlin; (to calculate grav-
itational forces in an N-body problem normally requit¥$ calculations. The fast multipole method
uses order N calculations, by approximating the effectsrofigs of distant particles using multipole
expansions)

The topics we cover start with an introduction to C++ and fartprogramming (with digressions to
Python as well) combining it with a discussion on numeriaasion, a point we feel is often neglected in
computational science. This chapter serves also as inmuirtdiscussion on numerical derivation in chapter
B. In that chapter we introduce several programming coscapth as dynamical memory allocation and call
by reference and value. Several program examples are pedsienthis chapter. For those who choose to
program in C++ we give also an introduction to how to progrdasses and the auxiliary library Blitz++,
which contains several useful classes for numerical op&r®bn vectors and matrices. This chapter contains
also sections on numerical interpolation and extrapafatiGhaptefls deals with the solution of non-linear
equations and the finding of roots of polynomials. The linBtidz++, matrices and selected algorithms for
linear algebra problems are dealt with in chapter 6.

Therafter we switch to numerical integration for integnaith few dimensions, typically less than three,
in chaptef#. The numerical integration chapter servestalgestify the introduction of Monte-Carlo methods
discussed in chaptelsl11 dnd 12. There, a variety of apiplicaare presented, from integration of multidi-
mensional integrals to problems in statistical physichsasgrandom walks and the derivation of the diffusion
equation from Brownian motion. Chapfeln 13 continues thisasion by extending to studies of phase transi-
tions in statistical physics. Chaplel 14 deals with Monggi€studies of quantal systems, with an emphasis on
variational Monte Carlo methods and diffusion Monte Carlethods. In chaptél 7 we deal with eigensystems
and applications to e.g., the Schrédinger equation remrits a matrix diagonalization problem. Problems
from scattering theory are also discussed, together withrtbst used solution methods for systems of linear
equations. Finally, we discuss various methods for soldiffgrential equations and partial differential equa-
tions in chapterEIB=10 with examples ranging from harmosiiliations, equations for heat conduction and
the time dependent Schrdédinger equation. The emphasisvaramus finite difference methods.

We assume that you have taken an introductory course in @moging and have some familiarity with
high-level or low-level and modern languages such as JaghpR, C++, Fortran 77/90/95, etc. Fortleand
C++ are examples of compiled low-level languages, in caht@interpreted ones like Maple or Matlab. In
such compiled languages the computer translates an eabpEagram into basic machine instructions all at
one time. In an interpreted language the translation is @m@estatement at a time. This clearly increases
the computational time expenditure. More detailed aspefdise above two programming languages will be
discussed in the lab classes and various chapters of this tex

There are several texts on computational physics on theehaske for example Refs. [3—10], ranging
from introductory ones to more advanced ones. Most of theeds treat however in a rather cavalier way the
mathematics behind the various numerical methods. Wedeslccumbed to this approach, mainly due to the
following reasons: several of the methods discussed arerratvolved, and would thus require at least a one-
semester course for an introduction. In so doing, littleetinould be left for problems and computation. This
course is a compromise between three disciplines, nunhenietnods, problems from the physical sciences
and computation. To achieve such a synthesis, we will havelax our presentation in order to avoid lengthy
and gory mathematical expositions. You should also keepit ithat computational physics and science in
more general terms consist of the combination of severalsfiahd crafts with the aim of finding solution
strategies for complicated problems. However, where wendalge in presenting more formalism, we have
borrowed heavily from several texts on mathematical afmglys

1with Fortran we will consistently mean Fortran 2003. Thaeer programming examples in Fortran 77 in this text.



1.1 — Choice of programming language

1.1 Choice of programming language

As programming language we have ended up with preferring Gtitrall examples discussed in the text have
their corresponding Fortran and Python programs on the aggbpf this text.

Fortran (FORmula TRANSslation) was introduced in 1957 amdaims in many scientific computing envi-
ronments the language of choice. The latest standard, $egRe-14], includes extensions that are familiar to
users of C++. Some of the most important features of Fortreludle recursive subroutines, dynamic storage
allocation and pointers, user defined data structures, fesgand the ability to manipulate entire arrays. How-
ever, there are several good reasons for choosing C++ asapnagng language for scientific and engineering
problems. Here are some:

— C++ is now the dominating language in Unix and Windows envinents. It is widely available and
is the language of choice for system programmers. It is vadespread for developments of non-
numerical software

— The C++ syntax has inspired lots of popular languages, ssiéted, Python and Java.
— Itis an extremely portable language, all Linux and Unix @gped machines have a C++ compiler.

— In the last years there has been an enormous effort towaxddogéng numerical libraries for C++.
Numerous tools (humerical libraries such as MPI [15-17§) aritten in C++ and interfacing them
requires knowledge of C++. Most C++ and Fortran compilemmgare fairly well when it comes to
speed and numerical efficiency. Although Fortran 77 and Gegarded as slightly faster than C++ or
Fortran, compiler improvements during the last few yearseldiminshed such differences. The Java
numerics project has lost some of its steam recently, araliaterefore normally slower than C++ or
Fortran, see however the Java Numerics homepage for a diisoum numerical aspects of Java [18].

— Complex variables, one of Fortran’s strongholds, can atésddfined in the new ANSI C++ standard.

— C++ is a language which catches most of the errors as earlgsssighe, typically at compilation time.
Fortran has some of these features if one omits implicitde declarations.

— C++is also an object-oriented language, to be contrastidtwand Fortran. This means that it supports
three fundamental ideas, namely objects, class hierarahig polymorphism. Fortran has, through the
MODULE declaration the capability of defining classes, but lackeiitance, although polymorphism
is possible. Fortran is then considered as an object-basgdgmming language, to be contrasted with
C++ which has the capability of relating classes to eachratha& hierarchical way.

An important aspect of C++ is its richness with more than 6@wards allowing for a good balance
between object orientation and numerical efficiency. Famtiore, careful programming can results in an
efficiency close to Fortran 77. The language is well-suitegddrge projects and has presently good standard
libraries suitable for computational science projectdjalgh many of these still lag behind the large body
of libraries for numerics available to Fortran programmaetgwever, it is not difficult to interface libraries
written in Fortran with C++ codes, if care is exercised. @thieak sides are the fact that it can be easy to write
inefficient code and that there are many ways of writing tieesthings, adding to the confusion for beginners
and professionals as well. The language is also under cantgxdevelopment, which often causes portability
problems.

C++ is also a difficult language to learn. Grasping the basicather straightforward, but takes time to
master. A specific problem which often causes unwanted oeaads is dynamic memory management.

The efficiency of C++ codes are close to those provided byr&oriThis means often that a code written
in Fortran 77 can be faster, however for large numericalgutsjC++ and Fortran are to be preferred. If speed
is an issue, one could port critical parts of the code to Rar#7.
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Future plans

Since our undergraduate curriculum has changed consigiérain the beginning of the fall semester of 2007,
with the introduction of Python as programming language,dbntent of this course will change accordingly
from the fall semester 2009. C++ and Fortran will then cdexith Python and students can choose between
these three programming languages. The emphasis in thevikdie on C++ programming, but how to
interface C++ or Fortran programs with Python codes wilbdle discussed.

1.2 Designing programs

Before we proceed with a discussion of numerical methodsyaugd like to remind you of some aspects of
program writing.

In writing a program for a specific algorithm (a set of rulesdoing mathematics or a precise description
of how to solve a problem), it is obvious that different pragmers will apply different styles, ranging from
barely readablB (even for the programmer) to well documented codes whictheamsed and extended upon
by others in e.g., a project. The lack of readability of a pamgleads in many cases to credibility problems,
difficulty in letting others extend the codes or remembedngself what a certain statement means, problems
in spotting errors, not always easy to implement on otherhim&s, and so forth. Although you should feel
free to follow your own rules, we would like to focus certaimggestions which may improve a program. What
follows here is a list of our recommendations (or biaseg/jgliees).

First about designing a program.

— Before writing a single line, have the algorithm clarifieddamderstood. It is crucial to have a logical
structure of e.g., the flow and organization of data befoeegiarts writing.

— Always try to choose the simplest algorithm. Computatiapeled can be improved upon later.

— Try to write a as clear program as possible. Such programsaaier to debug, and although it may take
more time, in the long run it may save you time. If you collaterwith other people, it reduces spending
time on debugging and trying to understand what the code#datear program will also allow you to
remember better what the program really does!

— Implementa working code with emphasis on design for exterssimaintenance etc. Focus on the design
of your code in the beginning and don’t think too much abofitieihcy before you have a thoroughly
debugged and verified your program. A rule of thumb is theated80 — 20 rule, 80 % of the CPU
time is spent in 20 % of the code and you will experience thpiclly onlya small part of your code
is responsible for most of the CPU expenditure. Therefqrend most of your time in devising a good
algorithm.

— The planning of the program should be from top down to botttging to keep the flow as linear as
possible. Avoid jumping back and forth in the program. Frsti need to arrange the major tasks to
be achieved. Then try to break the major tasks into subtagkesse can be represented by functions or
subprograms. They should accomplish limited tasks andrasfpossible be independent of each other.
That will allow you to use them in other programs as well.

— Try always to find some cases where an analytical solutiost®xir where simple test cases can be
applied. If possible, devise different algorithms for sotythe same problem. If you get the same
answers, you may have coded things correctly or made the sanrawice.

— When you have a working code, you should start thinking otffieiency. Analyze the efficiency with a
tool (profiler) to predict the CPU-intensive parts. Attabknh the CPU-intensive parts after the program
reproduces benchmark results.

2As an example, a bad habit is to use variables with no specifianing, like x1, x2 etc, or names for subprograms which go lik
routinel, routine2 etc.

6



1.2 — Designing programs

However, although we stress that you should post-pone astigm of the efficiency of your code to the
stage when you are sure that it runs correctly, there are sanpe guidelines to follow when you design the
algorithm.

— Avoid lists, sets etc., when arrays can be used without tochmaste of memory. Avoid also calls to
functions in the innermost loop since that produces an @aattn the call.

— Heavy computation with small objects might be inefficieng, evector of class complex objects
— Avoid small virtual functions (unless they end up in moretlisay) 5 multiplications)

— Save object-oriented constructs for the top level of youteco

Use taylored library functions for various operations,agpible.

— Reduce pointer-to-pointer-to....-pointer links insideps.

Avoid implicit type conversion, use rather the explicit keyrd when declaring constructors in C++.
— Never return (copy) of an object from a function, since trosmally implies a hidden allocation.
Finally, here are some of our favoured approaches for wyriicode.

— Use always the standard ANSI version of the programmingdagg. Avoid local dialects if you wish
to port your code to other machines.

— Add always comments to describe what a program or subprogoms. Comment lines help you re-
member what you did e.g., one month ago.

— Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will be more
readable and help you find errors when compiling.

— Do not use GOTO structures in Fortran. Although all varieties of spaghetti great culinaric tempta-
tions, spaghetti-like Fortran with many0T0 statements is to be avoided. Extensive amounts of time
may be wasted on decoding other authors’ programs.

— When you name variables, use easily understandable namaigl. Av1 when you can usespeed_of_light
. Associatives names make it easier to understand what disppedprogram does.

— Use compiler options to test program details and if possilsle different compilers. They make errors
too.

— Writing codes in C++ and Fortran may often lead to segmemdtults. This means in most cases
that we are trying to access elements of an array which aravadible. When developing a code it is
then useful to compile with debugging options. The use ofidglrs likegdb is something we highly
recommend during the development of a program.






Chapter 2

Introduction to C++ and Fortran

Computers in the future may weigh no more than 1.5 t®egular Mechanics, 1949

There is a world market for maybe five computéreomas Watson, IBM chairman, 1943

2.1 Introduction

This chapters aims at catching two birds with a stone; tamthice to you essential features of the program-
ming languages C++ and Fortran with a brief reminder on Rysgpecific topics, and to stress problems like
overflow, underflow, round off errors and eventually loss @qision due to the finite amount of numbers a
computer can represent. The programs we discuss are tdytotieese aims.

2.2 Getting started

In programming Ianguad}sve encounter data entities such as constants, variabfedtgef evaluations of
functions etc. Common to these objects is that they can lresepted through the type concept. There are
intrinsic types and derived types. Intrinsic types are jgted by the programming language whereas derived
types are provided by the programmer. If one specifies the tyfe for exampl&@NTEGER (KIND=2) for
Fortrarfl or short int/int in C++, the programmer selects a particular date type withit29(16 bits)

for every item of the classINTEGER (KIND=2) or int. Intrinsic types come in two classes, numerical
(like integer, real or complex) and non-numeric (as logeadl character). The general form for declaring
variables is data type name of variable and TabldZR lists the standard variable declarations ef C+
and Fortran (note well that there be may compiler and madifferences from the table below). Animportant
aspect when declaring variables is their region of validltyside a function we define a a variable through
the expressionint var or INTEGER :: var . The question is whether this variable is available in other
functions as well, moreover whereusr initialized and finally, if we call the function where it is dared, is

the value conserved from one call to the other?

1For more detailed texts on C++ programming in engineeringl asience are the books by Flowers [19] and Bar-
ton and Nackman [20]. The classic text on C++ programminghis book of Bjarne Stoustrup [21]. See also the lec-
ture notes on C++ ahttp://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lectures at
http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to other i@iFaatran resources.
Both web pages contain enough material, lecture notes andises, in order to serve as material for own studies. ThiegfF95 standard
is well documented in Refs. [11-13] while the new details oftian 2003 can be found in Ref. [14]. The reader should rtethis is
not a text on C++ or Fortran . It is therefore important thaa ties to find additional literature on these programmimgyleages. Good
Python texts on scientific computing are [22, 23].

20ur favoured display mode for Fortran statements will bétahfetters for language statements and low key lettersi$er-defined
statements. Note that Fortran does not distinguish beteagital and low key letters while C++ does.
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type in C++ and Fortran  bits range
int/INTEGER (2) 16 —32768to0 32767

unsigned int 16 0to 65535

signed int 16 —32768to 32767

short int 16 —32768to 32767

unsigned short int 16 0to 65535

signed short int 16 —32768to 32767

int/long int/INTEGER(4) 32 —2147483648t0 2147483647
signed long int 32 —214748364810 2147483647
float/REAL(4) 32 100*to10*38
double/REAL(8) 64 107322 t0 101308

Table 2.1: Examples of variable declarations for C++ andrkor. We reserve capital letters for Fortran
declaration statements throughout this text, althoughr&ors not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64fbitsloubles. The ranges listed here may
therefore vary.

Both C++ and Fortran operate with several types of variadtesthe answers to these questions depend
on how we have defined for example an integer via the stateimantvar. Python on the other hand does

not use variable or function types (they are not explicitefitten), allowing thereby for a better potential for
reuse of the code.

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only availablghin the scope of the
function.

formal parameter If it is defined within a function it is onlyadlable within that
specific function.

global variables  Defined outside a given function, avaddbl all functions from
the point where it is defined.

In Table[Z:2 we show a list of some of the most used languagenséats in Fortran and C++.

In addition, both C++ and Fortran allow for complex variablén Fortran we would declare a complex
variable asLOMPLEX (KIND=16):: x, y which refers to a double with word length of 16 bytes. In C++
we would need to include a complex library through the stateis

#include <complex>
complex<double> x, vy;

We will discuss the above declaratiesmplex<double>x,y; in more detail in chaptéi 3.

2.2.1 Scientific hello world

Our first programming encounter is the 'classical’ one, ibimalmost every textbook on computer languages,
the 'hello world’ code, here in a scientific disguise. We predirst the C version.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programl.cpp

/* comments in C begin like this and end with x*/
#include <stdlib.h> /* atof function x/

#include <math.h> /* sine function x/

#include <stdio.h> /* printf function x/
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2.2 — Getting started

Fortran

C++

PI’Og ram structure

PROGRAM something
FUNCTION something(input)
SUBROUTINE something(inout)

main ()
double (int) something(input)

Data type declarations

REAL (4) X,y

REAL(8) :: X,y

INTEGER :: X,y

CHARACTER :: name

REAL(8), DIMENSION(dim1,dim2) :: x
INTEGER, DIMENSION(dim1,dim2) :: x
LOGICAL :: x

float x, y;
double x, y;
int x,y;
char name;
double x[dim1][dim2];
int x[dim1][dim2];

TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF (a==b) THEN if (a==Db)
b=0 {b=0;
ENDIF }

DO WHILE (logical statement)
do something

while (logical statement)
{do something

ENDDO }

IF (a>=b) THEN if (a>=Db)

b=0 {b=0;

ELSE else

a=0 a=0;}

ENDIF

SELECT CASE (variable) switch(variable)
CASE (variable=valuel) {

do something case 1:

CASE (..) variable=valuel;
do something;
break;
END SELECT case 2:
do something; break; .
}
DOi=0, end, 1 for(i=0; k= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.
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int main (int argc, charx argv[])
{
double r, s; /* declare variables x/
r = atof(argv[l]); /* convert the text argv[1] to double */
s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

The compiler must see a declaration of a function before yaoucall it (the compiler checks the argument
and return types). The declaration of library functionsegp in so-called header files that must be included
in the program, for example nclude<stdlib. h>.

We call three functionstof,sin,printf and these are declared in three different header files. Tl ma
program is a function called main with a return value set tardeger, returning O if success. The oper-
ating system stores the return value, and other prograitit&@atcan check whether the execution was suc-
cessful or not. The command-line arguments are transféadtde main function through the statement
intmain(intargc,charxargv(]). The integerrgc stands for the number of command-line arguments, set to
one in our case, whileargv is a vector of strings containing the command-line argusesith argvie] con-
taining the name of the program aaehv(11, argv[2], ... are the command-line args, i.e., the number of lines
of input to the program.

This means that we would run the programs as

mhjensen@compphys:./myprogram.exe 0.3

argv[0] while the text strind).2 entersargvii].

Here we define a floating point variable, see also below, tiitrdhe keywordstoat for single precision
real numbers andouble for double precision. The functiostof transforms a textargv[1]) to a float. The
sine function is declared in math.h, a library which is ndbawatically included and needs to be linked when
computing an executable file.

With the commandgrintf we obtain a formatted printout. Theintf syntax is used for formatting output
in many C-inspired languages (Perl, Python, awk, partly )C++

In C++ this program can be written as

// A comment line begins like this in C++ programs
using namespace std;
#include <iostream>
#include <cstdlib>
#include <cmath>
int main (int argc, charx argv[])
{
// convert the text argv[1] to double using atof:
double r = atof(argv[l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success
return 0;

}

We have replaced the call tointf with the standard C++ functiorout. The header fil&ostream is then
needed. In addition, we don’t need to declare variablesslikand s at the beginning of the program. |
personally prefer however to declare all variables at thggrivéng of a function, as this gives me a feeling of
greater readability. Note that we have used the declaratioi@namespacestd;. Namespace is a way to collect
all functions defined in C++ libraries. If we omit this de@#on on top of the program we would have to add
the declarationtd in front of cout or cin. Our program would then read

// Hello world code without using namespace std
#include <iostream>
#include <cstdlib>

12
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#include <cmath>
int main (int argc, charx argv[])
{
// convert the text argv[1] to double using atof:
double r = atof(argv[l]);
double s = sin(r);
std::cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success
return 0;

}

Another feature which is worth noting is that we have skippeception handlings here. In chagdikr 3 we
discuss examples that test our input from the command linéitBs easy to add such a feature, as shown in
our modified hello world program

// Hello world code with exception handling
using namespace std;
#include <cstdlib>
#include <cmath>
#include <iostream>
int main (int argc, charx argv[])
{
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){
cout << "Bad Usage: " << argv[0] <<
" read also a number on the same line, e.g., prog.exe 0.2" << endl;
exit(1l); // here the program stops.
}
// convert the text argv[1] to double using atof:
double r = atof(argv[l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success
return 0;

}

Here we test that we have more than one argument. If not, thgrgom stops and writes to screen an error
message. Observe also that we have included the mathefitaticg via the#inciude<cmath> declaration.

To run these programs, you need first to compile and link theorder to obtain an executable file under
operating systems like e.g., UNIX or Linux. Before we pratee give therefore examples on how to obtain
an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, thi¥ahg instructions under Linux/Unix can
be used

c++ -c -Wall myprogram.c
C++ -0 myprogram myprogram.o

where the compiler is called through the commanel. The compiler option -Wall means that a warning is
issued in case of non-standard language. The executabieifil¢his casenyprogram. The option-c is for
compilation only, where the program is translated into nraelcode, while the o option links the produced
object filemyprogram. o and produces the executablgprogram .

The corresponding Fortran code is

http://www.Tys.uio.no/compphys/cp/programs/FYS53150/chapter02/t90/programl. t90

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) :: r ! Input number
REAL (KIND=8) :: s ! Result

! Get a number from user

13
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WRITE(*,*) 'Input a number: '

READ (*,%) r
! Calculate the sine of the number

s = SIN(r)
! Write result to screen

WRITE(*,*) 'Hello World!/ SINE of ', r, ' =', s
END PROGRAM shw

The first statement must be a program statement; the lastregat must have a corresponding end program
statement. Integer numerical variables and floating paimterical variables are distinguished. The names
of all variables must be between 1 and 31 alphanumeric ctesaaf which the first must be a letter and the
last must not be an underscore. Comments begin with a ! andeancluded anywhere in the program.
Statements are written on lines which may contain up to 132adters. The asterisks (*,*) following WRITE
represent the default format for output, i.e., the outpetgs, written on the screen. Similarly, the READ(*,*)
statement means that the program is expecting a line inpate &lso the IMPLICIT NONE statement which
we strongly recommend the use of. In many Fortran 77 prog@mascan find statements like IMPLICIT
REAL*8(a-h,0-z), meaning that all variables beginninghwitny of the above letters are by default floating
numbers. However, such a usage makes it hard to spot eventaes due to misspelling of variable names.
With IMPLICIT NONE you have to declare all variables and #fere detect possible errors already while
compiling. | recommend strongly that you declare all vaeahvhen using Fortran.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90
f90 -0 myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-aalieakefile, which is a script which includes pos-
sible compiling commands, in order to avoid retyping theweblines every once and then we have made
modifcations to our program. A typical makefile for the aboweompiling options is listed below

# General makefile for ¢ - choose PROG = name of given program

# Here we define compiler option, libraries and the target
CC= c++ -Wall
PROG= myprogram

# Here we make the executable file
${PROG} : ${PROG}.0
${CC} ${PROG}.0 -0 ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.cpp
${CC} -c ${PROG}.cpp

If you name your file for ‘'makefile’, simply type the commanthke and Linux/Unix executes all of the
statements in the above makefile. Note that C++ files havexdieasion .cpp
For Fortran, a similar makefile is

# General makefile for F90 - choose PROG = name of given program
# Here we define compiler options, libraries and the target

F90= f90
PROG= myprogram

14



2.3 — Representation of integer numbers

# Here we make the executable file
${PROG} : ${PROG}.0
${F90} ${PROG}.o0 -0 ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.f90
${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corredpanPython code

http://www.fys.ulo.no/compphys/cp/programs/FYS3150/chapter02/python/programl.py

#!/usr/bin/env python

import sys, math

# Read in a string a convert it to a float
r = float(sys.argv[1])

s = math.sin(r)

print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific matain Python we do not need to declare variables.
Mathematical functions like thgin function are imported from thmathmodule. For further references to
Python and its syntax, we recommend the text of Hans Pettagthagen [23]. The corresponding codes in
Python are available at the webpage of the course.

2.3 Representation of integer numbers

In Fortran a keyword for declaration of an integemiSeGer(kInNb=n) , n = 2 reserves 2 bytes (16 bits) of
memory to store the integer variable wheras n = 4 reservedes 82 bits). In Fortran, although it may be
compiler dependent, just declaring a variabla@®Ger, reserves 4 bytes in memory as default.

In C++ keywords arenortint,int,longint,longlongint. The byte-length is compiler dependent within
some limits. The GNU C++-compilers (called by gcc or g++)igisgl bytes (32 bits) to variables declared
by int andlongint. Typical byte-lengths are 2, 4, 4 and 8 bytes, for the typesrgabove. To see how many
bytes are reserved for a specific variable, C++ has a libnamgtfon calledsizeof (type) which returns the
number of bytes fokype.

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant
C++: short int age_of participant;

Note that the(kinp=2) can be written as (2). Normally however, we will for Fortrarograms just use the 4
bytes default assignmeriNTEGER.

In the above examples one bit is used to store the sign of ttieblaage_of participant and the other 15
bits are used to store the number, which then may range fromtae'® — 1 = 32767. This should definitely
suffice for human lifespans. On the other hand, if we weredesify known fossiles by age we may need

Fortran: INTEGER (4) :: age_of fossile
C++: int age_of fossile;

Again one bit is used to store the sign of the variable agdossile and the other 31 bits are used to store
the number which then may range from zer@tb — 1 = 2.147.483.647. In order to give you a feeling how
integer numbers are represented in the computer, thinlofithe decimal representation of the numbér

417 =4 x 10> + 1 x 10" + 7 x 10°,
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which in binary representation becomes
A7 =1%an2" +an_12"" 4 ap_22""2 4+ + ao2",

where the coefficienta, with k¥ = 0,...,n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to ietee the numbers,, to ag. A given integer in
binary notation is then written as

2™ + 12"+ ap 02" 4 4 20
In binary notation we have thus
(417)10 = (110100001 )y,
since we have

(110100001)s =1 x 22 +1x 2740 x 20 +1x2° 4+ 0x 21 +0x 22+ 0x 22 + 0 x 22+ 0 x 21 +1 x 2°.

To see this, we have performed the following divisions by 2

417/2=208 remainder1l coefficient®fis 1
208/2=104 remainder0 coefficient®fis 0
104/2=52 remainder 0 coefficient ®f is 0
52/2=26 remainder 0 coefficient &% is 0
26/2=13 remainder 0 coefficient 8t is 0
13/2=6 remainder 1  coefficient 8f is 1

6/2=3 remainder 0 coefficient @f is 0
3/2=1 remainder 1  coefficient af is 1
1/2=0 remainder 1  coefficient af is 1

We see that nine bits are sufficient to represent 417. Noymagdlend up using 32 bits as default for integers,
meaning that our number reads

(417)10 = (00000000000000000000000110100001 ),

A simple program which performs these operations is lisedd. Here we employ the modulus operation
(with division by 2), which in C++ is given by thes2 operator. In Fortran we would call the functionb(a,2)
in order to obtain the remainder of a division by

http://www.Tys.ulio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program2.cpp

using namespace std;
#include <iostream>

int main (int argc, charx argv[])

{
int 1i;
int terms[32]; // storage of a0, al, etc, up to 32 bits
int number = atoi(argv([1]);

// initialise the term a0, al etc

for (i=0; i < 32 ; i++){ terms[i] = 0;}
for (i=0; i <32 ; i++){
terms[i] = number%2;
number /= 2;
}
// write out results
cout << ' Number of bytes used= '' << sizeof(number) << endl;
for (i=0; i < 32 ; i++){
cout << °° Term nr: °° << 1 << " "Value= ' << terms[i];
cout << endl;
}
return 0;

}
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The C++ functiorsizeof yields the number of bytes reserved for a specific variableteIso thefor con-
struct. We have reserved a fixed array which contains thesgaitn; being0 or 1, the remainder of a division
by two. We have enforced the integer to be represented byt82dvifour bytes, which is the default integer
representation.

Note that for417 we need 9 bits in order to represent it in a binary notatiorilexhnumber like the number
3is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011)5.

For this number 2 significant bits would be enough.

With these prerequesites in mind, it is rather obvious thatgiven integer variable is beyond the range
assigned by the declaration statement we may encountelepisb

If we multiply two large integers; x ne and the product is too large for the bit size allocated fot tha
specific integer assignement, we run into an overflow problEme most significant bits are lost and the least
significant kept. Using 4 bytes for integer variables thelltdsecomes

220 » 220 — .

However, there are compilers or compiler options that prepss the program in such a way that an error
message like 'integer overflow’ is produced when runninggtegram. Here is a small program which may
cause overflow problems when running (try to test your ownmitemin order to be sure how such problems
need to be handled).

http://www.Tys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program3.cpp

// Program to calculate 2x%x*n
using namespace std;
#include <iostream>

int main()
{
int intl, int2, int3;
// print to screen
cout << "Read in the exponential N for 2”N =\n";
// read from screen
cin >> int2;
intl = (int) pow(2., (double) int2);

cout << " 2”N * 2”N = " << intlxintl << "\n";

int3 = intl - 1;

cout << " 27°N*(2”N - 1) = " << intl * int3 << "\n";
cout << " 2”N- 1 = " << int3 << "\n";

return 0;

}
// End: program main()

If we run this code with an exponent = 32, we obtain the following output
2°N x 2°N = 0

2°N*(2"”N - 1) = -2147483648

2”N- 1 = 2147483647

We notice thaR® exceeds the limit for integer numbers with 32 bits. The paogreturng). This can be
dangerous, since the results from the operaib(2”¥’ — 1) is obviously wrong. One possibility to avoid such
cases is to add compilation options which flag if an overflowrwterflow is reached.

2.3.1 Fortran codes

The corresponding Fortran code is
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http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter02/190/program2.t90

PROGRAM binary_integer
IMPLICIT NONE
INTEGER i, number, terms(0:31) ! storage of a0, al, etc, up to 32 bits,
! note array length running from 0:31. Fortran allows negative indexes as well.

WRITE(*,*) 'Give a number to transform to binary notation'
READ (*,*) number
! Initialise the terms a0, al etc
terms = 0
! Fortran takes only integer loop variables
DO i=0, 31
terms(i) = MOD(number,2) ! Modulus function in Fortran
number = number/2
ENDDO
! write out results
WRITE(*,*) 'Binary representation '
DO i=0, 31
WRITE(*,*)' Term nr and value', i, terms(i)
ENDDO

END PROGRAM binary_integer

and

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter02/190/program3.t90

PROGRAM integer_exp
IMPLICIT NONE
INTEGER :: intl, int2, int3
! This is the begin of a comment line in Fortran 90
! Now we read from screen the variable int2
WRITE(*,*) 'Read in the number to be exponentiated'
READ (*,*) int2
intl=2*xint2
WRITE(*,*) '2”N*2”N', intlxintl
int3=intl-1
WRITE(*,*) '2”N*(2”N-1)', intlxint3
WRITE(*,%) '2”N-1', int3

END PROGRAM integer_exp
In Fortran the modulus division is performed by the intrinsic function \lstinline{MOD(number,2)}

in case of a division by $2$. The exponentation of a number is given by for example \lstinline{2%*N}
instead of the call to the $\lstinline{pow} function in C++.

2.4 Real numbers and numerical precision

An important aspect of computational physics is the nunaépecision involved. To design a good algorithm,
one needs to have a basic understanding of propagation afurecies and errors involved in calculations.
There is no magic recipe for dealing with underflow, overflascumulation of errors and loss of precision,

and only a careful analysis of the functions involved caresave from serious problems.

Since we are interested in the precision of the numericalibas, we need to understand how computers
represent real and integer numbers. Most computers ddateat numbers in the binary system, or octal and
hexadecimal, in contrast to the decimal system that we hameafer to use. The binary system uses 2 as
the base, in much the same way that the decimal system use&irid® the typical computer communicates
with us in the decimal system, but works internally in e.lge binary system, conversion procedures must be

executed by the computer, and these conversions involvefilbponly small roundoff errors
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2.4 — Real numbers and numerical precision

Computers are also not able to operate using real numbersssaqul with more than a fixed number of
digits, and the set of values possible is only a subset of théa@matical integers or real numbers. The so-
called word length we reserve for a given number places aigtsh on the precision with which a given
number is represented. This means in turn, that for exangaérily numbers are always rounded to a machine
dependent precision, typically with 6-15 leading digitghie right of the decimal point. Furthermore, each
such set of values has a processor-dependent smallesiveeayat a largest positive value.

Why do we at all care about rounding and machine precisio®bEBt way is to consider a simple example
first. In the following example we assume that we can repteséinating number with a precision of 5 digits
only to the right of the decimal point. This is nothing but armehoice of ours, but mimicks the way numbers
are represented in the machine.

Suppose we wish to evaluate the function

1 —cos(x)

fla) = sin (z)

for small values ofc. If we multiply the denominator and numerator with- cos (z) we obtain the equivalent
expression

_ sin(x)

f@) = 1+ cos(z)

If we now chooser = 0.006 (in radians) our choice of precision results in
sin (0.007) ~ 0.59999 x 1072,

and
cos (0.007) ~ 0.99998.

The first expression fof (x) results in

1 —0.99998 0.2 x 104
- X —0.33334 x 1072,

J(@) = 0.59999 x 10—2  0.59999 x 102

while the second expression results in

~0.59999 x 1072 0.59999 x 1072

- = = 0.30000 x 102
H®) = —70.99998 1.99998 *

which is also the exact result. In the first expression, dumitachoice of precision, we have only one relevant
digit in the numerator, after the subtraction. This leads toss of precision and a wrong result due to a
cancellation of two nearly equal numbers. If we had chosereaigion of six leading digits, both expressions
yield the same answer. If we were to evaluate , then the second expression ;) can lead to potential
losses of precision due to cancellations of nearly equalbaim

This simple example demonstrates the loss of numericaigioaaue to roundoff errors, where the number
of leading digits is lost in a subtraction of two near equahibers. The lesson to be drawn is that we cannot
blindly compute a function. We will always need to carefidlyalyze our algorithm in the search for potential
pitfalls. There is no magic recipe however, the only guitkelis an understanding of the fact that a machine
cannot represent correctyl numbers.

2.4.1 Representation of real numbers

Real numbers are stored with a decimal precision (or ma)téad the decimal exponent range. The mantissa
contains the significant figures of the number (and therebypitecision of the number). A number like
(9.90625)1¢ in the decimal representation is given in a binary repregimt by

(1001.11101) =1 x 22+ 0x 22 + 0 x 2 +1x 20 +1x 27 1 x 272 41 x 273 +0x 274 +1x 275,
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and it has an exact machine number representation since eteanéinite number of bits to represent this
number. This representation is however not very practiRalther, we prefer to use a scientific notation. In
the decimal system we would write a number I§k80625 in what is called the normalized scientific notation.
This means simply that the decimal point is shifted and apeite powers of 10 are supplied. Our number
could then be written as

9.90625 = 0.990625 x 10,

and a real non-zero number could be generalized as
T = 4r x 10",

with ar a number in the range/10 < r < 1. In a similar way we can represent a binary number in scientifi
notation as

T = £q x 2™,

with a ¢ a number in the rangé/2 < ¢ < 1. This means that the mantissa of a binary number would be
represented by the general formula

(0a_qa_29...a_p)a=a_1x2 ' +a 9x2 24 da_, x27"

In a typical computer, floating-point numbers are represgtimt the way described above, but with certain
restrictions ory andm imposed by the available word length. In the machine, ourlrenm is represented as

x = (—1)° x mantissa x 2°¥Ponent,

wheres is the sign bit, and the exponent gives the available rangth &\single-precision word, 32 bits, 8 bits
would typically be reserved for the exponent, 1 bit for thgnsand 23 for the mantissa. This means that if we
define a variable as

Fortran: REAL (4) :: size_of_fossile
C++: float size_of fossile;

we are reserving 4 bytes in memory, with 8 bits for the expgnérfor the sign and and 23 bits for the
mantissa, implying a numerical precision to the sixth oesghr digit, since the least significant digit is given
by 1/2% ~ 10~7. The range of the exponent goes fram'2® = 2.9 x 10739 to 2127 = 3.4 x 1038, where
128 stems from the fact that 8 bits are reserved for the exyione

A madification of the scientific notation for binary numbesstd require that the leading binary digit 1
appears to the left of the binary point. In this case the T@tion of the mantissawould be(1.f), and
1 < g < 2. This form is rather useful when storing binary numbers immputer word, since we can always
assume that the leading bit 1 is there. One bit of space carbénsaved meaning that a 23 bits mantissa has
actually 24 bits. This means explicitely that a binary numbi¢h 23 bits for the mantissa reads

(1.a,1a,2 . CL,23)2 =1x 20 +a_1 X 271 +a_o X 272 +---4a_, X 2723.
As an example, consider the 32 bits binary number
(10111110111101000000000000000000)s,

where the first bit is reserved for the sign, 1 in this casedyjigl a negative sign. The exponentis given

by the next 8 binary numbefs 111101 resulting in 125 in the decimal system. However, since thmeent
has eight bits, this means it ha% — 1 = 255 possible numbers in the intervall28 < m < 127, our final
exponent isl25 — 127 = —2 resulting in2~2. Inserting the sign and the mantissa yields the final nunber i
the decimal representation as

—277 (I x2°4+1x27' +1x272+1x224+0x27"+1x27%) = (—0.4765625)1o.
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In this case we have an exact machine representation witlit8galotually, we need less than 23 bits for the
mantissa).

If our numberz can be exactly represented in the machine, weacallmachine number. Unfortunately,
most numbers cannot and are thereby only approximated im#mhine. When such a number occurs as
the result of reading some input data or of a computationnavitable error will arise in representing it as
accurately as possible by a machine number.

A floating number x, labelled{(«) will therefore always be represented as

fl(x) =2(1 £ e,), (2.2)

with z the exact number and the erfiex| < |eas|, Wheree, is the precision assigned. A number liké10
has no exact binary representation with single or doubleigimn. Since the mantissa

L.(a—1a_2...a_p)y

is always truncated at some stagelue to its limited number of bits, there is only a limited nwenbf real
binary numbers. The spacing between every real binary nuislggven by the chosen machine precision.
For a 32 bit words this number is approximately ~ 10~7 and for double precision (64 bits) we have
enm ~ 1071, orin terms of a binary base as2* and2~52 for single and double precision, respectively.

2.4.2 Machine numbers

To understand that a given floating point number can be wridein Eq.[Z11), we assume for the sake of
simplicity that we work with real numbers with words of leh@2 bits, or four bytes. Then a given number
in the binary representation can be represented as

n
T = (1.(1710,,2 ... 23024095 . .. )2 X 2 s

or in a more compact form
r=rx2",

with 1 < r < 2and—126 < n < 127 since our exponent is defined by eight bits.

In most cases there will not be an exact machine represemttthe number. Our number will be placed
between two exact 32 bits machine numbersandz . Following the discussion of Kincaid and Cheney [24]
these numbers are given by

Tr_ = (1.(1,10,,2 . a,23)2 X 2”,

and
Ty = ((1.a_1a_2 ce a_23))2 + 2723) x 2",

If we assume that our numbeiis closer tar_ we have that the absolute error is constrained by the relatio

|z —z_| < %|x+ —x_|= % x 2N = gn—2,
A similar expression can be obtained:ifs closer tar. The absolute error conveys one type of information.
However, we may have cases where two equal absolute erisesfom rather different numbers. Consider
for example the decimal numbets= 2 anda = 2.001. The absolute error between these two numbers is
0.001. In a similar way, the two decimal numbeérs= 2000 andb = 2000.001 give exactly the same absolute
error. We note here that= 2000.001 has more leading digits than

If we compare the relative errors

b—bl _

o —al _ =1.0x 1075,

=10x1073%, ——
|al 0]

we see that the relative errorbris much smaller than the relative errordin\We will see below that the relative
error is intimately connected with the number of leadingtdign the way we approximate a real number. The
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relative error is therefore the quantity of interest in atific work. Information about the absolute error is
normally of little use in the absence of the magnitude of thardity being measured.
We define then the relative error foras

|z —z_| < 22

e  —rx2n g

Instead of using:_ andz_ as the machine numbers closesttave introduce the relative error

|z — 7|

< 2n—24
[ ’

with T being the machine number closestitoDefining

T —x
€x = )
X

we can write the previous inequality
fl(x) =21+ ¢;)

wherele,| < ey = 2724 for variables of length 32 bits. The notatigii(x) stands for the machine approxi-
mation of the number. The numbek ), is given by the specified machine precision, approximateéty’ for
single andL0~ ¢ for double precision, respectively.

There are several mathematical operations where an evéogaaf precision may appear. A subraction,
especially important in the definition of numerical derivas discussed in chapi@r 3 is one important opera-
tion. In the computation of derivatives we end up subtragctimo nearly equal quantities. In case of such a
subtractioms = b — ¢, we have

fl(a) = fI(b) — fl(c) = a(l + ea),
or
fl(a) =b(1 4+ ¢) — c(1 + €c),

meaning that

b c
l =1 — — €c—,
fl@/a=1+a" et

and ifb =~ ¢ we see that there is a potential for an increased error in #@hime representation ¢i(a). This
is because we are subtracting two numbers of equal size aadrainains is only the least significant part of
these numbers. This part is prone to roundoff errors andsfsmall we see that (with ~ ¢)

~

€a = — (€ — €c),

SHRS

can become very large. The latter equation represents lduivecerror of this calculation. To see this, we
define first the absolute error as

|fl(a) — al,
whereas the relative error is
fla) —a] _ -
a

The above subraction is thus

[fl{a) —a| _ |FI(b) = f(e) = (b—¢)|

)
a a

yielding

|fl(a) —a|  |bey — ce.
a - a '
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2.5 — Programming examples on loss of precision and round-@frors

An interesting question is then how many significant bindty are lost in a subtractiom = b — ¢ when we
haveb = c¢. The loss of precision theorem for a subtractios b — ¢ states that [24]if b and ¢ are positive
normalized floating-point binary machine numbers witk ¢ and

2T <1 <2, (2.2)

(=l et

then at most and at leask significant binary bits are lost in the subtractiér-c. For a proof of this statement,
see for example Ref. [24].

But even additions can be troublesome, in particular if thabers are very different in magnitude. Con-
sider for example the seemingly trivial additibs- 10~ with 32 bits used to represent the various variables. In
this case, the information containedlie—2 is simply lost in the addition. When we perform the additithg
computer equates first the exponents of the two numbers tddea Forl 08 this has however catastrophic
consequences since in order to obtain an exponent eqifl tbits in the mantissa are shifted to the right. At
the end, all bits in the mantissa are zeros.

This means in turn that for calculations involving real nardxif we omit the discussion on overflow and
underflow) we need to carefully understand the behavior ofatgorithm, and test all possible cases where
round-off errors and loss of precision can arise. Othersagéch may cause serious problems are singularities
of the type0/0 which may arise from functions likein(z)/x asz — 0. Such problems may also need the
restructuring of the algorithm.

2.5 Programming examples on loss of precision and round-effors

2.5.1 Algorithms foe=~

In order to illustrate the above problems, we discuss hemesamous and perhaps less famous problems,
including a discussion on specific programming featureseds w
We start by considering three possible algorithms for campue—*:

1. by simply coding

—X — nxn
e T = 7;)(_1) —

2. or to employ a recursion relation for

oo o0

xn
—Tr __ . _ ne
AR IUED Yl
n=0 n=0
using
Sn = —Sn—-1—",
n
3. or to first calculate

oo
expr = E Sn
n=0

and thereafter taking the inverse
1

exp T

e ¥ =

Below we have included a small program which calculates

n

e’ = Z(_l)n%a

n=0
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for z-values ranging frond to 100 in steps of 10. When doing the summation, we can always defiesised
precision, given below by the fixed value for the variable NRCATION= 1.0F — 10, so that for a certain
value ofz > 0, there is always a value af = N for which the loss of precision in terminating the series at
n = N is always smaller than the nextterm in the se%%s The latter is implemented through the while{}
statement.

http://www.Tys.uio.no/compphys/cp/programs/FYS53150/chapter02/cpp/programé.cpp

// Program to calculate function exp(-x)
// using straightforward summation with differing precision
using namespace std;

#include <iostream>

// type float: 32 bits precision

// type double: 64 bits precision
#define TYPE double

#define PHASE(a) (1 - 2 x (abs(a) % 2))
#define TRUNCATION 1.0E-10

// function declaration

TYPE factorial(int);

int main()
{
int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization
n =0;
term = 1;

while(fabs(term) > TRUNCATION) {
term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;

n++;
} // end of while() loop
cout << 77 x ="' << x << "7 exp = 7 << exp(-X) << ' series = " << sum;
cout << ' number of terms = " << n << endl;

} // end of for() loop
return 0;
} // End: function main()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{
int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {
fac *= loop;
}
return fac;
} // End: function factorial()

There are several features to be nEt&irst, for low values ofr, the agreement is good, however for larger
values, we see a significant loss of precision. Secondly; fer70 we have an overflow problem, represented
(from this specific compiler) by NaN (not a number). The laiteeasy to understand, since the calculation of
a factorial of the siz& 71! is beyond the limit set for the double precision variablddaal. The message NaN
appears since the computer sets the factorialréfequal to zero and we end up having a division by zero in
our expression foe~*.

3Note that different compilers may give different messagesdeal with overflow problems in different ways.
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2.5 — Programming examples on loss of precision and round-@frors

x exp(—x)

Series

Number of terms in series

0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13  -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm éap (—x).

The overflow problem can be dealt with via a recurrence fodhidr the terms in the sum, so that we
avoid calculating factorials. A simple recurrence formiglaour equation

oo oo xn
exp () = Y s = Y (0L
n=0 n=0 :
is to note that .
Sp = —Sn—-1—,
n

so that instead of computing factorials, we need only to agmproducts. This is exemplified through the
next program.

http://www.fys.uilo.no/compphys/cp/programs/FYS3150/chapter02/cpp/program5.cpp

// program to compute exp(-x) without factorials

using namespace std;
#include <iostream>
#define TRUNCATION 1.0E-10

int main()

{
int loop, n;
double x, term, sum;

for(loop = 0; loop <= 100; loop += 10){

x = (double) loop; // initialization
sum = 1.0;

term = 1;

n =1;

while(fabs(term) > TRUNCATION){
term *= -x/((double) n);
sum += term;
n++;

} // end while loop

cout << "X ='' << X << “exp = 7 << exp(-x) <<

cout << "~ “number of terms = " << n << endl;

} // end of for loop
} // End: function main()

‘“series =

<< sum;

4Recurrence formulae, in various disguises, either as wayspresent series or continued fractions, are among theanosnonly
used forms for function approximation. Examples are Befiggitions, Hermite and Laguerre polynomials, discussedekample in

chaptel®.
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x exp(—z) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04  0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm fotp (—z).

In this case, we do not get the overflow problem, as can be seenthe large number of terms. Our results
do however not make much sense for larger values @ecreasing the truncation test will not help! (try it).
This is a much more serious problem.

In order better to understand this problem, let us consitecase of = 20, which already differs largely
from the exact result. Writing out each term in the summatiom obtain the largest term in the sum appears
atn = 19, with a value that equals43099804. However, forn = 20 we have almost the same value, but
with an interchanged sign. It means that we have an erraivel® the largest term in the summation of the
order 0f43099804 x 10~1'° ~ 4 x 10~2. This is much larger than the exact valueddfl x 10~8. The large
contributions which may appear at a given order in the suad te strong roundoff errors, which in turn is
reflected in the loss of precision. We can rephrase the alna¥eifollowing way: Sincexp (—20) is a very
small number and each term in the series can be rather lafgfge(order of103, it is clear that other terms
as large ag0®, but negative, must cancel the figures in front of the decjpeat and some behind as well.
Since a computer can only hold a fixed number of significantéguall those in front of the decimal point
are not only useless, they are crowding out needed figurég aight end of the number. Unless we are very
careful we will find ourselves adding up series that finallpgists entirely of roundoff errors! An analysis of
the contribution to the sum from various terms shows thatehative error made can be huge. This results in
an unstable computation, since small errors made at one atagnagnified in subsequent stages.

To this specific case there is a simple cure. Noting ¢kat(x) is the reciprocal oéxp (—z), we may use
the series foexp (x) in dealing with the problem of alternating signs, and sintpke the inverse. One has
however to beware of the fact thatp (x) may quickly exceed the range of a double variable.

2.5.2 Fortran codes

The Fortran programs are rather similar in structure to thé frogram.

In Fortran Real numbers are written as 2.0 rather than 2 anlhrdel as REAL (KIND=8) or REAL
(KIND=4) for double or single precision, respectively. largeral we discorauge the use of single precision
in scientific computing, the achieved precision is in geheod good enough. Fortran uses a do construct to
have the computer execute the same statements more tharNmiealso that Fortran does not allow floating
numbers as loop variables. In the example below we use battcarsstruct for the loop over and abowHILE
construction for the truncation test, as in the C++ progr@ne could altrenatively use thexit statement
inside a do loop. Fortran has also if statements as in C++IHhenstruct allows the execution of a sequence
of statements (a block) to depend on a condition. The if cansis a compound statement and begins with IF
... THEN and ends with ENDIF. Examples of more general IF troiess using ELSE and ELSEIF statements
are given in other program examples. Another feature torgbse the CYCLE command, which allows a
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loop variable to start at a new value.

Subprograms are called from the main program or other sghanos. In the C++ codes we declared a
function TYPE factorial(int);. Subprograms are always called functions in C++. If we dedfawith void
is has the same meaning as subroutines in Fortran,. Subeswuie used if we have more than one return
value. In the example below we compute the factorials usiegunctionfactorial. This function receives a
dummy argument. INTENT(IN) means that the dummy argument cannot be changfaih the subprogram.
INTENT(OUT) means that the dummy argument cannot be usédmwthie subprogram until it is given a value
with the intent of passing a value back to the calling progrdime statement INTENT(INOUT) means that
the dummy argument has an initial value which is changed as3dqd back to the calling program. We
recommend that you use these options when calling subpregrehis allows better control when transfering
variables from one function to another. In chajifler 3 we disaall by value and by reference in C++. Call
by value does not allow a called function to change the vafizegiven variable in the calling function. This
is important in order to avoid unintentional changes ofalalés when transfering data from one function to
another. Thantent construct in Fortran allows such a control. Furthermonegdteases the readability of the
program.

http://www.Tys.uio.no/compphys/cp/programs/FYS53150/chapter02/190/program4.t90

! In this module you can define for example global constants
MODULE constants
! definition of variables for double precisions and complex variables
INTEGER, PARAMETER :: dp = KIND(1.0DO)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
! Global Truncation parameter
REAL (DP), PARAMETER, PUBLIC :: truncation=1.0E-10
END MODULE constants

! Here you can include specific functions which can be used by
! many subroutines or functions

MODULE functions

CONTAINS
REAL (DP) FUNCTION factorial(n)
USE CONSTANTS
INTEGER, INTENT(IN) :: n
INTEGER :: loop

factorial = 1.0_dp
IF ( n> 1) THEN
DO loop = 2, n
factorial=factorialxloop
ENDDO
ENDIF
END FUNCTION factorial

END MODULE functions
! Main program starts here
PROGRAM exp_prog
USE constants
USE functions
IMPLICIT NONE
REAL (DP) :: x, term, final_sum
INTEGER :: n, loop_over_x

! loop over x-values
DO loop_over_x=0, 100, 10
x=1loop_over_x
! initialize the EXP sum
final_sum= 0.0_dp; term = 1.0_dp; n =0
DO WHILE ( ABS(term) > truncation)
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term = ((-1.0_dp)**n)=*(x*x*xn)/ factorial(n)
final_sum=final_sum+term
n=n+1

ENDDO

! write the argument x, the exact value,
WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM exp_prog

the computed value and n

ThewmobuLE declaration in Fortran allows one to place functions like tine which calculates the factorials.
Note also the usage of the modwenstantswhere we define double and complex variables. If one wishes
to switch to another precision, one just needs to changedbladtion in one part of the program only. This
hinders possible errors which arise if one has to changahiardeclarations in every function and subroutine.
In addition we have defined a global varialiencation which is accessible to all functions which have the

USEconstants declaration. These declarations have to come before ambladeclarations anhPLICITNONE
statement.

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter02/1t90/program5. t90

! In this module you can define for example global constants

MODULE constants
! definition of variables for double precisions and complex variables
INTEGER, PARAMETER :: dp = KIND(1.0DO)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))

! Global Truncation parameter
REAL(DP), PARAMETER, PUBLIC ::
END MODULE constants

PROGRAM improved_exp
USE constants
IMPLICIT NONE
REAL (dp) :: x, term, final_sum
INTEGER :: n, loop_over_x

DO loop_over_x=0, 100, 10
x=1loop_over_x
! initialize the EXP sum
final_sum=1.0 ; term=1.0 ; n =1
DO WHILE ( ABS(term) > truncation)

term = -termxx/FLOAT(n)
final_sum=final_sum+term
n=n+1

ENDDO

! write the argument x, the exact value,
WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM improved_exp

truncation=1.0E-10

! loop over x-values, no floats as loop variables

the computed value and n

2.5.3 Further examples

Summing1/n

Let us look at another roundoff example which may surprisemere. Consider the series
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which is finite whenN is finite. Then consider the alternative way of writing thisrs

1

8222%7

which when summed analytically should give = s;. Because of roundoff errors, numerically we will
getsy # s1! Computing these sums with single precision fér = 1.000.000 results ins; = 14.35736
while s; = 14.39265! Note that these numbers are machine and compiler dependféith double pre-
cision, the results agree exactly, however, for largereslof N, differences may appear even for double
precision. If we choos&/ = 10® and employ double precision, we gat = 18.9978964829915355 while
s9 = 18.9978964794618506, and one notes a difference even with double precision.

This example demonstrates two important topics. First weathat the chosen precision is important, and
we will always recommend that you employ double precisioalircalculations with real numbers. Secondly,
the choice of an appropriate algorithm, as also seeafércan be of paramount importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard tievia whengo is small compared to the average
valuez. Below we illustrate how one of the most frequently used atgms can go wrong when single
precision is employed.

However, before we proceed, let us definandz. Suppose we have a set &fdata points, represented
by the one-dimensional arrayi), fori = 1, N. The average value is then

T =

while

Let us now assume that
x(i) =i+ 10°,

and thatN = 127, just as a mere example which illustrates the kind of problerhich can arise when the
standard deviation is small compared with the mean value

The standard algorithm computes the two contributions teeparately, that is we sufp, z(i)? and
subtract thereafter ) -, x(i). Since these two numbers can become nearly equal and laegaaywend up in
a situation with potential loss of precision as an outcome.

The second algorithm on the other hand computesdifst— Z and then squares it when summing up.
With this recipe we may avoid having nearly equal numberstvhancel.

Using single precision results in a standard deviatiomr of 40.05720139 for the first and most used
algorithm, while the exact answerds= 36.80579758, a number which also results from the above second
algorithm. With double precision, the two algorithms régukthe same answer.

The reason for such a difference resides in the fact thatteafgorithm includes the subtraction of two
large numbers which are squared. Since the average valtlag@xample i€ = 100063.00, it is easy to see
that computing, z(i)*> —Z ), z(i) can give rise to very large numbers with possible loss ofipi@twhen
we perform the subtraction. To see this, consider the casean- 64. Then we have

x§4 — Zxg4 = 100352,

while the exact answer is
x3, — Trey = 100064!

You can even check this by calculating it by hand.
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The second algorithm computes first the difference betwegénand the average value. The difference
gets thereafter squared. For the second algorithm we have<f@4

I64_E:15

and we have no potential for loss of precision.
The standard text book algorithm is expressed through th@nimg program, where we have also added
the second algorithm

http://www.Tys.uio.no/compphys/cp/programs/FYS53150/chapter02/cpp/programb.cpp

// program to calculate the mean and standard deviation of
// a user created data set stored in array x[]
using namespace std;
#include <iostream>
int main()
{
int i;
float sum, sumsq2, xbar, sigmal, sigma2;
// array declaration with fixed dimension
float x[127];
// initialise the data set
for ( i=0; i < 127 ; i++){
x[i] = 1 + 100000.;
}
// The variable sum is just the sum over all elements
// The variable sumsq2 is the sum over x"2
sum=0. ;
sumsq2=0. ;
// Now we use the text book algorithm
for ( i=0; i < 127; i++){
sum += x[1i];
sumsq2 += pow((double) x[il],2.);
}
// calculate the average and sigma
xbar=sum/127.;
sigmal=sqrt((sumsq2-sumsxbar)/126.);
/*
+x Here comes the second algorithm where we evaluate
*x separately first the average and thereafter the
*x sum which defines the standard deviation. The average
*x has already been evaluated through xbar
*/
sumsq2=0. ;
for ( i=0; i < 127; i++){
sumsg2 += pow( (double) (x[i]-xbar),2.);

}

sigma2=sqrt(sumsq2/126.);

cout << "xbar = 7' << xbar << '“sigmal = '’ << sigmal << '‘sigma2 = ' << sigma2;
cout << endl;

return 0;

}// End: function main()

The corresponding Fortran program is given below.

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter02/1t90/programé.t90

PROGRAM standard_deviation
IMPLICIT NONE
REAL (KIND = 4) :: sum, sumsq2, xbar

REAL (KIND = 4) :: sigmal, sigma2
REAL (KIND = 4), DIMENSION (127) :: X
INTEGER :: i
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2.6 — Additional features of C++ and Fortran

arithmetic operators relation operators
operator  effect operator effect
— Subtraction > Greater than
+ Addition >= Greater or equa
* Multiplication < Less than
/ Division <= Less or equal
% or MOD  Modulus division| == Equal
—— Decrement I = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The mhadiperators act between two operands. Note that the
increment and decrement operaters and—— are not available in Fortran .

x=0;
DO i=1, 127

X(i) = i + 100000.
ENDDO

sum=0.; sumsq2=0.
! standard deviation calculated with the first algorithm
DO i=1, 127

sum = sum +x(i)

sumsg2 = sumsq2+x(1)**2
ENDDO
! average
xbar=sum/127.
sigmal=SQRT((sumsq2-sumxxbar)/126.)
! second algorithm to evaluate the standard deviation
sumsq2=0.
DO i=1, 127
sumsq2=sumsq2+(x (i) -xbar)x*2
ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE(*,*) xbar, sigmal, sigma2

END PROGRAM standard_deviation

2.6 Additional features of C++ and Fortran

2.6.1 Operatorsin C++

In the previous program examples we have seen several typee@tors. In the tables below we summarize

the most important ones. Note that the modulus in C++ is sgmried by the operator % whereas in Fortran

we employ the intrinsic functionop. Note also that the increment operater and the decrement operator
-- is not available in Fortran . In C++ these operators havedhe¥ing meaning

+x; Or x++; hasthe same meaning asx=x+1;
--x; or x--; hasthe same meaning asx=x - 1;

Table[Z5 lists several relational and arithmetic operatbogical operators in C++ and Fortran are listed in
8. while TabléZ]7 shows bitwise operations.

C++ offers also interesting possibilities for combined igpers. These are collected in Tablel2.8.

Finally, we show some special operators pertinent to C+y.0fte first one is th@ operator. Its action
can be described through the following example
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Logical operators
C++  Effect Fortran
0 False value .FALSE
1 True value .TRUE.
IX Logical negation .NOT.x
x&&y Logical AND X.AND.y
X|ly Logical inclusive OR  x.OR.y

Table 2.6: List of logical operators in C++ and Fortran .

Bitwise operations

C++ Effect Fortran
~i  Bitwise complement NOT(j)
i&j  Bitwise and IAND(i,))
i~j  Bitwise exclusive or  IEOR(i,))
i|j  Bitwise inclusive or IOR(i,j)
i<<j  Bitwise shift left ISHFT(i,j)
i>>n  Bitwise shift right ISHFT(i,-))

Table 2.7: List of bitwise operations.

Expression meaning | expression meaning
a += b; a=a+ b; a -= b; a=a - b;
ax*x=b; a=axb;|a/=b; a=a/b;
a %= b; a=a%b; a «= b; a=a « b;
a »= b; a=a»b; a &= b; a=ad&b;
al|=b; a=a|b;| aar=b; a=anab;

Table 2.8: C++ specific expressions.
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A = expressionl ? expression2 : expression3;

Hereexpressionl is computed first. If this istrue” (# 0), thenexpression2 is computed and assigned
A. If expressionl is "false", thenexpression3 is computed and assigned A.

2.6.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain impargres such as pointers and arrays (vectors and
matrices). These are widely used in most C++ program. C-ewallalso for pointer algebra, a feature not
included in Fortran . Pointers and arrays are importantefésin C++. To shed light on these types, consider
the following setup

int name defines an integer variable calledme. It is given an address in memory
where we can store an integer number.

&name is the address of a specific place in memory where the intempes is stored.
Placing the operator & in front of a variable yields its addrén memory.

int =xpointer defines and an integer pointer and reserves a location in myefiorchis spe-
cific variable The content of this location is viewed as thdrads of another
place in memory where we have stored an integer.

Note that in C++ it is common to writent+pointer while in C one usually writesnt+pointer. Here are some
examples of legal C++ expressions.

name = 0x56; [* name gets the hexadecimal value hex 56. */
pointer = &name; [* pointer points to name. */
printf("Address of name = %p",pointer); /*writes outthe address of name. */
printf("Value of name= %d",*pointer); [* writes out the value of name. */

Here’s a program which illustrates some of these topics.

http://www.Tys.ulio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program/.cpp

1 using namespace std;

2 main()

3 {

4 int var;

5 int *xpointer;

6

7 pointer = &var;

8 var = 421;

9 printf("Address of the integer variable var : S%p\n",&var);

10 printf("Value of var : %d\n", var);

11 printf("Value of the integer pointer variable: %p\n",pointer);

12 printf("Value which pointer is pointing at : %d\n",*pointer);

13 printf("Address of the pointer variable : %p\n",&pointer);

14}
Line Comments
4 e Defines an integer variable var.
5 e Define an integer pointer — reserves space in memory.
7 e The content of the adddress of pointer is the address of var.
8 e The value of var is 421.
9 e Writes the address of var in hexadecimal notation for posfép.
10 e Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads
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Address of the integer variable var : Oxbfffeb74
Value of var: 421

Value of integer pointer variable : Oxbfffeb74
The value which pointer is pointing at : 421
Address of the pointer variable : Oxbfffeb70

In the next example we consider the link between arrays aimdgrs.

int matr[2] defines a matrix with two integer membersatr[0] ogmatr[1].
matr is a pointer tanatr[0].
(matr + 1) is a pointer tanatr[1].

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter@2/cpp/program8.cpp

1 using namespace std;

2 #included <iostream>

3 int main()

4 {

5 int matr[2];

6 int *pointer;

7 pointer = &matr[0];

8 matr[0] = 321;

9 matr[1l] = 322;

10 printf("\nAddress of the matrix element matr[1l]: %p",&matr[0]);
11 printf("\nValue of the matrix element matr[1l]; %d",matr[0]);

12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1l]);
13 printf("\nValue of the matrix element matr[2]: %d\n", matr[1l]);
14 printf("\nValue of the pointer : %p",pointer);

15 printf("\nValue which pointer points at : %d",*pointer);

16 printf("\nValue which (pointer+l) points at: %d\n",*(pointer+l));
17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line

5 e Declaration of an integer array matr with two elements

6 e Declaration of an integer pointer

7 e The pointer is initialized to point at the first element of Hreay matr.
8-9 e Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

Address of the matrix element matr[l]: Oxbfffef70
Value of the matrix element matr[l]; 321
Address of the matrix element matr[2]: Oxbfffef74
Value of the matrix element matr[2]: 322

Value of the pointer: Oxbfffef70

The value pointer points at: 321

The value that (pointer+l) points at: 322
Address of the pointer variable : Oxbfffef6c

2.6.3 Macrosin C++

In C we can define macros, typically global constants or fionstthrough theefine statements shown in the
simple C-example below for
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1. #define ONE 1

2. #define TWO ONE + ONE

3. #define THREE ONE + TWO

4.

5. main()

6. {

7. printf("ONE=%d, TW0=%d, THREE=%d",ONE,TWO,THREE);
8. }

In C++ the usage of macros is discouraged and you shouldrrasigethe declaration for constant variables.
You would then replace a statement likefineONE1 With constintONE=1;. There is typically much less use of
macros in C++ than in C. C++ allows also the definition of oundypes based on other existing data types.
We can do this using the keyword typedef, whose formatygedefexisting\_typenew\_type\_name;, where
existing_type is a C++ fundamental or compound type and hg¥e_name is the name for the new type we
are defining. For example:

typedef char new_name;
typedef unsigned int word ;
typedef char x test;
typedef char field [50];

In this case we have defined four data types: new_name, wastdand field as char, unsigned int, char* and
char[50] respectively, that we could perfectly use in dextlans later as any other valid type

new_name mychar, anotherchar, x*ptcl;
word myword;

test ptc2;

field name;

The use of typedef does not create different types. It ordgters synonyms of existing types. That means that
the type of myword can be considered to be either word or mesignt, since both are in fact the same type.
Using typedef allows to define an alias for a type that is fesdly used within a program. It is also useful to
define types when it is possible that we will need to changeytbe in later versions of our program, or if a
type you want to use has a name that is too long or confusing.

In C we could define macros for functions as well, as seen below

1. #define MIN(a,b) ( ((a) < (b)) ? (a) : (b))
2. #define MAX(a,b) ( ((a) > (b)) ? (a) : (b))
3. #define ABS(a) ( ((a) <0) ? -(a) : (a))
4. #define EVEN(a) ( (a) %2 ==071: 0 )

5. #define TOASCII(a) ( (a) & Ox7f )

In C++ we would replace such function definition by employsogcalledintine functions. Three of the above
functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)
inline double MAX(double a,double b)(return (((a)>(b)) ? (a):(b));)
inline double ABS(double a) (return (((a)<0) ? -(a):(a));)

where we have defined the transferred variables to be ofdypee. The functions also returnduble type.
These functions could easily be generalized through thetisiasses and templates, see chdgter 6, to return
whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overthdar calling a function implies a significant
fraction of the total function call cost. When such functizall overhead is significant, a function definition
can be preceded by the keyward ine. When this function is called, we expect the compiler to gatesinline
code without function call overhead. However, althougmimfunctions eliminate function call overhead, they
can introduce other overheads. When a function is inlinsd;ade is duplicated for each call. Excessive use
of inline may thus generate large programs. Large programs can Cetegs&e paging in virtual memory
systems. Too many inline functions can also lengthen caail link times, on the other hand not inlining
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small functions like the above that do small computatioas, make programs bigger and slower. However,
most modern compilers know better than programmer whichtfans to inline or not. When doing this, you
should also test various compiler options. With the commpijetion —O3 inlining is done automatically by
basically all modern compilers.

A good strategy, recommended in many C++ textbooks, is ttevarcode without inline functions first. As
we also suggested in the introductory chapter, you showlditite a as simple and clear as possible program,
without a strong emphasis on computational speed. Thereaften profiling the program one can spot small
functions which are called many times. These functions lsan be candidates for inlining. If the overall time
comsumption is reduced due to inlining specific functions,a&n proceed to other sections of the program
which could be speeded up.

Another problem with inlined functions is that on some sgsalebugging an inline function is difficult
because the function does not exist at runtime.

2.6.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize otm dad the flow of data when running the code.

This is often a neglected aspect especially during the dpwednt of an algorithm. A clear understanding of

how data are represented makes the program more readaldasirdto maintain and extend upon by other
users. Till now we have studied elementary variable dettarsithrough keywords likent Or INTEGER, double

Or REAL (KIND(8) andchar or its Fortran equivalemtHArRACTER. These declarations could also be extended to
general multi-dimensional arrays.

However, C++ and Fortran offer other ways as well by which are@rganize our data in a more transparent
and reusable way. One of these options is througkithe t declaration of C++, or the correspondingly similar
TYpE in Fortran. The latter data type will also be discussed irptéréd.

The following example illustrates how we could make a gelneaaable which can be reused in defining
other variables as well.

Suppose you would like to make a general program which tepeiatum mechanical problems from both
atomic physics and nuclear physics. In atomic and nuclegsipfithe single-particle degrees are represented
by quantum numbers such orbital angular momentum, totallangnomentum, spin and energy. An inde-
pendent particle model is often assumed as the startindg favitbuilding up more complicated many-body
correlations in systems with many interacting particlas.atomic physics the effective degrees of freedom
are often reduced to electrons interacting with each ottigite in nuclear physics the system is described by
neutrons and protons. The structdiegle_particle_descript contains a list over different quantum numbers
through various pointers which are initialized by a callfogction.

struct single_particle_descript{
int total_states;
intx n;
intx lorb;
intx m_1;
int* jang;
intx spin;
doublex energy;
charx orbit_status

+

To describe an atom like Neon we would need three singléepadrbits to describe the ground state wave
function if we use a single-particle picture, i.e., the 2s and2p single-particle orbits. These orbits have a
degeneray o2(2(+ 1), where the first number stems from the possible spin prajestind the second from the
possible projections of the orbital momentum. Note that @serve the naming orbit for the generic labelling
1s, 2s and2p while we use the naming states when we include all possikd@tyu numbers. In total there
are 10 possible single-particle states when we accounpforasd orbital momentum projections. In this case
we would thus need to allocate memory for arrays containthgléments.

The above structure is written in a generic way and it can leel us define other variables as well.
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For electrons we could writetructsingle_particle_descriptelectrons; and is a new variable with the name
electrons containing all the elements efingle_particle_descript.

The following program segment illustrates how we accesseledements To access these elements we
could for example read from a given device the various quamtumbers:

for ( int 1 = 0; i1 < electrons.total_states; i++){
cout << ' Read in the quantum numbers for electron i: ' << i << endl;
cin >> electrons.n[i];
cin > electrons.lorb[i];
cin >> electrons.m_1[1i];
cin >> electrons.jang[il;
cin >> electrons.spin[il;

}

The structuresingle_particle_descript can also be used for defining quantum numbers of other parti-

cles as well, such as neutrons and protons throughthe néablesstructsingle particle descriptprotons
andstructsingle_particle_descriptneutrons
The corresponding declaration in Fortran is given by®HRE construct, seen in the following example.

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_states
INTEGER, DIMENSION(:), POINTER :: n, lorb, jang, spin, m_1
CHARACTER (LEN=10), DIMENSION(:), POINTER :: orbit_status
REAL(8), DIMENSION(:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variablesdilectrons, protons andneutrons through the
statementYPE (single_particle_descript)::electrons,protons,neutrons. More detailed examples on the use
of these variable declarations, classes and templatebevijiven in subsequent chapters..

2.7 Exercises and projects

Exercise 2.1: Converting from decimal to binary represénta

Set up an algorithm which converts a floating number givehédecimal representation to the binary repre-
sentation. You may or may not use a scientific representatiite thereafter a program which implements
this algorithm.

Exercise 2.2: Summing series

a) Make a program which sums

and

S|

n=1
Sdown = §
n=N

The program should readl from screen and write the final output to screen.

b) Compares,;, 0g sdown for different N using both single and double precision fgrup to N = 10°.
Which of the above formula is the most realiable one? Tryte gn explanation of possible differences.
One possibility for guiding the eye is for example to makeglimg plot of the relative difference as a
function of N in steps ofl0” withn = 1, 2, ..., 10. This means you need to compuié@o(|(sup(N) —
Sdown(N))/8down(IN)]) @s function ofog;o(N).
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Exercise 2.3: Finding alternative expressions

Write a program which computes

f(z) =z —sinx,
for a wide range of values aof. Make a careful analysis of this function for valuestafiear zero. Fox = 0
you may consider to write out the series expansionsof

25 2T

sinx:x—g—i—ﬁ—ﬁ—i—...

Use the loss of precision theorem of Hg.12.2) to show thalas®of bits can be limited to at most one bit by
restrictingz so that

sinx
1—

1
> .
x 2
One finds then that must at least be 1.9, implying that for| < 1.9 we need to carefully consider the series
expansion. Fofzx| > 1.9 we can use directly the expression- sin x.
For|z| < 1.9 you should device a recurrence relation for the terms in¢hies expansion in order to avoid

having to compute very large factorials.

Exercise 2.4: Computing ™™

Assume that you do not have access to the intrinsic functioexp .. Write your own algorithm foexp (—x)
for all possible values af, with special care on how to avoid the loss of precision protd discussed in the
text. Write thereafter a program which implements this gtgm.

Exercise 2.5: Computing the quadratic equation

The classical quadratic equation? + bz + ¢ = with solution
x = (—b:l: Vb2 — 4(10) /2a,

needs particular attention whenc is small relative td?. Find an algorithm which yields stable results for all
possible values af, b andc. Write thereafter a program and test the results of your caatipns.

Exercise 2.6: Fortran, C++ and Python functions for machmending

Write a Fortran program which reads a real numband computes the precision in bits (using the function
pIGIT(x))for single and double precision, the smallest positive ben{usingTiny(x)), the largets positive
number (using the functiormce (x)) and the number of leading digits (using the functreacIsIon(x)). Try
thereafter to find similar functionalities in C++ and Python

Exercise 2.7: Nearest machine number

Write an algorithm and program which reads in a real numband finds the two nearest machine numbers
z_ andz,, the corresponding relative errors and absolute errors.

Exercise 2.8: Recurrence relations

Recurrence relations are extremely useful in represefiimgtions, and form expedient ways of representing
important classes of functions used in the Sciences. Wesedltwo such examples in the discussion below.
One example of recurrence relations appears in studiesuwrfdeseries, which enter studies of wave mechan-
ics, be it either in classical systems or quantum mechaaiged. We may need to calculate in an efficient way
sums like

N
F(z) = Z ancos(nx), (2.3)
n=0
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where the coefficients,, are known numbers andis the argument of the functiofi(). If we want to solve
this problem right on, we could write a simple repetitive poithat multiplies each of the cosines with its
respective coefficient, like

for ( n=0; n < N; n++){
f += anxcos(nx*x)

}

Even though this seems rather straightforward, it may #gtyield a waste of computer time iV is large.
The interesting point here is that through the three-texcamrence relation

cos(n — 1)z — 2cos(x)cos(nx) + cos(n + 1)z = 0, (2.4)

we can express the entire finite Fourier series in terms4fr) and two constants. The essential device is to
define a new sequence of coefficiebsecursively by

by, = (2cos(x))bp—1 — bpto + an n=0,...N —1,N, (2.5)

definingby 1 = byy2+..--- = 0foralln > N, the upperlimit. We can then determine all thecoefficients
from a,, and one evaluation &fcos(x). If we replacea,, with b,, in the sum forF’(z) in Eq. {Z:B) we obtain

F(x) = by [cos(Nzx) — 2cos((N — 1)x)cos(z) + cos((N — 2)z)] +
by—1[cos((N — 1)x) — 2cos((N — 2)x)cos(z) + cos((N — 3)z)] + ...
by [cos(2z) — 2cos*(z) + 1] + by [cos(z) — 2cos(x)] + bo. (2.6)

Using Eq. [Z}) we obtain the final result
F(z) = by — bycos(z), (2.7)

andb, andb; are determined from Edq_(2.3). The latter relation is afteefsaw. This method of evaluating
finite series of orthogonal functions that are connectedlimear recurrence is a technigue generally available
for all standard special functions in mathematical phydike Legendre polynomials, Bessel functions etc.
They all involve two or three terms in the recurrence retagiol he general relation can then be written as

Fo1(@) = an (@) Fo (@) + Bp(2) Fae1(2).

Evaluate the functioft’'(z) = Zf:;o ancos(nx) in two ways: first by computing the series of Eq. (reffour-
1) and then using the equation given in Hg.(2.5). Assumedthat (n +2)/(n + 1), sete.g.N = 1000 and
try with differentz-values as input.

In project 2.1 we will see another example of recurrenceimzia used to compute the associated Legendre
functions.

Exercise 2.9: Continued fractions

Often, especially when one encounters singular behavioesmay need to rewrite the function to be evaluated
in terms of a taylor expansion. Another possibility is to dis®-called continued fractions, which may be
viewed as generalizations of a Taylor expansion. Whenmigalith continued fractions, one possible approach
is that of successive substitutions. Let us illustrate tlyig simple example, namely the solution of a second
order equation

22 —4x—1=0, (2.8)
which we rewrite as .
v 44z’
which in turn could be represented through an iterative tiukisn process
1
T = —
n+1 4 i T, )
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with z¢g = 0. This means that we have

1
x1217
1
.§C2:4+%,
- 1
I3_4+m12'7

and so forth. This is often rewritten in a compact way as

n al
Tn = X0 P
R
3t Tt
or as
al a2 a3
I1+ $2—|— $3+

Write a program which implements this continued fractiogoaithm and solve iteratively EJ.{2.8). The
exact solution isz = 0.23607 while already after three iterations you should obtajn= 0.236111.

Project 2.1: Special functions, spherical harmonics ansiasated Legendre polynomials

Many physics problems have spherical harmonics as sohjtguch as the angular part of the Schrédinger
equation for the hydrogen atom or the angular part of thestdimensional wave equation or Poisson’s equa-
tion.

The spherical harmonics for a given orbital momentlnits projectionM for —L < M < L and angles
6 € [0, 7] and¢ € [0,2n] are given by

V0. 9) = \/ A P o) exp (i00),

The functionsP (cos(f) are the so-called associated Legendre functions. Theyareally determined
via the usage of recurrence relations. Recurrence retatimunfortunately often unstable, but the following
relation is stable (withx = cos(6))

(L= M)P(2) = 2(2L - 1)PiL, (x) — (L + M — )P, (),
and with the analytic (on closed form) expressions
P (x) = (~1)M 2M — 1)11(1 - 2?)M/2,

and
Pyt (x) = 2(2M + 1) Py (z),

we have the starting values and the equations necessargrierating the associated Legendre functions for a
general value of..

a) Make first a function which computes the associated Legefuthctions for different values af and
M. Compare with the closed-form results listed in chalgter 4.

b) Make thereafter a program which calculates the real gantospherical harmonics

c) Make plots for varioud. = M as functions of) (set¢ = 0) and study the behavior dsis increased.
Try to explain why the functions become more and more nar®W iacreases. In order to make these
plots you can use for example gnuplot, as discussed in appgnt!

d) Study also the behavior of the spherical harmonics whenclose to 0 and when it approaches 180
degrees. Try to extract a simple explanation for what you see
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Chapter 3

Numerical differentiation, interpolation
and classes

3.1 Introduction

Numerical integration and differentiation are some of thestrfrequently needed methods in computational
physics. Quite often we are confronted with the need of etalg eitherf’ or an integral/ f(z)dz. The aim

of this chapter is to introduce some of these methods witlitigalreye on numerical accuracy, following the
discussion in the previous chapter.

The next section deals essentially with topics from nuna¢diferentiation. There we present also the
most commonly used formulae for computing first and secomivateres, formulae which in turn find their
most important applications in the numerical solution adinary and partial differential equations. This
section serves also the scope of introducing some more aed#d+-programming concepts, such as call by
reference and value, reading and writing to a file and the fidgrmmic memory allocation.

Finally, we end this chapter with a discussion of method#ifomerical interpolation and classes and how
to define them in C++.

3.2 Numerical differentiation

The mathematical definition of the derivative of a functjt(@) is

Y@ S h) - @)
dx h—0 h

whereh is the step size. If we use a Taylor expansionffar) we can write

thI/(SC)

fla+h) = f@)+hf(z) + —

+...

We can then obtain an expression for the first derivative as

flay = LEED @ o,

Assume now that we will employ two points to represent thecfiom f by way of a straight line between
andz + h. Fig.[31 illustrates this subdivision.
This means that we can represent the derivative with

o) = XRG4 o,
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where the suffi@ refers to the fact that we are using two points to define thiwatdre and the dominating error
goes likeO(h). This is the forward derivative formula. Alternatively, weuld use the backward derivative

formula &) — flo— )
xr) — xr —
filw) = S 1 O(h).
If the second derivative is close to zero, this simple twapfiirmula can be used to approximate the derivative.
If we however have a function liké(z) = a + bx?, we see that the approximated derivative becomes

fo(x) = 2bx + bh,

while the exact answer Bz. Unlessh is made very small, anidis not too large, we could approach the exact
answer by choosing smaller and smaller valuesifardowever, in this case, the subtraction in the numerator,
f(x + h) — f(z) can give rise to roundoff errors and eventually a loss ofipies.

A better approach in case of a quadratic expressioif foj is to use a 3-step formula where we evaluate
the derivative on both sides of a chosen paintising the above forward and backward two-step formulae and
taking the average afterward. We perform again a Taylor esipa but now aroundg + h, hamely

h2 " h3 "
flx =z0£h)= f(xo) £ hf + L g + O(h%), (3.1)
which we rewrite as W2 s
fon=fornf + L B o,
Calculating bothf;, and subtracting we obtain that
_f h2 "
pr= T2 I o)

and we see now that the dominating error goeshiiké we truncate at the second derivative. We call the term
h2 f"" /6 the truncation error. It is the error that arises becauseraesstage in the derivation, a Taylor series
has been truncated. As we will see below, truncation ernadsraundoff errors play an important role in the
numerical determination of derivatives.

For our expression with a quadratic functipfw) = a + bz we see that the three-point formyfafor the
derivative gives the exact answ&rz. Thus, if our function has a quadratic behaviorim a certain region of
space, the three-point formula will result in reliable filstivatives in the intervdl-h, h]. Using the relation

fo—2fo+ fon = B2 + O(h*),

we can define the second derivative as

fhn—=2fo+ fon
=

We could also define five-points formulae by expanding to tteps on each side afy. Using a Taylor
expansion aroungl, in a region[—2h, 2h] we have

I + O(h?).

faon = fo+2hf +2h? ”iﬁ o(h* 3.2
+2n = fo I +2h7f 3 + O(h?). (3.2)

Using Eqgs.[[31) and(3.2), multiplying, andf_,, by a factor o8 and subtracting® /5, — for) — (8 f—n— f—2r)
we arrive at a first derivative given by
~ foon —=8f-n+8fn— fon

I 4
f5c_ 12h +O(h )7

with a dominating error of the order af at the price of only two additional function evaluationsisitormula
can be useful in case our function is represented by a fardbr polynomial inz in the region[—2h, 2h).
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zo — 2h o —h o To+ h xo + 2h T

Figure 3.1: Demonstration of the subdivision of thexis into small stepa. Each point corresponds to a set
of valuesz, f(x). The value ofx is incremented by the step lengih If we use the pointg, andzy + h we
can draw a straight line and use the slope at this point tami@te an approximation to the first derivative.
See text for further discussion.
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Note however that this function includes two additionaldtion evaluations, implying a more time-consuming
algorithm. Furthermore, the two additional subtraction tad to a larger risk of loss of numerical precision
whenh becomes small. Solving for example a differential equatitrich involves the first derivative, one
needs always to strike a balance between numerical accamdrthe time needed to achieve a given result.
Itis possible to show that the widely used formulae for thet find second derivatives of a function can be
written as }
Jn—JI-n fE

o h2i (3.3)

!
=fi+)y =——h¥,
Jo — (2j + 1)!

and e +2)
Jn—=2fo+ f-n foj
e = 0 +2 Z (3.4)
and we note that in both cases the error goes @@23). These expressions will also be used when we
evaluate integrals.

To show this for the first and second derivatives starting wie three pointg_, = f(xo—h), fo = f(x0)

andfy, = f(xzo + h), we have that the Taylor expansion aroung x gives

(J) (J) .
a—nf-n =+ aofo+anfn =a- hz +(lofo+ahz (3.5)

JO' 7=0

wherea_j,, ag anday, are unknown constants to be chosen sothatf_;, + ao fo + an fr, is the best possible
approximation forfj and f. Eq. [33) can be rewritten as

a—nf-n+aofo+ anfn = la—n +ao +anl fo
2 r1 o o(j) . )
+ [ah — a,h] hf(l) + [a,h + ah] 5 9+ Z %(h)'7 [(—1)3(1,;1 + ah} .
j=3 7

To determinef{, we require in the last equation that

a_p+ap +ap =0,

—Q_p+ap = 7,
and
a_p +ap =
These equations have the solution
1
a_p —U0h — %7
and
aop = 07
yielding
fo—Fon S
h<.
- 2n =fo+ Z (25 +1)!

To determinef, we require in the last equation that
a_p+ao+ap =0,

—a_p+ap =0,

and
2
a_p +ap = ﬁ
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These equations have the solution

1
a_p = —Qp = _ﬁa
and
2
ap = _ﬁv
yielding
o) 2542
fo=2fo+fn _ //+2Z fé " B2
h2 0 ~ (2j +2)

3.2.1 The second derivative ©fp (z)

As an example, let us calculate the second derivativespfz) for various values of. Furthermore, we
will use this section to introduce three important C++-pesgming features, namely reading and writing to a
file, call by reference and call by value, and dynamic memdogcation. We are also going to split the tasks
performed by the program into subtasks. We define one fumetitich reads in the input data, one which
calculates the second derivative and a final function whidtes/the results to file.

Let us look at a simple case first, the usepaifntf andscanf. If we wish to print a variable defined as
doublespeed_of_sound; we could for example writ@rintf (" speed of_sound=%1f\n'"',speed_of_sound);.

In this case we say that we transfer the value of this spedfi@ble to the functioprintf. The function
printf can however not change the value of this varigiere is no need to do so in this case). Such a call of
a specific function is calledall by value The crucial aspect to keep in mind is that the value of thessjz
variable does not change in the called function.

When do we use call by value? And why care at all? We do acteallg, because if a called function
has the possibility to change the value of a variable whemithnot desired, calling another function with
this variable may lead to totally wrong results. In the waiades you may even not be able to spot where the
program goes wrong.

We do however use call by value when a called function simpbeives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a @dilaction, we refer to this call a=all by
reference What is transferred then is the address of the first elenfeahearray, and the called function has
now access to where that specific variable 'lives’ and caretfeer change its value.

The functionscanf is then an example of a function which receives the addreasvafiable and is allowed
to modify it. Afterall, when callingscanf we are expecting a new value for a variable. A typical calldde
scanf (" "%lf\n'"',&speed_of_sound);.

Consider now the following program

//

// This program module
// demonstrates memory allocation and data transfer in
// between functions in C++

//

#include <stdio.h> // Standard ANSI-C++ include files
#include <stdlib.h>

int main(nt argc,char xargv[])

{
int a: // line 1
int xb; // line 2
a=10; // line 3
b =new int[10]; // line 4
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for(i=0;i < 10; i++) {

b[i] =i; // line 5
}
func( a,b); // line 6
return O;

} // End: function main()

void func(int x, int xy) // line 7
{
X+=7; // line 8
xy += 10; // line 9
y[6] += 10; // line 10
return ; // line 11

} // End: function func()

There are several features to be noted.

— Lines 1,2: Declaration of two variables a and b. The comp#éserves two locations in memory. The
size of the location depends on the type of variable. Two @rtigs are important for these locations —
the address in memory and the content in the

— Line 3: The value of a is now 10.

— Line 4: Memory to store 10 integers is reserved. The addresiset first location is stored in b. The
address of element number 6 is given by the expression (b + 6).

— Line 5: All 10 elements of b are given values: b[0] = 0, b[1] =.1,, b[9] = 9;

— Line 6: The main() function calls the function func() and tm®gram counter transfers to the first
statement in func(). With respect to data the following heapp The content of a (= 10) and the content
of b (a memory address) are copied to a stack (new memorydogaissociated with the function func()

— Line 7: The variable x and y are local variables in func(). rhave the values — x = 10, y = address of
the first elementin b in the main() program.

— Line 8: The local variable x stored in the stack memory is geahto 17. Nothing happens with the
value a in main().

— Line 9: The value of y is an address and the symbol *y standh&position in memory which has this
address. The value in this location is now increased by 1@ mkans that the value of b[0] in the main
program is equal to 10. Thus func() has modified a value in (hain

— Line 10: This statement has the same effect as line 9 excapitt timodifies element b[6] in main() by
adding a value of 10 to what was there originally, namely 6.

— Line 11: The program counter returns to main(), the next esgion afterfunc(a,b); All data on the
stack associated with func() are destroyed.

— The value of a is transferred to func() and stored in a new nmgocation called x. Any modification
of x in func() does not affect in any way the value of a in main{his is calledtransfer of data by
value. On the other hand the next argument in func() is an addreggwidtransferred to func(). This
address can be used to modify the corresponding value in(méirthe programming language C it is
expressed as a modification of the value which y points toahathe first element of b. This is called
transfer of data by referenceand is a method to transfer data back to the calling functiothis case
main().
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C++ allows however the programmer to use solely call by ezfee (note that call by reference is imple-
mented as pointers). To see the difference between C anddonsider the following simple examples. In C
we would write

int n; n =8;
func(&n); /* &n is a pointer to n */
void func(int *i)
{
*i = 10; /* n is changed to 10 */

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
void func(int& i)
{
i =10; // n is changed to 10

}

Note well that the way we have defined the input to the functiom(int&i) oOr func(intxi) decides how we
transfer variables to a specific function. The reason why mphasize the difference between call by value
and call by reference is that it allows the programmer to éifalls like unwanted changes of variables.
However, many people feel that this reduces the readabilithe code. It is more or less common in C++
to use call by reference, since it gives a much cleaner co@ealRalso that behind the curtain references
are usually implemented as pointers. When we transfer laoggets such a matrices and vectors one should
always use call by reference. Copying such objects to acthllection slows down considerably the execution.
If you need to keep the value of a call by reference object,sfmuld use theonst declaration.

In programming languages like Fortran one uses only calEfigrence, but you can flag whether a called
function or subroutine is allowed or not to change the valyaléclaring for example an integer value as
INTEGER, INTENT(IN)::i. The local function cannot change the valueiofDeclaring a transferred values as
INTEGER, INTENT(0UT) : : i. allows the local function to change the variahle

Initializations and main program

In every program we have to define the functions employed.stjie chosen here is to declare these functions
at the beginning, followed thereafter by the main prograchthie detailed tasks performed by each function.
Another possibility is to include these functions and ttstatements before the main program, meaning that
the main program appears at the very end. | find this prograigstyle less readable however since | prefer
to read a code from top to bottom. A further option, specigdlgonnection with larger projects, is to include
these function definitions in a user defined header file. Thafing program shows also (although it is rather
unnecessary in this case due to few tasks) how one can df#itetiit tasks into specialized functions. Such a
division is very useful for larger projects and programs.

In the first version of this program we use a more C-like stgleafriting and reading to file. At the end of
this section we include also the corresponding C++ and &oftles.

http://www.Tys.ulio.no/compphys/cp/programs/FYS3150/chapter03/cpp/programl. cpp

/%

Kk Program to compute the second derivative of exp(x).

*k Three calling functions are included

*k in this version. In one function we read in the data from screen,
*k the next function computes the second derivative

*k while the last function prints out data to screen.

*/
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using namespace std;
# include <iostream>

void initialize (double %, double *, int x*);
void second_derivative( int, double, double, double *, double x*);
void output( double %, double *, double, int);

int main()
{
// declarations of variables
int number_of_steps;
double x, initial_step;
double xh_step, *computed_derivative;
// read in input data from screen
initialize (&initial_step, &x, &number_of_steps);
// allocate space in memory for the one-dimensional arrays
// h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative = new double[number_of_steps];
// compute the second derivative of exp(x)
second_derivative( number_of_steps, x, initial_step, h_step,
computed_derivative);
// Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps );
// free memory
delete [] h_step;
delete [] computed_derivative;
return 0;
} // end main program

We have defined three additional functions, one which readsoim screen the value af, the initial step
length~ and the number of divisions by 2 @f This function is callednitialize. To calculate the second
derivatives we define the functiarcond_derivative. Finally, we have a function which writes our results
together with a comparison with the exact value to a givenTitee results are stored in two arrays, one which
contains the given step lengthand another one which contains the computed derivative.

These arrays are defined as pointers through the statement

'double *h_step, *computed_derivative; [

A call in the main function to the functiostcond_derivative looks then like this

'second,derivative( number_of_steps, x, intial_step, h_step, computed_derivative); [

while the called function is declared in the following way

'void second_derivative(int number_of_steps, double x, double xh_step,double *computed_derivative); [

indicating thatioublexh_step,doublexcomputed _derivative; are pointers and that we transfer the address of the
first elements. The other variables number_of_steps,doublex; are transferred by value and are not changed
in the called function.

Another aspect to observe is the possibility of dynamickdcation of memory through theew func-
tion. In the included program we reserve space in memoryHesé three arrays in the following way
h_step:newdouble[number_of_steps];andcomputed_derivative:newdouble[number_of_steps];VVhen\NeIWO|Onger
need the space occupied by these arrays, we free memorygththe declarationgetete[]1h_step; and
delete[] computed_derivative;

The function initialize

// Read in from screen the initial step, the number of steps
// and the value of x
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void initialize (double xinitial_step, double =*x, int xnumber_of_steps)
{
printf("Read in from screen initial step, x and number of steps\n");
scanf("%lf %Lf %d",initial_step, x, number_of_steps);
return;
} // end of function initialize

This function receives the addresses of the three variatilgs+initial_step,doublexx, intxnumber_of_steps;
and returns updated values by reading from screen.

The function second_derivative

// This function computes the second derivative

void second_derivative( int number_of_steps, double x,
double initial_step, double xh_step,
double *computed_derivative)

int counter;
double h;
// calculate the step size
// initialize the derivative, y and x (in minutes)
// and iteration counter
h = initial_step;
// start computing for different step sizes
for (counter=0; counter < number_of_steps; counter++ )
{
// setup arrays with derivatives and step sizes
h_step[counter] = h;
computed_derivative[counter] =
(exp(x+h)-2.xexp(x)+exp(x-h))/(hxh);
h = hx0.5;
} // end of do loop
return;
} // end of function second derivative

The loop over the number of steps serves to compute the sabemidhtive for different values ok. In
this function the step is halved for every iteration (youldoobviously change this to larger or smaller step
variations). The step values and the derivatives are stordx arrays_step anddoublecomputed derivative.

The output function

This function computes the relative error and writes to sseindile the results.

The last function here illustrates how to open a file, writd eead possible data and then close it. In this
case we have fixed the name of file. Another possibility is obsiy to read the name of this file together
with other input parameters. The way the program is preddmee is slightly unpractical since we need to
recompile the program if we wish to change the name of theutdilp.

An alternative is represented by the following program Cgpam. This program reads from screen the
names of the input and output files.

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter@3/cpp/program2.cpp

1 #include <stdio.h>

2 #include <stdlib.h>

3 int col:

4

5 int main(int argc, char xargv[])
6 {

7 FILE =xin, =xout;
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8 int c;

9 if( argc < 3) {

10  printf("You have to read in :\n");

11 printf("in_file and out_file \n");

12 exit(1);

13 in = fopen( argv[l], "r");} // returns pointer to the in_file
14 if( inn == NULL ) { // can't find in_file

15 printf("Can't find the input file %s\n", argv[1]);
16 exit(1);
17 3}

18 out = fopen( argv[2], "w"); // returns a pointer to the out_file
19 if( ut == NULL ) { // can't find out_file

20 printf("Can't find the output file %s\n", argv[2]);
21 exit(1);
22}

. program statements

23 fclose(in);
24 fclose(out);
25 return 0;

}

This program has several interesting features.

Line Program comments

5 emain() takes three arguments, given by argc. argv points to theviolg: the
name of the program, the first and second arguments, in thésfda names ta
be read from screen.

7 e C++ has adata type calledFILE. The pointersin andout point to specific
files. They must be of the tyeILE.

10 e The command line has to contain 2 filenames as parameters.

13-17 e The input file has to exit, else the pointer returns NULL. It loaly read per-
mission.

18-22 e Same for the output file, but now with write permission only.
23-24 e Both files are closed before the main program ends.

The above represents a standard procedure in C for readingdiihes. C++ has its own class for such
operations.

http://www.Tys.uio.no/compphys/cp/programs/FYS53150/chapter03/cpp/program3.cpp

/*

*k Program to compute the second derivative of exp(x).

Kk In this version we use C++ options for reading and

Kk writing files and data. The rest of the code is as in

% programs/chapter3/programl.cpp

*k Three calling functions are included

Kk in this version. In one function we read in the data from screen,
*k the next function computes the second derivative

*k while the last function prints out data to screen.

*/

using namespace std;

# include <iostream>

# include <fstream>

# include <iomanip>

# include <cmath>

void initialize (double x, double x*, int x);

void second_derivative( int, double, double, double *, double x*);
void output( double %, double *, double, int);

ofstream ofile;

50


http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program3.cpp

3.2 — Numerical differentiation

int main(int argc, charx argv[])
{
// declarations of variables
char xoutfilename;
int number_of_steps;
double x, initial_step;
double *h_step, xcomputed_derivative;
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1l);
}
else{
outfilename=argv[1l];
}

ofile.open(outfilename);
// read in input data from screen
initialize (&initial_step, &x, &number_of_steps);
// allocate space in memory for the one-dimensional arrays
// h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative = new double[number_of_steps];
// compute the second derivative of exp(x)
second_derivative( number_of_steps, x, initial_step, h_step,
computed_derivative);
// Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps );
// free memory
delete [] h_step;
delete [] computed_derivative;
// close output file
ofile.close();
return 0;
} // end main program

The main part of the code includes now an object declaratietreamofile Which is included in C++ and
allows the programmer to open and declare files. This is d@ng statemenifile.open(outfilename);. We
close the file at the end of the main program by writiifgle. close() ;. There is a corresponding object for
reading inputfiles. In this case we declare prior to the maicfion, or in an evantual header fil@streamifile
and use the corresponding statememi$e.open(infilename); andifile.close(); for opening and closing an
input file. Note that we have declared two character var@abier«outfilename; andcharxinfilename;. In
order to use these options we need to include a correspoliliagy of functions using include<fstream>.

One of the problems with C++ is that formatted output is n&asy to use as the printf and scanf functions
in C. The output function using the C++ style is included belo

// function to write out the final results
void output(double xh_step, double xcomputed_derivative, double x,
int number_of_steps )
{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
for( i=0; i < number_of_steps; i++)
{
ofile << setw(1l5) << setprecision(8) << logl0(h_step[i]);
ofile << setw(1l5) << setprecision(8) <<
logle(fabs(computed_derivative[i]-exp(x))/exp(x))) << endl;
}
} // end of function output

The functionsetw(15) reserves an output of 15 spaces for a given variable whilerecision(8) yields eight
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leading digits. To use these options you have to use therd¢icla# include<iomanip>

Before we discuss the results of our calculations we list libe corresponding Fortran program.

corresponding Fortran example is

http://www.Tys.uio0.no/compphys/cp/programs/FYS3150/chapter03/1t90/programl. t90

The

! Program to compute the second derivative of exp(x).
! Only one calling function is included.
! It computes the second derivative and is included in the
! MODULE functions as a separate method
! The variable h is the step size. We also fix the total number
! of divisions by 2 of h. The total number of steps is read from
! screen
MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0DO)

INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
END MODULE constants

! Here you can include specific functions which can be used by
! many subroutines or functions

MODULE functions
USE constants
IMPLICIT NONE
CONTAINS
SUBROUTINE derivative(number_of_steps, x, initial_step, h_step, &
computed_derivative)
USE constants
INTEGER, INTENT(IN) :: number_of_steps
INTEGER :: loop
REAL (DP), DIMENSION(number_of_steps), INTENT(INOUT) :: &
computed_derivative, h_step
REAL(DP), INTENT(IN) :: initial_step, x
REAL(DP) :: h
! calculate the step size
! initialize the derivative, y and x (in minutes)
! and iteration counter
h = initial_step
! start computing for different step sizes
DO loop=1, number_of_steps
! setup arrays with derivatives and step sizes
h_step(loop) = h
computed_derivative(loop) = (EXP(x+h)-2.*EXP(x)+EXP(x-h))/(hxh)
h = hx0.5
ENDDO
END SUBROUTINE derivative

END MODULE functions

PROGRAM second_derivative
USE constants
USE functions
IMPLICIT NONE
! declarations of variables
INTEGER :: number_of_steps, loop
REAL(DP) :: x, initial_step
REAL (DP), ALLOCATABLE, DIMENSION(:) :: h_step, computed_derivative
! read in input data from screen
WRITE(*,*) 'Read in initial step, x value and number of steps'
READ (*,*) initial_step, x, number_of_steps
! open file to write results on
OPEN(UNIT=7,FILE='out.dat"')
! allocate space in memory for the one-dimensional arrays
! h_step and computed_derivative
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3.2 — Numerical differentiation

ALLOCATE (h_step(number_of_steps),computed_derivative(number_of_steps))

! compute the second derivative of exp(x)

! initialize the arrays

h_step = 0.0_dp; computed_derivative = 0.0_dp

CALL derivative(number_of_steps,x,initial_step,h_step,computed_derivative)

! Then we print the results to file

DO loop=1, number_of_steps
WRITE(7,'(E16.10,2X,E16.10)"') LOG1lO(h_step(loop)),&
LOG10 ( ABS ( (computed_derivative(loop)-EXP(x))/EXP(x)))

ENDDO

! free memory

DEALLOCATE( h_step, computed_derivative)

! close the output file

CLOSE(7)

END PROGRAM second_derivative

ThewmobuLE declaration in Fortran allows one to place functions likedhe which calculates second derivatives
in a module. Since this is a general method, one could exteffidrictionality by simply transfering the name
of the function to differentiate. In our case we use explgithe exponential function, but there is nothing
which hinders us from defining other functions. Note the esafjthe moduleconstantswhere we define
double and complex variables. If one wishes to switch to la@oprecision, one just needs to change the
declaration in one part of the program only. This hinderssfis errors which arise if one has to change
variable declarations in every function and subroutin@aly, dynamic memory allocation and deallocation
is in Fortran done with the keywordsLOCATE (array (size)) andDEALLOCATE (array). Although most compilers
deallocate and thereby free space in memory when leavingdidum, you should always deallocate an array
when it is no longer needed. In case your arrays are very, léngemay block unnecessarily large fractions
of the memory. Furthermore, you should always initializegs. In the example above, we note that Fortran
allows us to simply writdn_step = 0.0_dp; computed_derivative = 0.0_dpvhich means that all elements of
these two arrays are set to zero. Coding arrays in this mdmimgys us much closer to the way we deal with
mathematics. In Fortran it is irrelevant whether this is a-dimensional or multi-dimensional array. In the
next next chapter, where we deal with allocation of matrieeswill introduce the numerical library Blitz++
which allows for similar treatments of arrays in C++. By défédhowever, these features are not included in
the ANSI C++ standard.

Results

In Table[31 we present the results afamerical evaluatiorfor various step sizes for the second derivative of
exp (z) using the approximatiof{/ = "’72{17‘;”*’ The results are compared with the exact ones for various
x values. Note well that as the step is decreased we get clogbe texact value. However, if it is further

x h=0.1 h=0.01 h=0.001 h=0.0001 h=0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704  20.085539  20.085537 20.250467 082837
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 598450

5.0 148.536878 148.414396 148.413172 148.413161 1506635048.413159

Table 3.1: Result for numerically calculated second déviga ofexp («) as functions of the chosen step size
h. A comparison is made with the exact value.

decreased, we run into problems of loss of precision. Thiteiarly seen fok = 0.0000001. This means that
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Figure 3.2: Log-log plot of the relative error of the secordigative ofexp (x) as function of decreasing step
lengthsh. The second derivative was computed foe= 10 in the program discussed above. See text for
further details

even though we could let the computer run with smaller andlsmaalues of the step, there is a limit for how
small the step can be made before we loose precision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we caa fimdimal step length which does not lead to
loss of precision. Furthermore In FIg-B.2 we have plotted

€ = logio (

as function oflog1o(h). We used an intial step length af= 0.01 and fixedz = 10. For large values o#,
thatis—4 < logip(h) < —2 we see a straight line with a slope close to 2. Clodege (h) ~ —4 the relative
error starts increasing and our computed derivative witlep sizelog,0(h) < —4, may no longer be reliable.

" 1
computed exact

1
exact

Can we understand this behavior in terms of the discussimn the previous chapter? In chagiér 2 we
assumed that the total error could be approximated with @me arising from the loss of numerical precision
and another due to the truncation or approximation madeigha

€tot — €approx + €ro-

For the computed second derivative, HEq.J(3.4), we have

" _ fh _2f0+f—h _9 — fé2j+2) B2
0 h2 = (27 +2)! ’

and the truncation or approximation error goes like

4
ﬁh?

€approx ~
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If we were not to worry about loss of precision, we could impiple makeh as small as possible. However,
due to the computed expression in the above program example

v fn=2fo+frn  (fu—fo)+(f-n— fo)

0o — h2 = h2 ’
we reach fairly quickly a limit for where loss of precisionadto the subtraction of two nearly equal numbers
becomes crucial. Iff.;, — fo) are very close, we havg+, — fo) ~ ear, whereleys| < 1077 for single and
lear| < 10715 for double precision, respectively.
We have then

] = (fn = fo) + (f-n — fo)| _ 2em
ol h2 - h2 :
Our total error becomes
2enm f0(4) 2
l€tot] < Tz + Hh . (3.6)

It is then natural to ask which value afyields the smallest total error. Taking the derivative@f;| with
respect tah results in
1/4
2461\4
o

With double precision and = 10 we obtain
h~~10"%

Beyond this value, it is essentially the loss of numericaktfsion which takes over. We note also that the above
qualitative argument agrees seemingly well with the reltitted in Figl:32 and Table™B.1. The turning point
for the relative error at approximately ~ x10~* reflects most likely the point where roundoff errors take
over. If we had used single precision, we would etz 10~2. Due to the subtractive cancellation in the
expression foif” there is a pronounced detoriation in accuracy @&smade smaller and smaller.

It is instructive in this analysis to rewrite the numeratbttee computed derivative as

(fn = fo) + (f=n — fo) = (exp (z + h) — expx) + (exp (z — h) — expx),

as
(fn = fo) + (f-n — fo) = exp (z)(exp (h) + exp (—h) — 2),

since it is the differencéexp (h) + exp (—h) — 2) which causes the loss of precision. The results, still for
x = 10 are shown in the Tab[EZ3.2. We note from this table thdt at x10~8 we have essentially lost all
leading digits.

From Fig.[32 we can read off the slope of the curve and thedebgrmine empirically how truncation
errors and roundoff errors propagate. We saw thatfbr logio(h) < —2, we could extract a slope close to
2, in agreement with the mathematical expression for thecation error.

We can repeat this for 10 < log1p(h) < —4 and extract a slope —2. This agrees again with our simple
expression in EqL(3.6).

3.3 Numerical interpolation, extrapolation and fitting ofata

Numerical interpolation and extrapolation are frequentgd tools in numerical applications to physics. The
often encountered situation is that of a functjpat a set of points; ...z, where an analytic form is miss-
ing. The functionf may represent some data points from experiment or the resaliengthy large-scale
computation of some physical quantity that cannot be castarsimple analytical form.

We may then need to evaluate the functjoat some point within the data set; ... z,,, but wherex dif-
fers from the tabulated values. In this case we are dealitigimterpolation. Ifx is outside we are left with the
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h exp (h) +exp(—h)  exp(h)+exp(—h)—2

107! 2.0100083361116070 1.0008336111607280 *
1072 2.0001000008333358 1.0000083333605681*
10~3  2.0000010000000836 1.000000083406504@ ¢
10~*  2.0000000099999999 1.000000005024 7693 *
10-5  2.0000000001000000 9.9999897251734687 !
10-¢  2.0000000000010001 9.9997787827987850 '*
10-7  2.0000000000000098 9.9920072216264089 '°
10-%  2.0000000000000000 0.000000000000000@
107°  2.0000000000000000 1.1102230246251665 16
10719 2.0000000000000000 0.000000000000000@

Table 3.2: Result for the numerically calculated numerafdhe second derivative as function of the step size
h. The calculations have been made with double precision.

more troublesome problem of numerical extrapolation. ®ele will concentrate on two methods for inter-
polation and extrapolation, namely polynomial interpioiatand extrapolation. The cubic spline interpolation
approach is discussed in chaffkr 6.

3.3.1 Interpolation and extrapolation

Let us assume that we have a sef\oft- 1 pointsyy = f(zo),y1 = f(z1),...,yn = f(zx) where none of
thex; values are equal. We wish to determine a polynomial of degie®that

for our data points. If we then writ€y on the form
Py(z) = ag + a1(x — 20) + az(z — xo)(x —21) + -+ +an(r — 20) ... (¥ — TN -1), (3.8)

then Eq.[(37) results in a triangular system of equations

agp = f(zo)

ap+ ap (iCl - xo) = f(l‘l) (3 9)

ao+ ai(r2 —xo)+ az(rz —xo)(r2 —21) = f(22) '
The coefficientsy, . . ., ay are then determined in a recursive way, starting withu, . . ..

The classic of interpolation formulae was created by Lageaand is given by

N
Py(x)=Y"]1 x__?;yi- (3.10)

i=0 k#i

If we have just two points (a straight line) we get

xr— X xr—
Py(z) = Ly + 40, (3.11)
1 — Xo o — I1

and with three points (a parabolic approximation) we have
(x — x0)(x — 21) ” + (x — x0)(x — 22) ” + (x — x1)(x — x2)

Fale) = (x2 — 20)(22 — 21) (z1 — 20) (71 — T2) (2o — 1) (w0 — 22)

Yo (3.12)
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3.3 — Numerical interpolation, extrapolation and fitting adata

and so forth. It is easy to see from the above equations thabhwk= z; we have thaff (z) = f(z;) Itis also
possible to show that the approximation error (or rest tésrg)ven by the second term on the right hand side

of
wN+1(UC)f(N+1)(§)

(3.13)
The functionwy 41 () is given by
wnt1(z) =an(x —x0)...(z —xN), (3.14)

and¢ = £(z) is a point in the smallest interval containing all intergima pointsz; andx. The algorithm
we provide however (the code POLINT in the program librasydased on divided differences. The recipe is
quite simple. If we take: = z in Eq. (3.8), we then have obviously that = f(z¢) = yo. Moving a over

to the left-hand side and dividing by— x¢ we have

f(@) = fxo)

T — To =a1tax(z—a1)+ - +an(@—2)(@—22)... (& — TN-1), (3.15)

where we hereafter omit the rest term

(N+1)
ﬁ(l’-%l)(l'—xg)...(x—l']v). (316)
The quantity
fow = M, (3.17)
Tr — X

is a divided difference of first order. If we then take= x;, we have thaty = fy;. Moving a; to the left
again and dividing by — z; we obtain

7f01_'f01 =a2—|—-"+GN($—ZC2)..-(1'—=TN—1)- (318)
xr — I
and the quantity
Fora = Jox — f01’ (3.19)
xr — T

is a divided difference of second order. We note that thefooerft

a1 = for, (3.20)

is determined fromy,, by settingz = x;. We can continue along this line and define the divided difiee

of orderk + 1 as

for ke = Jor..(k—1)z — fOl...(kfl)k7 (3.21)

r — Tk
meaning that the corresponding coefficieptis given by

ar = fOl...(kfl)k- (3.22)

With these definitions we see that Hg.(3.13) can be rewritten

wN+1(UC)f(N+1)(§)

f(x) = ao+ ;me...k(x —@0) (@ = @) £ (3.23)
If we replacexy, x1, . . ., zx in Eq. [321) withz;11, 210, . . ., zk, that is we count froni + 1 to k instead of

counting from0 to £ and replacer with z;, we can then construct the following recursive algorithmtfe
calculation of divided differences

_ fﬂﬂi+1--~wk - f11$i+l~~~$k—1 ) (324)

fﬂc:w: 1Tk
ili+ Ik _ Ii
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Assuming that we have a table with function vales, f(z;) = y,) and need to construct the coefficients
for the polynomialPy (z). We can then view the last equation by constructing theiofig table for the case
whereN = 3.

Zo Yo
fzow:
1 Y1 fmomrz
fo12, Jrozrwams - (3.25)
T2 Y2 fmlwzws
fm213
r3 Y3

The coefficients we are searching for will then be the elemalting the main diagonal. We can understand
this algorithm by considering the following. First we canst the unique polynomial of order zero which
passes through the poing, yo. This is justay discussed above. Therafter we construct the unique poligiom
of order one which passes through botly, andz;y;. This corresponds to the coefficientand the tabulated
value f,.,., and together wittu, results in the polynomial for a straight line. Likewise wdide polynomial
coefficients for all other couples of points suchfas., andf., ... Furthermore, a coefficientlike, = f.,2,z,
spans now three points, and adding togetfgr, we obtain a polynomial which represents three points, a
parabola. In this fashion we can continue till we have allfficients. The function POLINT included in the
library is based on an extension of this algorithm, knownBlasille’s algorithm. It is based on equidistant
interpolation points. The error provided by the call to thadtion POLINT is based on the truncation error in

Eq. (3IB).

3.3.2 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precisionrahathematical truncation, without too many
additional function evaluations. We will again study thelesation of the first and second derivativesxp (x)
at a given pointr = £. In Egs. [3.B) and(314) for the first and second derivatiwesnoted that the truncation
error goes likeD(h?7).

Employing the mid-point approximation to the derivativiee tvarious derivative® of a given function
f(z) can then be written as

D(h) = D(0) + a1h® + agh® + azh® + ..., (3.26)

whereD(h) is the calculated derivativd)(0) the exact value in the limit — 0 anda; are independent of

h. By choosing smaller and smaller values forwe should in principle be able to approach the exact value.
However, since the derivatives involve differences, we masily loose numerical precision as shown in the

previous sections. A possible cure is to apply Richardsdefsrred approach, i.e., we perform calculations
with several values of the stépand extrapolate tb = 0. The philososphy is to combine different valuesiof

so that the terms in the above equation involve only larg@egpts forh. To see this, assume that we mount

a calculation for two values of the stépone withh and the other witth /2. Then we have

D(h) = D(0) + a1h® + agh* + azh® + ..., (3.27)
and 2 4 6
_ alh agh a3h

D(h/2) = D(0) + ==+ o=+ o+ (3.28)

and we can eliminate the term with by combining

D(h/2) - D(h) a2h4 5a3h6
3 4 16
We see that this approximation 10(0) is better than the two previous ones since the error now gkes |
O(h*). As an example, let us evaluate the first derivative of a fonct using a step with lengthis andh /2.
We have then
fn—=F-n

T = fo+ 0, (3.30)

D(h/2) + = D(0) -

(3.29)
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M — [+ O(h2/4), (3.31)

which can be combined, using EG.{3.29) to yield

_fh+8fh/2_8f7h/2+f—h / h* (5)
=fo——f%. 3.32
o fo— 150 (3.32)
In practice, what happens is that our approximation®(0) goes through a series of steps
DY
pWw DEO)
D((f) pm D§0> , (3.33)

where the elements in the first column represent the giveroappations

D = D(h/2%). (3.34)

This means thaDEO) in the second column and row is the result of the extrapadiased orD(()O) andD(()l).
An elementD? in the table is then given by

Dl - p®), 035
4m —1 '

with m > 0. l.e., itis a linear combination of the element to the lefit@ind the element right over the latter.
In Table[31 we presented the results for various step sizethé second derivative afxp (z) using

o = f’_z,fli‘;”*h The results were compared with the exact ones for variouues. Note well that as the

step is decreased we get closer to the exact value. Howeitgs, further increased, we run into problems of

loss of precision. Thisis clearly seen fore= 0.000001. This means that even though we could let the computer

run with smaller and smaller values of the step, there is # fonhow small the step can be made before we

loose precision. Consider now the results in TaQe 3.3 wiverehoose to employ Richardson’s extrapolation

scheme. In this calculation we have computed our functigh amly three possible values for the step size,

namelyh, h/2 andh/4 with b = 0.1. The agreement with the exact value is amazing! The extadgdresult

is based upon the use of E.{3.35). We will use this methothtaiwimproved eigenvalues in chagiér 7.

p® = p* 4

x h=0.1 h =0.05 h =0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.000000
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00@000
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0@O009
40 54.64366366 54.60952560 54.60099375 54.59815003 0@0024
5.0 148.53687797 148.44408109 148.42088912 148.4131591@0000064

Table 3.3: Result for numerically calculated second déviga ofexp (x) using extrapolation. The first three
values are those calculated with three different step sizek/2 andh/4 with h = 0.1. The extrapolated
result toh = 0 should then be compared with the exact ones from Table 3.1.

3.4 Classesin C++

In Fortran a vector (this applies to matrices as well) staith 1, but it is easy to change a vector so that it
starts with zero or even a negative number. If we have a dqurelgsion Fortran vector which starts-at0
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and ends at0, we could declare it aEAL (KIND=8) : :vector(-10:10). Similarly, if we want to start at zero and
end at 10 we could writREAL (KIND=8) : :vector(0:10). Fortran allows us to write a vector additian=b + ¢
asa=b+c. This means that we have overloaded the addition operatibragat translates this operation into
two loops and an addition of two vector elemenis= b; + c¢;.

The way the vector addition is written is very close to the wag/express this relation mathematically.
The benefit for the programmer is that our code is easier th fearthermore, such a way of coding makes it
more likely to spot eventual errors as well.

In Ansi C and C++ arrays start by default fram- 0. Moreover, if we wish to add two vectors we need to
explicitely write out a loops as

for(i=0 ; i < n ; i++) {
alil=b[i]+c[il]

}

However, the strength of C++ over programming languagedJiland Fortran 77 is the possibility to define
new data types, tailored to some particular problem. Via data types and overloading of operations such
as addition and subtraction, we can easily define sets ohtipas and data types which allow us to write a
vector or matrix addition in exactly the same way as we wowldndFortran. We could also change the way
we declare a C++ vector (or matrix) element from a[i] to saya(i), as we would do in Fortran. Similarly,
we could also change the default range fromn — 1to 1 : n.

To achieve this we need to introduce two important entitieG++ programming, classes and templates.

The function and class declarations are fundamental coseithin C++. Functions are abstractions
which encapsulate an algorithm or parts of it and perforntifipgasks in a program. We have already met
several examples on how to use functions. Classes can bedefmnabstractions which encapsulate data and
operations on these data. The data can be very complex dattusés and the class can contain particular
functions which operate on these data. Classes allow threr&r a higher level of abstraction in computing.
The elements (or components) of the data type are the cléssrdanbers, and the procedures are the class
member functions.

Classes are user-defined tools used to create multi-pusptseare which can be reused by other classes
or functions. These user-defined data types contain datalfles) and functions operating on the data.

A simple example is that of a point in two dimensions. The datald be ther andy coordinates of a
given point. The functions we define could be simple read aniunctions or the possibility to compute
the distance between two points.

The two examples we elaborate on below demonstrate mosedé#tures of classes. We develop first a
class calledomplex which allows us to perform various operations on compleiades. We extend thereafter
our discussion of classes to define a classor which allows us to perform various operations on a user-
specified one-dimesional array, from declarations of aardctmathematical operations such as additions of
vectors. Later, in our discussion on linear algebra, we aldb present our final matrix and vector class.

The classes we define are easy to use in other codes and/oclatbges and many of the details which
would be present in C (or Fortran 77) codes are hidden in$idectass. The reuse of a well-written and
functional class is normally rather simple. However, toteva given class is often complicated, especially if
we deal with complicated matrix operations. In this text wik rely on ready-made classes in C++ for dealing
with matrix operations. We have chosen to use the Blitz+alip discussed in our linear algebra chapter. This
library hides for us many low-level operations with matseand vectors, such as matrix-vector multiplications
or allocation and deallocation of memory. Such librariegenathen easier to build our own high-level classes
out of well-tested lower-level classes.

The way we use classes in this text is close tovtiveLe data type in Fortran and we provide some simple
demonstrations at the end of this section.

3.4.1 The Complex class

As remarked in chaptél 2, C++ has a class complex in its stdrtdmplate library (STL). The standard usage
in a given function could then look like
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// Program to calculate addition and multiplication of two complex numbers
using namespace std;
#include <iostream>
#include <cmath>
#include <complex>
int main()
{
complex<double> x(6.1,8.2), y(0.5,1.3);
// write out x+y
cout << X + y << x*y << endl;
return 0;

}

where we add and multiply two complex numbers- 6.1 + 8.2 andy = 0.5 + ¢1.3 with the obvious results
z=x4+y=6.6+19.5andz =z -y = —7.61+:12.03. In Fortran we would declare the above variables as

COMPLEX(DPC)::x(6.1,8.2),y(0.5,1.3).

The library Blitz++ includes an extension of the complexssldo operations on vectors, matrices and
higher-dimensional arrays. We recommend the use of Blitaheén you develop your own codes. However,

writing a complex class yourself is a good pedagogical egzerc
We proceed by splitting our task in three files.

— We define first a header file complex.h which contains the datotas of the class. The header file
contains the class declaration (data and functions), dea of stand-alone functions, and all inlined

functions, starting as follows

#ifndef Complex_H

#define Complex_H

// various include statements and definitions

#include <iostream> // Standard ANSI-C++ include files
#include <new>

#include ....

class Complex
{...
definition of variables and their character

}

// declarations of various functions used by the class

#endif

— Next we provide a file complex.cpp where the code and algostof different functions (except inlined
functions) declared within the class are written. The filemplex.h and complex.cpp are normally

placed in a directory with other classes and libraries weslisfined.

— Finally,we discuss here an example of a main program whieh tigs particular class. An example of a
program which uses our complex class is given below. In@aei we would like our class to perform
tasks like declaring complex variables, writing out thd eea imaginary part and performing algebraic

operations such as adding or multiplying two complex nureber

#include "Complex.h"
. other include and declarations
int main ()
{
Complex a(0.1,1.3); // we declare a complex variable a
Complex b(3.0), c(5.0,-2.3); // we declare complex variables b and c

Complex d = b; // we declare a new complex variable d

cout << "d=" << d << ", a=" << a << ", b=" << b << endl;

d = axc + b/a; // we add, multiply and divide two complex numbers

cout << "Re(d)=" << d.Re() << ", Im(d)=" << d.Im() << endl; // write out of the real and

imaginary parts
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’ |

We include the header file complex.h and define four diffecemiplex variables. These age= 0.1 +
11.3, b = 3.0 + :0 (note that if you don't define a value for the imaginary paistis set to zero),
¢ = 5.0 —12.3 andd = b. Thereafter we have defined standard algebraic operatimhthe member
functions of the class which allows us to print out the real enaginary part of a given variable.

To achieve these features, let us see how we define the corlptesx In C++ we could define a complex
class as follows

class Complex
{
private:
double re, im; // real and imaginary part
public:
Complex (); // Complex c;
Complex (double re, double im = 0.0); // Definition of a complex variable;
Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables
Complex& operator= (const Complex& c); // ¢ = a,; // equate two complex variables, same as previous
~Complex () {} // destructor
double Re () const; // double real_part = a.Re();
double Im () const; // double imag_part = a.Im();
double abs () const; // double m = a.abs(); // modulus
friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator- (const Complex& a, const Complex& b);
friend Complex operator* (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);
+

The class is defined via the statemenisscomplex. We must first use the key wowlass, which in turn is
followed by the user-defined variable nameaplex. The body of the class, data and functions, is encapsulated
within the parentheses..};.

Data and specific functions can be private, which means lfegt tannot be accessed from outside the
class. This means also that access cannot be inherited &yfotittions outside the class. If we useétected
instead obrivate, then data and functions can be inherited outside the cCldmskey wordoublic means that
data and functions can be accessed from outside the classwéehave defined several functions which can
be accessed by functions outside the class. The declaratien means that stand-alone functions can work
on privately declared variables of the type:,im). Data members of a class should be declared as private
variables.

The first public function we encounter is a so-called corstmy which tells how we declare a variable of
type complex and how this variable is initialized. We have chosen thressitdlities in the example above:

1. A declaration likecomplexc; calls the member functiotomplex() which can have the following imple-
mentation

Complex:: Complex () { re = im = 0.0; }

meaning that it sets the real and imaginary parts to zeroe M way a member function is defined.
The constructor is the first function that is called when ajecis instantiated.

2. Another possibility is

Complex:: Complex () {}

which means that there is no initialization of the real andgmary parts. The drawback is that a given
compiler can then assign random values to a given variable.

3. Acall like complexa(0.1,1.3); means that we could call the member functiefplex (double,double)as
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Complex:: Complex (double re_a, double im_a)
{ re = re_a; im = im_a; }

The simplest member function are those we defined to extnacteal and imaginary part of a variable.
Here you have to recall that these are private data, thagjsare invisible for users of the class. We obtain a
copy of these variables by defining the functions

double Complex:: Re () const { return re; }} // getting the real part

double Complex:: Im () const { return im; } // and the imaginary part
\end{lstlistingline}

Note that we have introduced the declaration \lstinline{const}. What does it mean?
This declaration means that a variable cannot be changed within a called function.

If we define a variable as

\lstinline{const double p = 3;} and then try to change its value, we will get an error when we
compile our program. This means that constant arguments in functions cannot be changed.
\begin{lstlisting}

// const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)

{ c.re = 0.2; /x ILLEGAL!! compiler error... */ }

If we declare the function and try to change the valué.& the compiler will complain by sending an error
message. If we define a function to compute the absolute vhlcemplex variable like

double Complex:: abs () { return sqrt(rexre + imxim);}

without the constant declaration and define thereafter etifumnyabs as

double myabs (const Complex& c)
{ return c.abs(); } // Not ok because c.abs() is not a const func.

the compiler would not allow the c.abs() call in myabs sin@@1ex: :abs iS not a constant member function.
Constant functions cannot change the object’s state. Tiol &vis we declare the functiosbs as

'double Complex:: abs () const { return sqrt(rexre + imxim); }

Overloading operators

C++ (and Fortran) allow for overloading of operators. Thatams we can define algebraic operations on for
example vectors or any arbitrary object. As an example, sovedldition of the type = a + b means that
we need to write a small part of code with a for-loop over thraetision of the array. We would rather like to
write this statement as= a+b; as this makes the code much more readable and close to ehamiiasions we
want to code. To achieve this we need to extend the definifioperators.

Let us study the declarations in our complex class. In ounrfiaiction we have a statement like b;,
which means that we call operator=(b) and we have defined a so-called assignment operator as & izt o
class defined as

Complex& Complex:: operator= (const Complex& c)
{

re = c.re;

im = c.im;

return xthis;

}

With this function, statements likesmplexd=b; Or Complexd(b); make a new objeat, which becomes a copy
of b. We can make simple implementations in terms of the assighme

Complex:: Complex (const Complex& c)
{ *this = ¢; }
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which is a pointer to "this object'sthis is the present object, sahis=c; means setting the present object
equal toc, that isthis->operator=(c);.
The meaning of the addition operatafor Complex objects is defined in the functiosmplexoperator+(constComplex&a, constCol
The compiler translates=a + b; iNto c = operator+(a,b);. Since this implies the call to function, it brings in
an additional overhead. If speed is crucial and this fumctiall is performed inside a loop, then it is more
difficult for a given compiler to perform optimizations of@dp. The solution to this is to inline functions. We
discussed inlining in chaptEl 2. Inlining means that thecfiom body is copied directly into the calling code,
thus avoiding calling the function. Inlining is enabled b tnline keyword

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Inline functions, with complete bodies must be written ia Header file complex.h. Consider the case + b;
that is, c.operator=(operator+(a,b)); If operator+, operator= and the constructaromplex(r,i) all are inline
functions, this transforms to

c.re = a.re + b.re;
c.im = a.im + b.im;

by the compiler, i.e., no function calls
The stand-alone functiasperator+ is a friend of the Complex class

class Complex

{

friend Complex operator+ (const Complex& a, const Complex& b);

};

so it can read (and manipulate) the private data pareadim via

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Since we do not need to alter the re and im variables, we cathgeflues by Re() and Im(), and there is no
need to be a friend function

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.Re() + b.Re(), a.Im() + b.Im()); }

The multiplication functionality can now be extended to gimeary numbers by the following code

inline Complex operator* (const Complex& a, const Complex& b)

{

return Complex(a.rexb.re - a.imxb.im, a.imxb.re + a.rexb.im);

}

It will be convenient to inline all functions used by this og®r. To inline the complete expressiom;, the
constructors aneberator= must also be inlined. This can be achieved via the followiieg of code

inline Complex:: Complex () { re = im = 0.0; }
inline Complex:: Complex (double re_, double im_)

{ ...}

inline Complex:: Complex (const Complex& c)

{ ...}

inline Complex:: operator= (const Complex& c)
{ ...}

// e, c, d are complex

e = cxd;

// first compiler translation:
e.operator= (operatorx (c,d));
// result of nested inline functions
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// operator=, operatorx, Complex(double,double=0):
e.re = c.rexd.re - c.imxd.im;
e.im = c.imxd.re + c.rexd.im;

The definitionsperator- andoperator/ follow the same set up.
Finally, if we wish to write to file or another device a complexmber using the simple syntaxut<<c;,
we obtain this by defining the effect ef< for a Complex object as

ostream& operator<< (ostream& o, const Complex& c)
{ o0<< "(" << c.Re() << "," << c.Im() << ") "; return o;}

Templates

The reader may have noted that all variables and some of tietidns defined in our class are declared
as doubles. What if we wanted to make a class which takesergeagq floating point numbers with single
precision? A simple way to achieve this is copy and paste lass@nd replacé&uble with for exampleint.

C++ allows us to do this automatically via the usage of temeglawhich are the C++ constructs for pa-
rameterizing parts of classes. Class templates is a teenplaproducing classes. The declaration consists of
the keywordtemplate followed by a list of template arguments enclosed in brackéfe can therefore make a
more general class by rewriting our original example as

template<class T>
class Complex

{
private:
T re, im; // real and imaginary part
public:
Complex (); // Complex c;
Complex (T re, T im = 0); // Definition of a complex variable;
Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables

Complex& operator= (const Complex& c); // ¢ = a; // equate two complex variables, same as previous
~Complex () {} // destructor
T Re () const; // T real_part = a.Re();
T Im () const; // T imag_part = a.Im();
T abs () const; // T m = a.abs(); // modulus
friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator- (const Complex& a, const Complex& b);
friend Complex operator* (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);
+

What it says is thatomplex is a parameterized type wiffias a parameter aridhas to be a type such as double
or float. The class complex is now a class template and we wigfide variables in a code as

Complex<double> a(10.0,5.1);
Complex<int> b(1,0);

Member functions of our class are defined by preceding theerarthe function with theemplate key-
word. Consider the function we defined@splex: : Complex(doublere_a,doubleim_a). We would rewrite this
function as

template<class T>
Complex<T>:: Complex (T re_a, T im_a)
{ re = re_a; im = im_a; }

The member functions are otherwise defined following ondimaember function definitions.

To write a class like the above is rather straightforwarde €lass for handling one-dimensional arrays,
presented in the next subsection shows some of the addifioasibilities which C++ offers. However, it can
be rather difficult to write good classes for handling masior more complex objects. For such applications
we recommend therefore the usage of ready-made librakie8litz++.
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Blitz++ http://www.oonumerics.org/blitz/|is a C++ library whose two main goals are to improve
the numerical efficiency of C++ and to extend the conventidease array model to incorporate new and
useful features. Some examples of such extensions arelestiirage formats, tensor notation and index
placeholders. It allows you also to write several operatimwolving vectors and matrices in a simple and
clear (from a mathematical point of view) way. The way you Wocode the addition of two matrices looks
very similar to the way it is done in Fortran.

3.4.2 The vector class

Our next next example is a very simple class to handle onexsional arrays. It demonstrates again many
aspects of C++ programming. However, most likely you willlerp using a ready-made array class from a
library like Blitz++ discussed above.

Our classrector has as data a plain one-dimensional array. We define seuaictldns which operate on
these data, from subscripting, change of the length of tteyaassignment to another vector, inner product
with another vector etc etc. To be more specific, we definedh@ifing usage of our class,that is the way the
class is used in another part of the program:

— Create vectors of a specified length defining a vectoreasor\v(n); Via this statement we allocate
space in memory for a vector withelements.

— Create a vector with zero length by writing the statenvettorv;

— Change the dimension of a vectoto a given lengt by declaringv. redim(n) ;. Note here the way we
use a function defined within a class. The function her@dsm.

— Create a vector as a copy of another vector by simply writie@orv (w) ;

— To extract the length of the vector by writirgnstintn=v.size();

— To find particular value of the vectabublee=v(i);

— or assign a number to an entry vigj)=e;

— We would also like to set two vectors equal to each other bykimvriting w=v;

— or take the inner product of two vectors@asblea=w.inner(v); Or alternatively Istinlinea = inner(w,v);
— To write a vector to screen could be done by writingrint (cout) ;

This list can be made longer by adding features like vectyelaia, operator overloading etc.
We present now the declaration of the class, with our comsmamthe various declarations.

class Vector
{
private:
doublex A; // vector entries
int  length; // the length ofthe vector
void allocate (int n); // allocate memory, length=n
void deallocate(); // free memory
public:
Vector (); // Constructor, use as Vector v;
Vector (int n); // use as Vector v(n);
Vector (const Vector& w); // us as Vector v(w);
~Vector (); // destructor to clean up dynamic memory
bool redim (int n); // change length, us as v.redim(m);
Vector& operator= (const Vector& w);// set two vectors equal v = w;
double operator() (int i) const; // a = v(i);
double& operator() (int i); // v(i) = a;
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void print (std::ostream& o) const; // v.print(cout);
double inner (const Vector& w) const; // a = v.inner(w);
int size () const { return length; } // n = v.size();

by

The class is defined via the statemetdssvector. We must first use the key wokdass, which in turn is
followed by the user-defined variable name. The body of thes;ldata and functions, is encapsulated within
the parentheses;.

Data and specific functions can be private, which means liegt tannot be accessed from outside the
class. This means also that access cannot be inherited &yfotittions outside the class. If we useétected
instead obrivate, then data and functions can be inherited outside the cldmskey wordbublic means that
data and functions can be accessed from outside the classwéehave defined several functions which can
be accessed by functions outside the class.

The first public function we encounter is a so-called cortstny which tells how we declare a variable of
typevector and how this variable is initialized

Vector v; // declare a vector of length 0
// this actually means calling the function

Vector::Vector ()
{ A = NULL; length = 0; }

The constructor is the first function that is called when gjectis instantiated. The variabias the vector en-

try which defined as a private entity. Here the length is seéto. Note also the way we define a method within

the class by Wl‘itingector: :Vector(). The general formis returntype>nameofclass::nameofmethod(<listofarguments>.
To give our vectow a dimensionality: we would write

Vector v(n); // declare a vector of length n
// means calling the function

Vector::Vector (int n)
{ allocate(n); }

void Vector::allocate (int n)
{
length = n;
A = new double[n]; // create n doubles in memory

}

Note that we defined a Fortran-like function for allocatingmory. This is one of nice features of C++ for
Fortran programmers, one can always define a Fortran-liklElwWmne wishes. Moreover,the private function
allocate operates on the private variablesgth anda. A vector object is created (dynamically) at run time,
but must also be destroyed when it is no longer in use. Theudtst specifies how to destroy the object via
the tilde symbol shown here

Vector::~Vector ()
{

deallocate();
}

// free dynamic memory:
void Vector::deallocate ()
{

delete [] A;
}

Again we have define a deallocation statement which mimie&sFortran way of removing an object from
memory. The observant reader may also have discovered thhave sneaked in the word 'object’. What do
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we mean by that? A clarification is needed. We will alwaysirafelass as user defined and declared variable
which encapsulates various data (of a given type) and dpasabn these data. An object on the other hand is
an instance of a variable of a given type. We refer to everialée we create and use as an object of a given

type. The variabla above is an object of typsat.

The function where we set two vectors to have the same lemgtihave the same values can be written as

// v and w are Vector objects
vV =w;
// means calling
Vector& Vector::operator= (const Vector& w)
// for setting v = w;
{
redim (w.size()); // make v as long as w
int 1i;
for (i = 0; 1 < length; i++) { // (C++ arrays start at 0)
A[i] = w.A[i]; // fill in teh vector w
}
return xthis;
}
// return of xthis, i.e. a Vector&, allows nested operations
U=V =u.vec = vV_vec;

where we have used thedim function

v.redim(n); // make a vector v of length n

bool Vector::redim (int n)
{
if (length == n)
return false; // no need to allocate anything
else {
if (A != NULL) {
// "this" object has already allocated memory
deallocate();
}
allocate(n);
return true; // the length was changed
}
}

and the copy action is defined as

Vector v(w); // take a copy of w

Vector::Vector (const Vector& w)

{
allocate (w.size()); // "this" object gets w's length
xthis = w; // call operator =

}

Here we have definethis to be a pointer to the current (“this”) object, in other wordshis is the object
itself.

void Vector::print (std::ostream& o) const

{
int i;
for (i = 1; i <= length; i++)
0 << "(" << 1 << ")=" << (xthis) (i) << '\n';
}

double a = v.inner(w);

double Vector::inner (const Vector& w) const
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int i; double sum = 0;
for (i = 0; 1 < length; i++)
sum += A[i]lxw.A[i];
// alternative:
// for (i = 1; i <= length; i++) sum += (xthis)(i)*w(1i);
return sum;

// Vector v
cout << v;

ostream& operator<< (ostream& o, const Vector& v)
{ v.print(o); return o; }

// must return ostream& for nested output operators:
cout << "some text..." << w;

// this is realized by these calls:
operator<< (cout, "some text...");
operator<< (cout, w);

We can redefine the multiplication operator to mean the ipneduct of two vectors:

double a = vxw; // example on attractive syntax

class Vector

{

// compute (xthis) * w
double operatorx (const Vector& w) const;

+i

double Vector::operatorx (const Vector& w) const
{

return inner(w);
}

// have some Vector u, v, w; double a;
U=V + axw;
// global function operator+
Vector operator+ (const Vector& a, const Vector& b)
{

Vector tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp(i) = a(i) + b(i);

return tmp;
}
// global function operatorx
Vector operatorx (const Vector& a, double r)
{

Vector tmp(a.size());

for (int i=1; i<=a.size(); 1i++)

tmp (i) = a(i)*r;

return tmp;
}
// symmetric operator: rxa
Vector operator* (double r, const Vector& a)
{ return operatorx(a,r); }

69



Numerical differentiation, interpolation and classes

Classes and templates in C++ Blitz++

We can again use templates to generalize our class to adbeptypes than just doubles. To achieve that we
use templates, which are the native C++constructs for peteximing parts of classes, using statements like

template<class T>
class Vector
{

T A;

int length;
public:

T& operator() (int i) { return A[i-1]; }

};

In a code which uses this class we could declare various rseasoDeclarations in user code:

Vector<double> a(10);
Vector<int> i(5);

where the first variable is double vector with ten elementdenie second is an integer vector with five
elements.

Summarizing, it is easy to use the classtor and we can hide in the class many details which are visible
in C and Fortran 77 codes. However, as you may have noted dtisasy to write clasgector. One ends
often up with using ready-made classes in C++ libraries ssdBlitz++ unless you really need to develop your
own code. Furthermore, our vector class has served maingdagwngical scope, since C++ has a Standard
Template Library (STL) with vector types, including a vedior doing numerics that can be declared as

std::valarray<double> x(n); // vector with n entries

However, there is no STL for a matrix type. We end thereforthwécommending the use of ready-made
libraries like Blitz++ or the matrix class discussed in timehr algebra chapter, see chapier 6.

We this section by listing the final vector class, with bottader file and the definitions of the various
functions. The usage of the class could be as follows:

Usage of the Vector class

// Create a vector with zero length:
Vector vl;

// Redimension the vector to have length n:

int nl = 3;

vl.redim(nl);

cout << "vl.getlength: " << vl.getlLength() << endl;

// Extract the length of the vector:
const int length = vl.getLength();

// Create a vector of a specific length:

int n2 = 5;

Vector v2(n2);

cout << "v2.getlength: " << v2.getlLength() << endl;

// Create a vector from an existing array:

int n3 = 3;

doublex array = new double[n3];

Vector v4(n3, array);

cout << "v4.getlength: " << v4.getLength() << endl;

// Create a vector as a copy of another one:
Vector v5(vl);
cout << "v5.getlength: " << v5.getLength() << endl;
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// Assign the entries in a vector:

v5(0) = 3.0; // or alternatively v5[0] = 3.0;
v5(1) = 2.5; // or alternatively v5[1] = 2.5;
v5(2) = 1.0; // or alternatively v5[2] = 1.0;

// Extract the ith component of a vector:

int i = 2;

double value = v5(1);

cout << "value: " << value << endl;

// Set a vector equal another one:

Vector v6 = v5;

cout << "try redim.v6: " << v6.redim(1l) << endl;

cout << "vb6.getLength: " << v6.getlLength() << endl;

// Take the inner product between two vectors:
double dot = v6.inner(v5); // alternatively: double dot = inner(vé6,v5);
cout << "dot(v6,v5): " << dot << endl;

// Get the euclidean norm to a vector:
double norm = v6.12norm();
cout << "norm of v6: " << norm << endl;

// Normalize a vector:
v5.normalize();

// Dump a vector to the screen:
v5.print(std::cout << "v5: " << endl);

// Arithmetic operations with vectors using a
// syntax close to the mathematical language
Vector w = vl + axv2;

We list here the header file first.

The header file Vector.h

#ifndef VECTOR_H
#define VECTOR_H

#include <cmath>
#include <iostream>

/*****************************************************************************/

/* VECTOR CLASS */

/KoK skok ok ok ok ok ok ok ok oK K ok K K oK K oK K ok ok ok oK 3 ok K K ok K K ok K ok K ok ok ok ok ok K K ok K ok K sk Kk sk ok K ok K Kok Kok ok sk ok ko /

/ *%

@file Vector.h

@class Vector

@brief Class used for manipulating one-dimensional arrays.

Contains user-defined operators to do computations with arrays in a style
close to mathematical equations.

I R S R R I

*xk/

class Vector{
private:
int length; // Number of entries.
double xvec; // Entries.

public:
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VAT

* @brief Constructor. Creates a vector initializing its elements to zero
* @param int _length. The number of entries in the array.

*x/

// Default constructor

Vector();

/**

* @rief Constructor. Creates a vector initializing its elements to zero
* @param int length. The number of entries in the array.

*x/

// Constructor

Vector(int _length);

VAT

* Constructor. Creates a vector to hold a given array.

* @param int _length. Number of entreis in the array.

* @param const doublex a. Constant pointer to a double array.
*x/

// Constructor

Vector(int _length, const double *array);

/**

* Copy constructor.

*

*x/

// copy constructor
Vector(const Vector&);

VAT

* Destructor.
*%/

// Destructor
~Vector();

/** Get the number of elements in an array.
* @return the length of the array.

*%/

// Get the length of the array.

int getLength() const;

// Return pointers to the data: Useful for sending data
// to Fortran and C

const doublex getPtr() const;

doublex getPtr();

double inner(const Vector&) const;

/xx Normalize a vector, i.e., create an unit vector \f$\hat{v} =
\ frac{\mathbf{v}}{\ [\mathbf{a}\|}\f$

*

*x/

// Normalize a vector

void normalize();
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void print(std::ostream&) const;

/*%

* Change the length of a vector
*k/

bool redim(int nl);

/3K 3K o ok Kok ok o K KK oK oK o K KK oK oK o K KoK oK oK K KK oK oK K K KK oK oK o K K KoK oK oK K Kok ok /)
/* (USER-DEFINED) OVERLOADED OPERATORS */

/% 3k 5k sk sk ok ok sk ok ok ok sk 3k ok ok 3k 3k ok ok 3k 3K oK ok 3k 3K ok ok 3k 3K ok ok 3k 3k ok ok sk 3k ok ok sk K ok ok sk sk ok ok sk sk kok ok /-

// Member arithmetic operators (unary operators)
// Vector quantities: u, v, w. Scalar: a

// Copy-assignment (assignment by copy) operator
Vector& operator =(const Vector&); // v = w

// Add-assignment (assigment by addition) operator
Vector& operator+=(const Vector&); // v +=w

// Substraction-assignment (assignment by substraction) operator
Vector& operator-=(const Vector&); // v -=w

// Multiplication-assignment (assignment by multiplication) operator
Vector& operator*=(double); // v *= a

// Division-assignment (assignment by division) operator
Vector& operator/=(double); // v /= a

const double& operator[](int i) const;
double& operator[](int i);
const double& operator()(int i) const;
double& operator()(int 1i);
bool indexOk(int i) const;

/*%

* Return the 12-norm (eucledian norm) of a vector, \f$\|\mathbf{v}\|_{2} = (\sum_{i}
v_i)™{\frac{1}{2}}\f$, for \f$\mathbf{v} = [v_0, v_1,\cdots,v_{n-1}]\f$. To avoid overflow
when the sum of the squares of the elements \f$v_i\f$ is very large, we implement the
12-norm in an alternative way.

* We set \f$s i = 0\f$ and letting \f$s_i\f$ be the sum of the squares of the first \f$i\f$
elements such that \f$s_{i+1}"2 = s_{i}"2 + v_{i}"2\f$, for \f$i = 0,1, \cdots,n-1 \f$. That
is, \f[s_{1}~{2} = v_{0}"{2}, \quad s_{2}~{2} = v_{0}~{2} + v_{1}"{2}, \quad \cdots, \quad
s {n}™{2} = v_{0}"{2} + v_{1}"{2} + \cdots + v_{n-1}"{2}. \f]

* From the last sum, \f$ \|\mathbf{v}\|_2 = \sqrt{s_{n}"{2}} = s_n\f$. Therefore, to avoid

overflow in the sum \f$s_{i}"2 + v_{i}"2\f$ we compute:

\f[

* s {i+1} = (s {i}"{2} + v {i}~{2})~{\frac{1}{2}}
{s_i}\right)~{2}\right]~{\frac{1}{2}}

*

s_i\left[1 + \left(\frac{v_i}

\ ]

when \f$s_i\f$ is large, and

* \f[

* s {i+1} = (s {i}~{2} + v {i}~{2})~{\frac{1}{2}}
{v_iX\right)™{2}\right]~{\ frac{1}{2}}

v_i\left[1 + \left(\frac{s_i}

\ ]
when \f$|v_i|\f$ is large.

*
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*%/
// Get the euclidian norm (12norm)
double 12norm() const;

/******************************************************************/
/* Unary operators */
/******************************************************************/

// Unary operator +
friend Vector operator+(const Vector&); // u=+yv

// Unary operator -
friend Vector operator-(const Vector&); // u=-v

/******************************************************************/
/* Binary operators */
/******************************************************************/

VAT

* Addition of two vectors:

* | f$\mathbf{u} = \mathbf{v} + \mathbf{w}\f$.

*%/

friend Vector operator+(const Vector&, const Vector&); // u=v + w

/**

* Substraction of two vectors:

* | f$\mathbf{u} = \mathbf{v} - \mathbf{w}\f$.

*x/

friend Vector operator-(const Vector&, const Vector&); // u=v - w

VAT

* Product between two vectors:

* | f$\mathbf{u} = \mathbf{v} * \mathbf{w}\f$.

*x/

friend Vector operatorx(const Vector&, const Vector&); // u =v * w

/**

* Premultiplication by a floating point number:

* | f$\mathbf{u} = a \mathbf{v}\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a vector.
*x/

friend Vector operatorx(double, const Vector&); // u = axv

/**

* Postmultiplication by a floating point number:

* | f$\mathbf{u} = \mathbf{v} al\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a vector.
*x/

friend Vector operatorx(const Vector&, double); // u = vxa

VAT

* Matrix-vector product:

* Evaluate \f$\mathbf{u} = A \mathbf{v}\f$

*%/

friend Vector operators(const Matrix&, const Vector&); // u = Axv

/**

* Division of the entries of a vector by a scalar.

*%/

friend Vector operator/(const Vector&, double); // u = v/a
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/ **

* Compute the dot (scalar) product between two vectors. Let

* | f$\mathbf{u} = [u_0, u_1,\cdots,u_{n-1}]\f$ and \f$\mathbf{v} = [v_0, v_1,\cdots,v_{n-1}]\f$.
* Then, their dot product is a scalar

* | f$\mathbf{u} \cdot \mathbf{v} = \sum_{i=0}"{n-1} u_i v_i\f$

* Receive as paramuments to constant vectors.

*xk/
friend double inner(const Vector&, const Vector&); // dot product

/*%

* print the entries of a vector to screen

*k/

friend std::ostream& operator<<(std::ostream&, const Vector&); // cout << v
// Note: This function does not need access to the data

// member. Therefore, it could have been declared as a not friend.

/KK sk sk sk sk ok sk ok ok ok ok ok oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK K K oK K K K K K K K K K Kk ok ok ok
/* INLINE FUNCTIONS */

/*******************************************************************/

// Destructor
inline Vector::~Vector(){delete[] vec;}

// Get the number of entries in a vector
inline int Vector::getLength() const {return length;}

/ *%

* @return A constant pointer to the array of data.

* This function can be used to interface C++ with Fortran/C.
*xk/

inline const doublex Vector::getPtr() const {return vec;}

/ *%

* @return A pointer to the array of data.

* This function can be used to interface C++ with Fortran/C.
*k/

inline doublex Vector::getPtr(){return vec; }

// Subscript. If v is an object of type Vector, the ith
// component of v can be accessed as v[i] closer to the
// ordinary mathematical notation instead of v.vec[i].
// The return value "const double&" is equivalent to
// "double", with the difference that the first approach
// 1is preferible when the returned object is big.
inline const double& Vector::operator[](int i) const{
#ifdef CHECKBOUNDS_ON
indexOk(1i);
#endif
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return vec[i];
} // read-only the ith component of the vector.
// const at the end of the function declaration means
// that the caller code can just read, not modify

// Subscript. (DANGEROUS)
inline double& Vector::operator[](int i){
#ifdef CHECKBOUNDS_ON
index0k(1i);
#endif
return vec[i];
} // read-write the ith coordinate

// Alternative to operator[]
inline const double& Vector::operator()(int i) const{
#ifdef CHECKBOUNDS_ON
index0k(1i);
#endif
return vec[i];
} // read-only the ith component of vec

// Subscript (DANGEROUS). If v is an object of type Vector, the ith
// component of v can be accessed as v(1i) closer to the
// ordinary mathematical notation instead of v.vec(i).
inline double& Vector::operator()(int i){
#ifdef CHECKBOUNDS_ON
indexOk(i);
#endif
return vec[i];
} // read-write the ith component of vec

/******************************************************************/
/% (Arithmetic) Unary operators */
/******************************************************************/
// Unary operator +

inline Vector operator+(const Vector& v){ // u =+ v
return v;

}

// Unary operator -

inline Vector operator-(const Vector& v){ // u = - v

return Vector(v.length) -v;

}

#endif

The file Vector.cpp

#include "Vector.h"

VAT

* @file Vector.cpp

* @class Vector

* @rief Implementation of class used for manipulating one-dimensional arrays.
*k/
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// default constructor
Vector::Vector(){
length = 0;
vec = NULL;
}

// constructor
Vector::Vector(int _length){
length = _length;
vec = new double[_length];
for(int i=0; i<_length; i++)
vec[i] = 0.0;

// Declare the array to be constant because it is passed
// as a pointer. Hence, it could be modified by the calling code.
Vector::Vector(int _length, // length of the array
const double xarray){ // one-dimensioal array

length = _length;

vec = new double[lengthl];

for(int i=0; i<length; i++)

vec[i] = array[i];

// copy constructor
Vector::Vector(const Vector& w){
vec = new double[length = w.length];
for(int i=0; i<length; i++)
vec[i] = w[i]; // This possible because we have overloaded the operator[]

// A more straigforward way of implementing this constructor is:
// vec = new double[length=w.length];
// xthis = w; // Here we use the assignment operator=

}

// normalize a vector
void Vector::normalize(){
double tmp = 1.0/12norm();
for(int i=0;i<length; i++)
vec[i] = vec[i]*tmp;

void Vector::print(std::ostream& os) const{

int i;
for(i=0; i<length; i++){

0S << "(" << i << ") =" << vec[i] << "\n";
}

}

// change the length of a vector
bool Vector::redim(int _length){
if(length == _length)
return false;
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else{
if(vec != NULL){
delete[] vec;
}
length = _length;
vec = new double[lengthl];
return true;

bool Vector::indexOk(int i) const{
if(i<@ || i>=length){
std::cerr << "vector index check; index i=" << i
<< " out of bounds 0:" << length-1

<< std::endl;
return false;
}
else

return true; // valid index!

/**********************************************************/
/* DEFINITION OF OPERATORS */
/3% 3K 3k sk ok ok ok ok ok ok K oK ok ok 3K oK ok ok 3K 3K ok ok 3K 3K ok 3k 3K 3K ok ok 3K 3K ok 3k 3K 3K ok 3k 3K oK ok ok K ok ok sk K ok ok sk sk sk ok sk sk sk ok /
Vector& Vector::operator=(const Vector& w){ // v = w
if(this != &w){ // beware of self-assignment v=v
if(length !'= w.length)
std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] = w[i]; // closer to the mathematical notation than w.vec[i]
}
return xthis;
} // assignment operator

Vector& Vector::operator+=(const Vector& w){ // v +=w
if(length !'= w.length) std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] += w[i]; // This possible because we have overloaded the operator[]
return xthis;
} // add a vector to the current one

Vector& Vector::operator-=(const Vector& w){ // v -=w
if(length != w.length) std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] -= w[i];// This possible because we have overloaded the operator[]

return xthis;

Vector& Vector::operatorx=(double scalar){ // v *= a
for(int i=0; i<length; i++)
vec[i] *= scalar;
return xthis;

}

Vector& Vector::operator/=(double scalar){ // v /= a
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for(int i=0; i<length; i++)
vec[i] /= scalar;
return xthis;

}

/******************************************************************/
/% (Arithmetic) Binary operators */
/3% 3K 3k ok ok ok ok K ok ok ok K oK ok ok 3K 3K ok ok 3K 3K ok ok 3K 3K ok ok 3K 3K ok ok 3 3K ok ok 3K 3K ok 3k 3K 3K ok 3k 3K oK ok 3k 3K oK ok 3k 3 ok ok sk K ok ok sk R sk ok sk sk sk ok /

// Sum of two vectors

Vector operator+(const Vector& v, const Vector& w){ // u=v +w
// The copy constructor checks the lengths
return Vector(v) += w;

} // vector plus vector

// Substraction of two vectors

Vector operator-(const Vector& v, const Vector& w){ // u=v - w
// The copy constructor checks the lengths
return Vector(v) -= w;

} // vector minus vector

// Multiplication between two vectors
Vector operatorx(const Vector& v, const Vector& w){ // u=v *x w
if(v.length !'= w.length) std::cout << "Bad vector sizes!" << std::endl;
int n = v.length;
Vector tmp(n);
for(int i=0; i<n; i++)
tmp[i] = v[i]*w[i];
return tmp;
} // vector times vector

// Postmultiplication operator
Vector operator*(const Vector& v, double scalar){ // u = vxa
return Vector(v) *x= scalar;

}

// Premultiplication operator.
Vector operators(double scalar, const Vector& v){ // u = axv
return vxscalar; // Note the call to postmultiplication operator defined above

}

// Multiplication (product) operator: Matrix times vector
Vector operator*(const Matrix& A, const Vector& v){ // u = Axv
int m = A.getRows();
int n = A.getColumns();

if(A.getColumns() != v.getLength()){
std::cerr << "Bad sizes in: Vector operatorx(const Matrix& A, const Vector& v)";

}

Vector u(m);
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
ulil += A[i1[j1=v[jl;
}
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}

return u;

}

// Division of the entries in a vector by a scalar

Vector operator/(const Vector& v, double scalar){
if(!scalar) std::cout << "Division by zero!" << std::endl;
return (1.0/scalar)x*v;

}

// compute the dot product between two vectors
double inner(const Vector& u, const Vector& v){ // dot product
if(u.length !'= v.length){
std::cout << "Bad vector sizes in: double inner(const Vector& u, const Vector& v)" << std::endl;
}
double sum = 0.0;
for(int i=0; i<u.length; i++)
sum += u[il=xv[i];
return sum;

double Vector::inner(const Vector& v) const{ // dot product double a = u.inner(v)
if(length != v.length)
std::cout << "Bad vector sizes in: double Vector::inner(const Vector& v) const" << std::endl;
double sum = 0.0;
for(int i=0; i<v.length; i++)
sum += vec[i]x*v.vec[i];
return sum;

}

// compute the eucledian norm
double Vector::12norm() const{
double norm = fabs(vec[0]);
for(int i=1; i<length; i++){
double vi = fabs(vec[i]);
if(norm < 100 && vi < 100){
norm = sqrt(normxnorm + vixvi);
}else if(norm > vi){
norm *= sqrt(1.0 + pow(vi/norm,2));

}else{
norm = vixsqrt(1.0 + pow(norm/vi,2));
}
}
return norm;

}

// dump the components of a vector to screen

std::ostream& operator<<(std::ostream& s, const Vector& v){ // output operator
v.print(s);
return s;

}

3.5 Modules in Fortran

In the previous section we discussed classes and templaBast. Classes offer several advantages, such as
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— Allows us to place classes into structures

Pass arguments to methods

Allocate storage for objects

Implement associations

Encapsulate internal details into classes

Implement inheritance in data structures

Classes contain a new data type and the procedures that garfbemed by the class. The elements (or
components) of the data type are the class data membersiegpbtedures are the class member functions. In
Fortran a class is defined asm@uLE which contains an abstract dateee definition. The example we elaborate
on here is a Fortran class for defining operations on singtégbe quantum numbers such as the total angular
momentum, the orbital momentum, the energy, spin etc.

We present theiobuLEsingle particle orbits here and discuss several of its feature with links to C++
programming.

! Definition of single particle data

MODULE single_particle_orbits

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_orbits
INTEGER, DIMENSION(:), POINTER :: nn, 11, jj, spin
CHARACTER+10, DIMENSION(:), POINTER :: orbit status, &

model_space

REAL (KIND=8), DIMENSION(:), POINTER :: e

END TYPE single_particle_descript

TYPE (single_particle_descript), PUBLIC :: all_orbit, &
neutron_data, proton_data
CONTAINS

various member functions here

SUBROUTINE allocate_sp_array(this_array,n)
TYPE (single_particle_descript), INTENT(INOUT) :: this_array
INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%snn) ) &
DEALLOCATE(this_array%nn)

ALLOCATE(this_array%nn(n))

IF (ASSOCIATED (this_array%ll) ) &
DEALLOCATE(this_array%l1l)

ALLOCATE(this_array%sll(n))

IF (ASSOCIATED (this_array%jj) ) &
DEALLOCATE(this_array%jj)

ALLOCATE (this_array%jj(n))

IF (ASSOCIATED (this_array%spin) ) &
DEALLOCATE(this_array%spin)

ALLOCATE (this_array%spin(n))

IF (ASSOCIATED (this_array%se) ) &
DEALLOCATE(this_array%e)

ALLOCATE(this_array%e(n))

IF (ASSOCIATED (this_array%orbit_status) ) &
DEALLOCATE(this_array%orbit_status)
ALLOCATE(this_array%sorbit_status(n))

IF (ASSOCIATED (this_array%model_space) ) &
DEALLOCATE(this_array%model_space)
ALLOCATE (this_array%model_space(n))

blank all characters and zero all other values

DO i= 1, n
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this_array%smodel_space(i)= ' '
this_array%orbit_status(i)= ' '
this_array%e(i)=0.
this_array%nn(i)=0
this_array%ll(i)=0
this_array%jj(i)=0
this_array%nshell(i)=0
this_array%itzp(i)=0

ENDDO

SUBROUTINE deallocate_sp_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array
DEALLOCATE(this_array%nn)

DEALLOCATE (this_array%l1l)

DEALLOCATE (this_array%jj)

DEALLOCATE (this_array%spin)

DEALLOCATE (this_array%e)
DEALLOCATE(this_array%orbit_status); &

DEALLOCATE (this_array%smodel_space)

END SUBROUTINE deallocate_sp_array
! Read in all relevant single-particle data

SUBROUTINE single_particle_data
IMPLICIT NONE
CHARACTER*100 :: particle_species

READ(5,*) particle_species
WRITE(6,*) ' Particle species: '
WRITE(6,*) particle_species
SELECT CASE (particle_species)
CASE ('electron')
CALL read_electron_sp_data
CASE ('proton&neutron')
CALL read_nuclear_sp_data
END SELECT

END SUBROUTINE single_particle_data

END MODULE single_particle_orbits

The module ends with thenbMobuLEsingle_particle_orbits Statement. We have defined a public variable
TYPE,PUBLIC::single particle descript Which plays the same role as thiguct type in C++. In addition we
have defined several member functions which operate onusérays and variables.
An example of a function which uses this module is given betowd the module is accessed via the
USE single_particle_orbits Statement.

!
PROGRAM main

USE single_particle_orbits
IMPLICIT NONE
INTEGER :: i

READ(5,*) all_orbit%total_orbits
IF( all_orbit%total_orbits <= 0 ) THEN

WRITE(6,*) 'WARNING, NO ELECTRON ORBITALS' ; STOP
ENDIF

Setup all possible orbit information

Allocate space in heap for all single-particle data
CALL allocate_sp_array(all_orbit,all_orbit%total_orbits)
! Read electron single-particle data
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DO i=1, all_orbit%total_orbits
READ(5,*) all_orbit%nn(i),all_orbit%ll, &
all_orbit%jj(i),all_orbit%spin(i), &
all_orbit%orbit_status(i), &
all_orbit%model_space(i), all_orbit%e(1i)
ENDDO

! further instructions
! deallocate all arrays

CALL deallocate_sp_array(all_orbit)

END PROGRAM main

Inheritance allows one to create a hierarchy of classes ichwhe base class contains the common proper-
ties of the hierarchy and the derived classes can modify pecialize these properties. Specifically, a derived
class contains all the class member functions of the base aled can add new ones. Further, a derived class
contains all the class member functions of the base classamthodify them or add new ones. The value in
using inheritance is to avoid duplicating code when cregtiasses which are similar to one another. Fortran
does not support inheritance, but several features carkbd fa Fortran! Consider the following declarations:

TYPE proton_sp_orbit
TYPE (single_particle_orbits), PUBLIC :: &
proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit

To initialize the proton_sp_orbit TYPE, we could now defingeav function

SUBROUTINE allocate_proton_array(this_array,n)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array

INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%itzp) ) &
DEALLOCATE(this_array%itzp)

CALL allocate_sp_array(this_array,n)

this_array%itzp(i)=0

END SUBROUTINE allocate_proton_array

and

SUBROUTINE dellocate_proton_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array
DEALLOCATE(this_array%itzp)

CALL deallocate_sp_array(this_array)

END SUBROUTINE deallocate_proton_array

and we could define a MODULE

MODULE proton_class
USE single_particle_orbits
TYPE proton_sp_orbit
TYPE (single_particle_orbits), PUBLIC :: &
proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit
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INTERFACE allocate_proton
MODULE PROCEDURE allocate_proton_array, read_proton_array
END INTERFACE
INTERFACE deallocate_proton
MODULE PROCEDURE deallocate_proton_array
END INTERFACE

CONTAINS
! various procedure

END MODULE proton_class

PROGRAM with_just_protons
USE proton_class

TYPE (proton_sp_orbit ) :: proton_data
CALL allocate_proton(proton_data)

CALL deallocate_proton_array(prton_data)

We have a written a new class which contains the data of thedlass and all the procedures of the base
class have been extended to work with the new derived clatface statements have to be used to give the

procedure uniform names.
We can now derive further classes for other particle typeh si3 neutrons, hyperons etc etc.

3.6 How to interface C++ and Fortran programs with Python

We list here an example on how one can convert C++ arrays topfwand Numpy arrays (and other Python
sequences) to C++ arrays. The header file Cpp2Numpy.h osratineeded information. The implementation
is based on the book by Langtangen [22]. In the following wseiase that we have a class Array to manipulate
multidimensional arrays in C++. Suppose also that we hagefdhowing declaration printcpparray.h and
implementation printcpparray.cpp of a C++ function we wemtall from Python. The file printcpparray.h

could look like

#ifndef PRINTCPPARRAY_H
#define PRINTCPPARRAY_H
#include "Array.h"
#include <iostream>
using namespace std;

// Function printing a C++ array of type Array<double>.
void printarray(Array<double>& a);

#endif

while printcpparray.cpp is given by

// File: printcpparray.cpp
#include "printcpparray.h"

void printarray(Array<double>& a){
cout << "Printing a C++ array: " << endl;
for(int i=0; i<a.getLength(); i++){
cout << a(i) << endl;
}
}

The interpreted nature of Python makes that it cannot conmatewith C++ (compiled language) directly. In
order to pass arguments between them we need some kind délfrigapper) able to convert the arguments
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from one language to another. Doing this manually is comsitlerror prone. Fortunately, there is a tool called
SWIG, seehttp://www.swig.org, that generates wrapper code automatically. The procegsradrating
wrapper code with SWIG consist of the following steps:

1. Create an interface file having the same name as the madcgectlled from Python, say ext_ Cpp2Numpy.i

2. To build the Python module with extension to C++ we run SWAth the options -c++ -python as
follows:

swig -c++ -python ext_Cpp2Numpy.i

These commands will generate a C++ wrapper gade Cpp2Numpy_wrapp.cxx and the Python mod-
ule $ ext_Cpp2Numpy.py$.

3. Assuming that all the files are in the same directory or that the correct paths are given,
the next step consists in compiling the C++ extensions (.cpp files) and the C++ wrapper
code (.cxx file):

c++ -c -03 *.cpp *.cxx -I/usr/include/python2.6/

where the version 2.6 of Python has been used.

4. Next, we link all the objects into a shared library _ext_Cpp2Numpy.so
c++ -shared -o _ext_Cpp2Numpy.so *.0

Steps 2 to 4 can be summarized in the following bash script:

# file: compileExtension.sh

#/bin/sh

echo '\nCompiling the interface:\n'’
swig -c++ -python -I. ext_Cpp2Numpy.i

echo ’'\nCompiling the conversion class Cpp2Numpy:\n’
c++ -c -03 Cpp2Numpy.cpp -I/usr/include/python2.6/

echo 'Compiling the C++ function "printcpparray.cpp:\n".’
c++ -c -03 printcpparray.cpp

echo '\nCompiling extension module:\n’
c++ -c -03 ext_Cpp2Numpy_wrap.cxx -I/usr/include/python2.6/

echo ’'\nLinking into a shared library:\n’
c++ -shared -o _ext_Cpp2Numpy.so Cpp2Numpy.o ext_Cpp2Numpy_wrap.o

The Python moduleext_Cpp2Numpy.py can be used as:

# # Import Numpy abd the extension module:
from numpy import x
import ext_Cpp2Numpy as ext

# Create an Numpy array from a list:

#a = array([1,2])

# Or create an Numpy array from a tuple:
a = array([[1,2],[3,41])

# Create an object of type Cpp2Numpy and
# assign it to the variable "convert".
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convert = ext.Cpp2Numpy ()

# Convert the Numpy array "a" to a C++ array of type Array:
v = convert.numpy2cpparray(a)

# Call a C++ function with v
ext.printarray(v)

#
The header file Cpp2Numpy.h

/ *%

* @file Cpp2Numpy.h

* @class Cpp2Numpy

*

*

*k/

#ifndef CPP2NUMPY_H
#define CPP2NUMPY_H

#include <Python.h> // Should be included on the top.

#include <numpy/arrayobject.h> // /usr/include/python2.6/numpy/arrayobject.h
// It contains import_array()

#include "Array.h"

#include <iostream>
using namespace std;

class Cpp2Numpy{
private:
static const int MAXDIM = 6; // Our Array class support up to six dimensions.

npy_intp numpyarray_size[MAXDIM]; // Numpy uses npy_intp to contain (in this case) an array
// shape, i.e., the length of each dimension.
// Note: npy_intpx is the platform-independent counterpart to intx.

int cpparray_size[MAXDIM]; // Our array class in C++ uses a "pointer to int" to store
// store information on the number of elements in each dimension.

/ *%
* @brief Set the number of dimensions and the number of entries per dimension in a Numpy array.
*x/
void set_numpyarray_size(int* cpparray_dimensions,
int cpparray_nd);

VAT
* @brief Set the number of dimensions and the number of entries per dimension in a C++ array.
*x/
void set_cpparray_size(npy_intp* numpyarray_dimensions,
int numpyarray_nd);

public:
//! Default constructor. Initialize Numpy by calling @ref init_array()
Cpp2Numpy () ;

//! Destructor.
~Cpp2Numpy () ;
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/ **

* @brief Borrow data from a C++ array and use it to create an Numpy array.
*

* @param cpparray An C++ array.

*xk/

PyObject* cpparray2numpy(Array<double>& cpparray);

/*%

* @brief Borrow data from an arbitrary Python sequence (preferibly Numpy array) and use it to
create an C++ array.

*

* @param arbitrary_python_sequenceobject An arbitrary Python sequence.

*xk/

Array<double>* numpy2cpparray(PyObject* arbitrary_python_sequenceobject);

/ **

* @brief Copy data from a C++ to a Numpy array.

*

* @param cpparray An C++ array.

*k/

PyObject* copy_cpparray2numpy (Array<double>& cpparray);

/**
* @brief Copy data from an arbitray Python sequence (preferibly Numpy array) to a C++ array.
*

* @param numpyarray A Numpy array.
** /
Array<double>x copy_numpy2cpparray(PyObject* arbitrary_python_sequenceobject);

};

#endif

The file Cpp2Numpy.cpp contains the definitions of variousfions entering the class for converting arrays.

The file Cpp2Numpy.cpp

VAT

@file Cpp2Numpy.cpp

@class Cpp2Numpy

@brief Class for converting C++ arrays to Numpy and Numpy arrays (and other Python sequences) to
C++ arrays.

ECEEE S R R

*k/

#include "Cpp2Numpy.h"

// Default constructor.
Cpp2Numpy: : Cpp2Numpy () {
import_array(); // Initialize Numpy

}

// Destructor.
Cpp2Numpy: : ~Cpp2Numpy () {}

//

void Cpp2Numpy:: set_numpyarray_size(intx cpparray_dimensions, int cpparray_nd){
int i;
for (i=0; i<cpparray_nd; i++)
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numpyarray_size[i] = (npy_intp) cpparray_dimensions[i]; // Note the conversion from intx to
npy_intpx!
} // end set_numpyarray_size()

//
void Cpp2Numpy::set_cpparray_size(npy_intp* numpyarray_dimensions, int numpyarray_nd){
int i;
for(i=0; i<numpyarray_nd; i++)
cpparray_size[i] = (int) numpyarray_dimensions[i]; // Nothe the conversion from npy_intp* to
intx!
} // end set_cpparray_size()

// Create a Numpy array from a C++ array.

PyObject* Cpp2Numpy::cpparray2numpy(Array<double>& cpparray){
// Get information of the dimension of the input array.
// Copy information on the number of elements in each dimension
// of cpparray_size to numpyarray_size[MAXDIM];
set_numpyarray_size(cpparray.getPtrSize(), cpparray.getNDIM());

// Use the parameters above to generate a new Numpy array with the same dimension.
PyArrayObject* numpyarray = (PyArrayObjectx)
PyArray_SimpleNewFromData(cpparray.getNDIM(),
numpyarray_size,
NPY_DOUBLE,
(voidx) cpparray.getPtr());

// Test if the numpy array was created or not.
if(numpyarray == NULL){
return NULL; /x PyArray_SimpleNewFromData raised an exception x/

}

return PyArray_Return(numpyarray);
}// end Cpp2Numpy: :cpparray2numpy()

// Create a C++ array from an arbitary Python sequence, preferibly Numpy array.
Array<double>*x Cpp2Numpy: :numpy2cpparray(PyObject* arbitrary_python_sequence){
// Convert the arbitrary python sequence convertible to ndarray (Numpy array,
// list or tuple) to an Numpy array with contiguous storage and specific
// data-type "double". The sequence will be stored in numpyarray.
// Note: if arbitrary_python_sequence is already a Numpy array satifying the
// requirements then a new reference is returned. Otherwise a new array is constructed.
// For details see: "Converting an arbitrary sequence object" in Numpy book.
PyArrayObject* numpyarray = (PyArrayObjectx)
PyArray_FROM_OTF(arbitrary_python_sequence,
NPY_DOUBLE,
NPY_IN_ARRAY // Input array equivalent to NPY_CONTIGUOUS.
)s

// We expect to receive a new reference to the Numpy array object on success.
// 0On failure, NULL is returned.
if (numpyarray == NULL){return NULL;}

// Set the information on the number of elements that the C++ array
// will store in each dimension (cpparray_size). Borrow the data, but wrap it in the C++ array.
set_cpparray_size(PyArray_DIMS(numpyarray), PyArray_NDIM(numpyarray));

// Call the constructor: Array(T+ array, int ndim_, int size_[]) in Array.h.

// Note the conversion of NPY_DOUBLEx to doublex by (doublex) PyArray_DATA(numpyarray) below.

Array<double>* cpparray = new Array<double>((doublex) PyArray_DATA(numpyarray),
PyArray_NDIM(numpyarray),
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cpparray_size
)5

return cpparray;

}

// Copy data from a C++ to a Numpy array.
PyObject*x Cpp2Numpy::copy_cpparray2numpy(Array<double>& cpparray){

// Get information of the dimension of the input C++ array and use it
// to set the dimension information of the Numpy array.
set_numpyarray_size(cpparray.getPtrSize(), cpparray.getNDIM());

// Create an (new) uninitialized Numpy array of type NPY_DOUBLE, whose size 1in
// each of the ndims dimensions is given by the integer array numpyarray_size.
PyArrayObject* uninitialized_numpyarray = (PyArrayObjectx)
PyArray_SimpleNew(cpparray.getNDIM(),
numpyarray_size,
NPY_DOUBLE) ;

// Rise exception if the unitialized_numpyarray fails to be created.
if(uninitialized_numpyarray == NULL) {
return NULL; /* PyArray SimpleNew raised an exception x/

}

// Create a pointer to double. Convert a pointer
// to Numpy array (PyArrayObject) to a pointer to double and assign it ad.
doublex ad = (doublex)
PyArray_DATA(uninitialized_numpyarray); // Note: PyAray DATA(uninitialized_numpyarray)
// 1s the same as (voidx*) uninitialized_numpyarray->data
// Get the pointer to the data of cpparray and assign it to
// a local variable of type pointer to double.
doublex A = cpparray.getPtr();
int length= cpparray.getLength();

// Copy the data of the cpparray to ad, i.e., fill the
// unitialized_numpyarray with the data of cpparray.
int i;

for(i = 0; i < length; i++){
ad[i] = A[i];
}

// Set the pointer to double to point to a
// PyArrayObject and return it as a Numpy array.
return PyArray_Return(uninitialized_numpyarray);

// Copy data from a Numpy to a C++ array.
Array<double>*x Cpp2Numpy::copy_numpy2cpparray(PyObject* arbitrary_python_sequence){
// Convert the arbitrary python sequence convertible to ndarray (Numpy array,
// list or tuple) to an Numpy array with contiguous storage and specific
// data-type "double". The sequence will be stored in numpyarray.
// Note: if arbitrary_python_sequence is already a Numpy array satifying the
// requirements then a new reference is returned. Otherwise a new array is constructed.
// For details see: "Converting an arbitrary sequence object" in Numpy book.
PyArrayObjectx a = (PyArrayObjectx)
PyArray_FROM_OTF(arbitrary_python_sequence,
NPY_DOUBLE,
NPY_IN_ARRAY) ;
// Test if the PyArrayObject was created succesfully.
if (a == NULL){
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return NULL;
}

// C++ array to be returned.
Array<double>* cpparray = new Array<double>();

// 1. Get the number of dimensions of the numpy array.
int numpyarray_ndim = PyArray_NDIM(a);

// 2. Resize the (++ array acording to 1.

if (numpyarray_ndim == 1)

{
cpparray->redim(PyArray_DIM(a,0));

}

else if(numpyarray_ndim == 2)

{

cpparray->redim(PyArray_DIM(a,0),
PyArray_DIM(a,l));
}
else if(numpyarray_ndim == 3)
{
cpparray->redim(PyArray_DIM(a,0),
PyArray_DIM(a,l),
PyArray_DIM(a,2));
}
else if(numpyarray_ndim == 4)
{
cpparray->redim(PyArray_DIM(a,0),
PyArray_DIM(a,l),
PyArray_DIM(a,2),
PyArray_DIM(a,3));
}
else if(numpyarray_ndim == 5)
{
cpparray->redim(PyArray_DIM(a,0),
PyArray_DIM(a,l),
PyArray_DIM(a,2),
PyArray_DIM(a,3),
PyArray_DIM(a,4));
}
else if(numpyarray_ndim == 6)
{
cpparray->redim(PyArray_DIM(a,0),
PyArray_DIM(a,l),
PyArray_DIM(a,2),
PyArray_DIM(a,3),
PyArray_DIM(a,4),
PyArray_DIM(a,5));
}

// copy data:

doublex ad = (doublex) PyArray_DATA(a); // Note: PyArray DATA(a) = a->data
doublex mad = cpparray->getPtr();

int length = cpparray->getLength();

int i;

for(i=0; i<length; i++) {
mad[i] = ad[i];

}

return cpparray;
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3.7 How to make figures with Gnuplot

We end this chapter with a practical guide on making figurdémtmcluded in an eventual report filenuplot
is a simple plotting program which follows the Linux/Unix @fating system. It is easy to use and allows
also to generate figure files which can be included ifTggX document. Here we show how to make simple
plots online and how to make postscript versions of the plaven a figure file which can be included in a
LATEX document. There are other plotting programs sucknagrace as well which follow Linux or Unix as
operating systems. An excellent alternative which manyoof gre familiar with is to use Matlab to read in the
data of a calculation and vizualize the results.

In order to check if gnuplot is present type

which gnuplot

If gnuplot is available, simply write
gnuplot

to start the program. You will then see the following prompt
gnuplot>

and type help for a list of various commands and help opti@gppose you wish to plot data points stored
in the file mydata.dat. This file contains two columns of data points, where the idumn refers to the
argumentz while the second one refers to a computed function vilug.

If we wish to plot these sets of points with gnuplot we just é2d to write

gnuplot>plot ’'mydata.dat’ using 1:2 w 1
or
gnuplot>plot ’'mydata.dat’ w 1

since gnuplot assigns as default the first column agthris. The abbreviations | stand for 'with lines’. If
you prefer to plot the data points only, write

gnuplot>plot ’'mydata.dat’ w p

For more plotting options, how to make axis labels etc, tygle And choosplot as topic.
Gnuplot will typically display a graph on the screen. If we wish to sdliis graph as a postscript file, we
can proceed as follows

gnuplot>set terminal postscript
gnuplot>set output ’'mydata.ps’
gnuplot>plot ’'mydata.dat’ w 1

and you will be the owner of a postscript file callegdata.ps which you can display witlyhostviewthrough
the call

gv mydata.ps

The other alternative is to generate a figure file for the denirhandling progrart®TEX. The advantage
here is that the text of your figure now has the same fonts arethaininglATEX document. Figl-3]12 was
generated following the steps below. You need to edit a filelwknds with.gnu. The file used to generate
Fig.[32 is calledderivative.gnu and contains the following statements, which are a mibé@EX andGnu-
plot statements. It generates a filerivative.tex which can be included in ETEX document. Writing the
following
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set terminal pslatex

set output "derivative.tex"

set xrange [-15:0]

set yrange [-10:8]

set xlabel "log$_{10}(h)s$"

set ylabel "$\epsilon$"

plot "out.dat" title "Relative error" w 1

generates 8ATEX file derivative.tex. Alternatively, you could write the above commands in a digziva-
tive.gnu and useGnuplot as follows

gnuplot>load ’'derivative.gnu’
You can then include this file in @TEX document as shown here

\begin{figure}

\begin{center}

\input{derivative}

\end{center}

\caption{Log-log plot of the relative error of the second
derivative of $e”x$ as function of decreasing step
lengths $h$. The second derivative was computed for
$x=10% in the program discussed above. See text for
further details\label{fig:lossofprecision}}

\end{figure}

Most figures included in this text have been generated usinglgt.

Many of the above commands can all be baked in a Python codefollbwing example reads a file from

screen withr andy data, and plots these data and saves the result as a pdgtgong.

#!/usr/bin/env python

import sys
from Numeric import =*
import Gnuplot

g = Gnuplot.Gnuplot(persist=1)

try:
infilename = sys.argv[1]
except:
print "Usage of this script", sys.argv[0], "infile", sys.argv[l]; sys.exit(1)
# Read file with data
ifile = open(infilename, 'r')
# Fill in x and y
x=1[1;y=1II
for line in ifile:
pair = line.split()
x = float(pair[0]); y = float(pair[1])
file.close()
convert to a form that the gnuplot interface can deal with
= Gnuplot.Data(x, y, title='data from output file', with='1p')
.xlabel('loglO(h)"') # make x label
.ylabel('loglO(|Exact-Computed|)/|Exact|")
.plot(d) # plot the data

i
#
d
g
g
g
g.hardcopy(filename="relerror.ps",terminal="postscript", enhanced=1, color=1)
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3.8 Exercises and projects

Exercise 3.1: Computing derivatives numerically

We want you to compute the first derivative of
f (@) = tan~(z)

for x = /2 with step lengths:. The exact answer i$/3. We want you to code the derivative using the
following two formulae
flx+h) - f(z)

fielw) = === 4 O(M), (3.36)

and
S f-n

fi.= o7 + O(h?), (3.37)

with fi, = f(z £ h).

(a) Find mathematical expressions for the total error dukwds of precision and due to the numerical
approximation made. Find the step length which gives thdlestavalue. Perform the analysis with
both double and single precision.

(b) Make thereafter a program which computes the first devivaising Egs.[{3.36) an@(3137) as function
of various step lengths and leth — 0. Compare with the exact answer.
Your program should contain the following elements:

— A vector (array) which contains the step lengths. Use dynan@mory allocation.
— Vectors for the computed derivatives of EqS.B.36) &ndA3& both single and double precision.

— A function which computes the derivative and contains caNalue and reference (for C++ users
only).

— Add a function which writes the results to file.

e—loglo( ),

as function oflog10(h) for Egs. [3:3b) and{33B7) for both single and double preaisPlot the results
and see if you can determine empirically the behavior of dted error as function of.

(c) Compute thereafter
1 ’
computed ~ Jexact
/
exact

Exercise 3.2: C++ class

Write a C++ class which allows for treating one-dimensicarays for integer, real and complex variables.
Use this class to perform simple vector addition and vectaltiplication operations.

Exercise 3.3: C++ class

Write a C++ class which sets up various approximations taltrévatives and repear exercise 3.1 using this
class. As an example, we include here a file derivative.hlwbéts up such a class.

Class for computing derivatives

/ *x

* @file Derivative.h
* @class Derivative
* @brief Class for computing numerical derivatives in one dimension.
*

* Example Usage:
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#include "Array.h"
#include "Derivative.h"
#include "Function.h"
#include <iostream>

using namespace std;

// Implement the function to be derived in a functor,
// i.e., a class behaving as a function. This is reached
// by overloading the function operator()
class MyFunction: public Function{
public:
double operator() (double x){
return xxx + 2.0;

}

+

// Test
int main(){

// INITIALIZATIONS
int n=11; // Number of grid points
double dx = 0.1; // Step

Array<double> x(n), // Grid
u_x(n), // First (numerical) derivative
u_xx(n), // Second (numerical) derivative
u_x_exact(n), // Exact derivative
u_xx_exact(n); // Exact 2nd derivative

// Initialise the grid containing the points where
// the function and its derivatives will be evaluated
for(int i=0; i<11; i++){

X(1i) = -5.+1i;

}

// Declare an object of type MyFunction
MyFunction f;

// Declare and initialise an object of type Derivative
Derivative xdf = new Derivative(f, dx);

// EVALUATIONS
// Compute the first derivative using central scheme
df->first_derivative(x,u_x);

// Compute the second derivative using central scheme
df->second_derivative(x,u_xx);

for(int i=0; i<n; i++){
u_x_exact(i) = 2.0xx(i);
u_xx_exact(i) = 2.0;

}

// Write results to file

charx outputfile = "testDerivative.data";
ofile.open(outputfile);

ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(12) << setprecision(5) << "x(i)";

ofile << setw(12) << setprecision(5) << "f(x(i))";
ofile << setw(12) << setprecision(5) << "u_x_exact(i)";
ofile << setw(12) << setprecision(5) << "u_x(i)";
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ofile << setw(12) << setprecision(5) << "u_xx_exact(i)";
ofile << setw(12) << setprecision(5) << "u_xx(i)" << endl;

for(int i=0; i<n; i++){
ofile << setw(12) << setprecision(5) << x(i);
ofile << setw(12) << setprecision(5) << f(x(1i));
ofile << setw(12) << setprecision(5) << u_x_exact(i);
ofile << setw(12) << setprecision(5) << u_x(i);
ofile << setw(12) << setprecision(5) << u_xx_exact(i);
ofile << setw(12) << setprecision(5) << u_xx(i) << endl;
}
}
* @endcode
*
*k/

#ifndef DERIVATIVE_H
#define DERIVATIVE_H

#include "Array.h"
#include "Function.h" // Interface to the function (functor) to be derived

class Derivative{
private:
Function &f; /xx< Function to be derived. x/
double h; /*xx< Step (change in independent variable). x/

public:
/**
* @brief Constructor.
*
* @param f_ an instance of Function.
* @param step_ The step size taken during the evaluation of the derivative.
** /
Derivative(Function& f_, double step): f(f_), h(step){}

//! Destructor.
virtual ~Derivative();

/**
* @brief Compute the first derivative by centered differences.
* \f[
u_x = \frac{u(x+\Delta x) - u(x-\Delta x)}{2 \Delta x} + \mathcal{0}(\Delta x)
\f]

@param X an array of points where to evaluate the first derivative.
@param u_x an array for the first derivative.

\remarks Note that the changes made inside this function to the array
u_x are noted by the calling code, since u_x is passed as a reference.
** /

virtual void first_derivative(const Array<double>& x, Array<double>& u_x);

*
*
*
*
*
*

/**
* @brief Compute the second derivative by centered differences.
* \f[
u_{xx} = \frac{u(x+\Delta x) - 2 u(x) + u(x-\Delta x)}{\Delta x~2} + \mathcal{0}(\Delta x"2)
\f]

*
* @param X an array of points where to evaluate the second derivative.
* @param u_x an array for the first derivative.

*
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* \remarks Note that the changes made inside this function to the array

* U_xx are noted by the calling code, since u_xx is passed as a reference.
*%/

virtual void second_derivative(const Array<double>& x, Array<double>& u_xx);

+;
inline Derivative::~Derivative(){}

#endif

This class contains its definitions in the function deriwaitpp, included here.

Class for computing derivatives

VAT

* @file Derivative.cpp
* @class Derivative

*

*%/

#include <cmath>
#include "Derivative.h"

// Compute the first derivative by centered differences
void Derivative::first_derivative(const Array<double>& x, Array<double>& u_x){

int i, n = x.getRows();

// Avoid computation inside the for-loop
double inv_2dx = 1.0/(2.0xh);

for(int i=0; i<n; i++){
u_x(i) = f(x(i)+h) - f(x(i)-h);
}

// Multiply by 1.0/(2.0%dx), i.e., divide by 2.0xdx
u_x x= inv_2dx;
} // End Derivative::first_derivative

// Compute the second derivative by centered differences
void Derivative::second_derivative(const Array<double>& x, Array<double>& u_xx){

int i, n = x.getRows();

// Avoid computation inside the for-loop
double inv_dx2 = 1.0/ (hxh);

for(int i=0; i<n; i++){
u_xx(i) = f(x(i)+h) - 2.0*xf(x(i)) + f(x(i)-h);
}

// Multiply by 1.0/(dxxdx), i.e., divide by dxxdx
U_XxX *= inv_dx2;
} // End Derivative::second_derivative()
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Chapter 4

Numerical integration

4.1 Introduction

In this chapter we discuss some of the classic formulae ssitheatrapezoidal rule and Simpson’s rule for
equally spaced abscissas and formulae based on Gaussiratgue. The latter are more suitable for the case
where the abscissas are not equally spaced. The emphasimistbods for evaluating one-dimensional inte-
grals. In chaptdr1 we show how Monte Carlo methods can btossompute multi-dimensional integrals.
We discuss also how to compute singular integrals and @udliphysics project which combines numerical
integration techniques and inverse of a matrix to solve iuamechanical scattering problems.

We end this chapter with an extensive discussion on MPI arallphcomputing. The examples focus on
parallelization of algorithms for computing integrals.

The integral

1= /bf(:v)dq: (4.2)

has a very simple meaning. If we consider Higl 4.1 the intefsimply represents the area enscribed by the
function f(z) starting fromz = a and ending at = b. Two main methods will be discussed below, the first

one being based on equal (or allowing for slight modificatjosteps and the other on more adaptive steps,
namely so-called Gaussian quadrature methods. Both mdhmoaieencompass a plethora of approximations
and only some of them will be discussed here.

4.2 Newton-Cotes quadrature: equal step methods

In considering equal step methods, our basic tool is theoFaxpansion of the functiofi(x) around a point
x and a set of surrounding neighbouring points. The algorithrather simple, and the number of approxima-
tions perhaps unlimited!
— Choose a step size
b—a
N
whereN is the number of steps amdandb the lower and upper limits of integration.

h:

— With a given step length we rewrite the integral as
b a+h a+2h b
/ f(x)dz = / f(x)dx + / flx)dx + ... f(z)dx.
a a a+h b—h

— The strategy then is to find a reliable Taylor expansioryfar) in the various intervals. Choosing a given
truncation of the Taylor expansion ¢fz) at a certain derivative we obtain a specific approximation to
the integral.
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Y

a a+h a+ 2h a+ 3h b T

Figure 4.1: The area enscribed by the functfgm) starting fromz = a to 2 = b. Itis subdivided in several
smaller areas whose evaluation is to be approximated bytmaiques discussed in the text. The areas under
the curve can for example be approximated by rectangulazdoxtrapezoids.
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4.2 — Newton-Cotes quadrature: equal step methods

— With this approximation tof (x) we perform the integration by computing the integrals oVeswbin-
tervals.

Such a small measure may seemingly allow for the derivatfoaranous integrals. To see this, let us briefly
recall the discussion in the previous section and[Elg. 3rt Wwe rewrite the integral as

/a bf(x)d:c = / a+2hf(ar)da: + / ;ih flx)de + ... /b b% f(z)dz.

The strategy then is to find a reliable Taylor expansionffor) in the smaller sub intervals. Consider for
example evaluating

a+2h
/ f(z)dz,
which we rewrite as
a+2h zo+h
/ flz)dz = / f(z)dz, 4.2)
a xo—h
where we will Taylor expand (z) around a point, see Figl:3]1. We have defineg = a + h and user, as
the midpoint.
The general form for the Taylor expansion arougdyoes like
h2 " h3 "
f(x =z9+h) = f(xo) £ hf + 2f + g +O(hY).

Let us now suppose that we split the integral in EgQ.](4.2) ia parts, one fromy — h to zq and the other
from z( to xg + h, that is, our integral is rewritten as

/a o Fx)dz = /w " f@)de + / o f(2)dz.

o—h To

Next we assume that we can use the two-point formula for thigative, meaning that we approximatéx)

in these two regions by a straight line, as indicated in the&igThis means that every small element under the
function f (x) looks like a trapezoid. The pertinent numerical approathddntegral bears thus the predictable
name 'trapezoidal rule’. It means also that we are tryinggpreximate our functiorf (x) with a first order
polynomial, that isf(z) = a + bz. The constant is the slope given by the first derivativeat= z,

f(xo +h) = fxo)

r_
1= - +0(n),
or ,
f/: f('ro)_ffL(xO_ ) _|_O(h)7
and if we stop the Taylor expansion at that point our funcienomes,
f@)~ fot I @),
forx € [z, z0 + h] and
F@)~ fot 2T ),
for x € [zg — h, z0]. The error is proportional witth(h?). If we then evaluate the integral we obtain
xo+h h
[ 1@ = 5 g+ 26, + o) + O), @3)
:Eo*h

which is the well-known trapezoidal rule. Concerning theoein the approximation madé&(h?) = O((b —
a)®/N?), you should note the followindrhis is the local error'Since we are splitting the integral fromto b
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in N pieces, we will have to perform approximatéfysuch operations. This means that ¢iebal error goes
like ~ O(h?). To see that, we use the trapezoidal rule to compute theraltebEq. [4),

b
I / F@)dz = h (f(a)/2+ fla+h)+ fla+2h) + -+ f(b—h) + fo/2), (4.4)

with a global error which goes lik€(h?).
Hereafter we use the shorthand notatigng = f(xo — h), fo = f(zo) andf, = f(xo + h). The correct
mathematical expression for the local error for the trajdaule is

b g b ni— e
[ e =252 @) + 1) = ~3570©)

and the global error reads
b—a
12

b
/f@m—ﬂm=— I

whereTy, is the trapezoidal result ade [a, b].
The trapezoidal rule is easy to implement numerically tigiotihe following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b) and multiply withh /2

— Perform aloop oven = 1ton — 1 (f(a) and f(b) are known) and sum up the terrfi&a +
h) + f(a+2h)+ f(a+ 3h)+---+ f(b— h). Each step in the loop corresponds to a giv
valuea + nh.

— Multiply the final result byh and addh f (a)/2 andh f (b) /2.

A simple function which implements this algorithm is as éo¥s

double trapezoidal_rule(double a, double b, int n, double (xfunc)(double))
{
double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(xfunc) (a)/2. ;
fb=(xfunc) (b)/2. ;
TrapezSum=0. ;
for (j=1; j <= n-1; j++){
X=j*step+a;
trapez_sum+=(*func) (x);
}
trapez_sum=(trapez_um+fb+fa)xstep;
return trapez_sum;
} // end trapezoidal_rule

The function returns a new value for the specific integradtigh the variablérapez_sum There is one new
feature to note here, namely the transfer of a user definedifuncalledfunc in the definition

void trapezoidal_rule(double a, double b, int n, double xtrapez_sum,
double (xfunc) (double) )

What happens here is that we are transferring a pointer tnghee of a user defined function, which has
as input a double precision variable and returns a doublagioa number. The functiomapezoidal_rule is
called as
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4.2 — Newton-Cotes quadrature: equal step methods

trapezoidal_rule(a, b, n, &yFunction )

in the calling function. We note thai, b andn are called by value, whildapez_sumand the user defined
functionMyFunction are called by reference.

Another very simple approach is the so-called midpoint otaregle method. In this case the integration
area is split in a given number of rectangles with lenfggtand height given by the mid-point value of the
function. This gives the following simple rule for approxatmg an integral

b N
I= [ f@ds b flaie) (4.5)
a 1

=

wheref(z;_;,2) is the midpoint value of for a given rectangle. We will discuss its truncation errelol. It
is easy to implement this algorithm, as shown here

double rectangle_rule(double a, double b, int n, double (xfunc)(double))
{
double rectangle_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
rectangle_sum=0.;
for (j = 0; j <=n; j++){
X = (j+0.5)xstep+; // midpoint of a given rectangle
rectangle_sum+=(*func)(x); // add value of function.
}
rectangle_sum *= step; // multiply with step length.
return rectangle_sum;
} // end rectangle_rule

The correct mathematical expression for the local errottferrectangular rul®; (k) for element is

" )
[ e = Ruth) == 1c)
and the global error reads
b —
[ e~ Rath) = =221 0),

whereR), is the result obtained with rectangular rule gnd [a, b].

Instead of using the above linear two-point approximatfong’, we could use the three-point formula for
the derivatives. This means that we will choose formulaetas function values which lie symmetrically
around the point where we perform the Taylor expansion. Hmselso that we are approximating our function
with a second-order polynomigi(z) = a + bx + cz2. The first and second derivatives are given by

I RN S
_— = h J
2h fo+j; 27+ 1) 7
and _
fo=2fo+ Fon _ +2i 1o o
h2 0 — 2+

and we note that in both cases the error goesdike?’ ). With the latter two expressions we can now approx-
imate the functiory as

f(z) “fo-i-m(fﬂ—iﬂo)

fo—2fo+ f-n
2h *

572 (z — x0)>.
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Inserting this formula in the integral of E_{#.2) we obtain

+h L )
. f(x)dr = 3 (ot 4fo+ fon) + O(h?),

which is Simpson’s rule. Note that the improved accuracyhmavaluation of the derivatives gives a better
error approximationy) (k%) vs.O(h?) . But this is again théocal error approximation Using Simpson’s rule
we can easily compute the integral of Hg.14.1) to be

b
I:/ f(x)dx:%(f(a)+4f(a—|—h)+2f(a—|—2h)+-~-+4f(b—h)+fb), (4.6)

with a global error which goes lik€(h*). More formal expressions for the local and global errorsfar¢he
local error

b b—a ho
[ @ads = 20 (5@ + 47 (a4 8)/2) + 50) = g FOE)

and for the global error

b —a
[ t@de = 1) = -2 h )

with € € [a,b] and S}, the results obtained with Simpson’s method. The method aaityebe implemented
numerically through the following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b)

— Performaloop oven = 1ton — 1 (f(a) andf(b) are known) and sum up the tersh$(a +
h)+2f(a+2h)+4f(a+ 3h)+---+4f(b— h). Each step in the loop corresponds to
given valuez + nh. Odd values ot give 4 as factor while even values yieldas factor.

— Multiply the final result by%.

In more general terms, what we have done here is to approaiangitven functiory (z) with a polynomial
of a certain degree. One can show that gives 1 distinct pointszg,...,z, € [a,b] andn + 1 values
Yo, - - - » Yn there exists a unique polynomiB}, (x) with the property

Pn($7)=y7 j:07...,7’b

In the Lagrange representation discussed in chipter 3nthipolating polynomial is given by

P, = Z ey,
k=0

with the Lagrange factors

i=0
i £k
see for example the text of Kress [25] or Burlich and Stoet f@6details. If we for example set = 1, we

obtain
T -2 T=% _ Y1=% _ Y1%oF Yol

Y1
o — T1 1 — 2o Tr1 — o Tr1 — X9

)
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4.3 — Adaptive integration

which we recognize as the equation for a straight line.

The polynomial interpolatory quadrature of ordewith equidistant quadrature pointg = a + kh and
steph = (b — a)/n is called the Newton-Cotes quadrature formula of ordeGeneral expressions can be
found in for example Refs. [25, 26].

4.3 Adaptive integration

Before we proceed with more advanced methods like Gaussargture, we mention breefly how an adaptive
integration method can be implemented.

The above methods are all based on a defined step length, lIhopravided by the user, dividing the
integration domain with a fixed number of subintervals. Tihisther simple to implement may be inefficient,
in particular if the integrand varies considerably in ciertreas of the integration domain. In these areas the
number of fixed integration points may not be adequate. leratbgions, the integrand may vary slowly and
fewer integration points may be needed.

In order to account for such features, it may be conveniefitgbstudy the properties of integrand, via
for example a plot of the function to integrate. If this fupctoscillates largely in some specific domain we
may then opt for adding more integration points to that patéir domain. However, this procedure needs to
be repeated for every new integrand and lacks obviouslydliardages of a more generic code.

The algorithm we present here is based on a recursive proeatd allows us to automate an adaptive
domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say thezcéged rule. We limit ourselves to a one-
dimensional integral. Our integration domain is definedtby [, b]. The algorithm goes as follows

— We compute our first approximation by computing the intefgiathe full domain. We label this a&®).
It is obtained by calling our previously discussed functi@pezoidal_rule as

‘IQ = trapezoidal_rule(a, b, n, function);

— In the next step we split the integration in two, with= (a + b) /2. We compute then the two integrals
I10L) and 71 F)

‘IlL = trapezoidal_rule(a, ¢, n, function);

and

‘IlR = trapezoidal_rule(c, b, n, function);

With a given defined tolerance, being a small number proviyass, we estimate the differendé! ) +
TR _ 1)) < tolerance. If this test is satisfied, our first approximation is satistay.

— If not, we can set up a recursive procedure where the intégsalit into subsequent subintervals until
our tolerance is satisfied.

This recursive procedure can be easily implemented viadit@fing function

// Simple recursive function that implements the

// adaptive integration using the trapezoidal rule

// It is convenient to define as global variables

// the tolerance and the number of recursive steps

const int maxrecursions = 50;

const double tolerance = 1.0E-10;

// Takes as input the integration limits, number of points, function to integrate

// and the number of steps

void adaptive_integration(double a, double b, double xIntegral, int n, int steps, double
(xfunc) (double))
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if ( steps > maxrecursions){
cout << 'Too many recursive steps, the function varies too much' << endl;
break;

}

double ¢ = (a+b)x*0.5;

// the whole integral

double I0 = trapezoidal_rule(a, b,n, func);

// the left half

double I1L = trapezoidal_rule(a, c,n, func);

// the right half

double I1R = trapezoidal_rule(c, b,n, func);

if (fabs(I1L+I1R-I0) < tolerance ) integral = I0;

else

{
adaptive_integration(a, c, integral, int n, ++steps, func)
adaptive_integration(c, b, integral, int n, ++steps, func)

}

}

// end function adaptive_integration

The variablesntegral andstepsshould be initialized to zero by the function that calls thagtive procedure.

4.4 Gaussian quadrature

The methods we have presented hitherto are taylored togarzbivhere the mesh points are equidistantly
spacedy; differing fromz; 1, by the steph. These methods are well suited to cases where the integrapd m
vary strongly over a certain region or if we integrate over $blution of a differential equation.

If however our integrand varies only slowly over a large iméd, then the methods we have discussed may
only slowly converge towards a chosen preciéio@&s an example,

b
I:/l 72 f (x)dx,

may converge very slowly to a given precision ifs large and/oif () varies slowly as function aof at large
values. One can obviously rewrite such an integral by chrangariables té = 1/z resulting in

1
I= [ [ Y,
bp—1

which has a small integration range and hopefully the nurobaresh points needed is not that large.

However, there are cases where no trick may help and whetetbexpenditure in evaluating an integral
is of importance. For such cases we would like to recommerttiads based on Gaussian quadrature. Here
one can catch at least two birds with a stone, namely, ineteecision and fewer integration points. But it
is important that the integrand varies smoothly over therir@l, else we have to revert to splitting the interval
into many small subintervals and the gain achieved may lte los

The basic idea behind all integration methods is to appratérthe integral

b N
lei/f@szE:MﬂmL
a i=1

wherew andzx are the weights and the chosen mesh points, respectivelyurlprevious discussion, these
mesh points were fixed at the beginning, by choosing a givenbeu of pointsN. The weigthsv resulted
then from the integration method we applied. Simpson'’s, sge Eq.[[416) would give

w:{h/3,4h/3,2h/3,4h/3, ... 4h/3,h/3}

1You could e.g., impose that the integral should not chanderagion of increasing mesh points beyond the sixth digit.
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for the weights, while the trapezoidal rule resulted in
w:{h/2,h,h,...,h h/2}.

In general, an integration formula which is based on a Tagésies usingV points, will integrate exactly
a polynomial P of degreeN — 1. That is, theN weightsw,, can be chosen to satisfy linear equations,
see chapter 3 of Ref. [3]. A greater precision for a given amoéinumerical work can be achieved if we are
willing to give up the requirement of equally spaced intéigrapoints. In Gaussian quadrature (hereafter GQ),
both the mesh points and the weights are to be determinedpdihts will not be equally spacEdThe theory
behind GQ is to obtain an arbitrary weightthrough the use of so-called orthogonal polynomials. These
polynomials are orthogonal in some interval say e.g., [-1Qur pointsx; are chosen in some optimal sense
subject only to the constraint that they should lie in thigimal. Together with the weights we have they
(IV the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render @o$mby extracting from it the weight
function of an orthogonal polynomial, i.e., we are rewiqtin

b b N
I:/ f(a:)da::/ W(x)g(x)dx%Zwig(xi), (4.7)

whereg is smooth andV is the weight function, which is to be associated with a giwghogonal polynomial.
Note that with a given weight function we end up evaluatirgititegrand for the functiog(x;).
The weight functioni¥ is non-negative in the integration interval € [a,b] such that for anyn > 0

f; |z|"W (z)dx is integrable. The naming weight function arises from thet faat it may be used to give
more emphasis to one part of the interval than another. Armgihact formula

b N
[ W@~ Y i), @8

with NV distinct quadrature points (mesh points) is a called a Ganggladrature formula if it integrates all
polynomialsp € Py —; exactly, that is

b N
/ W (z)p(z)dz = Zwip(xi), (4.9)
a =1
Itis assumed thdi/(x) is continuous and positive and that the integral

/ab W (z)dx

exists. Note that the replacementfof— W g is normally a better approximation due to the fact that we may
isolate possible singularities & and its derivatives at the endpoints of the interval.

The quadrature weights or just weights (not to be confus#d thie weight function) are positive and the
sequence of Gaussian quadrature formulae is convergbet#fequence y of quadrature formulae

b
Qn () — Qf) = / f(x)d,

in the limit N — co. Then we say that the sequence

N
Qn(f) =D wM ),
=1

2Typically, most points will be located near the origin, vehfew points are needed for largevalues since the integrand is supposed
to vary smoothly there. See below for an example.
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is convergent for all polynomials, that is

if there exits a constar? such that v
S lVi<c
=1

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of ondés given by

2N b
f(2N()€!) / W (z)[gn (z)])*dx

b N
JRUCHETEED SITVIENE
@ k=1

wheregy is the chosen orthogonal polynomial afigs a number in the intervad, b]. We have assumed that
f € C?N|[a, b, viz. the space of all real or compléxV times continuously differentiable functions.

In science there are several important orthogonal polyatsmihich arise from the solution of differential
equations. Well-known examples are the Legendre, Herméguerre and Chebyshev polynomials. They
have the following weight functions

Weight function Interval Polynomial
Wi(z)=1 r € [—1,1] Legendre
W(z)=e* -—oo<z<oo Hermite

W(x) =a%e " 0<z<o0 Laguerre
W(z)=1/(V1—2%) —-1<xz<1 Chebyshev

The importance of the use of orthogonal polynomials in trewation of integrals can be summarized as
follows.

— As stated above, methods based on Taylor series uigipgints will integrate exactly a polynomidt
of degreeV — 1. If a function f(x) can be approximated with a polynomial of degrée- 1

f(z) = Py_1(x),
with N mesh points we should be able to integrate exactly the patyald®y ;.

— Gaussian quadrature methods promise more than this. Weetanlgetter polynomial approximation
with order greater thaVv to f(z) and still get away with onlyV mesh points. More precisely, we
approximate

f(z) = Pay—1(2),

and with onlyN mesh points these methods promise that

N-1
/f(:v)d:v ~ /PQN_l(:C)ch = Z PgN_l(:Ci)wi,
=0

The reason why we can represent a functf¢n) with a polynomial of degre2 N — 1 is due to the fact
that we have NV equations)V for the mesh points and for the weights.

The mesh points are the zeros of the chosen orthogonal poighof order NV, and the weights are determined
from the inverse of a matrix. An orthogonal polynomials ofjdee N defined in an intervdk, b] has precisely
N distinct zeros on the open interv@al, b).

Before we detail how to obtain mesh points and weights withagonal polynomials, let us revisit some
features of orthogonal polynomials by specializing to Lredye polynomials. In the text below, we reserve
hereafter the labellind. for a Legendre polynomial of orde¥, while Py is an arbitrary polynomial of
orderN. These polynomials form then the basis for the Gauss-Lagandthod.
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4.4 — Gaussian quadrature

4.4.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an importdfgrdntial equation in Science, namely

C(1—2*)P —m}P+(1— xz)% ((1 - :v%%) =0.
C is a constant. Fom; = 0 we obtain the Legendre polynomials as solutions, wheneas: 0 yields the
so-called associated Legendre polynomials. This diffimeaquation arises in for example the solution of
the angular dependence of Schrodinger’s equation withrggatily symmetric potentials such as the Coulomb
potential.
The corresponding polynomial3 are

1
T 2kE! dok

which, up to a factor, are the Legendre polynomiajs The latter fulfil the orthogonality relation

Li(x) (z% — 1)* k=0,1,2,...,

1
2
‘/71 Lz(x)L7 (l')d.%' = méij’ (410)
and the recursion relation
(J+ 1) Ljpa(x) +jLj-1(z) — (2§ + )xL;(z) = 0. (4.11)
It is common to choose the normalization condition
Ly(1)=1.

With these equations we can determine a Legendre polynahabitrary order with input polynomials of
orderN — 1 andN — 2.
As an example, consider the determinatiorgf L, andL,. We have that

Lo(z) = ¢,
with ¢ a constant. Using the normalization equatiayil) = 1 we get that
Lo(z) = 1.
For L, (z) we have the general expression
Li(z) = a+ bz,

and using the orthorgonality relation
[ mo@m=o
we obtaine = 0 and with the conditior; (1) = 1, we obtainb = 1, yielding
Li(z) ==
We can proceed in a similar fashion in order to determine tiedficients ofL,
Ly(z) = a + bx + ca?,
using the orthorgonality relations

/ Lo(x)Lo(z)dx =0,

-1
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and .
/ Li(x)Lo(z)dx =0,
-1
and the conditior.2 (1) = 1 we would get
1
2

We note that we have three equations to determine the thefiodentsa, b andc.
Alternatively, we could have employed the recursion retatf Eq. [£1L), resulting in

Lo(z) (32° —1). (4.12)

2L2(I) = 3$L1(I) - Lo,

which leads to Eq[{4.12).

The orthogonality relation above is important in our digios on how to obtain the weights and mesh
points. Suppose we have an arbitrary polynor@igl_; of orderN — 1 and a Legendre polynomiély (z) of
orderN. We could represerp y_1 by the Legendre polynomials through

N-1
Qv-1(z) =Y apLi(x), (4.13)
k=0

whereqy's are constants.
Using the orthogonality relation of Eq.{4110) we see that

1 N-1 1
/ Ly(z)Qn-1(z)dz = > / L (z)og Li(z)dz = 0. (4.14)
1 =0 1

We will use this result in our construction of mesh points amights in the next subsection.
In summary, the first few Legendre polynomials are

Lo(z) =1,
Li(z) ==z,
Ly(z) = (32° - 1)/2,
Li(z) = (52 — 3x)/2,

and
Ly(z) = (352 — 3022 + 3)/8.

The following simple function implements the above recamsielation of Eq.[{Z111). for computing Legendre
polynomials of orderV.

// This function computes the Legendre polynomial of degree N
double Legendre( int n, double x)
{
double r, s, t;
int m;
r=0; s=1.;
// Use recursion relation to generate pl and p2
for (m=0; m < n; m++ )
{
t=r;, r=s;
S = (2xm+1)xxxr - mxt;
s /= (m+l);
} // end of do loop
return s;
} // end of function Legendre

The variables representd.; 1 (z), while r holdsL;(z) andt the valueL;_; ().
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4.4.2 Integration points and weights with orthogonal palgmals

To understand how the weights and the mesh points are gedera¢ define first a polynomial of degree
2N — 1 (since we hav@N variables at hand, the mesh points and weights\fqroints). This polynomial can
be represented through polynomial division by

Pyn_1(z) = Ly(2)Pn-1(2) + Qn-1(7),

where Py_1(z) and@Qn_1(z) are some polynomials of degréé — 1 or less. The functior.y(z) is a
Legendre polynomial of ordey.
Recall that we wanted to approximate an arbitrary functfémn) with a polynomialP;x_1 in order to

evaluate ) )
/ fl@)dx ~ / Py (z)dz.
-1 -1

We can use Eq[{Z4.14) to rewrite the above integral as

/1 Py (2)de = /ll(LN(CC)PNl(I) +Qn-1(z))dz = /11 Qn-1(z)dz,

-1

due to the orthogonality properties of the Legendre polyiatsnWe see that it suffices to evaluate the integral
overf_l1 Qn_1(z)dz in order to evaluatq_l1 Pyn_1(z)dz. In addition, at the points;, whereL y is zero,
we have

PQNfl('rk):QNfl(Ik) k:O,l,...,N—l,

and we see that through thedepoints we can fully defin€) y 1 (z) and thereby the integral. Note that we
have chosen to let the numbering of the points run feoim N — 1. The reason for this choice is that we wish
to have the same numbering as the order of a polynomial ofeéegr— 1. This numbering will be useful
below when we introduce the matrix elements which defineritegiration weightsu; .

We develope the® 51 (x) in terms of Legendre polynomials, as done in EQ.{4.13),

Qu-1(@) = D aiLi(a). (4.15)

Using the orthogonality property of the Legendre polyndaiee have

/ QN 1 x—zaz/ LO da:—2a0,

where we have justinsertdd (x) = 1! Instead of an integration problem we need now to define teéictent
ag. Since we know the values 6fy_; at the zeros of. 5, we may rewrite Eq[{4.15) as

N—-1
Qn_1(zx) = E:az o) = aiLi k=0,1,...,N—1. (4.16)
=0

Since the Legendre polynomials are linearly independeeaaoh other, none of the columns in the mafrix
are linear combinations of the others. This means that thexnla;;, has an inverse with the properties

LL=1
Multiplying both sides of EqTZ216) with" ;' L' results in

N-1

Z szN 1 iUz) = Q. (4.17)

=0
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We can derive this result in an alternative way by definingvietors

Zo )]
X a1
)A(k = &= 3
TN-1 aN-—1
and the matrix
LQ(ZC()) Ll(Io) . LNfl(ZC())
i; _ Lo(fL‘l) Ll(:vl) LN_l(.CCl)
Lo(xn-1) Li(xn—1) ... Ly-1(zn-1)

We have then )
Qn-1(2r) = La,
yielding (if L has an inverse) A
L7'Qn-1(2k) = &,

which is Eq. [Z17).
Using the above results and the fact that

1 1
/ Py (z)dr = / QN-1(x)dx,
-1 1

we get
1 1 N-1
/ PQN_l(SC)d.%‘ = / QN_l(SC)d.T = 2040 =2 Z (L_l)oiPQN_l(SCi).
-1 -1 =0

If we identify the weights witr2(L~1)o;, where the points;; are the zeros of.y, we have an integration
formula of the type

1 N-1
/ Pyn_q(z)de = Z wiPan_1(z;)
-1 i=0

and if our functionf (z) can be approximated by a polynommlof degree2 N — 1, we have finally that

1 1 N-1
/ f(I)dI ~ / PQNfl(ZC)dCC = Z winN,l(xi).
-1 1 i=0

In summary, the mesh points are defined by the zeros of an orthogonal polynomial of defyrethat isL v,
while the weights are given (L ~1);.

4.4.3 Application to the cast = 2

Let us apply the above formal results to the cAse- 2. This means that we can approximate a funcifén)
with a polynomialPs(x) of order2N — 1 = 3.
The mesh points are the zeroslof(z) = 1/2(32% — 1). These points arg, = —1/+v/3 andz; = 1//3.
Specializing Eq.[{416)

N-1
QN*l(Ik): ZalL’L(Ik) k:()vlavN_l
i=0
to N = 2yields
1
Q1(xo) = ap — 0‘1%,
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and
Q1(z1) = ap + alﬁa
sinceLo(z = +1/v/3) = 1 andL,(z = +1/v/3) = £1//3.
The matrixL;; defined in Eq.[[Z6) is then
1 -1
sz < 1 f )a
V3
with an inverse given by
1 1
(L);! = V3 V3oVE |
k2 -1 1

The weights are given by the matrix eleme2téo;) 1. We have thencey = 1 andw; = 1.
Obviously, there is no problem in changing the numberindgnefrhatrix elements k = 0,1,2,..., N —1

toi,k=1,2,..., N. We have chosen to start from zero, since we deal with polyaisraf degreeV — 1.
Summarizing, for Legendre polynomials withh = 2 we have weights
w: {11},

and mesh points

s
/_11f(x)dx

I:/ 22de ~ sz

The exact answer /3. Using N = 2 with the above two weights and mesh points we get

1 1 2
_ 2 _ _
I‘/_ dr = sz i=3+3-3

If we wish to integrate

with f(z) = 22, we approximate

the exact answer!
If we were to emply the trapezoidal rule we would get
1 j— — j—
I / 22y = = (@ + 0)?) 2 = 17(1) (“1)? +(1?) 2= 1!

-1

With just two points we can calculate exactly the integralldossecond-order polynomial since our methods
approximates the exact function with higher order polyradimtiow many points do you need with the trape-
zoidal rule in order to achieve a similar accuracy?

4.4.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to amiakg 1,1], since we can always through a change

of variable
b—a b+a

t:
5ttt

rewrite the integral for an interval [a,b]

/f b—a/lf((b—;)“b;a)dm
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If we have an integral on the form

/ " rwa,

we can choose new mesh points and weights by using the mapping
~ Y
Z; = tan {Z(l + xz)} ,

and
Wi

_ T W
4 cos? (314 )’

Wi

wherex; andw; are the original mesh points and weights in the intefval, 1], while z;, andw; are the new
mesh points and weights for the intery@|oo).

To see that this is correct by inserting the the value, 0 —1 (the lower end of the intervdl-1, 1]) into
the expression fat;. That givest; = 0, the lower end of the intervél), oo). Forz; = 1, we obtainz; = oo.
To check that the new weights are correct, recall that thghisishould correspond to the derivative of the
mesh points. Try to convince yourself that the above expregalfills this condition.

4.4.5 Other orthogonal polynomials
Laguerre polynomials

If we are able to rewrite our integral of Eq_{#.7) with a weidinction W (z) = z%e~* with integration
limits [0, o), we could then use the Laguerre polynomials. The polynanf@m then the basis for the
Gauss-Laguerre method which can be applied to integraledirm

I= / f(x)dx = / x%e g(x)dx.
0 0
These polynomials arise from the solution of the differ@rgguation

(d2 d A l(ltl))c(x)zo,

wherel is an integerl > 0 and A a constant. This equation arises for example from the swiutf the
radial Schrédinger equation with a centrally symmetricepdial such as the Coulomb potential. The first few
polynomials are

de2  dxr = T

Lo(x) =1,
Li(z) =1-z,
Lo(x) =2 — 4z + 22,
L3(z) =6 — 18z + 9x? — 23,

and
Li(z) = 2 — 162> + 722 — 962 4 24.

They fulfil the orthorgonality relation

/ e Ly (x)dx =1,

— 00

and the recursion relation
(n+1)Lpt1(z) = 2n+1—2)Ly(x) — nlp_1(x).
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Hermite polynomials

In a similar way, for an integral which goes like

I= /i flz)dx = /O; e g(z)dx.

we could use the Hermite polynomials in order to extract Weigatnd mesh points. The Hermite polynomials
are the solutions of the following differential equation

d*H (z) dH ()
dx? — dx

A typical example is again the solution of Schrodinger’'sattn, but this time with a harmonic oscillator
potential. The first few polynomials are

+ (A= 1)H(z) = 0. (4.18)

Ho(z) =1,
Hy(x) = 2z,
Ho(z) = 42° — 2,
Hs(z) = 82° — 12,

and
Hy(z) = 162 — 482% + 12.

They fulfil the orthorgonality relation

/ e~ H,(z)2dz = 2"nl\/T,

oo

and the recursion relation
Hp1(z) = 2¢H,(z) — 2nH, -1 ().

4.4.6 Applications to selected integrals

Before we proceed with some selected applications, it iomamt to keep in mind that since the mesh points
are not evenly distributed, a careful analysis of the bajrafithe integrand as function afand the location of
mesh points is mandatory. To give you an example, in the Taddmv we show the mesh points and weights
for the integration interval [0,100] foN = 10 points obtained by the Gauss-Legendre method. Clearly, if

Table 4.1: Mesh points and weights for the integration wakj0,100] with NV = 10 using the Gauss-Legendre
method.

) X Wi
1 1305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.2563 7.473
10 98.695 3.334

your function oscillates strongly in any subinterval, thpproach needs to be refined, either by choosing more
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points or by choosing other integration methods. Note aist for integration intervals like for example
x € [0, 00], the Gauss-Legendre method places more points at the liegiiithe integration interval. If your
integrand varies slowly for large valuesafthen this method may be appropriate.

Let us here compare three methods for integrating, namelirépezoidal rule, Simpson’s method and the
Gauss-Legendre approach. We choose two functions to ateegr

/100 exp (—.I) "
1

X

3
1
——dz.
jﬁ 2+ 2%

A program example which uses the trapezoidal rule, Simgsaté and the Gauss-Legendre method is in-
cluded here. For the corresponding Fortran program, reaegraml.cpp with program1.f90. The Pyhton
program is listed as programl.py.

and

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter@7/cpp/programl.cpp

#include <iostream>

#include "lib.h"

using namespace std;

// Here we define various functions called by the main program
// this function defines the function to integrate

double int_function(double x);

// Main function begins here

int main()
{
int n;
double a, b;
cout << "Read in the number of integration points" << endl;
cin >> n;

cout << "Read in integration limits" << endl;
cin >> a >> b;
// reserve space in memory for vectors containing the mesh points
// weights and function values for the use of the gauss-legendre
// method
double *x = new double [n];
double *w = new double [n];
// set up the mesh points and weights
gauss_legendre(a, b,x,w, n);
// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum
double int_gauss = 0.;
for ( int i = 0; i < n; i++){
int_gauss+=w[i]*int_function(x[i]);
}
// final output
cout << "Trapez-rule = " << trapezoidal_rule(a, b,n, int_function)
<< endl;
cout << "Simpson's rule = " << simpson(a, b,n, int_function)
<< endl;
cout << "Gaussian quad = " << int_gauss << endl;
delete [] x;
delete [] w;
return 0;
} // end of main program
// this function defines the function to integrate
double int_function(double x)
{
double value = 4./(1.+xx*x);
return value;
} // end of function to evaluate
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4.5 — Treatment of singular Integrals

To be noted in this program is that we can transfer the namegfes function to integrate. In Tab[e3.2 we
show the results for the first integral using various messoiwhile Tabld—Z]3 displays the corresponding
results obtained with the second integral. We note here $irate the area over where we integrate is rather

Table 4.2: Results fofl100 exp (—z)/zdx using three different methods as functions of the numberestm
points V.

N Trapez Simpson  Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

large and the integrand goes slowly to zero for large valdes, doth the trapezoidal rule and Simpson’s

method need quite many points in order to approach the Qaegsadre method. This integrand demonstrates

clearly the strength of the Gauss-Legendre method (and GiQ@enethods as well), viz., few points are needed
in order to achieve a very high precision.

The second Table however shows that for smaller integraitenvals, both the trapezoidal rule and Simp-
son’s method compare well with the results obtained withGhess-Legendre approach.

Table 4.3: Results fofo?’ 1/(2 + 2?)dx using three different methods as functions of the number eghm
points V.

N Trapez Simpson  Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

4.5 Treatment of singular Integrals

So-called principal value (PV) integrals are often emptbyephysics, from Green'’s functions for scattering
to dispersion relations. Dispersion relations are oftdsited to measurable quantities and provide important
consistency checks in atomic, nuclear and particle physid®V integral is defined as

+e -

and arises in applications of Cauchy’s residue theorem wheepolex lies on the real axis within the interval

of integration[a, b]. HereP stands for the principal valué\n important assumption is that the functig(t)
is continuous on the interval of integration.

In casef(t) is a closed form expression or it has an analytic continnatidhe complex plane, it may be
possible to obtain an expression on closed form for the aldegral.

However, the situation which we are often confronted wittht f(¢) is only known at some points
with corresponding valueg(¢;). In order to obtair/ (z) we need to resort to a numerical evaluation.
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To evaluate such an integral, let us first rewrite it as

P/bdtﬂ_/w_AdtMJr/b dtM+P/w+AdtM,
a t a T

t—x T+A - _A t—x

where we have isolated the principal value part in the laegiral.
Defining a new variable = ¢t — x, we can rewrite the principal value integral as

P/+A “”) (4.19)

One possibility is to Taylor expanf{u + z) aroundu = 0, and compute derivatives to a certain order as we
did for the Trapezoidal rule or Simpson’s rule. Since alirtewith even powers af in the Taylor expansion
dissapear, we have that

Nmaz (@nt1) A2n+1
I == " .
al@) ; ) G T

To evaluate higher-order derivatives may be both time comsy and delicate from a numerical point of
view, since there is always the risk of loosing precision whalculating derivatives numerically. Unless we
have an analytic expression fitu + =) and can evaluate the derivatives in a closed form, the aljgw®ach
is not the preferred one.

Rather, we show here how to use the Gauss-Legendre methoohfmite Eq.[{Z719). Let us first introduce
a new variables = /A and rewrite Eq.[{419) as

+1 S T
Ia(z) :P[l ds%. (4.20)

The integration limits are now from 1 to 1, as for the Legendre polynomials. The principal value in Eq.
#20) is however rather tricky to evaluate numericallyjmhasince computers have limited precision. We
will here use a subtraction trick often used when dealin@ withgular integrals in numerical calculations. We
introduce first the calculus relation

s
/ %y,
—1 S

It means that the curvk/(s) has equal and opposite areas on both sides of the singuferspsi0.
If we then note thaf (x) is just a constant, we have also

+1d d
o [ [ rm® =0
Subtracting this equation from Eq.4120) yields
T f@sta) T f(As+a) — f(2)
=P d d
[, L,

S S

: (4.21)

and the integrand is no longer singular since we havdihat.,(f(s + ) — f(z)) = 0 and for the particular
cases = 0 the integrand is now finite.

Eq. (£21) is now rewritten using the Gauss-Legendre metbslting in

/+1dsf(As+x Z fASZ—i—x — f(=x)

1

, (4.22)
wheres; are the mesh points\{ in total) andw; are the weights.
In the selection of mesh points for a PV integral, it is impattto use an even number of points, since an

odd number of mesh points always picks= 0 as one of the mesh points. The sum in Eq._{#.22) will then
diverge.
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Let us apply this method to the integral
+1 gt
I(x) = P/ dt? (4.23)
-1

The integrand diverges at= ¢ = 0. We rewrite it using Eq[{4.21) as

+1 t +1 ¢t
Pl &S = c-1 (4.24)
sincee” = e = 1. With Eq. [£22) we have then
+1 ¢ N t,
e —1 e —1
/ — Y w (4.25)
-1 i=1 !

The exact results i8.11450175075..... With just two mesh points we recall from the previous subieac
thatw; = we = 1 and that the mesh points are the zerod.¢fz), namelyz; = —1/\/3 andzy = 1/\/5.
SettingN = 2 and inserting these values in the last equation gives

Lz =0)=V3 (el/ﬁ - e*l/\/g) — 2.1129772845.
With six mesh points we get even the exact result to the teigih d
Is(z = 0) = 2.11450175075!

We can repeat the above subtraction trick for more compétamtegrands. First we modify the integration
limits to +oo and use the fact that

/°° dk /0 dk /°° dk
= — =0.
o k—ko o k—ko Sy k—ko

A change of variable, = —k in the integral with limits from-oo to 0 gives

/°° dk _/0 —du +/°° dk _/°° dk +/°° e _
,Oo/{—ko_ Oo—u—ko 0 k—ko_ 0 —/{—ko 0 l{—ko_ '
It means that the curve/(k — ko) has equal and opposite areas on both sides of the singutarkgoilf we
break the integral into one over positikeand one over negativg a change of variable — —k allows us to

rewrite the last equation as
dk
=gz = -
0 0

We can use this to express a principal values integral as

> f(k)dk /OO (f(k) = f(ko))dk (4.26)
0

o K2—kZ Pk

where the right-hand side is no longer singulak at ko, it is proportional to the derivativéf /dk, and can be
evaluated numerically as any other integral.
Such a trick is often used when evaluating integral equatias discussed in the next section.

4.6 Scattering equation and principal value integrals

In quantum mechanics, it is often common to rewrite Schigelils equation in momentum space, after having
made a so-called partial wave expansion of the interactMawill not go into the details of these expressions
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but limit ourselves to study the equivalent problem for stlexd scattering states, meaning that the total energy
of two particles which collide is larger than or equal zerbebenefit of rewriting the equation in momentum
space, after having performed a Fourier transformatiahaisthe coordinate space equation, being an integro-
differantial equation, is transformed into an integral &ipn. The latter can be solved by standard matrix
inversion techniques. Furthermore, the results of solthege equation can be related directly to experimental
observables like the scattering phase shifts. The latteusehow much the incoming two-particle wave
function is modified by a collision. Here we take a more techhstand and consider the technical aspects of
solving an integral equation with a principal value.

For scattering statedy > 0, the corresponding equation to solve is the so-called Lgmp@chwinger
equation. This is an integral equation where we have to déhltive amplitudeR(k, k') (reaction matrix)
defined through the integral equation

2 o 1
kKDY =Vi(k, k') + = dqq®Vi(k, Q) =——— K 4.27
Rulk ) = Vil ) + 2P [ * dag?Vifk. o) g Ri(a. ), (@.27)

where the total kinetic energy of the two incoming partiétethe center-of-mass system is

kQ
E=2 (4.28)

m
The symbolP indicates that Cauchy’s principal-value prescription sediin order to avoid the singularity
arising from the zero of the denominator. We will discusotehow to solve this problem. Equatidn{4.27)
represents then the problem you will have to solve numdyic@ihe interaction between the two particles is
given by a partial-wave decomposed versiafk, k&’), wherel stands for a quantum number like the orbital
momentum. We have assumed that interaction does not cotpleattial waves with different orbital mo-
menta. The variabldsandk’ are the outgoing and incoming relative momenta of the tweratting particles.

The matrixR;(k, k') relates to the experimental the phase shifthrough its diagonal elements as

tand;

Ri(ko, ko) = — (4.29)

mko ’
wherem is the reduced mass of the interacting particles. Furthentloe interaction between the particl&s,
carries

In order to solve the Lippman-Schwinger equation in momenspace, we need first to write a function
which sets up the integration points. We need to do that siecare going to approximate the integral through

b N
/ f(z)dz ~ sz‘f(xi),

where we have fixedV integration points through the corresponding weight@nd pointsez;. These points
can for example be determined using Gaussian quadrature.

The principal value in Eq[T4.27) is rather tricky to evakiaumerically, mainly since computers have
limited precision. We will here use a subtraction trick oftesed when dealing with singular integrals in
numerical calculations. We use the calculus relation froengrevious section

< dk
=0
\/;ook_ko ’

< dk
et
/0 k? — kg

We can use this to express a principal values integral as

> f(k)dk /OO (f(k) — f(ko))dk (4.30)
0

Pl w2 ERTE

or
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where the right-hand side is no longer singulak at ko, it is proportional to the derivativéf /dk, and can be
evaluated numerically as any other integral.
We can then use the trick in EG._{4130) to rewrite Eq.(#.27) as

2 / % gg LY R R, ) = KV (k, ko) R(ko, k')
™ Jo (k§ —q*)/m
We are interested in obtainin@(ko, ko), since this is the quantity we want to relate to experimeateitd like
the phase shifts.

How do we proceed in order to solve EG.(4.31)?

Rk, k) = V(k k) + (4.31)

1. Using the mesh points; and the weightss;, we can rewrite Eq[{Z31) as

2 XL w; k2v k ki)R(k;, k') 2
R(k, k') = ;Z —)m 2 —;kgv(k,ko (ko, k'

Mz

k2 )/m’
(4.32)

This equation contains now the unknowR§&:;, k;) (with dimensionN x N) andR(ko, ko).

2. We can turn Eq{4:82) into an equation with dimengidh+ 1) x (N + 1) with an integration domain
which contains the original mesh poiritsfor j = 1, N and the point which corresponds to the energy
ko. Consider the latter as the 'observable’ point. The meshtpdiecome theg; for j = 1,n and

kny1 = ko.

3. With these new mesh points we define the matrix

Ai,j = 61',]‘ — V(/Cl, kj)uj, (433)
wheres is the Kronecked and
2 wjka .
Ui = — = j=1N (4.34)
P (k- kH/m
and N
o 2 kgwj
UN+1 = _; ; W (4.35)

The first task is then to set up the matrixfor a givenky. Thisis an(N + 1) x (N + 1) matrix. It
can be convenient to have an outer loop which runs over theechobservable values for the energy
k3 /m. Note that all mesh points; for j = 1, N must be different frorko. Note also thal/ (k;, k;) is
an(N +1) x (N + 1) matrix.

4. With the matrixA we can rewrite Eq[{4.32) as a matrix problem of dimengivnt- 1) x (N + 1). All
matricesR, A andV have this dimension and we get

AigRij = Vi, (4.36)

or just
AR=1V. (4.37)

5. Since we already have definddand V' (these are stored 4%V + 1) x (N + 1) matrices) Eq.[{437)
involves only the unknowi®. We obtain it by matrix inversion, i.e.,

R=A"'V. (4.38)

Thus, to obtainR, we need to set up the matricdsand V" and invert the matrix4. With the inverse
A~1 we perform a matrix multiplication witfy’ and obtain?.

With R we can in turn evaluate the phase shifts by noting that
R(kny1,knt1) = R(ko, ko), (4.39)

and we are done.

119



Numerical integration

4.7 Parallel computing

We end this chapter by discussing modern supercomputingepis like parallel computing. In particular,
we will introduce you to the usage of the Message Passingfaat (MPI) library. MPI is a library, not a
programming language. It specifies the names, calling segseand results of functions or subroutines to
be called from C++ or Fortran programs, and the classes aridoae that make up the MPI C++ library.
The programs that users write in Fortran or C++ are compilik @rdinary compilers and linked with the
MPI library. MPI programs should be able to run on all possitlachines and run all MPI implementetations
without change. An excellent reference is the text by Kafakés and Kirby Il [17].

4.7.1 Brief survey of supercomputing concepts and terrogies

Since many discoveries in science are nowadays obtainddrgie-scale simulations, there is an ever-lasting
wish and need to do larger simulations using shorter compime. The development of the capacity for
single-processor computers (even with increased procepsed and memory) can hardly keep up with the
pace of scientific computing. The solution to the needs ofsitientific computing and high-performance
computing (HPC) communities has therefore been paraltapeding.

The basic ideas of parallel computing is that multiple pssces are involved to solve a global problem.
The essence is to divide the entire computation evenly arool@porative processors.

Today’s supercomputers are parallel machines and carnvaghéak performances almost uplt®® float-
ing point operations per second, so-called peta-scale otarg see for example the list over the world’s top
500 supercomputersiaiw . top500.0rg. This list gets updated twice per year and sets up the ramkiogyd-
ing to a given supercomputer’s performance on a benchmaidftom the LINPACK library. The benchmark
solves a set of linear equations using the best softwaredoea platform.

To understand the basic philosophy, it is useful to have ghauicture of how to classify different hard-
ware models. We distinguish betwen three major groups ofiventional single-processor computers, nor-
mally called SISD (single-instruction-single-data) mae€s, (ii) so-called SIMD machines (single-instruction-
multiple-data), which incorporate the idea of parallelqassing using a large number of processing units to
execute the same instruction on different data and finallyniodern parallel computers, so-called MIMD
(multiple-instruction- multiple-data) machines that execute different instruction streams in parallel on dif-
ferent data. On a MIMD machine the different parallel praoeg units perform operations independently of
each others, only subject to synchronization via a giversamggs passing interface at specified time intervals.
MIMD machines are the dominating ones among present supgnaters, and we distinguish between two
types of MIMD computers, namely shared memory machines &tdliited memory machines. In shared
memory systems the central processing units (CPU) shamathe address space. Any CPU can access any
data in the global memory. In distributed memory systemi €U has its own memory. The CPUs are con-
nected by some network and may exchange messages. A regahéte so-called ccNUMA (cache-coherent-
non-uniform-memory- access) systems which are cluste®$A# (symmetric multi-processing) machines and
have a virtual shared memory.

Distributed memory machines, in particular those based®al®sters, are nowadays the most widely used
and cost-effective, although farms of PC clusters reqairgd infrastuctures and yield additional expenses for
cooling. PC clusters with Linux as operating systems arg &asetup and offer several advantages, since
they are built from standard commodity hardware with thenogp@urce software (Linux) infrastructure. The
designer can improve performance proportionally with ado@chines. The commodity hardware can be
any of a number of mass-market, stand-alone compute nodgisnpte as two networked computers each
running Linux and sharing a file system or as complex as thulssaf nodes with a high-speed, low-latency
network. In addition to the increased speed of presentiddal processors (and most machines come today
with dual cores or four cores, so-called quad-cores) thdipoof such commodity supercomputers has been
strenghtened by the fact that a library like MPI has madellghtmmputing portable and easy. Although there
are several implementations, they share the same core cotlsnidessage-passing is a mature programming
paradigm and widely accepted. It often provides an effiaieatch to the hardware.
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4.7.2 Parallelism

When we discuss parallelism, it is common to subdivide diifé algorithms in three major groups.

— Task parallelism:ithe work of a global problem can be divided into a number afejrendent tasks,
which rarely need to synchronize. Monte Carlo simulatiom$ aumerical integration are examples of
possible applications. Since there is more or less no coruation between different processors, task
parallelism results in almost a perfect mathematical paistin and is commonly dubbed embarassingly
parallel (EP). The examples in this chapter fall under tlad¢gory. The use of the MPI library is then
limited to some few function calls and the programming ismnalty very simple.

— Data parallelism: use of multiple threads (e.g., one thread per processdi3sect loops over arrays etc.
This paradigm requires a single memory address space. Coivation and synchronization between
the processors are often hidden, and it is thus easy to progkowever, the user surrenders much
control to a specialized compiler. An example of data paliahh is compiler-based parallelization.

— Message-passingall involved processors have an independent memory asldqgece. The user is
responsible for partitioning the data/work of a global geob and distributing the subproblems to the
processors. Collaboration between processors is achigvedplicit message passing, which is used
for data transfer plus synchronization.

This paradigm is the most general one where the user hasfulal. Better parallel efficiency is usually
achieved by explicit message passing. However, messaginggrogramming is more difficult. We
will meet examples of this in connection with the solutiogeazivalue problems in chapfér 7 and of partial
differential equations in chapterl10.

Before we proceed, let us look at two simple examples. Wealslh use these simple examples to define
the speedup factor of a parallel computation. The first catieai of the additions of two vectors of dimension
ny

z = ox + fiy,

wherea and are two real or complex numbers aad,y € R™ or € C". For every element we have thus
zi = ax; + [y;.

For every element; we have three floating point operations, two multiplicati@nd one addition. If we
assume that these operations take the samedimthen the total time spent by one processor is

T1 = 3nAt.

Suppose now that we have access to a parallel supercompthePwwrocessors. Assume also that< n.
We split then these addition and multiplication operationvery processor so that every processor performs
3n/P operations in total, resulting in a tini®®& = 3nAt/P for every single processor. We also assume that
the time needed to gather together these subsums is neglible

If we have perfect parallelism, our speedup should®héhe number of processors available. We see that
this is the case by computing the relation between the tinee us case of only one processor and the time
used if we can acced3 processors. The speedfp is defined as

T1 3nAt

Sp = Tp 3nAt/P -

P,

a perfect speedup. As mentioned above, we call calculati@tsyield a perfect speedup for embarassingly
parallel. The efficiency is defined as
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Our next example is that of the inner product of two vectofinge in Eq. [&5b),

n
Cc = E ZjiYj-
Jj=1

We assume again th& < n and definel = n/P. Each processor is assigned with its own subset of local
multiplicationscp = Zp ZpYp, Wherep runs over all possible terms for processor P. As an examgdenae
that we have four processors. Then we have

n/4 n/2
1 = E TiYj, Cy = E ZjiYj,
j=1 j=n/4+1
3n/4 n
C3 = E ZjiYj, Cq4 = E ZjiYj-
j=n/2+1 j=3n/4+1

We assume again that the time for every operatioAids If we have only one processor, the total time is
Ty = (2n — 1)At. For four processors, we must now add the time needed teadidcs + c5 + ¢4, which
is 3At (three additions) and the time needed to communicate tle tesultcp to all other processors. This
takes roughly{ P — 1) At., whereAt. need not equalt.
The speedup for four processors becomes now
T (2n —1)At dn — 2

St T (n/2 — 1)At+ 3At+ 3AL, 10+ 7

if At = At.. Forn = 100, the speedup i$, = 3.62 < 4. For P processors the inner products yields a
speedup
(2n—1)

(2I+P—2))+ (P —-1)y’
with v = At./At. Even withy = 0, we see that the speedup is less tfan

The communication timé\t. can reduce significantly the speedup. However, even if inalk there are
other factors as well which may reduce the efficiengyFor example, we may have an uneven load balance,
meaning that not all the processors can perform useful wbekl dime, or that the number of processors
doesn’t match properly the size of the problem, or memorplams, or that a so-called startup time penalty
known as latency may slow down the transfer of data. Crueied s the rate at which messages are transferred

Sp =

4.7.3 MPI with simple examples
When we want to parallelize a sequential algorithm, thegeatiteast two aspects we need to consider, namely
— ldentify the part(s) of a sequential algorithm that can becexed in parallel. This can be difficult.

— Distribute the global work and data amoRgprocessors. Stated differently, here you need to undetstan
how you can get computers to run in parallel. From a pracpoaht of view it means to implement
parallel programming tools.

In this chapter we focus mainly on the last point. MPI is theto@ for writing programs to run in parallel,
without needing to know much (in most cases nothing) abouwt@ngnachine’s architecture. MPI programs
work on both shared memory and distributed memory machiRaghermore, MPI is a very rich and com-
plicated library. But it is not necessary to use all the fezdu The basic and most used functions have been
optimized for most machine architectures

Before we proceed, we need to clarify some concepts, inqogati the usage of the words process and
processor. We refer to process as a logical unit which ersétgt own code, in an MIMD style. The processor
is a physical device on which one or several processes acetexk The MPI standard uses the concept process
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consistently throughout its documentation. However,esiwe only consider situations where one processor is
responsible for one process, we therefore use the two taterehangeably in the discussion below, hopefully
without creating ambiguities.

The six most important MPI functions are

MPI_ Init - initiate an MPI computation

MPI_Finalize - terminate the MPI computation and clean up

MPI_Comm_size - how many processes participate in a givehddiPputation.

MPI_Comm_rank - which rank does a given process have. THeissmnumber between 0 and size-1,
the latter representing the total number of processes.

— MPI_Send - send a message to a particular process within aicdafputation
— MPI_Recv - receive a message from a particular processmatiiMP1 computation.

The first MPI C++ program is a rewriting of our 'hello world’ ggram (without the computation of the
sine function) from chapté&l 2. We let every process writelltHeorld" on the standard output.

http://www.fys.uilo.no/compphys/cp/programs/FYS3150/MPI/chapter@7/program2.cpp

// First C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;
// End MPI
MPI_Finalize ();
return 0;

}

The corresponding Fortran program reads

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: numprocs, my_rank, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I've rank ",my_rank," out of ",numprocs
CALL MPI_FINALIZE(ierr)

END PROGRAM hello

MPI is a message-passing library where all the routines a@egresponding C++-bindirE;BPLCommand,name

or Fortran-bindings (function names are by convention iparpase, but can also be in lower casea) COMMAND_NAME
To use the MPI library you must include header files which ammtlefinitions and declarations that are

needed by the MPI library routines. The following line muppear at the top of any source code file that

3The C++ bindings used in practice are the same as the C biditifjough reading older texts like [15-17] one finds extens
discussions on the difference between C and C++ bindingstbout this text we will use the C bindings.
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will make an MPI call. For Fortran you must put in the begirgiRcLube 'mpif.h' while for C++ you need to
include the statememtinclude "mpi.h". These header files contain the declarations of functicarglvels etc.
needed by the MPI library.

The first MPI call must bew1_iniT, which initializes the message passing routines, as defméar
exampleINTEGER: :ierr and CALL MPI_INIT(ierr) for the Fortran example. The variablerr is an integer
which holds an error code when the call returns. The value ofis however of little use since, by default,
MPI aborts the program when it encounters an error. Howevermust be included when MPI starts. For the
C++ code we have the call to the functis#t_init(int*argc,char+argv) whereargc andargv are arguments
passed to main. MPI does not use these arguments in any wegyag and in MPI-2 implementations, NULL
may be passed instead. When you have finished you must cdillibBonmpi_rinalize. In Fortran you use
the statemerdaLL MPI_FINALIZE(ierr) while for C++ we use the functionPI_Finalize(void).

In addition to these calls, we have also included calls toadted inquiry functions. There are two MPI calls
that are usually made soon after initialization. They ared®+, MPT_COMM_SIZE( (MPI_COMM_WORLD, &numprocs)
andCcALL MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr) for Fortran. The functiompi_comm_size returns the
number of tasks in a specified MPI communicator (comm whenefigr to it in generic function calls below).

In MPI you can divide your total number of tasks into groupaljerd communicators. What does that
mean? All MPI communication is associated with what onescalcommunicator that describes a group
of MPI processes with a name (context). The communicatdgdates a collection of processes which can
communicate with each other. Every process is then idedtifjeits rank. The rank is only meaningful within
a particular communicator. A communicator is thus used asehamism to identify subsets of processes. MPI
has the flexibility to allow you to define different types ohemunicators, see for example [16]. However, here
we have used the communicater_comm worLD that contains all the MPI processes that are initiated when w
run the program.

The variablewmprocs refers to the number of processes we have at our disposafuftionvPI_CoMM_RANK
returns the rank (the name or identifier) of the tasks runtiiegcode. Each task (or processor) in a communi-
cator is assigned a numb®t_rank from 0 to numprocs — 1.

We are now ready to perform our first MPI calculations.

Running codes with MPI

To compile and load the above C++ code (after having undaeddtow to use a local cluster), we can use the
command

mpicxx -02 -o program2.x program2.cpp
and try to run with ten nodes using the command
mpiexec -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the piler statementpicc with mpifoe or
equivalent compilers. The name of the compiler is obviogghbtem dependent. The commaiadrun may be
used instead ofpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executatdion of the code and all processes are
running exactly the same code. The question is then how caelitbe difference between our parallel code
running on a given number of processes and a serial code® &teetwo major distinctions you should keep in
mind: (i) MPI lets each process have a particular rank tord@tee which instructions are run on a particular
process and (ii) the processes communicate with each etteeder to finalize a task. Even if all processes
receive the same set of instructions, they will normally ecute the same instructions.We will discuss this
point in connection with our integration example below.

The above example produces the following output

Hello world, I've rank 0 out of 10 procs.
Hello world, I've rank 1 out of 10 procs.
Hello world, I've rank 4 out of 10 procs.
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Hello world, I've rank 3 out of 10 procs.
Hello world, I've rank 9 out of 10 procs.
Hello world, I've rank 8 out of 10 procs.
Hello world, I've rank 2 out of 10 procs.
Hello world, I've rank 5 out of 10 procs.
Hello world, I've rank 7 out of 10 procs.
Hello world, I've rank 6 out of 10 procs.

The output to screen is not ordered since all processesyang to write to screen simultaneously. It is
then the operating system which opts for an ordering. If wehvid have an organized output, starting from

the first process, we may rewrite our program as follows

http://www.Tys.ulio.no/compphys/cp/programs/FYS3150/MPI/chapter@//program3. cpp

// Second C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank, 1i;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
for (i = 0; 1 < numprocs; i++) {
MPI_Barrier (MPI_COMM_WORLD);
if (i == my_rank) {
cout << "Hello world,
fflush (stdout);
}
}
// End MPI
MPI_Finalize ();
return 0;

I have rank

}

<< my_rank << "

out of " << numprocs << endl;

Here we have used the1_sarrier function to ensure that every process has completed its gegtouctions
in a particular order. A barrier is a special collective @iem that does not allow the processes to continue
until all processes in the communicator (here_covm_worLD) have callediP1_Barrier. The output is now

Hello world, I've rank 0 out of 10 procs.
Hello world, I've rank 1 out of 10 procs.
Hello world, I've rank 2 out of 10 procs.
Hello world, I've rank 3 out of 10 procs.
Hello world, I've rank 4 out of 10 procs.
Hello world, I've rank 5 out of 10 procs.
Hello world, I've rank 6 out of 10 procs.
Hello world, I've rank 7 out of 10 procs.
Hello world, I've rank 8 out of 10 procs.
Hello world, I've rank 9 out of 10 procs.

The barriers make sure that all processes have reachecdhtieepgant in the code. Many of the collective op-
erations likevp1_ALLREDUCE t0 be discussed later, have the same property; viz. no ppeegsexit the operation
until all processes have started. However, this is slightye time-consuming since the processes synchronize
between themselves as many times as there are processhe.next Hello world example we use the send
and receive functions in order to a have a synchronizedractio
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http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter0@7/program4.cpp

// Third C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank, flag;
// MPI initializations
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
// Send and Receive example
if (my_rank > 0)
MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100, MPI_COMM_WORLD, &status);
cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;
if (my_rank < numprocs-1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1l, 100, MPI_COMM_WORLD);
// End MPI
MPI_Finalize ();
return 0;

The basic sending of messages is given by the funetiorseno, which in C++ is defined as

'MPI,Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm) [

while in Fortran we would call this function with the follong parameters

'CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr). [

This single command allows the passing of any kind of vaeéaéVen a large array, to any group of tasks. The
variablebuf is the variable we wish to send whiteunt is the number of variables we are passing. If we are
passing only a single value, this should be 1. If we trangfiearaay, it is the overall size of the array. For
example, if we want to send a 10 by 10 array, count would(e 10 = 100 since we are actually passing
100 values.

We define the type of variable usimgi_type in order to let MPI function know what to expect. The
destination of the send is declared via the variabte, which gives the ID number of the task we are sending
the message to. The variahlg is a way for the receiver to verify that it is getting the megsé expects.
The message tag is an integer number that we can assign amey makmally a large number (larger than the
expected number of processes). The communicataeris the group ID of tasks that the message is going
to. For complex programs, tasks may be divided into grougpéd up connections and transfers. In small
programs, this will more than likely be Mp1_comv_woRrLD.

Furthermore, when an MPI routine is called, the Fortran of Gata type which is passed must match the
corresponding MPI integer constant. An integer is definesbagnT in C++ andvPI_INTEGER in Fortran. A
double precision real i8p1_bousLE in C++ andMPI_DOUBLE_PRECISION in Fortran and single precision real is
MPI_FLOAT in C++ andvwpI_ReAL in Fortran. For further definitions of data types see chdpierof Ref. [16].

Once you have sent a message, you must receive it on anakeftee functiomp1_recv is similar to the
send call. In C++ we would define this as

MPI_Recv( void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status )

while in Fortran we would use the call

CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, status, ierr)}.
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The arguments that are different from thosemmn_senp arebuf which is the name of the variable where you
will be storing the received dategurce which replaces the destination in the send command. THigiseturn
ID of the sender.

Finally, we have usemP1_status~status; where one can check if the receive was completed. The source
or tag of a received message may not be known if wildcard gadwe used in the receive function. In C++,
MPI Status is a structure that contains further informati®ne can obtain this information using

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)}

The output of this code is the same as the previous examplaplbuprocess 0 sends a message to process 1,
which forwards it further to process 2, and so forth.
Armed with this wisdom, performed all hello world greeting® are now ready for serious work.

4.7.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to send receive data types. This means also that
we need to specify which data types to send to MPI functions.
The program listed here integrates

by simply adding up areas of rectangles according to therithgo discussed in EqL{4.5), rewritten here

N

b
I :/ f(x)dx ~ hZf(«Ti—l/Q)v

=1

wheref(z) = 4/(1+2?). Thisis a brute force way of obtaining an integral but suffitedemonstrate our first
application of MPI to mathematical problems. What we do isubdivide the integration rangec [0, 1] into

n rectangles. Increasingshould obviously increase the precision of the result, asugised in the beginning
of this chapter. The parallel part proceeds by letting epeogess collect a part of the sum of the rectangles.
At the end of the computation all the sums from the processesuammed up to give the final global sum. The
program below serves thus as a simple example on how to ateegr parallel. We will refine it in the next
examples and we will also add a simple example on how to imgtethe trapezoidal rule.

http://www.fys.ulio.no/compphys/cp/programs/FYS3150/MP1/chapter@7/program5.cpp

1 // Reactangle rule and numerical integration using MPI send and Receive
2 using namespace std;

3 #include <mpi.h>

4  #include <iostream>

5 int main (int nargs, charx args[])

6 {

7 int numprocs, my_rank, i, n = 1000;

8 double local_sum, rectangle_sum, x, h;

9 // MPI initializations

10 MPI_Init (&nargs, &args);

11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

13 // Read from screen a possible new vaue of n

14 if (my_rank == 0 && nargs > 1) {

15 n = atoi(args[1l]);

16 }

17 h =1.0/n;

18 // Broadcast n and h to all processes

19 MPI_Bcast (&n, 1, MPI_INT, ©, MPI_COMM_WORLD);

20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
21 // Every process sets up its contribution to the integral
22 local_sum = 0.;
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23 for (i = my_rank; i < n; i += numprocs) {
24 X = (i+0.5)*h;

25 local_sum += 4.0/ (1.0+xx*x);

26}

27 local_sum *= h;

28 if (my_rank == 0) {

29 MPI_Status status;

30 rectangle_sum = local_sum;

31 for (i=1; i < numprocs; i++) {

32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,MPI_COMM_WORLD,&status);
33 rectangle_sum += local_sum;

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum,1,MPI_DOUBLE,®,500,MPI_COMM_WORLD) ;
38 // End MPI

39 MPI_Finalize ();

40 return 0;

41 }

After the standard initializations with MPI such as

MPI_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using forgheam
mpirun -np 10 ./prog.x

In line 14 we check if we have read in from screen the numberedmpoints:. Note that in line 7 we fix
n = 1000, however we have the possibility to run the code with a dffémumber of mesh points as well.
If my_rank equals zero, which correponds to the master node, then weareaw value of: if the number of
arguments is larger than two. This can be done as follows wigerun the code

mpiexec -np 10 ./prog.x 10000

In line 17 we define also the step lendthin lines 19 and 20 we use the broadcast funatinBscast. We use
this particular function because we want data on one procésar master node) to be shared with all other
processors. The broadcast function sends data to a groupadgses. The MPI routine1_scast transfers
data from one task to a group of others. The format for theig@ll C++ given by the parameters of

'{MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);. [

In case we have a floating point variable we need to declare

'MPI_Bcast (&, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); [

The general structure of this function is

'MPI_Bcast( void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm) [

All processes call this function, both the process sendiegiata (with rank zero) and all the other processes
in MPI_coMM_WORLD. Every process has now copiesrofindh, the number of mesh points and the step length,
respectively.

We transfer the addressesroaindh. The second argument represents the number of data serisérot
a one-dimensional array, one needs to transfer the numberayf elements. If you have anx m matrix, you
must transfen x m. We need also to specify whether the variable type we traissfenon-numerical such as
a logical or character variable or numerical of the integgal or complex type.

We transfer also an integer variahilee root. This variable specifies the process which has the original
copy of the data. Since we fix this value to zero in the callied 19 and 20, it means that it is the master
process which keeps this information. For Fortran, thicfiom is called via the statement
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CALL MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

In lines 23-27, every process sums its own part of the final asad by the rectangle rule. The receive
statement collects the sums from all other processes imgasek==0, else an MPI send is performed.

The above function is not very elegant. Furthermore, the M$§ttuctions can be simplified by using the
functionsmMPI_Reduce Or MPI_Allreduce. The first function takes information from all processes sedds the
result of the MPI operation to one process only, typicallytiaster node. If we useI_Allreduce, the resultis
sent back to all processes, a feature which is useful whemd#s need the value of a joint operation. We limit
ourselves toPI_Reduce since it is only one process which will print out the final nuenlof our calculation,
The arguments tePI_Allreduce are the same.

Themp1_Reduce function is defined as follows

MPI_Reduce( void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op, int root,
MPI_Comm comm)

The two variablesenddata and resultdata are obvious, besides the fact that one sends the address of th
variable or the first element of an array. If they are arragy theed to have the same size. The variable
count represents the total dimensionality, 1 in case of just om@bke, whileMpI_patatype defines the type of
variable which is sent and received. The new featumeisop. MPI_op defines the type of operation we want
to do. There are many options, see again Refs. [15-17] foliul In our case, since we are summing the
rectangle contributions from every process we defirreop=Mp1_sum. If we have an array or matrix we can
search for the largest og smallest element by sending eithex or Mp1_mIN. If we want the location as well
(which array element) we simply transf@r_maxLoc or mpI_mMINOC. If we want the product we writep1_pRop.
MPI_Allreduce is defined as

MPI_Allreduce( void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op, MPI_Comm
comm)

The function we list in the next example is the MPI extensibprograml.cpp. The difference is that we
employ only the trapezoidal rule. It is easy to extend thidecio include gaussian quadrature or other methods.

Itis also worth noting that every process has now its ownistaand ending point. We read in the number
of integration points: and the integration limita andb. These are called andb. They serve to define the
local integration limits used by every process. The loctdnation limits are defined as

local_a = a + my_rank *(b-a)/numprocs
local_b = a + (my_rank-1) *(b-a)/numprocs.

These two variables are transfered to the method for thezaigal rule. These two methods return the local
sum variablelocal_sum. MPI_Reduce collects all the local sums and returns the total sum, wtschritten out

by the master node. The program below implements this. We abo added the possibility to measure the
total time used by the code via the callsita_wtime.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MP1/chapter@7/program6.cpp

// Trapezoidal rule and numerical integration using MPI with MPI_Reduce
using namespace std;

#include <mpi.h>

#include <iostream>

// Here we define various functions called by the main program

double int_function(double );
double trapezoidal_rule(double , double , int , double (x)(double));

// Main function begins here
int main (int nargs, charx args[])
{

int n, local_n, numprocs, my_rank;
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double a, b, h, local_a, local_b, total_sum, local_sum;

double time_start, time_end, total_time;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank)

time_start = MPI_Wtime();

// Fixed values for a, b and n

a=0.0; b=1.0; n=1000;

h = (b-a)/n; // h is the same for all processes

local_n = n/numprocs; // make sure n > numprocs, else integer division gives zero
// Length of each process' interval of

// integration = local_nxh.

local_a = a + my_rankxlocal_nxh;

local_b = local_a + local_nxh;

total_sum = 0.0;

local_sum = trapezoidal_rule(local_a, local_b, local_n, &int_function);
MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
time_end = MPI_Wtime();

total_time = time_end-time_start;

if ( my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time << " on number of processors: " << numprocs << endl;
}
// End MPI
MPI_Finalize ();
return 0;

} // end of main program

// this function defines the function to integrate
double int_function(double x)
{
double value = 4./(1.4+xx*x);
return value;
} // end of function to evaluate

// this function defines the trapezoidal rule
double trapezoidal_rule(double a, double b, int n, double (*func)(double))
{
double trapez_sum;
double fa, fb, x, step;
int  j;
step=(b-a)/((double) n);
fa=(xfunc) (a)/2. ;
fb=(xfunc) (b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){
x=jxstep+a;
trapez_sum+=(xfunc) (x);
}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;
} // end trapezoidal_rule

An obvious extension of this code is to read from file or screnintegration variables. One could also use
the program library to call a particular integration method

4.8 An integration class

We end thsi chapter by presenting the usage of the integrsd clefined in the program library. Here we have
defined two header files, thi@nction.h and theintegral.h files. The program below uses the classes defined
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in these header files to compute the integral

/ﬁlexp(x)cos(x}

#include <cmath>
#include <iostream>
#include "Function.h"
#include "Integral.h"

using namespace std;

class ExpCos: public Function{
public:
// Default constructor
ExpCos () {}

// Overloaded function operator().
// Override the function operator() of the parent class.
double operator() (double x){
return exp(x)x*cos(x);
}
+

int main(){
// Declare first an object of the function to be integrated
ExpCos f;
// Set integration bounds
double a = 0.0; // Lower bound
double b = 1.0; // Upper bound
int npts = 100; // Number of integration points

// Declared (lhs) and instantiate an integral object of type Trapezoidal
Integral *trapez = new Trapezoidal(a, b, npts, f);

Integral *midpt = new MidPoint(a, b, npts, f);

Integral *gl = new Gauss_Legendre(a,b,npts, f);

// Evaluate the integral of the function ExpCos and assign its
// value to the variable result;

double resultTP = trapez->evaluate();

double resultMP = midpt->evaluate();

double resultGL = gl->evaluate();

// Print the result to screen

cout << "Result with trapezoidal : " << resultTP << endl;

cout << "Result with mid-point : " << resultMP << endl;

cout << "Result with Gauss-Legendre: " << resultGL << endl;
}

The header fil&éunction.h is defined as

VAT
* @file Function.h
* Interface for mathematical functions with one or more independent variables.
* The subclasses are implemented as functors, i.e., objects behaving as functions.
* They overload the function operator().
*

* Example Usage:
// 1. Declare a functor, i.e., an object which
// overloads the function operator().
class Squared: public Function{
public:
// Overload function operator()
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double operator()(double x=0.0){
return x*x;
}
+

int main(){
// Instance an object Functor
Squared f;

// Use the instance of the object as a normal function
cout << f(3.0) << endl;

}

@endcode

*

*k/

#ifndef FUNCTION_H
#define FUNCTION_H

#include "Array.h"

class Function{
public:

//! Destructor
virtual ~Function(){}; // Not needed here.

/ *%

* @brief Overload the function operator().

*

* Used for evaluating functions with one independent variable.
*

*k/

virtual double operator()(double x){}

VAT
* @brief Overload the function operator().
*
* Used for evaluating functions with more than one independent variable.
*k/
virtual double operator()(const Array<double>& x){}
+
#endif

The header filantegral.h contains, with an example on how to use it, the followingestants

#ifndef INTEGRAL_H
#define INTEGRAL_H

#include "Array.h"
#include "Function.h"
#include <cmath>

class Integral{
protected: // Access in the subclasses.
double a; // Lower limit of integration.
double b; // Upper limit of integration.
int npts; // Number of integration points.
Function &f; // Function to be integrated.

public:

VAT
* @brief Constructor.
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@param lower_. Lower limit of integration.

@param upper—_. Upper limit of integration.

@param npts_. Number of points of integration.

@param f_. Reference to a functor representing the function to be integrated.
*k /

Integral(double lower_, double upper_, int npts_, Function &f_);

EEE R R

//! Destructor
virtual ~Integral(){}

/*%

* @brief Evaluate the integral.

* @return The value of the integral in double precision.
*k /

virtual double evaluate()=0;

// virtual forloop

}; // End class Integral

class Trapezoidal: public Integral{
private:
double h; // Step size.

public:
/x%
* @brief Constructor.

@param lower_. Lower limit of integration.

@param upper_. Upper limit of integration.

@param npts_. Number of points of integration.

@param f_. Reference to a functor representing the function to be integrated.
*k/

Trapezoidal(double lower_, double upper_, int npts_, Function &f_);

L

//! Destructor
~Trapezoidal(){}

/*%
* Evaluate the integral of a function f using the trapezoidal rule.
* @return The value of the integral in double precision.
*k/
double evaluate();
}Y; // End class Trapezoidal

class MidPoint: public Integral{
private:
double h; // Step size.

public:
/ **
* @brief Constructor.
*
* @param lower_. Lower limit of integration.
* @param upper_. Upper limit of integration.
* @param npts_. Number of points of integration.
* @param f_. Reference to a functor representing the function to be integrated.

*k/
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+;

MidPoint(double lower_, double upper_, int npts_, Function &f_);

//! Destructor
~MidPoint () {}

/ *%

* Evaluate the integral of a function f using the midpoint approximation.
*

* @return The value of the integral in double precision.

*x/

double evaluate();

class Gauss_lLegendre: public Integral{
private:

static const double ZERO = 1.0E-10;
static const double PI = 3.14159265359;
double h;

public:

};

/ *%
* @brief Constructor.

@param lower_. Lower limit of integration.

@param upper_. Upper limit of integration.

@param npts_. Number of points of integration.

@param f_. Reference to a functor representing the function to be integrated.
*k/

Gauss_Legendre(double lower_, double upper_, int npts_, Function &f_);

* X X X X

//! Destructor
~Gauss_Legendre(){}

VAT

* Evaluate the integral of a function f using the Gauss-Legendre approximation.
*

* @return The value of the integral in double precision.

*k/

double evaluate();

#endif
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Chapter 5

Non-linear equations and roots of
polynomials

5.1 Introduction

In physics we often encounter the problem of determiningalo¢of a functionf (z). Especially, we may need
to solve non-linear equations of one variable. Such egostioe usually divided into two classes, algebraic
equations involving roots of polynomials and transcenalesjuations. When there is only one independent
variable, the problem is one-dimensional, namely to findrth@ or roots of a function. Except in linear
problems, root finding invariably proceeds by iteratiord &mis is equally true in one or in many dimensions.
This means that we cannot solve exactly the equations at. hRather, we start with some approximate
trial solution. The chosen algorithm will in turn improvestBolution until some predetermined convergence
criterion is satisfied. The algoritms we discuss below gtetm implement this strategy. We will deal mainly
with one-dimensional problems.

You may have encountered examples of so-called transctl@guations when solving the Schrédinger
equation (SE) for a particle in a box potential. The one-disienal SE for a particle with mass is

h? d*u
R + V(z)u(z) = Fu(x), (5.1)
and our potential is defined as
-V 0<Lz<a
V(r) = { 0 > a (5.2)

Bound states correspond to negative endrfggnd scattering states are given by positive energies. The SE
takes the form (without specifying the sign b}

d*u(x)  2m

= + 7 Vo+E)u(z) =0 z<a, (5.3)
and
d*u(x) 2m
= + ﬁEu(z) =0 z>a. (5.4)

If we specialize to bound statés < 0 and implement the boundary conditions on the wave functiewbtain

u(r) = Asin(+/2m(Vy — |E|)r/h) r <a, (5.5)
and
u(r) = Bexp (—+/2m|E|r/h) r>a, (5.6)
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Figure 5.1: Plot off (E) in Eq. (&8) as function of energy |E| in MeV. Te functif(F) is in units of mega-
electronvolts MeV. Note well that the enerdyis for bound states.

whereA andB are constants. Using the continuity requirement on the Wiiavetion atr = a one obtains the
transcendental equation

V2m (Vo — | E|) cot (v/2ma2(Vy — |E|)/h) = —\/2m|E|. (5.7)

This equation is an example of the kind of equations whichidcte solved by some of the methods
discussed below. The algorithms we discuss are the bisegtaihod, the secant, false position and Brent’s
methods and Newton-Raphson’s method.

In order to find the solution for Eq{3.7), a simple procedsri® define a function

F(B) = v/2m(Vo — | E]) cot (v/2ma?(Vo — [E|)/h) + /2m|E]. (5.8)

and with chosen or given values farandV;, make a plot of this function and find the approximate region
along theE — azis wheref(E) = 0. We show this in FigiBl1 foby = 20 MeV, a = 2 fm andm = 938
MeV. Fig.[51 tells us that the solution is close f¢| ~ 2.2 (the binding energy of the deuteron). The methods
we discuss below are then meant to give us a numerical solfdgiaZ wheref(E) = 0 is satisfied and with

E determined by a given numerical precision.

5.2 Iteration methods

To solve an equation of the tyg&z) = 0 means mathematically to find all numbelkso thatf(s) = 0. In
all actual calculations we are always limited by a given giea when doing numerics. Through an iterative
search of the solution, the hope is that we can approachimnatlyiven tolerance, a valuexy which is a
solutiontof(s) = 0 if

|zo — 5| <€, (5.9

andf(s) = 0. We could use other criteria as well like

o — S

< €, (5.10)

S

1In the following discussion, the variableis reserved for the value af where we have a solution.
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and|f(zo)| < e or a combination of these. However, it is not given that tkeaitive process will converge
and we would like to have some conditions prvhich ensures a solution. This condition is provided by the
so-called Lipschitz criterion. If the functiofi, defined on the intervak, b] satisfies for alk;; andz, in the
chosen interval the following condition

|f(z1) = fz2)] < Elor — 22, (5.11)

with & a constant, therf is continuous in the intervak, b]. If f is continuous in the intervad, b], then the
secant condition gives

f@1) = f(x2) = f'(€) (21 — x2), (5.12)
with 21, 22 within [a, b] and¢ within [z1, 22]. We have then
|f(@1) = f(z2)] < [F'(©)] |21 — 2] (5.13)

The derivative can be used as the conskaritVe can now formulate the sufficient conditions for the conve
gence of the iterative search for solutions{a) = 0.

1. We assume thatis defined in the intervdh, b].
2. f satisfies the Lipschitz condition with < 1.

With these conditions, the equatigifiz) = 0 has only one solution in the intervial, b] and it converges after
n iterations towards the solutionirrespective of choice far, in the intervalla, b]. If we let z,, be the value
of z aftern iterations, we have the condition

|$1 - ,Tgl . (514)

k
— <
s $n|_1_k

The proof can be found in the text of Bulirsch and Stoer. Sihéedifficult numerically to find exactly the
point wheref(s) = 0, in the actual numerical solution one implements three tekthe type

1.
|zn — 5| <e, (5.15)

and

|f(s)] <0, (5.16)

3. and a maximum number of iterations,.xitcr iN actual calculations.

5.3 Bisection method

This is an extremely simple method to code. The philosoplmytest be explained by choosing a region in
e.g., Fig[&ll which is close to whef¢E) = 0. In our caseE| ~ 2.2. Choose a regiofu, b] so thata = 1.5
andb = 3. This should encompass the point whére- 0. Define then the point

a+b
2 b

(5.17)

and calculatef (c). If f(a)f(c) < 0, the solution lies in the regioa, ¢] = [a, (a + b)/2]. Change theh — ¢
and calculate a new value forlf f(a)f(c) > 0, the new interval is ific, b] = [(a +b)/2, b]. Now you need to
changer < c and evaluate then a new value forWe can continue to halve the interval till we have reached
a value fore which fulfills f(c) = 0 to a given numerical precision. The algorithm can be simgfyressed in
the following program
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fa = f(a);
fb = f(b);
// check if your interval is correct, if not return to main
if ( faxfb > 0) {
cout << “"\n Error, root not in interval'' << endl;
return;
}
for (j=1; j <= iter_max; j++) {
c=(a+b)/2;
fc=f(c)
// 1if this test is satisfied, we have the root ¢
if ( (abs(a-b) < epsilon ) || fc < delta ); return to main
if ( faxfc < 0){
b=c ; fb=fc;
}
else{
a=c ; fa=fc;

Note that one needs to define the values,efanditer_max when calling this function.

The bisection method is an almost foolproof method, altthdtimay converge slowly towards the solution
due to the fact that it halves the intervals. Aftedivisions by2 we have a possible solution in the interval
with length

2% b—al, (5.18)

and if we setry = (a + b)/2 and letz,, be the midpoints in the intervals we obtain afteiterations that Eq.
(&.I3) results in
1
|s —xp| < W“’—QL (5.19)

since thenth interval has lengttb — a|/2™. Note that this convergence criterion is independent obtttaal
function f(x) as long as this function fulfils the conditions discussetiexdonditions discussed in the previous
subsection.

As an example, suppose we wish to find how many iteration steppaeeded in order to obtain a relative
precision ofl0~12 for z,, in the interval[50, 63], that is

|s — @y

5]

<1012 (5.20)

It suffices in our case to study> 50, which results in

|s — xp]

<1012 5.21
<107, (5.21)
and with Eq.[[519) we obtain
13
Y < —12 .
STiEg = 1072, (5.22)

meaningn > 37. The code for the bisection method can look like this

/*

** This function

*x calculates a root between x1 and x2 of a function
** pointed to by (xfunc) using the method of bisection
**x The root is returned with an accuracy of +- xacc.
*/

double bisection(double (*func)(double), double x1, double x2, double xacc)
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int i
double dx, f, fmid, xmid, rtb;
f = (xfunc) (x1);

fmid = (xfunc) (x2);
if (fxfmid >= 0.0) {

cout << "\n\nError in function bisection():" << endl;
cout << "\nroot in function must be within" << endl;
cout << "x1 ="' << x1 << ““and x2 ' << x2 << endl;
exit(1l);
}
rtb = f < 0.0 ? (dx = x2 - x1, x1) : (dx = x1 - x2, x2);
for(j = 0; j < max_iterations; j++) {
fmid = (xfunc)(xmid = rtb + (dx *= 0.5));
if (fmid <= 0.0) rtb=xmid;
if(fabs(dx) < xacc || fmid == 0.0) return rtb;

}
cout << "Error in the bisection:" << endl; // should never reach this point
cout "Too many iterations!" << endl;

}

// End: function bisection

In this function we transfer the lower and upper limit of théeirval where we seek the solutidm; , z2]. The
variablexacc is the precision we opt for. Note that in this function thet &) < ¢ is not implemented.
Rather, the test is done througls) = 0, which is not necessarily a good option.

Note also that this function transfer a pointer to the nantee§iven function througiouble (xfunc) (double).

5.4 Newton-Raphson’s method

Perhaps the most celebrated of all one-dimensional rodirfiyroutines is Newton’s method, also called the
Newton-Raphson method. This method is distinguished fioenpreviously discussed methods by the fact
that it requires the evaluation of both the functipand its derivativef’ at arbitrary points. In this sense, it is
taylored to cases with e.g., transcendental equationsedfyfie shown in Eq[{3.8) where it is rather easy to
evaluate the derivative. If you can only calculate the dgiie numerically and/or your function is not of the
smooth type, we discourage the use of this method.

The Newton-Raphson formula consists geometrically ofrediteg the tangent line at a current point until
it crosses zero, then setting the next guess to the absdisat aero-crossing. The mathematics behind this
method is rather simple. Employing a Taylor expansiondfsufficiently close to the solutiosn, we have

(s — )

@) (5.23)

fls)=0=f(x)+ (s —2)f'(z) +

For small enough values of the function and for well-behduedtions, the terms beyond linear are unimpor-
tant, hence we obtain

f@)+ (s =) f'(x) = 0, (5.24)
yielding
. J@)
s~ @) (5.25)

Having in mind an iterative procedure, it is natural to siznating with

f(@n) (5.26)

Tnt+l = Tn — fl(l' )
n

This is Newton-Raphson’s method. It has a simple geomettizpretation, namely,,; is the point where
the tangent fronfz,,, f(x,)) crosses the—axis. Close to the solution, Newton-Raphson convergesddie
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20 | T
f(z) =z —2cos(x) ——
C:I‘l......
c=uw
15 ’ .

Figure 5.2: Example of a case where Newton-Raphson’s methesl not converge. For the functigfz) =
x — 2cos(x), we see that if we start at= 7, the first iteration gives us that the first point where we sithe
x—axis is given byr;. However, using:; as a starting point for the next iteration results in a peintvhich
is close to a local minimum. The tangent here is close to zedovee will never approach the point where

flx)=0.

desired result. However, if we are far from a root, where tighdr-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate reshtir instance, the initial guess for the root might
be so far from the true root as to let the search interval gl local maximum or minimum of the function.
If an iteration places a trial guess near such a local extrenso that the first derivative nearly vanishes, then
Newton-Raphson may fail totally. An example is shown in

It is also possible to extract the convergence behavioriefrttethod. Assume that the functighhas a
continuous second derivative around the solutioti we define

€n = Tn —S=Tn — — S, 5.2

—enf'(Tn) + e /2f"(&) _ en/2f"(E)
f(zn) fran)

€ntl1 = €n + (528)
This gives
lenal _ 11O _ 1 1£(s)]
leal>  20f"(zn)2 211 (s)]

whenz,, — s. Our error constari is then proportional tof” (s)|/| f'(s)|? if the second derivative is different
from zero. Clearly, if the first derivative is small, the cengence is slower. In general, if we are able to start
the iterative procedure near a root and we can easily eeathatderivative, this is the method of choice. In
cases where we may need to evaluate the derivative nunmgriba previously described methods are easier
and most likely safer to implement with respect to loss of atioal precision. Recall that the numerical
evaluation of derivatives involves differences betweercfion values at different,,.

We can rewrite the last equation as

(5.29)

lent1] = C|en|2, (5.30)
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with C'a constant. If we assume th@t~ 1 and lete,, ~ 1078, this results ire,, ;1 ~ 1016, and demonstrates
clearly why Newton-Raphson’s method may converge faster the bisection method.

Summarizing, this method has a solution wh#his continuous and is a simple zero of . Then there is
a neighborhood of and a constant’ such that if Newton-Raphson’s method is started in thathi®ghood,
the successive points become steadily closerand satisfy

|5 = @n41] < Cls — anl?,

with n > 0. In some situations, the method guarantees to converge ésieed solution from an arbitrary
starting point. In order for this to take place, the functfohas to belong t6*?(R), be increasing, convex and
having a zero. Then this zero is unique and Newton’s methadarges to it from any starting point.

As a mere curiosity, suppose we wish to compute the squatefenumberR, i.e.,v/R. LetR > 0 and
define a function

f(z) =2* - R.

The variablex is a root if f(z) = 0. Newton-Raphson’s method yields then the following iteeatpproach
to the root
Tpal = % (:zrn + E) , (5.31)

a formula credited to Heron, a Greek engineer and architéect ived sometime between 100 B.C. and
A.D. 100.

Suppose we wish to computél3 = 3.6055513 and start withzy = 5. The first iteration gives; = 3.8,
ro = 3.6105263, x5 = 3.6055547 andx, = 3.6055513. With just four iterations and a not too optimal choice
of xo we obtain the exact root to a precision of 8 digits. The abaumton, together with range reduction , is
used in the intrisic computational function which compiggsare roots.

Newton’s method can be generalized to systems of severalimesr equations and variables. Consider
the case with two equations

fi(z1,2z2) =0
, 5.32
fo(z1,22) =0 (5-32)
which we Taylor expand to obtain
O:fl(xl —l—hl,IQ—l—hg) = fl(Il,I2)+h18f1/a.§C1+h28f1/85€2+... (5 33)
0=f2(1'1+h1,$2+h2)= fg(xl,xz)-i-hlafg/al'l+h26f2/ax2+... ’ '

Defining the Jacobian matrikwe have

s _ [ 0fi/0x1 Of1/0xs
1= < Ofa/0x1 Ofa/0xs > (5.34)

we can rephrase Newton’s method as
A )= () (M (5.35)
AR AN hg ) '

Y\ so1( fat,ah)
(hs)‘ J (f2<x?,x3>)' (5:38)

We need thus to compute the inverse of the Jacobian matrix @tb understand that difficulties may arise
in case] is nearly singular.
It is rather straightforward to extend the above schemedtegys of more than two non-linear equations.
The code for Newton-Raphson’s method can look like this

where we have defined
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*x This function

*x calculates a root between x1 and x2 of a function pointed to
** by (xfuncd) using the Newton-Raphson method. The user-defined
x*x function funcd() returns both the function value and its first
*x derivative at the point x,

*+x The root is returned with an accuracy of +- xacc.

double newtonraphson(void (xfuncd)(double, double *, double x), double x1, double x2,
double xacc)

{
int i
double df, dx, f, rtn;

rtn = 0.5 x (x1 + x2); // initial guess
for(j = 0; j < max_iterations; j++) {
(*funcd) (rtn, &f, &df);
dx = f/df;
rtn -= dx;

if((x1 - rtn) * (rtn - x2) < 0.0) {
cout << "\n\nError in function newtonraphson:" << endl ;
cout << "Jump out of interval bracket" << endl;
}
if (fabs(dx) < xacc) return rtn;
}
cout << "Error in function newtonraphson:" << endl;
cout << "Too many iterations!" << endl;
}

// End: function newtonraphson

We transfer again the lower and upper limit of the intervaévehwe seek the solutiofx;, 23] and the variable
xacc. Firthermore, it transfers a pointer to the name of the giueiction throughioubtle (xfunc) (double).

5.5 The secant method and other methods

For functions that are smooth near a root, the methods knegpectively as false position (or regula falsi)
and secant method generally converge faster than biselstibslower than Newton-Raphson. In both of
these methods the function is assumed to be approximatelgrlin the local region of interest, and the next
improvement in the root is taken as the point where the apprating line crosses the axis.
The algorithm for obtaining the solution for the secant mdtts rather simple. We start with the definition
of the derivative
f(xn) = f(xn-1)

f/(xn) - Tn — Tn—1

and combine it with the iterative expression of Newton-Rapts

oy = 1y — L)
n n fl(xn),
to obtain
Tn — Tn—1
Tnt1 = Tn — fxn) <f(9€n) — f(fn—1)> , (5.37)

which we rewrite to ) £ )
Tn)Tn—1 — Tn—1)Tn
Tyl = ) 5.38
T ) — F@n) 5:39)
This is the secant formula, implying that we are drawing aight line from the poin{z,,_1, f(2,-1)) to
(n, f(zy)). Where it crosses the — axis we have the new point, ;. This is illustrated in Fid5I3.
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Figure 5.3: Plot off (F) Eq. [&38) as function of energy |E|. The pairis determined by where the straight
line from (a, f(a)) to (b, f(b)) crosses the — axis.

In the numerical implementation found in the program ligréine quantities:,,—1, x,,, z,+1 are changed
to a, b andc respectively, i.e., we determingby the point where a straight line from the poiat f(a)) to
(b, f()) crosses the — axis, thatis

(5.39)

We then see clearly the difference between the bisectiohadednd the secant method. The convergence
criterion for the secant method is

lent1| = Alen|®, (5.40)

with o =~ 1.62. The convergence is better than linear, but not as good asddeRaphson’s method which
converges quadratically.

While the secant method formally converges faster tharcbi@e one finds in practice pathological func-
tions for which bisection converges more rapidly. These archoppy, discontinuous functions, or even
smooth functions if the second derivative changes shamgydy the root. Bisection always halves the interval,
while the secant method can sometimes spend many cyclely glaliing distant bounds closer to a root. We
illustrate the weakness of this method in [Eig] 5.4 where vasvshe results of the first three iterations, i.e., the
first point isc = x1, the next iteration gives = x5 while the third iterations ends with= x3. We may risk
that one of the endpoints is kept fixed while the other one shayly converges to the desired solution.

The search for the solutionproceeds in much of the same fashion as for the bisectionadetamely
after each iteration one of the previous boundary pointddsatdded in favor of the latest estimate of the
root. A variation of the secant method is the so-called falsstion method (regula falsi from Latin) where
the interval [a,b] is chosen so th#ta)f(b) < 0, else there is no solution. This is rather similar to the
bisection method. Another possibility is to determine ttertgng point for the iterative search using three
points(a, f(a)), (b, f(b)) and(c, f(c)). One can use Lagrange’s interpolation formula for a polyiabreee
the discussion in the next chapter. This procedure leadsant® method.
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Figure 5.4: Plot off (z) = 252% — 22/2 — 2. The various straight lines correspond to the determinaifo
the pointc after each iterationc is determined by where the straight line frdm f(a)) to (b, f(b)) crosses
thex — axis. Here we have chosen three valuesdor, o andxzs which refer to the first, second and third
iterations respectively.

5.6 Exercises and projects

Exercise 5.1: Comparison of methods

Write a code which implements the bisection method, NewRaphson’s method and the secant method.
Find the positive roots of
x? —4dzsinx + (2sinz)? = 0,

using these three methods and compare the achieved acourabgr of iterations needed to find the solution.
Give a critical discussion of the methods.

Project 5.1: Schrodinger’s equation

We are going to study the solution of the Schrédinger eqond&k) for a system with a neutron and proton
(the deuteron) moving in a simple box potential.

We begin our discussion of the SE with the neutron-protont@ten) system with a box potentil(r).
We define the radial part of the wave functiBir) and introduce the definitiom(r) = » R(R) The radial part
of the SE for two patrticles in their center-of-mass systeahwith orbital momentuni = 0 is then

h? d?
D V) = Bulr),
with
_ o MpMn
- Tmy +my,

wherem,, andm,, are the masses of the proton and neutron, respectively. @/aarem = 938 MeV. Our
potential is defined as

Vo 0<r<a
V(T):{ 00 r>a
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Bound states correspond to negative endrfggnd scattering states are given by positive energies. The SE
takes the form (without specifying the sign b}

d*u(r) m
e —i—ﬁ(Vo—i—E)u(r) =0 r<a,

and Eu(r)

u\r m

s + ﬁEu(r) =0 r>a.
We are now going to search for eventual bound states A.e<, 0. The deuteron has only one bound state at
energyF = —2.223 MeV. Discuss the boundary conditions on the wave functich@se these to show that
the solution to the SE is

u(r) = Asin(kr) r<a,
and

u(r) = Bexp (—fr) r > a,

whereA and B are constants. We have also defined

k= \% m(VO - |E|)/ha

and

B =+/m|E|/h.
Show then, using the continuity requirement on the wavetfandhat atr = a you obtain the transcendental
equation

kcot(ka) = —p. (5.41)

Insert values of;, = 60 MeV anda = 1.45 fm (1 fm = 10~'®> m) and make a plot plotting programs) of
Eq. (&41) as function of energy in order to find eventual eigenvalues. See if these valuestiesa bound
state forE.

When you have localized on your plot the point(s) where E@pis satisfied, obtain a numerical value
for E using Newton-Raphson’s method, the bisection method amddhant method. Make an analysis of
these three methods and discuss how many iterations arecheefind a stable solution.

What is smallest possible value & which gives a bound state?
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Chapter 6

Linear algebra

In the training of programming for scientific computatioe #ftmphasis has historically been on
squeezing out every drop of floating point performance foivargalgorithm. ...... This practice,
however, leads to highly tuned racecarlike software codeticate, easily broken and difficult
to maintain, but capable of outperforming more user-frigridmily cars. Smith, Bjorstad and
Gropp, An introduction to MPI [16]

6.1 Introduction

In this chapter we deal with basic matrix operations, sucthassolution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution oééinequations is an important part of numerical
mathematics and arises in many applications in the scierttex®e we focus in particular on so-called direct
or elimination methods, which are in principle determinebugh a finite number of arithmetic operations.
Iterative methods will be discussed in connection with eigéue problems in chaptér 7.

This chapter serves also the purpose of introducing impbptagramming details such as handling mem-
ory allocation for matrices and the usage of the librariegctviiollow these lectures. Classes and pertinent
programming aspects are relegated to the appendix.

The algorithms we describe and their original source codeta&ken from the widely used software pack-
age LAPACK [27], which follows two other popular packages@eped in the 1970s, namely EISPACK and
LINPACK. The latter was developed for linear equations aeabst square problems while the former was de-
veloped for solving symmetric, unsymmetric and generdleigenvalue problems. From LAPACK’s website
http://www.netlib.orgitis possible to download for free all source codes fromlibimry. Both C++and
Fortran versions are available. Another important libiagLAS [28], which stands for Basic Linear Algebra
Subprogram. It contains efficient codes for algebraic apmra on vectors, matrices and vectors and matrices.
Basically all modern supercomputer include this librarithvefficient algorithms. Else, Matlab offers a very
efficient programming environment for dealing with matsc&he classic text from where we have taken most
of the formalism exposed here is the book on matrix compriatby Golub and Van Loan [29]. Good recent
introductory texts are Kincaid and Cheney [24] and Dattd.[3®r more advanced ones see Trefethen and
Bau Il [31], Kress [25] and Demmel [32]. Ref. [29] contains axtensive list of textbooks on eigenvalue
problems and linear algebra. LAPACK [27] contains also esitee listings to the research literature on matrix
computations. For the introduction of the auxiliary libr&litz++ [33], which allows for a very efficient way
of handling arrays in C++ we refer to the online manuaitatp: //www.oonumerics.orgland the appendix.
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6.2 Mathematical intermezzo

The matrices we will deal with are primarily square real systmc or hermitian ones, assuming thereby that
ann x n matrix A € R"<" for a real matrill andA € C"*" fora complex matrix. For the sake of simplicity,
we take a matrixA € R**4 and a corresponding identity matiix

a1l a2 a1z a4
a1 a2 a2 a24
A= 3 I=
az1 as2 33 a4
(41 Q42 Q43 A44

(6.1)

S O O =
o O = O
o~ OO
= O O O

wherea;; € R. The inverse of a matrix, if it exists, is defined by
A1 A=T.

In the following discussion, matrices are always two-disienal arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced talpiletters such a& to represent a general matrix,
which is a two-dimensional array, whitg; refers to a matrix element with row numbiesind column number
4. Similarly, a vector being a one-dimensional array, is lieioex and represented as (for a real vector)

x1
Z2

x € R" «— ,
3

T4

with pertinent vector elements € R. Note that this notation implies; € R**! and that the members af
are column vectors. The elementsipfe R'** are row vectors.
Tabld6.2 lists some essential features of various typestices one may encounter. Some of the matrices

Table 6.1: Matrix properties

Relations Name matrix elements

A=AT symmetric ai; = aj;

A= (AT)_1 real orthogonal >, aixajr = >, akiar; = 6i;
A=A real matrix aij = aj;

A=At hermitian ai; = aj;

A= (AT)f1 unitary Dok Gik@ = Dk OhiOkj = i

we will encounter are listed here
1. Diagonal ifa;; = 0 for i # j,

2. Upper triangular iti;; = 0 for ¢ > j, which for a4 x 4 matrix is of the form

a1 a2 a13 a4
0 azx a3 any
0 0 a3 as
0 0 0  ann

1A reminder on mathematical symbols may be appropriate fdre symbolRR is the set of real numbers. Correspondingly,Z and
C represent the set of natural, integer and complex numbespectively. A symbol likéR™ stands for am-dimensional real Euclidean
space, while”[a, b] is the space of real or complex-valued continuous funct@mnthe intervala, b], where the latter is a closed interval.
Similalry, C™[a, b] is the space ofn-times continuously differentiable functions on the int#fa, b]. For more symbols and notations,
see the main text.
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3. Lower triangular ifa;; = 0 fori < j

ail 0 0
as1 azx 0

o O O

azy agz2 ass
Q41 Q42 A43 QA44

4. Upper Hessenberg if;; = 0 for ¢ > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row

ailr ai2 aiz a4
Ga21 @G22 Q23 (24
0 a3 aszz as
0 0 43 Q44

5. Lower Hessenbergif;; = 0fori < j+1

ail ai12 0 0
asy aze azz 0
asy Gzz2 asz  as4
aq1 (42 Q43 Q44

6. Tridiagonalifa;; = 0 for |i — j| > 1

ail ai12 0 0

az1 az azz O
0 a3 a3z as
0 0 43 Q44

There are many more examples, such as lower banded with f@thdwfor a,; = 0 for ¢ > j + p, upper
banded with bandwidth for a;; = 0 for i < j + p, block upper triangular, block lower triangular etc.
For a realh x n matrix A the following properties are all equivalent

1. If the inverse ofA exists,A is nonsingular.
2. The equatio’Ax = 0 impliesx = 0.
3. The rows ofA form a basis oRR™.
4. The columns oA form a basis oR".
5. A is a product of elementary matrices.
6. 0 is not an eigenvalue A.
The basic matrix operations that we will deal with are additind subtraction
A =B+ C = ay = by £y, (6.2)

scalar-matrix multiplication
A= ’}/B = Q;; = 'Ybija

vector-matrix multiplication

y=Ax =y, = Zaijxj, (6.3)
j=1
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matrix-matrix multiplication

A=BC=a;=> bick, (6.4)
k=1
transposition
A= BT — Qj; = bji,

and if A € C™*™, conjugation results in
—T —
A=B — Q5 = bji7

where a variable = x — 1y denotes the complex conjugate 0f= x + 1. In a similar way we have the
following basic vector operations, namely addition andtsadiion

X=ytz=—=uz, =y 2z,

scalar-vector multiplication
X =Y = &i = VYi,

vector-vector multiplication (called Hadamard multiglion)
X =YZ — T; = VY;Z,
the inner or so-called dot product

c=ylz=—=c= Zyjzj, (6.5)

Jj=1
with ¢ a constant and the outer product, which yields a matrix,

A=yl — Qij = YiZj, (6.6)
Other important operations are vector and matrix norms.a&<bf vector norms are the so-calledorms
[xllp = (z2]? + Ja2l? + - + [2al?),
wherep > 1. The most important are the 1, 2 angdnorms given by
[l = faa] + [wa] + - - + [aal,

1 1
/|2 = (Jz1|* + |z + -+ + |2 ]?)? = (x"x) 7,

and
|[x[[oo = max [,

for 1 < i < n. From these definitions, one can derive several importdatioas, of which the so-called
Cauchy-Schwartz inequality is of great importance for malgprithms. For ank andy being real-valued or
complex-valued quantities, the inner product space segisfi

"yl < llxll2llyll2,

and the equality is obeyed onlyxif andy are linearly dependent. An important relation which foltofkom
the Cauchy-Schwartz relation is the famous triangle mativhich states that for aryy andy in a real or
complex, the inner product space satisfies

b+ ylla < [Ix[l2 + [lyll2-

Proofs can be found in for example Ref. [29]. As discussechapte®, the analysis of the relative error is
important in our studies of loss of numerical precision.ridgsa vector norm we can define the relative error
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for the machine representation of a vectorWWe assume that/(x) € R" is the machine representation of a
vectorx € R™. If x # 0, we define the relative error as

Using theco-norm one can define a relative error that can be translatedistatement on the correct signifi-
cant digits off1(x),
||fl(x) B X||OO ~ 10—l’
1[0
where the largest component ff{(x) has roughly correct significant digits.
We can define similar matrix norms as well. The most freqyarged are the Frobenius norm

and thep-norms

1Allp =

assuming thak # 0. We refer the reader to the text of Golub and Van Loan [29] féurther discussion of
these norms.

The way we implement these operations will be discussed\bels it depends on the programming lan-
guage we opt for.

6.3 Programming details

Many programming problems arise from improper treatmeraredys. In this section we will discuss some
important points such as array declaration, memory allocand array transfer between functions. We dis-
tinguish between two cases: (a) array declarations wherarttay size is given at compilation time, and (b)
where the array size is determined during the executionegptbgram, so-called dymanic memory allocation.
Useful references on C++ programming details, in particaiathe use of pointers and memory allocation,
are Reek’s text [34] on pointers in C, Berryhill's monogrdBB] on scientific programming in C++ and fi-
nally Franek’s text [36] on memory as a programming concef iand C++. Good allround texts on C++
programming in engineering and science are the books bydfoit9] and Barton and Nackman [20]. See
also the online lecture notes on C+4hdttp: //heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we
recommend the online lecturestettp://folk.uio.no/gunnarw/INF-VERK4820. These web pages con-
tain extensive references to other C++ and Fortran ressuBmeth web pages contain enough material, lecture
notes and exercises, in order to serve as material for ovaiestu

6.3.1 Declaration of fixed-sized vectors and matrices

Table[62 presents a small program which treats essengifrfes of vector and matrix handling where the
dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compksrves memory to store five
integers. The elements are vec[0], vec[1].....,vec[4]teNbat the numbering of elements starts with zero.
Declarations of other data types are similar, includingddtire data.

The symbol vec is an element in memory containing the addoetbe first element vec[0] and is a pointer
to a vector of five integer elements.
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SEGMENTATION
FAULT.

Figure 6.1: Segmentation fault, again and again! Alas,ighéssituation you must likely will end up in, unless
you initialize, access, allocate and deallocate proparly arrays. Many program development environments
such as Dev C++ adww.bloodshed. netl provide debugging possibilities. Beware however thatedheay

be segmentation errors which occur due to errors in libsasfehe operating system. (Drawing: courtesy by
Victoria Popsueva 2003.)

154


www.bloodshed.net

6.3 — Programming details

In line b we have a standard fixed-size C++ declaration of a matrix.irAtiee elements start with zero,
matr[0][0], matr[O][1], ....., matr[0][4], matr[1][O],.. . This sequence of elements also shows how data are
stored in memory. For example, the element matr[1][0] feamatr[0][4]. This is important in order to
produce an efficient code and avoid memory stride.

There is one further important point concerning matrix deaion. In a similar way as for the symhac
matr is an element in memory which contains an address to a veftiore® elements, but now these elements
are not integers. Each element is a vector of five integeris.ithe correct way to understand the declaration
in line b. With respect to pointers this means that magraster-to-a-pointer-to-an-integ&hich we can write
xxmatr. Furthermorematr isa-pointer-to-a-pointeof five integers. This interpretation is important when we
want to transfer vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). Todpecific, we transfer the addresses of
vec[] and matr[][] to sub_1().

Table 6.2: Matrix handling program where arrays are definedmpilation time

int main()

{
int k,m, row = 3, col = 5;
int vec[5]; /I line a
int matr[3][5]; /I 'line b
for(k = 0; k < col; k++) vec[k] = k; /I data into vector[]
for(m =0; m< row; m++) { /I data into matr[][]

for(k = 0; k < col ; k++) matr[m][k] = m + 10« k;

}
printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("*vector[%d] = %d "k, vec[K]);
printf(*\n\nMatrix data in main():");

for(m =0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++)

printf("matr[%sd][[%d] = %d ",m,kmatr[m][k]);

}
}
printf("\n");
sub_1(row, col, vec, matr); /Il 'line ¢
return O;

} /I End: function main()

void sub_1{nt row, int col, int vec[], int matr[][5]) /I line d
{

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector[%d] = %d "k, vec[k]);
printf("\n\nMatrix data in sub_1():");
for(m =0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++) {
printf("matr[%d][[%d] = %d ",m,k, matr[m][K]);
}

}
printf("\n");
1 J/ Fnd: function sub 1()

In line d we have the function definition of sub_1(). Tim vec[] is a pointer to an integer. Alternatively
we could writeint xvec. The first version is better. It shows that it is a vectaseferal integers, but not how
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many. The second version could equally well be used to teatisé address to a single integer element. Such
a declaration does not distinguish between the two cases.

The next definition isnt matr[][5]. This is a pointer to a vector of five elements ane tompiler must be
told that each vector element contains five integers. Hewmdtamative version could be intifiatr)[5] which
clearly specifies that matr is a pointer to a vector of fivegets.

There is at least one drawback with such a matrix declaratibwe want to change the dimension of
the matrix and replace 5 by something else we have to do the shange in all functions where this matrix
occurs.

There is another point to note regarding the declaratioragfbles in a function which includes vectors
and matrices. When the execution of a function terminakbesitemory required for the variables is released.
In the present case memory for all variables in main() arervesl during the whole program execution, but
variables which are declared in sub_1() are released wigeexttcution returns to main().

6.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size deadaraf vectors and matrices before compilation is
in many cases bad. You may not know beforehand the actuadigatkesizes of vectors and matrices. In large
projects where memory is a limited factor it could be impott® reduce memory requirement for matrices
which are not used any more. In C an C++ it is possible and camtmpostpone size declarations of arrays
untill you really know what you need and also release memesgnvations when it is not needed any more.
The details are shown in Taldleb.3.

In line awe declare a pointer to an integer which later will be useddoesan address to the first element
of a vector. Similarilyline b declares a pointer-to-a-pointer which will contain the redd to a pointer of row
vectors, each with col integers. This will then become a ixatith dimensionality [col][col]

In line c we read in the size of vec[] and matr[][] through the numbers and col.

Next we reserve memory for the vectorline d. In line e we use a user-defined function to reserve
necessary memory for matrix[row][col] and again matr corgaghe address to the reserved memory location.
The remaining part of the function main() are as in the presicase down tbne f. Here we have a call
to a user-defined function which releases the reserved myeaidhe matrix. In this case this is not done

automatically.

In line g the same procedure is performed for vec[]. In this case #redsird C++ library has the necessary
function.

Next, inline h an important difference from the previous case occurst,Rhe vector declaration is the
same, but the matr declaration is quite different. The gpwading parameter in the call to sub_1[]iime g
is a double pointer. Consequently, mattiire h must be a double pointer.

Except for this difference sub_1() is the same as before. nEwefeature in TablEG.3 is the call to the
user-defined functionsiatrix andfree_matrix. These functions are defined in the library filecpp. The
code for the dynamic memory allocation is given below.

http://www.fys.ulo.no/compphys/cp/programs/FYS3150/cpp/cpluspluslibrary/Llib.cpp

/%
* The function
* void xxmatrix()
* reserves dynamic memory for a two-dimensional matrix
* using the C++ command new . No initialization of the elements.
* Input data:
* int row - number of rows
* int col - number of columns
* int num_bytes- number of bytes for each
* element
* Returns a void x*pointer to the reserved memory location.
*/
void sxmatrix(int row, int col, int num_bytes)
{
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Table 6.3: Matrix handling program with dynamic array adition.

int main()

{
int xvec;
int xxmatr;

}

int m, k, row, col, total = 0;

printf("\n\nRead in number of rows = ");
scanf('sd" ,&row);

printf("\n\nRead in number of column = ");
scanf('sd", &col);

vec =new int [col];

matr = (nt xx)matrix(row, col,sizeofint));
for(k = 0; k < col; k++) vec[k] = k;

for(m =0; m< row; m++) {

for(k = 0; k < col; k++) matr[m][k] = m + 10x k;

}
printf("\n\nVector data in main():\n");

/I line a
/I line b

/I line ¢

/I line d

/I 'line e

/I store data in vector[]
/I store data in array[][]

/I print vector data

for(k = 0; k < col; k++) printf(*vector[%d] = %d " k,veclK]);

printf("\n\nArray data in main():");
for(m = 0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matrix[%d] [[%d] = %d ",m, k, matr[m][k]);

}

}
printf("\n");
for(m = 0; m< row; m++) {
for(k = 0; k < col; k++) total += matr[m][K];
}
printf("\n\nTotal = %d\n",total);
sub_1(row, col, vec, matr);
free_matrix(¢oid *x)matr);
delete[] vec;
return O;
/I End: function main()

void sub_1{nt row, int col, int vec[], int «xmatr)

{

}

int k,m;

printf("\n\nVector data in sub_1():\n");

/I access the array

/I line f
/I line g

/I line h

/I print vector data

for(k = 0; k < col; k++) printf("vector[%d] = %d "k, vec[k]);

printf("\n\nMatrix data in sub_1():");
for(m =0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matrix[%d][[%d] = %d ",m,kmatr[m][k]);

}
}
printf("\n");
/I End- function sub 1()
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int i, num;
char  sxpointer, x*ptr;

pointer = new(nothrow) charx [row];

if(!pointer) {
cout << "Exception handling: Memory allocation failed";
cout << " for "<< row << "row addresses !" << endl;
return NULL;

}

i = (row *x col * num_bytes)/sizeof(char);

pointer[@] = new(nothrow) char [i];

if(!pointer[0]) {
cout << "Exception handling: Memory allocation failed";
cout << " for address to " << i << " characters !" << endl;
return NULL;

}

ptr = pointer[0];

num = col * num_bytes;

for(i = 0; i < row; i++, ptr += num ) {
pointer[i] = ptr;

}

return (void x*x)pointer;

} // end: function void **matrix()

As an alternative, you could write your own allocation andliiteation of matrices. This can be done
rather straightforwardly with the following statementsedall first that a matrix is represented by a double
pointer that points to a contiguous memory segment holdsepaience of double* pointers in case our matrix
is a double precision variable. Then each double* pointémntpdo a row in the matrix. A declaration like
doublexxA; means that A is a pointer to the + 1-th row A[i] and A:][;] is matrix entry(i, 7). The way we
would allocate memory for such a matrix of dimensionality n is for example using the following piece of
code

int n;
double *x A;

A = new doublex[n]
for (i =0; i <n; i++)
Ali] new double[N];

When we declare a matrix (a two-dimensional array) we must dieclare an array of double variables. To
each of this variables we assign an allocation of a singieedsional array. A conceptual picture on how a
matrix A is stored in memory is shown in Fig_5.2.

Allocated memory should always be deleted when it is no lomgeded. We free memory using the
statements

for (i =0; i <n; i++)
delete[] A[il;
delete[] A;

delete[]A;, Which frees an array of pointers to matrix rows.
However, including a library like Blitz+http://www.oonumerics.org makes life much easier when
dealing with matrices. This is discussed in the appendix.

6.3.3 Matrix operations and C++ and Fortran features of matnandling

Many program libraries for scientific computing are writt@nFortran, often also in older version such as
Fortran 77. When using functions from such program libsarikere are some differences between C++ and
Fortran encoding of matrices and vectors worth noticingreHire some simple guidelines in order to avoid
some of the most common pitfalls.
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double * xA = double x A[0. .. 3]
Al0] A[OJ[O] | A[OJ[] | Af0][2]| Afo][3]
All] ALJ[OT| A[L[A]| A[L[2]| A[1][3]
Al2] ALJ[OT | ARJ[1]| A[21[2]| A[2][3]
Al2] ABJ[OT| ABI[1]| A[3][2]| A[3][3]

Figure 6.2: Conceptual representation of the allocatica mfatrix in C++.

First of all, when we think of am x n matrix in Fortran and C++, we typically would have a mentatypie
of a two-dimensional block of stored numbers. The computmes them however as sequential strings of
numbers. The latter could be stored as row-major order ameotmajor order. What do we mean by that?
Recalling that for our matrix elements;, ¢ refers to rows ang to columns, we could store a matrix in the
sequenceyiais ... a1,a21022 . . - Aoy, - - . Gny i it iS row-major order (we go along a given roinand pick up
all column elementg) or it could be stored in column-major order as; . . . a,1a12022 . .. Ap2 - . . App-

Fortran stores matrices in the latter way, i.e., by colunajem while C++ stores them by row-major. It
is crucial to keep this in mind when we are dealing with masijdecause if we were to organize the matrix
elements in the wrong way, important properties like thedpmse of a real matrix or the inverse can be
wrong, and obviously yield wrong physics. Fortran subgsijegin typically withl, although it is no problem
in starting with zero, while C++ starts with for the first element. This means thaf1,1) in Fortran is
equivalent toA[0][0] in C++. Moreover, since the sequential storage in memorynsézat nearby matrix
elements are close to each other in the memory locationst(e@neby easier to fetch) , operations involving
e.g., additions of matrices may take more time if we do nqieesthe given ordering.

To see this, consider the following coding of matrix additio C++ and Fortran. We have x n matrices
A, B andC and we wish to evaluatA = B + C according to Eq[{6]2). In C++ this would be coded like

for(i=0 ; i < n ; i++) {
for(j=0 ; j <n; j++) {
alil[jl=b[i]1[j]l+c[i][]]
}
}

while in Fortran we would have

DO j=1, n
DO i=1, n

159



Linear algebra

a1 a11 a2 a3 11
a2 21 22 23 21
— =
ai3 a31 32 a33 a3
21 a12
22 22
ao3 a32
as1 a3
asz2 23
as3 ass

Figure 6.3: Row-major storage of a matrix to the left (C++ Jvayd column-major to the right (Fortran way).

a(i,j)=b(i,j)+c(i,j)
ENDDO
ENDDO

Fig.[6:3 shows how & x 3 matrix A is stored in both row-major and column-major ways.

Interchanging the order afand; can lead to a considerable enhancement in process time rtiafrove
write the above statements in a much simpler wayc. However, the addition still involves n? operations.
Matrix multiplication or taking the inverse requiresn? operations. The matrix multiplication of EG._{5.4) of
two matricesA = BC could then take the following form in C++

for(i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
for(k=0 ; k < n ; k++) {
alil[jl+=bli]l[k]*c[k][j]
}
}
}
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and in Fortran we have

DO j=1, n
DO i=1, n
DO k =1, n
a(i,j)=a(i,j)+b(i,k)=*c(k,j)
ENDDO
ENDDO
ENDDO

However, Fortran has an intrisic function called MATMUL,cathe above three loops can be coded in a
single statemeni=MATMUL (b, c). Fortran contains several array manipulation statemsuats) as dot product of
vectors, the transpose of a matrix etc etc. The outer praxfuaio vectors is however not included in Fortran.
The coding of Eq.[(G]6) takes then the following form in C++

for(i=0 ; i < n ; i++) {
for(j=0 ; j < n; j++) {
alil[jl+=x[il*y[jl
}
}

and in Fortran we have

DO j=1, n
DO i=1, n
a(i,j)=a(i,j)+x(j)*y(1)
ENDDO
ENDDO

A matrix-matrix multiplication of a general x n matrix with
a(i, j) = a(i, j) + b(i, k) * c(k, j),

in its inner loops requires a multiplication and an additigve define now a flop (floating point operation) as
one of the following floating point arithmetic operationi a&ddition, subtraction, multiplication and division.
The above two floating point operations (flops) are deh@#mes meaning that a general matrix multiplication
require2n? flops if we have a square matrix. If we assume that our competéorms10° flops per second,
then to perform a matrix multiplication of B000 x 1000 case should take two seconds. This can be reduced
if we multiply two matrices which are upper triangular sush a

air a2 a3 a4
0 a2 a3 ao
0 0 aszs Qas4
0 0 0 Q44

The multiplication of two upper triangular matricBC yields another upper triangular mate, resulting in
the following C++ code

for(i=0 ; i < n ; i++) {
for(j=i ; j <n; j++) {
for(k=i ; k < j ; k++) {
alil[jl+=bli][K]*c[k][j]
}
}
}

The fact that we have the constraint j leads to the requirement for the computatiomgfof 2(j — i + 1)
flops. The total number of flops is then

n n ' ‘ n n—i+1 . n2 _,+12
DRIEEDESIPIET P S

=1 j=1 =1 j=1 i=1
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where we used thaC_, j = n(n+1)/2 ~ n?/2 for largen values. Using in addition thaT”_, j* ~ n®/3

for largen values, we end up with approximatety /3 flops for the multiplication of two upper triangular
matrices. This means that if we deal with matrix multiplioatof upper triangular matrices, we reduce the
number of flops by a factor six if we code our matrix multiptioa in an efficient way.

Itis also important to keep in mind that computers are fimite can thus not store infinitely large matrices.
To calculate the space needed in memory fonax n matrix with double precision, 64 bits or 8 bytes for
every matrix element, one needs simply computen x 8 bytes . Thus, ifx = 10000, we will need close to
1GB of storage. Decreasing the precision to single pratisioly halves our needs.

A further point we would like to stress, is that one should engral avoid fixed (at compilation time)
dimensions of matrices. That is, one could always spec#ydtgiven matrixA should have sizel[100][100],
while in the actual execution one may use oAl 0][10]. If one has several such matrices, one may run out of
memory, while the actual processing of the program doesmalyithat. Thus, we will always recommend that
you use dynamic memory allocation, and deallocation ofyarrehen they are no longer needed. In Fortran
one uses the intrisic functiodd LOCATE andDEALLOCATE , while C++ employs the functionrsewand
delete

Fortran allocate statement and mathematical operations orarrays

An array is declared in the declaration section of a progmawgule, or procedure using the dimension at-
tribute. Examples include

REAL, DIMENSION (10) :: X,y

REAL, DIMENSION (1:10) :: X,y
INTEGER, DIMENSION (-10:10) :: prob
INTEGER, DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For tb&spn the first two statements are equivalent to
the first. The lower bound of an array can be negative. Théasstatements are examples of two-dimensional
arrays.

Rather than assigning each array element explicitly, weusagnan array constructor to give an array a set
of values. An array constructor is a one-dimensional listadfies, separated by commas, and delimited by "(/"
and "/)". An example is

a(l:3) = (/ 2.0, -3.0, -4.0 /)

is equivalent to the separate assignments

a(l) = 2.0
a(2)

a(3)

-3.0
-4.0

One of the better features of Fortran is dynamic storageaiion. That is, the size of an array can be
changed during the execution of the program. To see how thardic allocation works in Fortran, consider
the following simple example where we set up & 4 unity matrix.

IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL, ALLOCATABLE, DIMENSION(:,:) :: unity
! The size of the matrix
INTEGER :: n
! Here we set the dim n=4
n=4
! Allocate now place in memory for the matrix
ALLOCATE ( unity(n,n) )
! all elements are set equal zero
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unity=0.
! setup identity matrix
DO i=1,n
unity(i,i)=1.
ENDDO
DEALLOCATE ( unity)

We always recommend to use the deallocation statemeng i frees space in memory. If the matrix is
transferred to a function from a calling program, one candfer the dimensionality. of that matrix with
the call. Another possibility is to determine the dimensility with the SIZE function. Writing a statement
like n=s1zE(unity,DIM=1) gives the number of rows, while using DIM=2 gives the humldezalumns. Note
however that this involves an extra call to a function. Ifegppenatters, one should avoid such calls.

6.4 Linear Systems

In this section we outline some of the most used algorithnsehee sets of linear equations. These algorithms
are based on Gaussian elimination [25, 29] and will allowousatch several birds with a stone. We will show
how to rewrite a matridA in terms of an upper and a lower triangular matrix, from whigheasily can solve
linear equation, compute the inverse Afand obtain the determinant. We start with Gaussian elinginat
move to the more efficient LU-algorithm, which forms the ls&sir many linear algebra applications, and end
the discussion with special cases such as the Cholesky gesition and linear system of equations with a
tridiagonal matrix.

We begin however with an example which demonstrates theritaipee of being able to solve linear equa-
tions. Suppose we want to solve the following boundary valpgation

d*u(x)
dx?

= f(z,u(x)),

with z € (a,b) and with boundary conditions(a) = u(b) = 0. We assume thaf is a continuous function in
the domainc € (a, b). Since, except the few cases where it is possible to find &aalylutions, we will seek
approximate solutions, we choose to represent the appatiximto the second derivative from the previous
chapter

f/l _ fh _2£02+f—h +O(h2)

We subdivide our intervat € (a, b) into n subintervals by setting, = a + ih, withi =0,1,...,n + 1. The
step size is then given by = (b — a)/(n + 1) with n € N. For the internal grid points = 1,2,...n we
replace the differential operator with the above formukutténg in

o (1) ~ u(x; + h) — 2u(x;) + u(x; — h)’

h2

which we rewrite as

7" Uj4+1 — 2UZ + Uj—j
u, ~ .

7 h2

We can rewrite our original differential equation in ternfsaliscretized equation with approximations to the
derivatives as
C Wi1 — 2ui + Ui

W2 = [, u(z;)),

withi =1,2,...,n. We need to add to this system the two boundary conditidas = uo andu(b) = wy41.
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If we define a matrix

2 -1
-1 2 -1
1 -1 2 -1
A=z
-1 2 -1
-1 2
and the corresponding vectais= (u1, uz, . .., u,)? andf(u) = f(x1, 72, ..., Tn, u1,u2,. .., u,)T we can

rewrite the differential equation including the boundaoyditions as a system of linear equations with a large
number of unknowns
Au = f(u). (6.7)

We assume that the solutienexists and is unique for the exact differential equation,thiat the boundary
value problem has a solution. But the discretization of theva differential equation leads to several questions,
such as how well does the approximate solution resemblextet ene ag — 0, or does a given small value
of h allow us to establish existence and uniqueness of the soluti
Here we specialize to two particular cases. Assume firsthieguinctionf does not depend an(x). Then
our linear equation reduces to
Au=f, (6.8)

which is nothing but a simple linear equation with a tridingbmatrix A. We will solve such a system of
equations in subsecti@n 6.1.3.

If we assume that our boundary value problem is that of a quamhechanical particle confined by a
harmonic oscillator potential, then our functigriakes the form (assuming that all constants- h = w = 1)
f(mi,u(x;)) = —x2u(x;) + 2 u(z;) with X being the eigenvalue. Inserting this into our equation, efine

first a new matrixA as

2 2 1
Rz g2
1 2 2 1
o e —|—1x2 2_? 2 1
— = £ + €T —
A= h® h* 3 h® , (6.9)
1 2 2 1
o +fn_1 s 7,
Rz pz T
which leads to the following eigenvalue problem
2 2 1
RIS S “ “
1 2 2 1
- - R U2 U2
1 2 2 1
— Z_ + x —
hZ h2 3 hZ — 92\
1 2 2 1
S +117n_1 s 7,
—7z 7z + 25, Up, Up,

We will solve this type of equations in chapl@r 7. These lechotes contain however several other examples
of rewriting mathematical expressions into matrix prokseim chaptef}4 we show how a set of linear integral
equation when discretized can be transformed into a simpleixrinversion problem. The specific example
we study in that chapter is the rewriting of Schrodinger'satepn for scattering problems. Other examples of
linear equations will appear in our discussion of ordinargt partial differential equations.

6.4.1 Gaussian elimination

Any discussion on the solution of linear equations shouddt stith Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax =w.
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We assume also that the matk is non-singular and that the matrix elements along the diabgsatisfy
a;; # 0. We discuss later how to handle such cases. In the discuagidimit ourselves again to a matrix
A € R**4 resulting in a set of linear equations of the form

ailp a2 aiz ai4 T1 w1
a21 a2z (23 424 Z2 _ w2
a3l Q32 a33 (34 T3 w3
41 A42 A43 QA44 T4 Wy
or
a11%1 + a12%2 + A13%3 + G144 = W1
2121 + A22%2 + G23%3 + A24T4 = W2
3171 + a32T2 + a33T3 + a34T4 = W3
4171 + Q42T2 + Q43T3 + A44T4 = W4.

The basic idea of Gaussian elimination is to use the firsttimuto eliminate the first unknown, from the
remainingn — 1 equations. Then we use the new second equation to elimimatetond unknown, from
the remaining: — 2 equations. Withn — 1 such eliminations we obtain a so-called upper triangultwfe
equations of the form

bi1x1 + bioxe + bizrs +biars = 1

booxo 4 basxs + boszs = Y2
b3zxz + b3aws = Y3
buazs = ya.

We can solve this system of equations recursively startiogn fz,, (in our caser,) and proceed with what is
called a backward substitution. This process can be exguierathematically as

1 n
xm:—<ym— Z bmkxk> m=n—1n-—2,...,1.

b
mm k=m-+1

To arrive at such an upper triangular system of equationstaréby eliminating the unknowry, for j = 2, n.

We achieve this by multiplying the first equation by /a1; and then subtract the result from tfté equation.

We assume obviously that; # 0 and thatA is not singular. We will come back to this problem below.
Our actualt x 4 example reads after the first operation

ail ai2 a3 a4 T Y1
0 (age — #202) (a9 — “2H3)  (agy — 4214 T2 | _ wy?
0 (asy — ®02)  (ag3 — “243) (a5 — “210) T3 w§2)
0 (ag— 4392) (45— 2280) (g — 20tu) |\ g wi?
or
b11w1 + b1awe + b1z +buursa =

aé%):m + a%)xg + aéi)x4 = wéQ)

s s+l ul?

afé):vg + ag)m + aﬁ)m = wff),

(6.10)

with the new coefficients
blk:a&) k=1,...,n,
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where eaclm&) is equal to the originat; element. The other coefficients are

n @)

@ _ o _ %1%
ajy =a;, — 7(1) g k=2,...,n,
ary

with a new right-hand side given by

@), (1)

1 2 1 a1 Wy .
ylzwg),w§):w§)—7j o j=2,...,n.

ary

We have also sebgl) = wy, the original vector element. We see that the system of unkea;, ..., z, is

transformed into an — 1) x (n — 1) problem.
This step is called forward substitution. Proceeding whtkse substitutions, we obtain the general expres-
sions for the new coefficients

(m) _(m)
(m4+1) _  (m) Aim T . .
A = ay _7ja(m) BLk=m+1...,n,

withm = 1,...,n — 1 and a right-hand side given by
(m)_ (m)

(m+1) _  (m) _ %jm Wm
EE

j=m-+1,...,n.

This set ofn — 1 elimations leads us to Eq.{6110), which is solved by baclssuion. If the arithmetics is
exact and the matrixA is not singular, then the computed answer will be exact. Hewes discussed in the
two preceeding chapters, computer arithmetics is not eXgetwill always have to cope with truncations and
possible losses of precision. Even though the matrix elésreong the diagonal are not zero, numerically
small numbers may appear and subsequent divisions mayddadye numbers, which, if added to a small
number may yield losses of precision. Suppose for examptetlr first division inage — as1a12/a11) results

in —107, that isas; a2 /a11. Assume also thaty, is one. We are then adding” + 1. With single precision
this results inl0?. Already at this stage we see the potential for producingwyresults.

The solution to this set of problems is called pivoting, areddistinguish between partial and full pivoting.
Pivoting means that if small values (especially zeros) gieapon the diagonal we remove them by rearranging
the matrix and vectors by permuting rows and columns. As alsiexample, let us assume that at some stage
during a calculation we have the following set of linear aapres

1 3 4 6 T U1
O 1078 198 19 i) o Y2
0 -91 51 9 zs | | s
O 7 76 541 Tq Ya

The element at row= 2 and columr2 is 10~8 and may cause problems for us in the next forward substitutio
The elemeni = 2, j = 3 is the largest in the second row and the elemient3, j = 2 is the largest in the
third row. The small element can be removed by rearrangiaegdivs and/or columns to bring a larger value
into thei = 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of thetriraand the right-hand side to bring the
numerically largest value in the column onto the diagonat.dur example matrix the largest value of column
two is in element = 3, j = 2 and we interchange rows 2 and 3 to give

1 3 4 6 T U1
0 —91 51 9 o o Y3
0 1078 198 19 s | | e
0 7 76 541 T4 m
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Note that our unknown variables remain in the same order which simplifies the implementatibthis
procedure. The right-hand side vector, however, has begraregged. Partial pivoting may be implemented for
every step of the solution process, or only when the diagatags are sufficiently small as to potentially cause
a problem. Pivoting for every step will lead to smaller esrbeing introduced through numerical inaccuracies,
but the continual reordering will slow down the calculation

The philosophy behind full pivoting is much the same as tledttitd partial pivoting. The main difference
is that the numerically largest value in the column or rowtaoring the value to be replaced. In our example
above the magnitude of element 2, = 3 is the greatest in row 2 or column 2. We could rearrange the
columns in order to bring this element onto the diagonalsTill also entail a rearrangement of the solution
vectorz. The rearranged system becomes, interchanging columnartd/ithree,

1 6 3 4 1 Y1
0 198 10_8 19 T3 o Y2
0 51 —-91 9 To o Y3
0 76 7 541 T4 Yy

The ultimate degree of accuracy can be provided by reamgragith rows and columns so that the numerically
largest value in the submatrix not yet processed is brougfiotthie diagonal. This process may be undertaken
for every step, or only when the value on the diagonal is amred too small relative to the other values in
the matrix. In our case, the matrix element at 4, ;7 = 4 is the largest. We could here interchange rows two
and four and then columns two and four to bring this matrixnadat at the diagonal position= 2, j = 2.
When interchanging columns and rows, one needs to keepdfatkpermutations performed. Partial and full
pivoting are discussed in most texts on numerical lineaglalg. For an in-depth discussion we recommend
again the text of Golub and Van Loan [29], in particular cleaptiree. See also the discussion of chapter two
in Ref. [37]. The library functions you end up using, be it Matlab, the library included with this text or
other ones, do all include pivoting.

If it is not possible to rearrange the columns or rows to reeyero from the diagonal, then the matrix A
is singular and no solution exists.

Gaussian elimination requires however many floating poerations. Am x n matrix requires for the
simultaneous solution of a set efdifferent right-hand sides, a total ef /3 + rn? — n/3 multiplications.
Adding the cost of additions, we end up wizh?3/3 + O(n?) floating point operations, see Kress [25] for a
proof. Ann x n matrix of dimensionalty: = 102 requires, on a modern PC with a processor that allows for
something likel0° floating point operations per second (flops), approximaiakysecond. If you increase the
size of the matrix tex = 10* you need 1000 seconds, or roughly 16 minutes.

Although the direct Gaussian elmination algorithm allovesiyo compute the determinant &f via the
product of the diagonal matrix elements of the triangulatrixgt is seldomly used in normal applications. The
more practical elimination is provided by what is called évand upper decomposition. Once decomposed,
one can use this matrix to solve many other linear systemshaise the same matriX, viz with different
right-hand sides. With an LU decomposed matrix, the numb#oating point operations for solving a set of
linear equations scales &§n2). One should however note that to obtain the LU decompsedxmetjuires
roughlyO(n?) floating point operations. Finally, LU decomposition allfer an efficient computation of the
inverse ofA.

6.4.2 LU decomposition of a matrix

A frequently used form of Gaussian elimination is L(owempér) factorization also known as LU Decom-
position or Crout or Dolittle factorisation. In this seatiove describe how one can decompose a matrix
in terms of a matrix, with elements only below the diagonal (and thereby the ngriawer) and a matrix
U which contains both the diagonal and matrix elements ablwelitagonal (leading to the labelling upper).
Consider again the matrix givenin Eq.[G1l). The LU decomposition method means thataverewrite this
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matrix as the product of two matricésandU where

a1l a2 a1z a4 1 0 0 O Ul U2 U3 U4

B | a1 a2 a3 aq | | lr 1 0 O 0 w22 u23z Uy
A—LU= - . (6.11)

az1 Gs2 033 a34 l31 Ilzz 1 0 0 0  uzz us

a41 Q42 Q43 Q44 lan lap la 1 0 0 0 ua

LU decomposition forms the backbone of other algorithmsénadr algebra, such as the solution of linear
equations given by

1171 + a12T2 + a13T3 + Q1474 = Wy
2121 + a22%2 + A23T3 + A24T4 = W2
a31%1 + a32%2 + A33T3 + A34T4 = W3
04171 + Q42T2 + Q4373 + A44T4 =  W4.

The above set of equations is conveniently solved by usinglétbmposition as an intermediate step, see the
next subsection for more details on how to solve linear égnatvith an LU decomposed matrix.

The matrixA € R™*™ has an LU factorization if the determinant is different fraaro. If the LU
factorization exists and\ is non-singular, then the LU factorization is unique anddaterminant is given by

det{A} = U11U22 ...Unn-

For a proof of this statement, see chapter 3.2 of Ref. [29].
The algorithm for obtainind. andU is actually quite simple. We start always with the first coturin our
simple @ x 4) case we obtain then the following equations for the firsticol

ailr = U1

a1 = larunn
a1 = lIz1un
ag1 = g,

which determine the elemenis;, l1, [31 anduy; in L andU. Writing out the equations for the second column
we get

a2 = U2

azx = lo1uiz + u
azz = Iz1uiz + I32u90
ag2 = lauie + lagugs.

Here the unknowns are, o, us2, I32 andiye which can all be evaluated by means of the results from the
first column and the elements Af Note an important feature. When going from the first to thead column
we do not need any further information from the matrix eletaer,. This is a general property throughout
the whole algorithm. Thus the memory locations for the miatrican be used to store the calculated matrix
elements of. andU. This saves memory.

We can generalize this procedure into three equations

1<j: liauyy +lgugy + -+ Liug = ag
i=J1 lauyy +lougy + -+ liuj; = ayy
7 > _] : l“ulj + Z»L'QUQJ' + -4 lijujj = Q4

which gives the following algorithm:
Calculate the elements InandU columnwise starting with column one. For each colufin

— Compute the first element ; by
Uy = aiy-
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— Next, we calculate all elements;,i =2,...,5 —1

i—1
Uij = Q5 — E liku;-
k=1

— Then calculate the diagonal elemens
Jj—1
ujj = aj; = Lixug. (6.12)
k=1

— Finally, calculate the elementg, i > j

i—1
1
bi = (aij - lik”kj)a (6.13)
k=1

The algorithm is known as Doolittle’s algorithm since thagbnal matrix elements d@f arel. For the case
where the diagonal elementsUfarel, we have what is called Crout's algorithm. For the case where LT
so thatu;; = I;; for 1 < i < n we can use what is called the Cholesky factorization allgoritin this case the
matrix A has to fulfill several features; namely, it should be reals\etric and positive definite. A matrix is
positive definite if the quadratic form” Ax > 0. Establishing this feature is not easy since it implies tse u
of an arbitrary vectok # 0. If the matrix is positive definite and symmetric, its eigalues are always real
and positive. We discuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the caggereu;; is close to or equals zero, a case
which can lead to serious problems. Consider the followingpke 2 x 2 example taken from Ref. [31]

0 1
A(0h),
The algorithm discussed above fails immediately, the fiegh simple states that;; = 0. We could change
slightly the above matrix by replacirtgwith 10~20 resulting in

1072 1
(1)

U1 10720
loy, = 102

yielding

andu, = 1 and
Ugy = ayg — Iz = 1 —10%,

1 0
L_(m?o 1)’

10°2 1
U_( 0 1—1020)’

With the change from 0 to a small number likeé—2° we see that the LU decomposition is now stable, but it is
not backward stable. What do we mean by that? First we notéhanatrixU has an elementy, = 1—10%0,
Numerically, since we do have a limited precision, whichdouble precision is approximatedy; ~ 10716 it
means that this number is approximated in the machingas- —102° resulting in a machine representation

of the matrix as "
10~ 1
U= ( 0 —10%0 ) ’

we obtain

and
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If we multiply the matriced.U we have

1 0 1072 1 1072 1
(1020 1>( 0 —1020)_< 1 0)7£A'

We do not get back the original matri!

The solution is pivoting (interchanging rows in this casejumd the largest element in a columinThen
we are actually decomposing a rowwise permutation of thgireal matrix A. The key point to notice is that
Egs. [6IR) and(6.13) are equal except for the case thatwigeddy u;; in the latter one. The upper limits
are always the same= j — 1(= ¢ — 1). This means that we do not have to choose the diagonal element
as the one which happens to fall along the diagonal in theiffisthnce. Rather, we could promote one of the
undividedi;;’s in the columni = j + 1,... N to become the diagonal &f. The partial pivoting in Crout's
or Doolittle’s methods means then that we choose the lavgdise foru;; (the pivot element) and then do the
divisions by that element. Then we need to keep track of athpéations performed. For the above matAix
it would have sufficed to interchange the two rows and startth decomposition with

1 1
(1)
The error which is done in the LU decomposition ofrarx n matrix if no zero pivots are encountered is
given by, see chapter 3.3 of Ref. [29],
LU=A+H,
with
[H| < 3(n — 1)u (JA| +|L||U]) + O(u?),
with |H| being the absolute value of a matrix ands the error done in representing the matrix elements of the
matrix A as floating points in a machine with a given precisign viz. every matrix element af is

|fl(aij) — aij| < uij,
with |u;;| < e resulting in
|fI(A) — A[ < ulA].
The programs which perform the above described LU decortippsire called as follows

C++; ludcmp(doublexa, int n, intxindx, doublexd)
Fortran: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input titebto be LU decomposed. In C++ this is
given by the double pointekxa. Further, both functions need the size of the matridt returns the variable
d, which is+1 depending on whether we have an even or odd number of roveh@eges, a pointéndax that
records the row permutation which has been effected andthddcomposed matrix. Note that the original
matrix is destroyed.

Cholesky'’s factorization

If the matrix A is real, symmetric and positive definite, then it has a unige#orization (called Cholesky
factorization)
A=LU=LL"

whereLT is the upper matrix, implying that
L}, = Lji.

The algorithm for the Cholesky decomposition is a speciakaz the general LU-decomposition algorithm.
The algorithm of this decomposition is as follows
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— Calculate the diagonal elemehy; by setting up a loop foi = 0toi = n — 1 (C++ indexing of matrices
and vectors)

i1 1/2
Ly = (Aii - Lfk> :
k=0

— within the loop overi, introduce a new loop which goes frogm= i + 1 ton — 1 and calculate
1 1—1
Lji= 7~ <Aij -3 Likzjk> :
2 kZO

For the Cholesky algorithm we have always tligt > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need fongivoti

To decide whether a matrix is positive definite or not needsesoareful analysis. To find criteria for
positive definiteness, one needs two statements from nth&ory, see Golub and Van Loan [29] for examples.
First, the leading principal submatrices of a positive defimatrix are positive definite and non-singular
and secondly a matrix is positive definite if and only if it asLDL” factorization with positive diagonal
elements only in the diagonal matdX. A positive definite matrix has to be symmetric and have onlsifive
eigenvalues.

The easiest way therefore to test whether a matrix is pestt&finite or not is to solve the eigenvalue
problemAx = Ax and check that all eigenvalues are positive.

6.4.3 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a syst# linear equations

1171 + a12T2 + a13T3 + Q1474 = W1
2121 + a22%2 + A23T3 + A24T4 = W2
a3121 + a32%2 + a33T3 + A34T4 = W3
4171 + Q42T2 + Q4373 + A44T4 =  W4.

This can be written in matrix form as
Ax =w.

whereA andw are known and we have to solve for Using the LU dcomposition we write
Ax =LUx =w. (6.14)
This equation can be calculated in two steps
Ly = w; Ux=y. (6.15)
To show that this is correct we use to the LU decompositioe¥arite our system of linear equations as
LUx =w,

and since the determinat &fis equal to 1 (by construction since the diagonal&.afqual 1) we can use the
inverse ofL to obtain
Ux=L"1lw=y,

which yields the intermediate step
Llw=y

and multiplying withL: on both sides we reobtain E@.{6.15). As soon as we lgave can obtairx through
Ux =vy.
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For our four-dimentional example this takes the form

1= w

la1y1 +y2 = we

l3191 +l32y2 +ys = w3

layr +lagyz + lasys +ya = wa.

and
U11T1 + U12X2 + U13T3 + U144 = Y1
U22T2 + U23T3 + U24T4 = Y2
U333 + U34T4 = Y3
U44T4 = Y4

This example shows the basis for the algorithm needed t® dbbks set of: linear equations. The algorithm
goes as follows

— Set up the matriXA and the vectow with their correct dimensions. This determines t
dimensionality of the unknown vectar

— Then LU decompose the matrxthrough a call to the function

C++: ludcmp(double a, int n, int indx, double &d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed ma#jits determinant and the vector indx whic
keeps track of the number of interchanges of rows. If therdetent is zero, the solution is
malconditioned.

— Thereafter you call the function

C++; lubksb(double a, int n, int indx, double w)
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matfixand the vectow and returnx in the same place a
w. Upon exit the original content iw is destroyed. If you wish to keep this information, yo
should make a backup of it in your calling function.

6.4.4 Inverse of a matrix and the determinant

The basic definition of the determinantAfis

det{A} = Z(_l)palm " A2py * 7 Anpy,,
P

where the sum runs over all permutatignef the indicesl, 2, ..., n, altogethem! terms. To calculate the
inverse ofA is a formidable task. Here we have to calcultite complementary cofactal? of each element
a;; which is the(n — 1)determinant obtained by striking out the réwnd columry in which the element;;
appears. The inverse #fis then constructed as the transpose of a matrix with theexlest—)i7/a%. This
involves a calculation of? determinants using the formula above. A simplified methddgsly needed.
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With the LU decomposed matrik in Eq. [6&I1) it is rather easy to find the determinant
det{A} = det{L} x det{U} = det{U},

since the diagonal elementslofequal 1. Thus the determinant can be written

N
det{A} = H Ukk -
k=1

The inverse is slightly more difficult to obtain from the LUatenposition. It is formally defined as
Al=U"'L7L

We use this form since the computation of the inverse goesitir the inverse of the matricesandU. The
reason is that the inverse of a lower (upper) triangular imatralso a lower (upper) triangular matrix. If we
call D for the inverse of, we can determine the matrix elementdothrough the equation

1 0 0 1 0 0 0 1 0 0 0
lby 1 0 0 doy 1 0 0ol [01 00
ls1 I3z 1 0 ds1 d3g2 1 0 o 001 0}’
lygg lag luz 1 dyy dyo dsz 1 0 0 01
which gives the following general algorithm
i—1
dij ==l — Y lindij, (6.16)

k=j+1

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zero.dWe this equation
column by column (increasing order ¢f. In a similar way we can define an equation which gives us the
inverse of the matrixJ, labelledE in the equation below. This contains only non-zero matrgments in the
upper part of the matrix (plus the diagonal ones)

€11 €12 €13 €14 U1l U2 U13 U4 1.0 00
0 ez e23 e 0 woe uez wg | | O 1 0 O
0 0 €33 €34 0 0 Uu3z3 Usg o 0 0 1 0 ’
0 0 0 eq 0 0 0 ugq 0 0 0 1
with the following general equation
-1
1.7
€ij = —— Zeikukj. (6.17)
i k=1

fori < 7.
A calculation of the inverse of a matrix could then be impletee in the following way:

— Set up the matrix to be inverted.
— Call the LU decomposition function.

— Check whether the determinant is zero or not.

— Then solve column by column EqE. (6. [6.6.17).
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The following codes compute the inverse of a matrix usingegiC++ or Fortran as programming languages.
They are both included in the library packages, but we ireltieem explicitely here as well as two distinct
programs. We list first the C++ code

http://www.Ttys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/programl. cpp

/* The function

*% inverse()

*x perform a mtx inversion of the input matrix a[][] with
*x dimension n.

x/
void inverse(double *xa, int n)
{

int i,j, *indx;

double d, xcol, xxy;

// allocate space in memory
indx = new int[n];
col = new double[n];
y = (double *x) matrix(n, n, sizeof(double));
// first we need to LU decompose the matrix
ludcmp(a, n, indx, &d);
// find inverse of a[][] by columns
for(j =0; j < n; j++) {
// initialize right-side of linear equations
for(i =0; 1 < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
// save result in y[][]
for(i =0; i <n; i++) y[i][]j] = coll[i];
}

// return the inverse matrix in a[][]

for(i = 0; i < n; i++) {
for(j = 0; j <n; j++) alillj]l = y[il[jl;
}
free_matrix((void =x) y); // release local memory
delete [] col;
delete []indx;

} // End: function inverse()

We first need to LU decompose the matrix. Thereafter we sobye EE.I6) and{6.17) by using the back
substitution method calling the functidubksb and obtain finally the inverse matrix.
An example of a C++ function which calls this function is atgeen in the program and reads

http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapter@4/cpp/programl.cpp

// Simple matrix inversion example
#include <iostream>

#include <new>

#include <cstdio>

#include <cstdlib>

#include <cmath>

#include <cstring>

#include "lib.h"

using namespace std;
/* function declarations x/
void inverse(double %%, int);

/%
*x This program sets up a simple 3x3 symmetric matrix
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*x and finds its determinant and inverse
*/

int main()
{
int i, j, k, result, n = 3;
double skmatr, sum,
a[31[3] = { {1.0, 3.0, 4.0},
{3.0, 4.0, 6.0},
{4.0, 6.0, 8.0}};
// memory for inverse matrix
matr = (double *x) matrix(n, n, sizeof(double));
// various print statements in the original code are omitted

inverse(matr, n); // calculate and return inverse matrix
return 0;
} // End: function main()

In order to use the program library you need to includdithb file using the#include "lib.h" statement. This
function utilizes the library functiomatrix andfree_matrix to allocate and free memory during execution.
The matrixa[3][3] is set at compilation time. The corresponding Fortran mogfor the inverse of a matrix
reads

http://www.fTys.ulo.no/compphys/cp/programs/FYS3150/190 l1brary/t90Ll1b. 90

!
! Routines to do mtx inversion, from Numerical

! Recipes, Teukolsky et al. Routines included

! below are MATINV, LUDCMP and LUBKSB. See chap 2
! of Numerical Recipes for further details

!

SUBROUTINE matinv(a,n, indx, d)
IMPLICIT NONE

INTEGER, INTENT(IN) :: n
INTEGER :: i, j

REAL (DP), DIMENSION(n,n), INTENT(INOUT) :: a
REAL(DP), ALLOCATABLE :: y(:,:)

REAL(DP) :: d

INTEGER, , INTENT(INOUT) :: indx(n)

ALLOCATE (y( n, n))
y=0.
! setup identity matrix
DO i=1,n
y(i,i)=1.
ENDDO
! LU decompose the matrix just once
CALL lu_decompose(a,n,indx,d)

! Find inverse by columns
DO j=1,n
CALL lu_linear_equation(a,n,indx,y(:,j))
ENDDO
! The original matrix a was destroyed, now we equate it with the inverse y
a=y
DEALLOCATE ( y )

END SUBROUTINE matinv

The Fortran programmatinv receives as input the same variables as the C++ program dsdheafunction
for LU decompositiodu_decomposeand the function to solve sets of linear equatitngdinear_equation.
The program listed under programs/chapter4/programpd@@rms the same action as the C++ listed above.
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In order to compile and link these programs it is convenieniste a so-callechakefile. Examples of these are
found under the same catalogue as the above programs.

Inverse of the Vandermonde matrix

In chapte[B we discussed how to interpolate a funcfiarich is known only ak+1 pointszg, z1, z2, . . ., Tn
with corresponding valueg(xo), f(z1), f(z2),-.., f(zn). The latter is often a typical outcome of a large
scale computation or from an experiment. In most cases indieeices we do not have a closed-form expres-
sion for a functionf. The function is only known at specific points.

We seek a functional form for a functighwhich passes through the above pairs of values

(zo, f(xo))v (w1, f(xl))v (w2, f(xQ))v ooy (T f(xn))

This is normally achieved by expanding the functjt(@) in terms of well-known polynomialg; (x), such as
Legendre, Chebyshev, Laguerre etc. The function is theroappated by a polynomial of degreep,,(x)

n
f@) ~ pa(z) = aidi(x),
=0

wherea; are unknown coefficients angl () are a priori well-known functions. The simplest possibleecis
to assume thap;(z) = ¢, resulting in an approximation

f@)~ao+ a1z + aox’ + -+ apa”.
Our function is known at the poinis+ 1 pointszg, 1, zo, . . ., ,, leading ton + 1 equations of the type

f(z) = ag + a1x; + asx? + - + a,zt.

We can then obtain the unknown coefficients by rewriting aobfem as

1 x x5 ... ... xj ap f(@o)
1 oz a? zh a f(x1)
1 @y 23 ... ... 1B az | _ | [f(=z2)
1 @3 23 ... ... 1% as flzs) |’
1 oz, 22 x5 G f(@n)

an expression which can be rewritten in a more compact form as

Xa =f,
with
2
1 To TE .. ... TG
2
R T /- O
2
X — 1 2 z3 ... ... x§
= 2
1 T3 T3 ... ... T
2 n
1 =z, =z Ty

. This matrix is called a Vandermonde matrix and is by definition-singular since all points are different.
The inverse exists and we can obtain the unknown coefficignitsvertingX, resulting in

a=X"'f.

Although this algorithm for obtaining an interpolating pobmial which approximates our data set looks
very simple, it is an inefficient algorithm since the compiata of the inverse require®(n?) flops. The
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methods we discussed in chafdikr 3, together with splinepiokation discussed in the next section, are much
more effective from a numerical point of view. There is alsother subtle point. Although we have a data set
with n + 1 points, this does not necessarily mean that our funcfiar) is well represented by a polynomial
of degreen. On the contrary, our functiofi(z) may be a parabola (second-ordernin meaning that we have

a large excess of data points. In such cases a least-squara fpline interpolation may be better approaches
to represent the function. Spline interpolation will beatissed in the next section.

6.4.5 Tridiagonal systems of linear equations
We start with the linear set of equations from Hg.{6.8), viz
Au =",

whereA is a tridiagonal matrix which we rewrite as

b1 C1 0
az by 2
a3 bz c3

an—2 bnfl Cn—1
Qp—1 bn

wherea, b, c are one-dimensional arrays of length n. In the example of Eq[{8.8) the arraysandc are
equal, namely; = ¢; = —1/h?. We can rewrite Eq[{6l8) as

bl C1 0 ul fl
an bg Co u2 fg
az by c3

Gp—2 bn— 1 Cn-1
Qp—1 bn Unp fn

A tridiagonal matrix is a special form of banded matrix whalléhe elements are zero except for those on and
immediately above and below the leading diagonal. The atr@iagonal system can be written as

ajui—1 + biu; + ciuir1 = fi,

fori = 1,2,...,n. We see that,_; andu,; are not required and we can sgt = ¢, = 0. In many
applications the matrix is symmetric and we haye= ¢;. The algorithm for solving this set of equations is
rather simple and requires two steps only, a forward suitistit and a backward substitution. These steps are
also common to the algorithms based on Gaussian eliminttairwe discussed previously. However, due to
its simplicity, the number of floating point operations istims case proportional witt)(n) while Gaussian
elimination require2n®/3 + O(n?) floating point operations. In case your system of equatieadd to a
tridiagonal matrix, it is clearly an overkill to employ Gasisn elimination or the standard LU decomposition.
You will encounter several applications involving trid@atal matrices in our discussion of partial differential
equations in chapt€rlLo.

Our algorithm starts with forward substitution with a loogeo of the elementsand can be expressed via
the following piece of code taken from the Numerical Recipd bf Teukolskyet al[37]

btemp = b[1];
u[l] = f[1]/btemp;
for(i=2 ; i <=n ; i++) {
temp[i] = c[i-1]/btemp;
btemp = b[i]-a[i]l*temp[i];
uli] = (f[i] - al[il=*u[i-1])/btemp;
}
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Note that you should avoid cases with= 0. If that is the case, you should rewrite the equations as afset
ordern — 1 with uy eliminated. Finally we perform the backsubstitution lealio the following code

for(i=n-1; i>=1; i--) {
ul[i] -= temp[i+1l]*u[i+1];

}

Note that our sums start with= 1 and that one should avoid cases with= 0. If that is the case, you should
rewrite the equations as a set of order 1 with u, eliminated. However, a tridiagonal matrix problemis not a
guarantee that we can find a solution. The ma&iwhich rephrases a second derivative in a discretized form

2 -1 0 0 0 0
-1 2 -1 0 0 0

-1 2 -1 0 0
-1
0 0 0o -1 2

oo oo
o
o
|
—
)

fulfills the condition of a weak dominance of the diagonathwb, | > |c1], [bn| > |an| @and|bg| > |ak| + |ck]
fork = 2,3,...,n — 1. This is a relevant but not sufficient condition to guarartbee the matrixA yields a
solution to a linear equation problem. The matrix needstalée irreducible. A tridiagonal irreducible matrix
means that all the elementsandc; are non-zero. If these two conditions are present, faés nonsingular
and has a unique LU decomposition.

We can obviously extend our boundary value problem to ireluéirst derivative as well

20u(x u(x
_dda;(a ) Q(I)dd—(a:) ) = 1@,

with z € [a, b] and with boundary conditions(a) = u(b) = 0. We assume thaf, g andh are continuous
functions in the domair € [a, b] and thath(z) > 0. Then the differential equation has a unique solution. We
subdivide our interval: € [a, b] into n subintervals by setting; = a + ih, withi =0,1,...,n+ 1. The step
size is then given byt = (b — a)/(n + 1) with n € N. For the internal grid points= 1,2, ...n we replace
the differential operators with

"o Ui+1 — 2Ui + Uj—;
7 ™ h2 .
for the second derivative while the first derivative is gilsn
’ Uit1 — Uj—q
u, N —.

! 2h
We rewrite our original differential equation in terms ofiaatetized equation as

i1 — 2Ui + Ui DS Skl
h2 T on
withi=1,2,...,n. We need to add to this system the two boundary conditidas = uo andu(b) = w,41.
This equation can again be rewritten as a tridiagonal mptoblem. We leave it as an exercise to the reader
to find the matrix elements, find the conditions for having kiga@ominant diagonal elements and that the
matrix is irreducible.

=+ hyui = fi,

6.5 Spline interpolation

Cubic spline interpolation is among one of the mostly usethods for interpolating between data points
where the arguments are organized as ascending seriese libtéry program we supply such a function,
based on the so-called cubic spline method to be descrided.bEhe linear equation solver we developed in
the previous section for tridiagonal matrices can be refmespline interpolation.

178



6.5 — Spline interpolation

A spline function consists of polynomial pieces defined ohistervals. The different subintervals are
connected via various continuity relations.

Assume we have at our disposak- 1 pointszg, x1, ...z, arrangedsothaty < 21 < 22 < ...z, 1 <
Z,, (such points are called knots). A spline functioof degreet with n + 1 knots is defined as follows

— On every subinterval:; 1, z;) s is a polynomial of degreg k.
— s hask — 1 continuous derivatives in the whole interya}, =, ].

As an example, consider a spline function of dedree 1 defined as follows

so(x) = apx + by x € [xo,x1)
s(z) = s1(2) = a1z + by x € |r1,22) (6.18)

Sp—1(x) = ap_1x+bp_1 T € [Tp_1,2y)

In this case the polynomial consists of series of straigigdiconnected to each other at every endpoint.
The number of continuous derivatives is thHen 1 = 0, as expected when we deal with straight lines. Such a
polynomial is quite easy to construct giver- 1 pointszg, 1, . . . x,, and their corresponding function values.

The most commonly used spline function is the one with 3, the so-called cubic spline function. As-
sume that we have in addition to the+ 1 knots a series of functions valugs= f(xo),y1 = f(z1),...yn =
f(x,). By definition, the polynomials;_; ands; are thence supposed to interpolate the same pgiet,

si—1(xs) = yi = si(®i), (6.19)
with 1 <4 < n — 1. In total we have: polynomials of the type
5i(2) = aio + anx + apr? + azr, (6.20)
yielding 4n coefficients to determine. Every subinterval provides iditoh two conditions
yi = s(xs), (6.21)

and
Yirr = $(Tiv1), (6.22)
to be fulfilled. If we also assume thsattands” are continuous, then
si_1(xi) = s3(xi), (6.23)
yieldsn — 1 conditions. Similarly,
st (x;) = s (), (6.24)

results in additionab — 1 conditions. In total we havén coefficients andn — 2 equations to determine them,
leaving us with2 degrees of freedom to be determined.
Using the last equation we define two values for the secoridadiee, namely

si (i) = fi, (6.25)
and
87 (Tit1) = fiv1, (6.26)
and setting up a straight line betwegrand ;.1 we have
si (x) = L(Iiﬂ —z)+ L(fc - i), (6.27)
Tit1 — X4 Tip1 — T4
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and integrating twice one obtains

fi 3 fix1 5
N B )T 62y — ) T —2;) + d(zip1 — ). 6.28
si(x) 6(zi1 — xi)(x e 6(xip1 — xi)(I 2;)° + (@ — x;) + d(zip1 — @) (6.28)
Using the conditions;(z;) = y; ands;(x;+1) = y:+1 We can in turn determine the constanndd resulting
in

sil@) = s (@i — 2’ + gy (o — @)’
R e L € B (S SO )

How to determine the values of the second derivatjffeand f; 1 ? We use the continuity assumption of
the first derivatives
si_1(xi) = s3(w), (6.30)

and setr = z;. Definingh; = x;+1 — x; we obtain finally the following expression

6

h_—(yi — Yi-1), (6.31)
1—1

6
hi—1fic1 +2(hi + hi1) fi + hifis1 = E(yi—ﬁ-l — i) —

and introducing the shorthands= 2(h; + h;_1), v; = %(yiﬂ —y;)— %(yi —y;—1), we can reformulate
the problem as a set of linear equations to be solved throggh@aussian elemination, namely

Ul h,l 0 . fl U1
hl u9 hg 0 . fg (%)
0 hg us h3 0 e f3 _ V3 (6 32)
0 hn—3 Un—2 hn—2 fn—2 Un—2
0 hn—2 Up—1 fn—l Un—1

Note that this is a set of tridiagonal equations and can beeddhrough onlyO(n) operations. The functions
supplied in the program library as@line andsplint. In order to use cubic spline interpolation you need first
to call

spline(double x[], double y[], int n, double ypl, double yp2, double y2[])

This function takes as inpuf0, .., n — 1] andy|0, .., n — 1] containing a tabulatiop; = f(x;) with zg < 21 <

.. < xn—1 together with the first derivatives ¢f(x) atz, andx,, 1, respectively. Then the function returns
y2[0, ..,n— 1] which contanin the second derivativesfdf:;) at each poink;. n is the number of points. This
function provides the cubic spline interpolation for albgutervals and is called only once. Thereafter, if you
wish to make various interpolations, you need to call thefiom

splint(double x[], double y[], double y2al[l, int n, double x, double xy)

which takes as input the tabulated valugg, .., n — 1] andy|0, .., » — 1] and the output y2a[0,..,n - 1] from
spline. It returns the valug corresponding to the point

6.6 A vector and matrix class

We end this chapter by presenting a class which allows to pedatied one- and two-dimensional arrays. We
first give an example of a function which use the headenfitey . h.
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#include "Array.h"

#include <iostream>
using namespace std;

int main(){

// Create an array with (default) nrows = 1, ncols = 1:
Array<double> v1;

// Redimension the array to have length n:
int nl = 3;
vl.redim(nl);

// Extract the length of the array:
const int length = vl.getLength();

// Create a narray of specific length:
int n2 = 5;
Array<double> v2(n2);

// Create an array as a copy of another one:
Array<double> v5(vl);

// Assign the entries in an array:

v5(0) = 3.0;
v5(1) = 2.5;
v5(2) = 1.0;

for(int i=0; i<3; i++){
cout << v5(i) << endl;

}

// Extract the ith component of an array:
int i = 2;

double value = v5(1);

cout << "value: " << value << endl;

// Set an array equal another one:
Array<double> v6 = Vv5;

for(int i=0; i<3; i++){
vl(i) = 1.0;
v2(i) = 2.0
}

’

// Create a two-dimensional array (matrix):
Array<double> matrix(2, 2);

// Fill the array:
matrix(0,0) = 1;
matrix(0,1) = 2;
matrix(1,0)
matrix(1,1)

3;
4

’

// Get the entries in the array:
cout << "\nMatrix: " << endl;
for(int i=0; i<2; i++){
for(int j=0; j<2; j++){
cout << matrix(i,j) << " ";
}
cout << endl;

}
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// Assign an entry of the matrix to a variable:
double scalar = matrix(0,0);
const double b = matrix(1,1);

Array<double> vector(2);
vector(0) = 1.0;
vector(l) = 2.0;

Array<double> v = vector;
Array<double> A = matrix;
Array<double> u(2);

cout << "\nMatrix: " << endl;
for(int i=0; i<2; i++){
for(int j=0; j<2; j++){
cout << matrix(i,j) << " ";
}
cout << endl;

}

Array<double> a(2,2);
a(l,1) =5.0;

// Arithmetic operations with arrays using a
// syntax close to the mathematical language
Array<double> w = vl + 2.0%v2;

// Create multidimensional matrices and assign values to them:
int N = 3;
Array<double> multiD; multiD.redim(N,N,N);
for(int i=0; i<N; i++){
for(int j=0; j<N; j++){
for(int k=0; k<N; k++){
cout << "multD(i,j,k) = " << multiD(i,j,k) << endl;
}
}
}

multib(1,2,3) = 4.0;
cout << "multiD(1,2,3) = " << multiD(1,2,3) << endl;
}

The header file follows here

#ifndef ARRAY_H
#define ARRAY_H

#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstdlib>

using namespace std;

template<class T>
class Array{

private:
static const int MAXDIM = 6;
T xdata ; /**> One-dimensional array of data.x/
int size[MAXDIM]; /x**> Size of each dimension.x/
int ndim; /*x> Number of dimensions occupied. */
int length; /**x> Total number of entries.x/

int dx1, dx2, dx3, dx4, dx5;
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void allocate(int ni=0, int nj=0, int nk=0, int n1=0, int nm=0, int nn=0){
ndim = MAXDIM;

// Set the number of entries in each dimension.
size[0]=ni;
size[1l]=nj;
size[2]=nk;
size[3]=n1;
size[4]=nm;
size[5]=nn;

// Set the number of dimensions used.
if(size[5] == 0)
ndim--;
if(sizel[4] == 0)
ndim--;
if(size[3] == 0)
ndim--;
if(size[2] == 0)
ndim--;
if(size[1l] == 0)
ndim--;
if(size[0] == 0){
ndim = 0;
length = 0;
data = NULL;
}else{
try{
int i;

// Set the length (total number of entries) of the one-dimensional array.
length = 1;
for(i=0; i<ndim; i++)

length x= size[i];

data = new T[length];

dx1l = size[0];

dx2 = dxlxsize[l];
dx3 = dx2xsize[2];
dx4 = dx3xsize[3];
dx5 = dx4xsizel[4];

}catch(std: :bad_alloc&){

std::cerr << "Array::allocate -- unable to allocate array of length " << length << std::endl;
exit(1l);
}
}
}
public:
/ **
* @brief Constructor with default arguments.
*
* Creates an array with one or two-dimensions.
*
* @param int nrows. Number of rows in the array.
* @param int ncolsd. Number of columns in the array.

*xk/
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Array(int ni=0, int nj=0, int nk=0, int nl=0, int nm=0, int nn=0){
// Allocate memory
allocate(ni,nj,nk,nl,nm,nn);

} // end constructor

//! Constructor
Array(T* array, int ndim_, int size_[]){
ndim = ndim_;

length = 1;

int i;

for(i=0; i<ndim; i++){
size[i] = size_[i]; // Copy only the ndim entries. The rest is zero by default.
length *= size[il];

}

// Now when we known the length, we should not forget to allocate memory!!!!
data = new T[lengthl;

// Copy the entries from array to data:
for(i=0; i<length; i++){
datal[i] = array[i];

}

} // End constructor.

//! Copy constructor
Array(const Array<T>& array);

//! Destructor
~Array();

/ *%

* @rief Checks the validity of the indexing.

* @param i, an integer for indexing the rows.

* @param j, an integer for indexing the columns.
*x/

bool indexOk(int i, int j=0) const;

/ *%

@brief Change the dimensions of an array.

@param ni number of entries in the first dimension.

@param nj number of entries in the second dimension.

@param nk number of entries in the third dimension.

@param nl number of entries in the fourth dimension.

@param nm number of entries in the fifth dimension.

@param nn number of entries in the sixth dimension.

*k/

bool redim(int ni, int nj=0, int nk=0, int n1=0, int nm=0, int nn=0);

I R S R I R

VAT

* @return The total number of entries in the array, i.e., the sum of the entries in all the
dimensions.

*x/

int getLength()const{return length;}

VAT
* @return The number of rows in a matrix.
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*k /
int getRows() const {return size[0];}

/*%

* @return Returns the number of columns in a matrix.
*k /

int getColumns() const {return size[1];}

/*x @brief Gives the number of entries in a dimension.

*

* @param i An integer from O to 5 indicating the dimension we want to explore.

* @return size[i] An integer for the number of elements in the dimension number 1i.
*k/

int dimension(int i) const{return size[i];}

/ **

* The number of dimensions in the array.
*k /

int getNDIM()const{return ndim;}

/*%

* @return A constant pointer to the array of data.

* This function can be used to interface C++ with Python/Fortran/C.
*xk/

const Tx getPtr() const;

/*%

* @return A pointer to the array of data.

* This function can be used to interface C++ with Python/Fortran/C.
*xk/

T* getPtr();

/**

* @return A pointer to an array with information on the length of each dimension.
*k /

intx getPtrSize();

/KKK ok K oK K oK oK K K oK K oK oK K K K K oK K K oK 3 K oK 3 K oK K K K K K K oK K K oK K K oK K K oK K K K K Kok Kok ok /
/* OPERATORS */
[/ Kok kok sk ok kK ok Kk ok K ok ok ok K ok K K ok 3 K ok 3 K ok K ok ok sk K ok K K ok 3 K ok K ok K ok ok kK ok kK ok ok /

//! Assignment operator
Array<T>& operator=(const Array<T>& array);

//! Sum operator
Array<T> operator+(const Array<T>& array);

//! Substraction operator

Array<T> operator-(const Array<T>& array)const; /// w=u-v;

//! Multiplication operator
//Array<T> operatorx(const Array<T>& array);

//! Assigment by addition operator
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Array<T>& operator+=(const Array<T>& w);

//! Assignment by substraction operator
Array<T>& operator-=(const Array<T>& w);

//! Assignment by scalar product operator
Array<T>& operatorkx=(double scalar);

//! Assignment by division operator
Array<T>& operator/=(double scalar);

//! Index operators

const T& operator()(int i)const;

const T& operator()(int i, int j)const;

const T& operator()(int i, int j, int k)const;

const T& operator()(int i, int j, int k, int 1)const;

const T& operator()(int i, int j, int k, int 1, int m)const;

const T& operator()(int i, int j, int k, int 1, int m, int n)const;

T& operator()(int i);

T& operator()(int i, int j);

T& operator()(int i, int j, int k);

T& operator()(int i, int j, int k, int 1);

T& operator()(int i, int j, int k, int 1, int m);

T& operator()(int i, int j, int k, int 1, int m, int n);

/**************************************************************/
/* FRIEND FUNCTIONS */

/3% 3k 3k sk ok ok ok sk ok ok ok ok ok ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k 3 ok ok 3k K ok ok sk 3 ok ok sk ok ok sk ok ok sk K ok ok sk ok sk k k k ok /
//! Unary operator +

template <class T2>

friend Array<T> operator+ (const Array<T>&); // u =+ v

//! Unary operator -
template <class T2>
friend Array<T> operator-(const Array<T>&); // u = - v

/ *%

* Premultiplication by a floating point number:

* | f$\mathbf{u} = a \mathbf{v}\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a array.
*x/

template <class T2>

friend Array<T> operatorx(double, const Array<T>&); // u = axv

/ *%

* Postmultiplication by a floating point number:

* | f$\mathbf{u} = \mathbf{v} a\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a array.
*k/

template <class T2>

friend Array<T> operatorx(const Array<T>&, double); // u = vxa

/ *%
* Division of the entries of a array by a scalar.
*x/
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template <class T2>
friend Array<T> operator/(const Array<T>&, double); // u = v/a

};

#include "Array.cpp"

// Destructor
template <class T>
inline Array<T>::~Array(){delete[] data;}

// Index operators
template <class T>
inline const T& Array<T>::operator()(int i)const {
#if CHECKBOUNDS_ON
index0k(i);
#endif
return datali];

}

template <class T>
inline const T& Array<T>::operator()(int i, int j)const {
#if CHECKBOUNDS_ON
indexOk(i,j);
#endif

return data[i + jxdx1];

}

template <class T>
inline const T& Array<T>::operator()(int i, int j, int k)const {
#if CHECKBOUNDS_ON
indexOk(i,j,k);
#endif

return data[i + j*dx1 + kxdx2];

}

template <class T>
inline const T& Array<T>::operator()(int i, int j, int k, int 1)const {
#if CHECKBOUNDS_ON
indexOk(i,j,k,1);
#endif

return data[i + j*dx1 + kxdx2 + 1xdx3];

}

template <class T>
inline const T& Array<T>::operator()(int i, int j, int k, int 1, int m)const {
#if CHECKBOUNDS_ON
index0Ok(i,j,k,1, m);
#endif

return data[i + j*dx1 + kxdx2 + 1xdx3 + mxdx4];

}
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template <class T>
inline const T& Array<T>::operator()(int i, int j, int k, int 1, int m, int n)const {
#if CHECKBOUNDS_ON
indexOk(i,j,k,1,m,n);
#endif

return data[i + j*dx1 + kxdx2 + 1xdx3 + mxdx4 + n*xdx5];

}

template <class T>
inline T& Array<T>::operator()(int i) {
#if CHECKBOUNDS_ON
index0k(i);
#endif
return datali];

}

template <class T>
inline T& Array<T>::operator()(int i, int j) {
#1if CHECKBOUNDS_ON
indexOk(i,j);
#endif

return data[i + j*dx1];

}

template <class T>
inline T& Array<T>::operator()(int i, int j, int k) {
#1if CHECKBOUNDS_ON
indexOk(i,j, k);
#endif

return data[i + j*dx1 + kxdx2];

}

template <class T>
inline T& Array<T>::operator()(int i, int j, int k, int 1) {
#1if CHECKBOUNDS_ON
indexOk(i,j,k,1);
#endif

return data[i + j*dx1 + kxdx2 + 1xdx3];

}

template <class T>
inline T& Array<T>::operator()(int i, int j, int k, int 1, int m) {
#1if CHECKBOUNDS_ON
indexOk(i,j,k,1,m);
#endif

return data[i + j*dx1 + kxdx2 + 1*dx3 + mxdx4];

}

template <class T>
inline T& Array<T>::operator()(int i, int j, int k, int 1, int m, int n) {
#if CHECKBOUNDS_ON
index0k(i,j,k,1,m,n);
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#endif

return data[i + j*dx1 + kxdx2 + 1xdx3 + mxdx4 + n*xdx5];

}

template <class T>
inline const Tx Array<T>::getPtr() const {return data;}

template <class T>
inline Tx Array<T>::getPtr(){return data; }

template <class T>
inline int* Array<T>::getPtrSize(){return size;}

// template <class T>
// inline int Array<T>::dim()const{return ndim;}

/KoK ok ok ok ok K ok ok K ok oK K ok K K ok K K ok KK ok ok ok ok K 3 ok K K ok K K ok K ok K ok ok ok sk ok K K ok K ok Ok sk Kok ok ok sk ok /)
/* IMPLEMENTATION OF FRIEND FUNCTIONS */

/******************************************************************/

/******************************************************************/
/% (Arithmetic) Unary operators */
/******************************************************************/
//! Unary operator +

template <class T>

inline Array<T> operator+(const Array<T>& v){ // u =+ v
return v;

}

//! Unary operator -

template <class T>

inline Array<T> operator-(const Array<T>& v){ // u = - v

return Array<T>(v.size[0],v.size[1]) -v;

}

//! Postmultiplication operator

template <class T>

inline Array<T> operatorx*(const Array<T>& v, double scalar){ // u
return Array<T>(v) *= scalar;

}

v*xa

//! Premultiplication operator
template <class T>
inline Array<T> operatorx(double scalar, const Array<T>& v){ // u = a*v
return vxscalar; // Note the call to postmultiplication operator defined above

}

//! Division of the entries in a array by a scalar

template <class T>

inline Array<T> operator/(const Array<T>& v, double scalar){
if(!scalar) std::cout << "Division by zero!" << std::endl;
return (1.0/scalar)xv;
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}

#endif

6.7 Exercises and projects

Exercise 6.1: Write your own Gaussian elimination code

(a) Consider the linear system of equations

a1121 + a12%2 + a133 = Wi
2171 + G22T2 + A23T3 = W2
a31T1 + a32T2 + a33T3 = W3.

This can be written in matrix form as

We specialize here to the following case

— Ty + 29 —4dx3 =
201 + 220 =
3171 + 3172 + 2I3 =

NI= = o

Obtain the solution (by hand) of this system of equationsdipgl Gaussian elimination.

(b) Write therafter a program which implements Gaussiamiaktion (with pivoting) and solve the above
system of linear equations. How many floating point operatre involved in the solution via Gaussian
elimination without pivoting? Can you estimate the numtdtaating point operations with pivoting?

Exercise 6.2: Cholesky factorization

If the matrix A is real, symmetric and positive definite, then it has a unige#orization (called Cholesky

factorization)
A=LU=LL"

whereLT is the upper matrix, implying that
L}, = Lji.

The algorithm for the Cholesky decomposition is a speciaéaz the general LU-decomposition algorithm.
The algorithm of this decomposition is as follows

— Calculate the diagonal elemehy; by setting up a loop fof = 0 to i = n — 1 (C++ indexing of matrices
and vectors)

i-1 1/2
Ly = (A“- -3 L§k> . (6.33)
k=0

— within the loop overi, introduce a new loop which goes froim= i + 1 ton — 1 and calculate
1 i—1
Ly =1~ (Aij - kZ_OLikzjk> : (6.34)
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For the Cholesky algorithm we have always that > 0 and the problem with exceedingly large matrix ele-
ments does not appear and hence there is no need for pivdtiitg. a function which performs the Cholesky
decomposition. Test your program against the standard lddrdposition by using the matrix

2
A=[3 21 (6.35)
2 1 1

Finally, use the Cholesky method to solve

0.0521 4+ 0.07z2 + 0.0623 4+ 0.0524 0.23
0.07z1 4 0.10z2 + 0.08z3 4+ 0.07x4 0.32
0.06z; + 0.08z2 + 0.10z3 + 0.0924 = 0.33
0.0521 4+ 0.07z2 + 0.0923 4+ 0.1024 0.31

You can also use the LU codes for linear equations to checiethsts.

Project 6.1: The one-dimensional Poisson equation

(&) We are going to solve the one-dimensional Poisson exjuatith Dirichlet boundary conditions by
rewriting it as a set of linear equations.

The three-dimensional Poisson equation is a partial @ifféal equation,

%9 %9 o pla,y2)

oz oyt 922 e«
whose solution we will discuss in chapfed 10. The functidn, y, z) is the charge density angd is
the electrostatic potential. In this project we consider dme-dimensional case since there are a few
situations, possessing a high degree of symmetry, wheseissible to find analytic solutions. Let us
discuss some of these solutions.

Suppose, first of all, that there is no variation of the vasiguantities in the/- and z-directions. In
this case, Poisson’s equation reduces to an ordinary éiffed equation inz, the solution of which is
relatively straightforward. Consider for example a vacutiode, in which electrons are emitted from
a hot cathode and accelerated towards an anode. The ancald & la large positive potenti&}, with
respect to the cathode. We can think of this as an essertdiadiydimensional problem. Suppose that the
cathode is at = 0 and the anode at = d. Poisson’s equation takes the form

¢ pl(x)

@ B €0 ’
where¢(z) satisfies the boundary condition$0) = 0 and¢(d) = V,. By energy conservation, an
electron emitted from rest at the cathode has-amlocity v(x) which satisfies
1

§mev2(x) —egp(x) =0.
Furthermore, we assume that the curtkistindependent aof between the anode and cathode, otherwise,
charge will build up at some points. From electromagnetiemaan then show that the curréns given
by I = —p(z)v(z)A, whereA is the cross-sectional area of the diode. The previous mmsatan be
combined to give

¢ _ I (%)1/2 5172

dz? A \ 2¢ '
The solution of the above equation which satisfies the baymmtanditions is

\4/3
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(b)

192

with L
I= deod (2e ! 1/03/2.
9 d?2 \me
This relationship between the current and the voltage incawa diode is called the Child-Langmuir
law.

Another physics example in one dimension is the famous TleReami model, widely used as a mean-
field model in simulations of quantum mechanical systems 33§, see Lieb for a newer and updated
discussion [40]. Thomas and Fermi assumed the existenca ehargy functional, and derived an
expression for the kinetic energy based on the density atreles,p(r) in an infinite potential well.
For a large atom or molecule with a large number of electr@whrddinger’s equation, which would
give the exact density and energy, cannot be easily handtddrfje numbers of interacting particles.
Since the Poisson equation connects the electrostatiotdteith the charge density, one can derive
the following equation for potentidl

2V V2

@
with V(0) = 1.
In our case we will rewrite Poisson’s equation in terms of@isionless variables. We can then rewrite
the equation as

—u’(x) = f(z), z€(0,1), w(0)=u(l)=0.

and we define the discretized approximationitasv; with grid pointsz; = ih in the interval from
x9g = 0toxz,11 = 1. The step length or spacing is definedlas= 1/(n + 1). We have then the
boundary conditionsy, = v,4+1 = 0. We approximate the second derivativeuofith

Vit+1 + Vi—1 —
— 5
wheref; = f(x;). Show that you can rewrite this equation as a linear set ddians of the form

2v; .
v:fi fori=1,...,n

)

Av =Db,
whereA is ann x n tridiagonal matrix which we rewrite as

2 -1 0 ... ... O

andl~)i = h2fi.
In our case we will assume thatz) = (3x+22)e®, and keep the same interval and boundary conditions.
Then the above differential equation has an analytic smugiven byu(z) = z(1 — x)e® (convince

yourself that this is correct by inserting the solution i fRoisson equation). We will compare our
numerical solution with this analytic result in the next mise.

We can rewrite our matriXA in terms of one-dimensional vectoasb, ¢ of length1 : n. Our linear
equation reads
b1 C1 0 e SN e V1 i)l
as b2 Co V2 bg
az by c3
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A tridiagonal matrix is a special form of banded matrix whallehe elements are zero except for those
on and immediately above and below the leading diagonal abbege tridiagonal system can be written
as

a;vi—1 + bivi + civip1 = by,
fori = 1,2,...,n. The algorithm for solving this set of equations is rathenge and requires two
steps only, a decomposition and forward substitution aradlfim backward substitution.

Your first task is to set up the algorithm for solving this sétieear equations. Find also the num-
ber of operations needed to solve the above equations. Staivthiey behave liké(n) with n the
dimensionality of the problem. Compare this with standaadi§sian elimination.

Then you should code the above algorithm and solve the probde matrices of the siz&é0 x 10,
100 x 100 and1000 x 1000. That means that you choose= 10, n = 100 andn = 1000 grid points.

Compare your results (make plots) with the analytic redaltthe different number of grid points in the
intervalz € (0,1). The different number of grid points corresponds to difféigtep lengthé.

Compute also the maximal relative error in the data setl, . . ., n,by setting up

).

as function oflog1o(h) for the function values; andv;. For each step length extract the max value of
the relative error. Try to increaseto n = 10000 andn = 105. Comment your results.

Vi — Uy

€ = logio (

%

(c) Compare your results with those from the LU decompasitiodes for the matrix of sizeD00 x 1000.
Use for example the unix functidime when you run your codes and compare the time usage between
LU decomposition and your tridiagonal solver. Can you rungtandard LU decomposition for a matrix
of the sizel0® x 10°? Comment your results.

Solution to exercise b)

The program listed below encodes a possible solution tolpaof the above project. Note that we have
employed Blitz++ as library and that the range of the varieors are now shifted from their default ranges
(0:n—1)to(1:n)and that we access vector elements@sinstead of the standard C++ declaratidf].

The program reads from screen the name of the ouput file andithension of the problem, which in
our case corresponds to the number of mesh points as welllditian to the two endpoints. The function
f(x) = (3x + 2%)exp () is included explicitely in the code. An obvious change is ik a separate
function, allowing thereby for a generalization to othemdtion f ().

/%
Program to solve the one-dimensional Poisson equation
-u''(x) = f(x) rewritten as a set of linear equations
A u = f where A is an n x n matrix, and u and f are 1 x n vectors
In this problem f(x) = (3x+xxx)exp(x) with solution u(x) = x(1-x)exp(x)
The program reads from screen the name of the output file.
Blitz++ 1s used here, with arrays starting from 1 to n

*/

#include <iomanip>

#include <fstream>

#include <blitz/array.h>

#include <iostream>

using namespace std;

using namespace blitz;

ofstream ofile;

// Main program only, no other functions
int main(int argc, charx argv[])

{

char xoutfilename;
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int i, j, n;

double h, btemp;

// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv([1];
}

ofile.open(outfilename);
cout << "Read in number of mesh points" << endl;
cin >> n;
h =1.0/( (double) n+l);
// Use Blitz to allocate arrays
// Use range to change default arrays from 0:n-1 to 1:n
Range r(1,n);
Array<double,1> a(r), b(r), c(r), y(r), f(r), temp(r);
// set up the matrix defined by three arrays, diagonal, upper and lower diagonal band
b=2.0; a=-1.0; c=-1.0;
// Then define the value of the right hand side f (multiplied by hxh)
for(i=1; i <= n; i++){
// Explicit expression for f, could code as separate function
f(1i) = hxhx(ixh*3.0+(ixh)*(ixh))*exp(ixh);

}
// solve the tridiagonal system, first forward substitution
btemp = b(1);

for(i = 2; i <= n; i++) {
temp(i) = c(i-1) / btemp;
btemp = b(i) - a(i) * temp(i);
y(i) = (f(i) - a(i) = y(i-1)) / btemp;
}
// then backward substitution, the solution is in y()
for(i =n-1; 1 >=1; i--) {
y(i) -= temp(i+l) * y(i+l1);
}
// write results to the output file
for(i =1; i <= n; i++){
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << ixh;
ofile << setw(15) << setprecision(8) << y(i);
ofile << setw(1l5) << setprecision(8) << ixhx*(1.0-ixh)*exp(ixh) <<endl;
}
ofile.close();

}

The program writes also the exact solution to file. In gl wetshow the results obtained with = 10.
Even with so few points, the numerical solution is very clésehe analytic answer. With = 100 it is
almost impossible to distinguish the numerical solutiamfrthe analytical one, as shown in HIg16.5. It is
therefore instructive to study the relative error, which aigplay in Tabld &M as function of the step length
h=1/(n+1).

The mathematical truncation we made when computing thensegerivative goes lik€(h?). Our results
for n fromn = 10 to somewhere between = 10* andn = 10° result in a slope which is almost exactly
equal2,in good agreement with the mathematical truncation madgoBdn = 10° the relative error becomes
bigger, telling us that there is no point in increasing-or most practical application a relative error between
10~% and10~8 is more than sufficient, meaning that= 10* may be an acceptable number of mesh points.
Beyondn = 10°, numerical round off errors take over, as discussed in teeigus chapter as well.
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Figure 6.4: Numerical solution obtained with= 10 compared with the analytical solution.

1 | T
Numerical solution——
Analytical solution- - - - -
0.8 .
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u(x)
0.4 -~ .
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0 0.2 0.4 0.6 0.8 1

Figure 6.5: Numerical solution obtained with= 10 compared with the analytical solution.

Table 6.4:l0g1( values for the relative error and the step lengtomputed at: = 0.5.
n_logig(h) € = logio (|(vi —wi)/uil)

10 -1.04 -2.29
100 -2.00 -4.19
1000 -3.00 -6.18
10* -4.00 -8.18
10° -5.00 -9.19
10 -6.00 -6.08
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Chapter 7

Eigensystems

7.1 Introduction

Together with linear equations and least squares, the thajdr problem in matrix computations deals with

the algebraic eigenvalue problem. Here we limit our attentd the symmetric case. We focus in particular
on two similarity transformations, the Jacobi method, tradus QR algoritm with Householder’s method for
obtaining a triangular matrix and Francis’ algorithm foe final eigenvalues. Our presentation follows closely
that of Golub and Van Loan, see Ref. [29].

7.2 Eigenvalue problems

Let us consider the matri& of dimension n. The eigenvaluesAfare defined through the matrix equation
Ax®) = \x), (7.1)

where)\) are the eigenvalues and”) the corresponding eigenvectors. Unless otherwise stategh we use
the wording eigenvector we mean the right eigenvector. fieelgenvector is defined as

xM) A = A\Wx0),

The above right eigenvector problem is equivalent to a setexfuations wit unknownse;

a1121 + a12T2 + -+ a1pTy = AT
a21%1 + a2 + -+ + A2 Ty = A2
An1T1 + An2T2 + -+ ApnTn = ATp.

We can rewrite Eq[{711) as

(A - )\(”)I) x) =0,

with I being the unity matrix. This equation provides a solutiotht® problem if and only if the determinant
is zero, namely
‘A - )\(”)I‘ —0,

which in turn means that the determinant is a polynomial @frdern in A\. The eigenvalues of a matrix
A € C™*" are thus the: roots of its characteristic polynomial

P(\) = det(\I — A), (7.2)
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or
P =T]i=N. (7.3)

=1
The set of these roots is called the spectrum and is denoteas If A(A) = {A1, Ae,..., \,} then we

have
det(A) = /\1/\2 . /\n,

the trace ofA isTr(A) = A1 + da + - + Ay,

Procedures based on these ideas can be used if only a sraadiriraf all eigenvalues and eigenvectors are
required or if the matrix is on a tridiagonal form, but thenstard approach to solve EQ{J7.1) is to perform a
given number of similarity transformations so as to renterdriginal matrixA in either a diagonal form or
as a tridiagonal matrix which then can be be diagonalizedoyputational very effective procedures.

The first method leads us to Jacobi’s method whereas the decmnis given by Householder’s algorithm
for tridiagonal transformations. We will discuss both nuatk below.

7.3 Similarity transformations

In the present discussion we assume that our matrix is rebdymmetric, that isA € R™*". The matrixA
hasn eigenvalues\; ... \, (distinct or not). LetD be the diagonal matrix with the eigenvalues on the diagonal

A0 0 0 0 0

0 X O 0 0 0
D— 0 0 X3 O 0 0

0 )\n—l

0 0 A

If A is real and symmetric then there exists a real orthogonaixrfasuch that
STAS = diag(\1, Ao, ..., An),

and forj = 1 : nwe haveAS(:,j) = A\;S(:, j). See chapter 8 of Ref. [29] for proof.
To obtain the eigenvalues & € R"*", the strategy is to perform a series of similarity transfations on
the original matrixA, in order to reduce it either into a diagonal form as abovetar & tridiagonal form.
We say that a matriB is a similarity transform ofA if

B = STAS, where SsTs=s"'s=1

The importance of a similarity transformation lies in thetfdnat the resulting matrix has the same eigenvalues,
but the eigenvectors are in general different. To provedtieistart with the eigenvalue problem and a similarity
transformed matriB.

Ax = \x and B =STAS.

We multiply the first equation on the left I8/ and inserS”'S = I betweenA andx. Then we get
(STAS)(STx) = ASTx, (7.4)

which is the same as
B (STx) = A (STx).

The variable\ is an eigenvalue dB as well, but with eigenvect&@Tx.
The basic philosophy is to
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7.4 — Jacobi’s method

— either apply subsequent similarity transformations st tha

Sy ...STAS;...Sx =D, (7.5)

— or apply subsequent similarity transformations so fhecomes tridiagonal. Thereafter, techniques for
obtaining eigenvalues from tridiagonal matrices can beluse

Let us look at the first method, better known as Jacobi’s ntethdiven’s rotations.

7.4 Jacobi's method

Consider an#{ x n) orthogonal transformation matrix

1 0o ... 0 0 0 0
1 0 0 0 0
g _ 0 0 ... cosf 0 ... 0 sind
0 0 0 1 0 0
0 0o ... 0 0 1 0
0 0 ... —sind 0 cosf

with propertyST = S, It performs a plane rotation around an an@la the Euclideam—dimensional
space. It means that the matrix elements that differ froro ae given by

Skk = Sy = cosl, s = —sy, = —sinb, s;; = —si; =1 iF ki #£l,

A similarity transformation
B = STAS,

results in

by = au,iFkiFEl

bixk = a;xcosd —azsind,i#£ ki #£1

biy = agcos0+ a;psind i £ ki £

b = appcos 0 — 2apcoslsind + aysin?6

by = aycosd+ 2axcos0sind + agsino

b = (agr — ay)cosfsing + ax(cos*6 — sin6)

The angld is arbitrary. The recipe is to choo8eso that all non-diagonal matrix elemeiig become zero.
The algorithm is then quite simple. We perform a number afitiens until the sum over the squared
non-diagonal matrix elements are less than a prefixed thsal(y equal zero). The algorithm is more or less
foolproof for all real symmetric matrices, but becomes msiclver than methods based on tridiagonalization
for large matrices.
The main idea is thus to reduce systematically the norm obthdiagonal matrix elements of a matrix

To demonstrate the algorithm, we consider the sir2ple2 similarity transformation of the full matrix. The
matrix is symmetric, we single ott< k£ < | < n and use the abbreviations= cos § ands = sin 4 to obtain
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bkk 0 o c —S Ak Akl C S
0 bll o S C ik ap —S C ’
We require that the non-diagonal matrix eleménis= b;;, = 0, implying that

akl(CQ — 82) + (akk — CL”)CS = by = 0.

If ax; = 0 one sees immediately thais # = 1 andsin § = 0.
The Frobenius norm of an orthogonal transformation is asnggserved. The Frobenius norm is defined
as

n n
DD laisl

i=1 j=1

Al =

This means that for oWt x 2 case we have
2a3; + ajpy, + ajy = by + bjr,

which leads to

off(B)? = [[BI[3 — S b2 = off (A)? — 2a3,
=1

since
n n
IB[% — Zbi = [|A[|% - Zai‘ + (afy, + afy — by — bjy).
=1 =1
This result means that the matéx moves closer to diagonal form for each transformation.
Defining the quantitiesan§ = ¢t = s/c and

o ajp — akk
2akl

we obtain the quadratic equation
2427t —1=0,

resulting in
t=—7++1+172

andc ands are easily obtained via
1

NS

ands = tc. Choosing to be the smaller of the roots ensures tifat< 7 /4 and has the effect of minimizing
the difference between the matriddsandA since

n

2a?

B-AlR=10-0 > (@ +ad)+ L
i=1,i#k,l

The main idea is thus to reduce systematically the norm obthdiagonal matrix elements of a matrik

To implement the Jacobi algorithm we can proceed as follows
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— Choose a toleranag making it a small number, typicaliy0—8 or smaller.

— Setup awhile-test where one compares the norm of the newly computediadfathal matrix
elements

This is however a very time-comsuming test which can be oeldy the simpler test
max(ag;) > €.
— Now choose the matrix elementg; so that we have those with largest value, thatig| =
maXiz;| ;|-
— Compute thereafter = (a;; — axk)/2ax;, tan 8, cos @ andsin 6.

— Compute thereafter the similarity transformation for ge$ of valuegk, [), obtaining the new
matrixB = S(k,1,0)T AS(k, 1, 0).

— Continue till

max(a;;) < €.

The convergence rate of the Jacobi method is however poemeeds typicallyn? — 5n? rotations and
each rotation requires: operations, resulting in a total a2n3 — 20n® operations in order to zero out non-
diagonal matrix elements. Although the classical Jacajprithm performs badly compared with methods
based on tridiagonalization, it is easy to parallelize.

The slow convergence is related to the fact that when a neatioatis performed, matrix elements which
were previously zero, may change to non-zero values in tkerntation. To see this, consider the following
simple example.

We specialize to a symmetricx 3 matrix A. We start the process as follows (assuming that= a3 is
the largest non-diagonal matrix element) witk- cos # ands = sin 6

1 0 0 aj;p a2 ais 1
B = 0 ¢ —s a21 a22 A23 0
0 s ¢ as1 ase ass 0 —s c

We will choose the anglé in order to havé,; = b3z = 0. We get the new symmetric matrix

ail a12C — A13$ a128 + aisc
B=| ac—ass a99C% + a33s? — 2as3sc (ag2 — asz)sc+ agz(c? — s?)
aias +aizc  (aga — asz)sc + agsz(c® — s2) a225% + assc?® + 2as3sc

Note thata,; is unchanged! As it should.
We have then

bi1 = an

b2 = ai2c0s0 —ayzsind, 1 #£2,1+#3

b3 = ai3cos0 + ajesinfd, 1 #£2,1+#3

bas = a22c08%0 — 2a93c050sinf + asssin’o

bss = as33c0820 + 2a23c050sinf + azsin0

bas = (a2 — asz)cosfsind + agz(cos’d — sin?6)
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We will fix the anglef so thathoz = 0.
We get then a new matrix
b1 b2 bi3
B=| b2 b2 0
b1z 0 as3

We repeat assuming thé, is the largest non-diagonal matrix element and get a newimatr

c —s 0 b11 b12 b13 C s 0
C= S C 0 b12 b22 0 —s ¢ 0
0 0 1 biz 0 b33 0 01

We continue this process till all non-diagonal matrix el@etseare zero. It is easy to convince oneself that
when performing the above operations, the matrix elerbgnivhich was previously set to zero may become
different from zero. This is one of the problems which slowsvd the Jacobi procedure.

7.5 Diagonalization through the Householder’s method faidiagonalization

In this case the diagonalization is performed in two stefsst,Rfhe matrix is transformed into tridiagonal

form by the Householder similarity transformation. Sedgnithe tridiagonal matrix is then diagonalized. The
reason for this two-step process is that diagonalizingdatgonal matrix is computational much faster than
the corresponding diagonalization of a general symmetairima Let us discuss the two steps in more detail.

7.5.1 The Householder’s method for tridiagonalization
The first step consists in finding an orthogonal ma&which is the product ofn. — 2) orthogonal matrices
S=851S2...8,_9,

each of which successively transforms one row and one cobfrAninto the required tridiagonal form. Only
n — 2 transformations are required, since the last two elemestslaeady in tridiagonal form. In order to
determine eacB; let us see what happens after the first multiplication, ngmel

a1 €1 0 0 0 0
. e1 ahy abs ... ... .. dby,
S1 AS; = 0 aby abg ... ... ... ah,
0
0 aly ahs ... .. ... al,

where the primed quantities represent a mairiof dimensiorn — 1 which will subsequentely be transformed
by So. The factore; is a possibly non-vanishing element. The next transfomngtroduced bys, has the
same effect a8, but now on the submatirA’ only

ail el 0 o ... 0 0
. €1 aby e 0o ... ... 0
(S1S2) Aslsg = 0 €9 ag’3 e e N ag’n
0
0 0 aly ... ... ... al

Note that the effective size of the matrix on which we apply ttansformation reduces for every new step.
In the previous Jacobi method each similarity transforameis in principle performed on the full size of the
original matrix.

After a series of such transformations, we end with a setarjalal matrix elements

/ " n—1
@11, Q099,33+« - Ay
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and off-diagonal matrix elements

€1,€2,€3,...,En—1.
The resulting matrix reads
ai; e 0 0 ... 0 0
er ahy e 0 ... 0 0
STAS — 0 e af3 e O . 0
0 a’Szn—iliz)—l €n—1

0 €n—1 aﬁﬁll)
It remains to find a recipe for determining the transforma8q. We illustrate the method fd8; which
we assume takes the form
g (1 ot
1 — 0 P )

with 0T being a zero row vectonT = {0,0,---} of dimension(n — 1). The matrixP is symmetric with
dimension (n — 1) x (n — 1)) satisfyingP? = I andP? = P. A possible choice which fulfills the latter two
requirements is

P=1I-2uu’,

wherel is the (n — 1) unity matrix andu is ann — 1 column vector with norru”u = 1, that is its inner
product.

Note thatuu” is an outer product giving a dimensiam(— 1) x (n — 1)). Each matrix element d then
reads

Pij = 61']' — QUZ‘UJ',

wherei andj range froml to n — 1. Applying the transformatio8; results in

STAS, = < au (Pv)t )

Pv A’
wherevT = {as;,a31, -+ ,an1} andP must satisfy Pv)? = {k,0,0,---}. Then
Pv =v —2u(u’v) = ke, (7.6)

with eT = {1,0,0,...0}. Solving the latter equation gives usand thus the needed transformat®nWe do
first however need to compute the scatary taking the scalar product of the last equation with iteasp@ose
and using the fact th&? = I. We get then

Pv)IPv=k>=vIv=|v|? = Zazl,

which determines the constant= +v. Now we can rewrite Eq[{.6) as

T

v — ke =2u(u’ v),

and taking the scalar product of this equation with itsetf abtain

2(uTv)? = (v £ anv), (7.7)
which finally determines
" v — ke
- 2(uTv)’

In solving Eq.[ZJ) great care has to be exercised so as tisetthose values which make the right-hand largest
in order to avoid loss of numerical precision. The abovestep then repeated for every transformations till
we have a tridiagonal matrix suitable for obtaining the pigdues.
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7.5.2 Diagonalization of a tridiagonal matrix via Francialgorithm

The matrix is now transformed into tridiagonal form and thstistep is to transform it into a diagonal matrix
giving the eigenvalues on the diagcﬂual

Before we discuss the algorithms, we note that the eigeasadfi a tridiagonal matrix can be obtained
using the characteristic polynomial

P()) = det(\I — A) = ﬁ (A = A),
=1

which rewritten in matrix form reads

d1 - A €1 0 0 0 0
el d2 - A €9 0 0 0
P()\) _ 0 €9 dg—)\ €3 0 0
0 sttep_g - A eNScep_l
0 eNstep_l sttep_l - A

We can solve this equation in a recursive manner. W&jJé€h) be the value of: subdeterminant of the above
matrix of dimensiom x n. The polynomialP; () is clearly a polynomial of degrée Starting withP; (\) we
haveP; (\) = d; — A. The next polynomial read8;(\) = (d2 — \) P1()\) — e?. By expanding the determinant
for P,(\) in terms of the minors of theth column we arrive at the recursion relation

Pi(N) = (diy = N Pi-1 (M) — €1 Po2(N).

Together with the starting valug (\) and P,(\) and good root searching methods we arrive at an efficient
computational scheme for finding the roots@f()\). However, for large matrices this algorithm is rather
inefficient and time-consuming.

The programs which performs these transformations aréxmatk — tridiagonal matrix— diagonal matrix

C: void trd2(doubles*a, int n, double d[], double e[])
void tgli(double d[], double[], int n, doublexz)
Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, 2)

The last step through the functidgli() involves several technical details. Let us describe théchdsa in
terms of a four-dimensional example. For more details, sfe[R9], in particular chapters seven and eight.
The current tridiagonal matrix takes the form

d1 €1 0 0
€1 d2 €9 0
0 €9 d3 €3
0 0 €3 d4

A:

As a first observation, if any of the elementsare zero the matrix can be separated into smaller piecessbefo
diagonalization. Specifically, if; = 0 thend; is an eigenvalue. Thus, let us introduce a transformagion

cos@ 0 0O sind

0 0 0 0

S1 = 0 00 0
—sinf 0 0 cos@

1This section is not complete it will be finished end of fall 200
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Then the similarity transformation

dy e 0 0

/
T A €1 da e 0
Sl ASl A= 0 €9 dg 6/3
0 0 e d

produces a matrix where the primed elementdinhave been changed by the transformation whereas the
unprimed elements are unchanged. If we now chédeagive the elemertt'21 = ¢’ = 0 then we have the first
eigenvalue= o}, = d;.

This procedure can be continued on the remaining threerdifmeal submatrix for the next eigenvalue.
Thus after four transformations we have the wanted diagoni.

7.6 The QR algorithm for finding eigenvalues

In preparation for 2010

7.7 Schrddinger’s equation through diagonalization

Instead of solving the Schrédinger equation as a diffeabatjuation, we will solve it through diagonalization
of a large matrix. However, in both cases we need to deal wittoblem with boundary conditions, viz., the
wave function goes to zero at the endpoints.

To solve the Schrodinger equation as a matrix diagonatiagiroblem, let us study the radial part of the
Schrddinger equation. The radial part of the wave functi®¥(r,), is a solution to
h? <1 dr2 d l(1+1)

r2dr dr r2

™ ) R(r) + V(r)R(r) = ER(r).

Then we substitut®(r) = (1/r)u(r) and obtain

n* d?

I(1+1) 12
—%Wu(r) + (V(T) + P—

2

T m

) u(r) = Bu(r).

We introduce a dimensionless variable- (1/«)r wherea is a constant with dimension length and get

2 d?
" 2ma? dp?

(1+1) 2
P2 2ma?

) + (Vo + ) o) = Bulp)

In the example below, we will replace the latter equatiomilitat for the one-dimensional harmonic oscillator.
Note however that the procedure which we give below appliggkly well to the case of e.g., the hydrogen
atom. We replaceg with z, take away the centrifugal barrier term and set the potiestjiaal to

1
V(z) = 2/4502,

with k& being a constant. In our solution we will use units so that » = m = o = 1 and the Schrddinger
equation for the one-dimensional harmonic oscillator bees
d2
da?
Let us now see how we can rewrite this equation as a matrixieidee problem. First we need to compute the
second derivative. We use here the following expressioth®second derivative of a functigh

fle+h)—2f(x) + flx—h)
h2

u(z) + r?u(x) = 2Eu(x).

= + O(h?), (7.8)
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whereh is our step. Next we define minimum and maximum values for @wéablex, R, and Ry ax,
respectively. With a given number of stepé,..,,, we then define the stépas

Rmax - Rmin
h=——.
Nstep
If we now define an arbitrary value afas
T; = Rumin +1h i:1,2,...,NStep—1

we can rewrite the Schrodinger equationfgras

_u(@g + h) = 2u(zk) + u(zk — h)
72

+ xiu(gck) = 2Fu(xy),

or in a more compact way

_ Ukg1 — 2up + Up—1
h2

U — 2ug + ug—
+ xiuk — Tkl th kol + Viur = 2Euy,

whereuy, = u(xy), upe1 = u(zg + h) andVj, = 27, the given potential. Let us see how this recipe may lead
to a matrix reformulation of the Schrodinger equation. Defirst the diagonal matrix element

2
dk == ﬁ + Vk,
and the non-diagonal matrix element
1
[ _ﬁ

In this case the non-diagonal matrix elements are given bgr@ KonstantAll non-diagonal matrix elements
are equal With these definitions the Schrddinger equation takesdhevfing form

drug + ep—1Uk—1 + exr1Ury1 = 2Buy,

whereu, is unknown. Since we hav®., — 1 values ofk we can write the latter equation as a matrix
eigenvalue problem

d1 el 0 0 0 0 U1l U1l
€1 d2 €9 0 SN 0 0 ug ug
d
0 e ds es O 0 —2F (7.9)
0 stmp,Q eNsth,1
0 BNSth,1 stmp,1 uNsmp,1 uNsmp,1

or if we wish to be more detailed, we can write the tridiaganatrix as

Vi 0 0 0 0
- AtV -5 0o ... 0 0
1 2 1
0 — 5z =+Vs —5z 0 0 (7.10)
0 ;T22+Vl¥scep—2 ) -5
0 -7z 7=+ Viaep—1

This is a matrix problem with a tridiagonal matrix of dimems$iVste, — 1 X Ngtep — 1 and will thus yield
Nstep — 1 €igenvalues. Itis important to notice that we do not set uaaimof dimensionVsiep X Ngtep SiNCE
we can fix the value of the wave functionfat= Ng.p. Similarly, we know the wave function at the other end
point, that is forz.
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The above equation represents an alternative to the numhsalution of the differential equation for the
Schrodinger equation discussed in chafter 9.

The eigenvalues of the harmonic oscillator in one dimenaierwell known. In our case, with all constants
set equal td, we have

1
En =n-+ 57

with the ground state being, = 1/2. Note however that we have rewritten the Schrddinger equat that
a constant 2 stands in front of the energy. Our program wéhtpield twice the value, that is we will obtain
the eigenvalues, 3,5, 7... ...

In the next subsection we will try to delineate how to solve #tbove equation. A program listing is also
included.

7.7.1 Numerical solution of the Schrddinger equation bydraalization
The algorithm for solving Eq[{Z12) may take the followiragrh

— Define values fotVyep, Rmin @and Rimax. These values define in turn the step sizeTypical values
for Ryax and Ry, could bel0 and—10 respectively for the lowest-lying states. The number ofimes
points Ny, could be in the range 100 to some thousands. You can checkatbibty of the results as
functions of Nycp — 1 and Riax and R,y against the exact solutions.

— Construct then two one-dimensional arrays which contdimsdlies ofz;, and the potential’,. For the
latter it can be convenient to write a small function whictsse the potential as function of,. For the
three-dimensional case you may also need to include thefcgyatl potential. The dimension of these
two arrays should go from up to Nstep.

— Construct thereafter the one-dimensional vectbexd e, whered stands for the diagonal matrix el-
ements and the non-diagonal ones. Note that the dimension of these tvaysruns froml up to
Ngtep — 1, since we know the wave functienat both ends of the chosen grid.

— We are now ready to obtain the eigenvalues by calling thetiomigli which can be found on the web
page of the course. Callirtgli, you have to transfer the matricégnde, their dimensiom = Ngep — 1
and a matrixz of dimensionNg.e, — 1 X Ngtep — 1 Which returns the eigenfunctions. On return, the
arrayd contains the eigenvalues. 4fis given as the unity matrix on input, it returns the eigetoe
For a given eigenvaluk, the eigenvector is given by the colurrin z, that is z[][k] in C, or z(:,k) in
Fortran.

— TQLI does however not return an ordered sequence of eigegsmal¥ou may then need to sort them as
e.g., an ascending series of numbers. The program we priovideles a sorting function as well.

— Finally, you may perhaps need to plot the eigenfunctions el wr calculate some other expectation
values. Or, you would like to compare the eigenfunctionfhie analytical answers for the harmonic
oscillator or the hydrogen atom. We provide a functpat which has as input one eigenvalue cho-
sen from the output dfgli. This function gives you a normalized wave functienvhere the norm is
calculated as

Rmin

Runox Nstep
/ lu(z)|* dz — h Z u? =1,
=0
and we have used the trapezoidal rule for integration dgssuligy chaptdi4.

7.7.2 Program example and results for the one-dimensiocaahbnic oscillator

We present here a program example which encodes the abarélaiy
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http://www.Tys.ulo.no/compphys/cp/programs/FYS3150/chapterl2/cpp/programl.cpp

/*
Solves the one-particle Schrodinger equation
for a potential specified in function
potential(). This example is for the harmonic oscillator

*/

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

// function declarations

void initialise(double&, double&, int&, int&) ;
double potential(double);

int comp(const double *, const double *);

void output(double, double, int, double x);

int main(int argc, charx argv[])
{
int i, j, max_step, orb_1;
double r_min, r_max, step, const_1, const_2, orb_factor,
xe, *d, *xw, *r, xxz;
char xoutfilename;
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv[1];
}

ofile.open(outfilename);

// Read in data

initialise(r_min, r_max, orb_1, max_step);
// initialise constants

step = (r_max - r_min) / max_step;
const_.2 = -1.0 / (step * step);
const_1 = - 2.0 x const_2;

orb_factor = orb_1 % (orb_1 + 1);

// local memory for r and the potential w[r]
r = new double[max_step + 1];
w = new double[max_step + 1];
for(i = 0; i <= max_step; i++) {
r[i] = r_min + i * step;
w[i] = potential(r[i]) + orb_factor / (r[i] * r[i]);
}

// local memory for the diagonalization process

d = new double[max_step]; // diagonal elements
e = new double[max_stepl; // tridiagonal off-diagonal elements
z = (double #*x) matrix(max_step, max_step, sizeof(double));
for(i = 0; i < max_step; i++) {

d[i] = const_1 + w[i + 1];

e[i] = const_2;

z[i][i] = 1.0;

for(j =i+ 1; j < max_step; j++) {

z[i][j] = 0.0;
}

208



http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter12/cpp/program1.cpp
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}
// diagonalize and obtain eigenvalues
tqli(d, e, max_step - 1, z);
// Sort eigenvalues as an ascending series
gsort(d, (UL) max_step - 1,sizeof(double),
(int(*) (const void *,const void =))comp);

// send results to ouput file
output(r_min , r_max, max_step, d);
delete [] r; delete [] w; delete [] e; delete [] d;
free_matrix((void *x) z); // free memory
ofile.close(); // close output file
return 0;

} // End: function main()

/*

The function potential()

calculates and return the value of the

potential for a given argument X.

The potential here is for the 1-dim harmonic oscillator
*/

double potential(double x)
{

return xx*x;
} // End: function potential()

/%
The function int comp()
is a utility function for the library function qsort()
to sort double numbers after increasing values.

*/

int comp(const double *val_1, const double xval_2)
{

if((xval_l) <= (*val_2)) return -1;

else if((*xval_1l) > (xval_2)) return +1;

else return 0;
} // End: function comp()

// read in min and max radius, number of mesh points and 1
void initialise(double& r_min, double& r_max, int& orb_1, int& max_step)

{
cout << "Min vakues of R = ";
cin >> r_min;
cout << "Max value of R = ";

cin >> r_max;
cout << "Orbital momentum = ";
cin >> orb_1;
cout << "Number of steps = ";
cin >> max_step;
} // end of function initialise
// output of results
void output(double r_min , double r_max, int max_step, double xd)
{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile <<"R_min = " << setw(15) << setprecision(8) << r_min << endl;
ofile <<"R_max = " << setw(15) << setprecision(8) << r_max << endl;
ofile <<"Number of steps = " << setw(1l5) << max_step << endl;

ofile << "Five lowest eigenvalues:" << endl;
for(i =0; i < 5; i++) {
ofile << setw(1l5) << setprecision(8) << d[i] << endl;
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}

} // end of function output

There are several features to be noted in this program.
The main program calls the functigmitialise, which reads in the minimum and maximum valuesahe
number of steps and the orbital angular momentuithereafter we allocate place for the vectors containing

r and the potential, given by the variablgg] andwli], respectively. We also set up the vectdfg ande]i]
containing the diagonal and non-diagonal matrix eleme@lling the functiontqli we obtain in turn the
unsorted eigenvalues. The latter are sorted by the intritunctiongsort.

The calculaton of the wave function for the lowest eigengasudone in the functioplot, while all output
of the calculations is directed to the fuctioatput.

The included table exhibits the precision achieved as fanaf the number of mesh poinfg. The exact
values ard, 3, 5,7, 9.

Table 7.1: Five lowest eigenvalues as functions of the nurobenesh pointsV with r,;, = —10 and
Tmax = 10.
N Ey Ey Es Es Ey
50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+0668842E+00
100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E48896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E-8974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E-8993599E+00
1000 1.000053E+00 2.999917E+00 4.999723E+00 6.99935BE-8)999016E+00

The agreement with the exact solution improves with indnggsumbers of mesh points. However, the
agreement for the excited states is by no means impressieeedMer, as the dimensionality increases, the
time consumption increases dramatically. Matrix diagi@adion scales typically as N3. In addition, there
is @ maximum size of a matrix which can be stored in RAM.

The obvious question which then arises is whether this selismothing but a mere example of matrix
diagonalization, with few practical applications of irgst. In chaptdil3, where we dealt with interpolation and
extrapolation, we discussed also called Richardson’sdefextrapolation scheme. Applied to this particualr
case, the philosophy of this scheme would be to diagondtieeabove matrix for a set of values &f and
thereby the step length Thereafter, an extrapolation is madéeite~ 0. The obtained eigenvalues agree then
with a remarkable precision with the exact solution. Thegdtgm is then as follows

— Perform a series of diagonalizations of the matrix in EQLE?.for different values of the ste
sizeh. We obtain then a series of eigenvalug@/2*) with k = 0, 1,2, .... Thatwill give us
an array of 'x-valuesh, h/2,h/4, ... and an array of 'y-values® (h), E(h/2), E(h/4),....
Note that you will have such a set for each eigenvalue.

— Use these values to perform an extrapolation calling éng.function POLINT with the point
where we wish to extrapolate to given by= 0.

— End the iteration ovet when the error returned by POLINT is smaller than a fixed test.

The results for the 10 lowest-lying eigenstates for the dingensional harmonic oscillator are listed below
after just 3 iterations, i.e., the step size has been rediode(B only. The exact results afe 3,5, ...,19 and

we see that the agreement is just excellent for the extragmbtasults. The results after diagonalization differ
already at the fourth-fifth digit.
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Table 7.2: Result for numerically calculated eigenvaldféb®@one-dimensional harmonic oscillator after three
iterations starting with a matrix of siz®0 x 100 and ending with a matrix of dimensi@90 x 800. These
four values are then used to extrapolate the 10 lowest-kiggnvalues té = 0.. The values of: span from
—10 to 10, that means that the starting step viias- 20/100 = 0.2. We list here only the results after three

iterations. The error test was set equ@©.

Extrapolation

Diagonalization

Error

0.100000D+01
0.300000D+01
0.500000D+01
0.700000D+01
0.900000D+01
0.110000D+02
0.130000D+02
0.150000D+02
0.170000D+02
0.190000D+02

0.999931D+00
0.299965D+01
0.499910D+01
0.699826D+01
0.899715D+01
0.109958D+02
0.129941D+02
0.149921D+02
0.169899D+02
0.189874D+02

0.206825D-10
0.312617D-09
0.174602D-08
0.605671D-08
0.159170D-07
0.349902D-07
0.679884D-07
0.120735D-06
0.200229D-06
0.314718D-06

Parts of a Fortran program which includes Richardson’sgxiation scheme is included here. It performs

five diagonalizations and establishes results for variteslengths and interpolates using the funcHarIn.

! start loop over interpolations, here we set max interpolations to 5
DO interpol=l, 5
IF ( interpol == 1) THEN
max_step=start_step
ELSE
max_step=(interpol-1)*2*xstart_step
ENDIF
n=max_step-1
ALLOCATE ( e(n) , d(n) )
ALLOCATE ( w(@:max_step), r(0:max_step))
d=0. ; e =0.
! define the step size
step=(rmax-rmin)/FLOAT (max_step)
hh(interpol)=stepx*step
! define constants for the matrix to be diagonalized
constl=2./(stepxstep)
const2=-1./(step*step)
! set up r, the distance from the nucleus and the function w for energy =0
! w corresponds then to the potential

! values at
DO i=0, max_step
r(i) = rmin+ixstep
w(i) = potential(r(i))

ENDDO
! setup the diagonal d and the non-diagonal part e of
! the tridiagonal matrix matrix to be diagonalized
d(1l:n)=constl+w(1l:n) ; e(l:n)=const2
! allocate space for eigenvector info
ALLOCATE ( z(n,n) )
! obtain the eigenvalues
CALL tqli(d,e,n,z)
! sort eigenvalues as an ascending series
CALL eigenvalue_sort(d,n)
DEALLOCATE (z)
errl=0.
! the interpolation part starts here
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DO 1=1,20

err2=0.

value(interpol,1)=d(1l)

inp=d(1l)

IF ( interpol > 1 ) THEN
CALL polint(hh,value(:,1),interpol,0.d0 ,inp,err2)
errl=MAX(errl,err2)
WRITE(6,'(D12.6,2X,D12.6,2X,D12.6)"') inp, d(1l), errl

ELSE
WRITE(6,'(D12.6,2X,D12.6,2X,D12.6)"') d(1), d(1l), errl
ENDIF
ENDDO
DEALLOCATE ( w, r, d, e)
ENDDO

7.8 Exercises and projects

Project 7.1: Schrédinger’s equation for two electrons irhaee-dimensional harmonic os-
cillator well

The aim of this project is to solve Schrddinger’s equationtfeo electrons in a three-dimensional harmonic
oscillator well with and without a repulsive Coulomb intetian. Your task is to solve this equation by refor-
mulating it in a discretized form as an eigenvalue equatidmet solved with Jacobi’s method. To achieve this
you will have to write your own code which implements Jacehiethod.

Electrons confined in small areas in semiconductors, deetglantum dots, form a hot research area in
modern solid-state physics, with applications spanniomfsuch diverse fields as quantum nano-medicine to
the contruction of quantum gates.

Here we will assume that these electrons move in a threerdiimeal harmonic oscillator potential (they
are confined by for example quadrupole fields) and repel etir wia the static Colulomb interaction. We
assume spherical symmetry.

We are first interested in the solution of the radial part dirBdinger’s equation for one electron. This
equation reads

h? <1ir2i_l(l+1)

23" 7 = ) R(r) + V(r)R(r) = ER(r).

2m

In our caseV (r) is the harmonic oscillator potentiél /2)kr? with k¥ = mw? and E is the energy of the
harmonic oscillator in three dimensions. The oscillategfrency isv and the energies are

3
E, = hw <2n+l+§) )
withn =0,1,2,... andi =0,1,2,....
Since we have made a transformation to spherical coordiriateeans that € [0,00). The quantum
numberl is the orbital momentum of the electron. Then we substiR(te = (1/r)u(r) and obtain

h? d?

_hEd l(l+1)ﬁ_2
2m dr?

2 2m

u(r) + (V(r) + ) u(r) = Eu(r).

The boundary conditions at€0) = 0 andu(oco) = 0.
We introduce a dimensionless variaple- (1/a)r wherea is a constant with dimension length and get
2 d?
" 2ma? dp?

(1+1) R
P 2ma?

o)+ (Vo + ) o) = Bulp)
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We will set in this project = 0. InsertingV (p) = (1/2)ka?p* we end up with

a2

k
—Wd—pw(p) + 5’ p?u(p) = Bu(p).

2

We multiply thereafter witi2ma? /h? on both sides and obtain

d? mk 2ma’
—gEo) + Tz @ pPulp) = =5 Bulp)
The constan&x can now be fixed so that
mk 4, B
e =h
or
hQ 1/4
Defining
2ma?
A= 2 E,

we can rewrite Schrédinger’s equation as

d? 2
_d—pzu(p) + pu(p) = u(p).

This is the first equation to solve numerically. In three dasiens the eigenvalues for= 0 are\y = 3, \; =
T A =11,....
We use the by now standard expression for the second deeata functionu

W = u(p+h) —2u(p) +ulp—h)

s + O(h?), (7.11)

whereh is our step. Next we define minimum and maximum values for th@blep, pni, = 0 and pyax,
respectively. You need to check your results for the ensr@gminst different valugs,.x, since we cannot set

Pmax = OO.
With a given number of steps,:.,, we then define the stgpas

Pmax — Pmin
h=—""
nstep

Define an arbitrary value gf as
pi:pmin+ih i:01172a---anstep
we can rewrite the Schrddinger equation fpas

_u(pi +h) = 2u(p:) + u(pi — h)

2 + piulpi) = Mu(pi),

or in a more compact way

Uip1 — 2u; + U1
72

Wil — 2ui + Ui

h2 +pjus = —

whereV; = p? is the harmonic oscillator potential. Define first the diagianatrix element

2
di:ﬁ‘FVi
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and the non-diagonal matrix element

€e; = _ﬁ
In this case the non-diagonal matrix elements are given bgr@ constantAll non-diagonal matrix elements
are equal With these definitions the Schrddinger equation takesdhevfing form

diw; + €i—1Ui—1 + eip1Uip1 = AUy,

whereu; is unknown. We can write the latter equation as a matrix eigiere problem

dl €1 0 0 e 0 0 Ui U1

€1 d2 €2 O e O O (V%) ug

0 €9 d3 €3 0 0 -\ (712)
0 dnstcp72 €nstcp,1

0 e e e e enstep_l dnstep unstep_l unstep_l

or if we wish to be more detailed, we can write the tridiaganatrix as

Z+Vi -7 0 0 ... 0 0
—L %Jrlvrz Q—h—z 01 0 0
S N 719
0 e E A Va2 -5
0 — Z 4 Vi1

Recall that the solutions are known via the boundary commstiati = ng., and at the other end point,
that is forpg. The solution is zero in both cases.

a) Your task here is to write a function which implements b&saotation algorithm in order to solve
Eq. (ZI2).
We Define the quantitiegin 6 = ¢ = s/c, with s = sin 6 andc = cos ¢ and

a) — akk

t20 =7 =
co T Sy

We can then define the andleso that the non-diagonal matrix elements of the transformatlix a,;
become non-zero and we obtain the quadratic equation (usir® = 1/2(cot 6 — tan 6)

2+ 27t —1=0,

resulting in
t=—-7+V1+712,

andc ands are easily obtained via
1

VIFt?

ands = tec. Explain why we should choogeto be the smaller of the roots. Show that these choice
ensures that| < w/4) and has the effect of minimizing the difference betweenntiag¢ricesB and A
since

n

IB-Al}=4(1-¢) > (af +a3)+ =
i=1,i#k,l
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b)

How many points.s:,, do you need in order to get the lowest three eigenvalues withi€ading digits?
Remember to check the eigenvalues for the dependency ohoheemfpy,ax.

How many similarity transformations are needed before yaieh a result where all non-diagonal matrix
elements are essentially zero? Try to estimate the numhkesrdformations and extract a behavior as
function of the dimensionality of the matrix.

You can check your results against the code based on Houlsalgorithmiqli in the file lib.cpp.
Comment your results (here you could for example computéiitihe needed for both algorithms for a
given dimensionality of the matrix).

We will now study two electrons in a harmonic oscillatorIvghich also interact via a repulsive
Coulomb interaction. Let us start with the single-electeguation written as

h? d?

2mdr?

u(r) + %krgu(r) = EWuy(r),

where E() stands for the energy with one electron only. For two elerstiwith no repulsive Coulomb
interaction, we have the following Schrédinger equation

K2 42 2 42 1 1
e — —— 4 —kr? 4 Zkrd =E® .
( 2m dr% 2m dr% + 2 nt 2 7‘2) u(ry,m2) u(r1,72)

Note that we deal with a two-electron wave functiom, r2) and two-electron energE@).

With no interaction this can be written out as the productwaf single-electron wave functions, that is
we have a solution on closed form.

We introduce the relative coordinate= r; — r» and the center-of-mass coordin®e= 1/2(r; + ra).
With these new coordinates, the radial Schrédinger equatiads

1
+ Zer + kRQ) u(r, R) = E®u(r,R).

nd? R d?
(‘EW_RTR?

The equations for and R can be separated via the ansatz for the wave funetionR) = ¢ (r)¢(R)
and the energy is given by the sum of the relative enétggnd the center-of-mass enerfy;, that is

E® = E, + Ep.

We add then the repulsive Coulomb interaction between texctiedns, namely a term

pe? Be?

V(ri,ra) = m =

with 8e? = 1.44 eVnm.

Adding this term, the-dependent Schrédinger equation becomes
R? d* 1 2
(——7 + ke + 576) W(r) = Ep(r).
This equation is similar to the one we had previously in (aj am® introduce again a dimensionless
variablep = r/a. Repeating the same steps as in (a), we arrive at

d? k
) + ) +

mafe? ma?

phg 1/)(0) = FETMJ(/))
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d)
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We want to manipulate this equation further to make it aslaintd that in (a) as possible. We define
k. = 1/4k The constant is then again fixed so that

mk,

@ =
or b2 \ 1
a:(mkr) |

Defining

we can rewrite Schrédinger’s equation as

2

_d_p2

b(p) + p*0(p) + % — \(p),

with
B ma3e?
We treaty as a parameter which reflects the strength of the oscillatmpial.

Here we will study the cases= 0,y = 0.5, v = 1, v = 2 and~ = 4. for the ground state only, that is
the lowest-lying state.

For~ = 0 you should get a result which corresponds to the relativeggre a non-interacting system.
The way we have written the equations means you get the samgaysfory = 0. Make sure your
results are stable as functionsgf.. and the number of steps.

We are only interested in the ground state with 0. We omit the center-of-mass energy.
You can reuse the code you wrote for (a), but you need to chizwegeotential fronp? to p? + ~/p.
Comment the results for the lowest state (ground state)radifun of varying strengths of.

For specific oscillator frequencies, the above equatiorahas/tic answers, see the article by M. Taut,
Phys. Rev. A 48, 3561 - 3566 (1993). The article can be retddvom the following web address
http://prola.aps.org/abstract/PRA/v48/i5/p3561_1.

In this exercise we want to plot the wave function for tweattons as functions of the relative coordinate
r and different values of.. Fory = 0 your wave function should correspond to that of a harmonic
oscillator. Varyingy, the shape of the wave function will change.

We are only interested in the wave function for the grountéstdth [ = 0 and omit again the center-of-
mass motion.

You can choose between two approaches; the first is to usaigtmgtqli function. Here the eigenvec-
tors are obtained from the matri¥i][j], where the indey refers to eigenvalug. The index; points to

the value of the wave function in positipn. That is,u*s)(p;) = z[i][j].

The eigenvectors are normalized. Plot then the normalizaeviunctions for different values afand
comment the results.

The other alternative is to add a piece to your Jacobi rowutimeh also returns the eigenvectors. This is
the more difficult part. You will need to normalize the eigeators.


http://prola.aps.org/abstract/PRA/v48/i5/p3561_1

Part Il

Ordinary and Partial Differential
Equations
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Chapter 8

Differential equations

If God has made the world a perfect mechanism, he has at leas¢ded so much to our im-
perfect intellect that in order to predict little parts gfite need not solve innumerable differential
equations, but can use dice with fair succebtax Born, quoted in H. R. Pagels, The Cosmic
Code [41]

8.1 Introduction

We may trace the origin of differential equations back to kawin 1681 and his treatise on the gravitational
force and what is known to us as Newton'’s second law in dynsimic

Needless to say, differential equations pervade the seseand are to us the tools by which we attempt
to express in a concise mathematical language the laws dbmof nature. We uncover these laws via
the dialectics between theories, simulations and expertisnand we use them on a daily basis which spans
from applications in engineering or financial engineermysic research in for example biology, chemistry,
mechanics, physics, ecological models or medicine.

We have already met the differential equation for radio@atiecay in nuclear physics. Other famous dif-
ferential equations are Newton'’s law of cooling in thermoainics. the wave equation, Maxwell’s equations in
electromagnetism, the heat equation in thermodynamidgkcefs equation and Poisson’s equation, Einstein’s
field equation in general relativity, Schrédinger equatioguantum mechanics, the Navier-Stokes equations
in fluid dynamics, the Lotka-Volterra equation in populatidynamics, the Cauchy-Riemann equations in
complex analysis and the Black-Scholes equation in fingnsefo mention a few. Excellent texts on differ-
ential equations and computations are the texts of Erikdsstiep, Hansbo and Johnson [42], Butcher [43] and
Hairer, Ngrsett and Wanner [44].

There are five main types of differential equations,

— ordinary differential equations (ODESs), discussed in tapter for initial value problems only. They
contain functions of one independent variable, and devieain that variable. The next chapter deals
with ODEs and boundary value problems.

— Partial differential equations with functions of multigledependent variables and their partial deriva-
tives, covered in chaptEr1L0.

— So-called delay differential equations that involve fumies of one dependent variable, derivatives in
that variable, and depend on previous states of the depevalgables.

INewton had most of the relations for his laws ready 22 yeai@gavhen according to legend he was contemplating fglipples.
However, it took more than two decades before he publishethbbries, chiefly because he was lacking an essential matiocal tool,
differential calculus.
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— Stochastic differential equations (SDESs) are differdmtipiations in which one or more of the terms is
a stochastic process, thus resulting in a solution whictsédfia stochastic process.

— Finally we have so-called differential algebraic equati¢DAES). These are differential equation com-
prising differential and algebraic terms, given in imgli@rm.

In this chapter we restrict the attention to ordinary déf@ial equations. We focus on initial value problems

and present some of the more commonly used methods for gaduich problems numerically. The physical
systems which are discussed range from the classical penduith non-linear terms to the physics of a
neutron star or a white dwarf.

8.2 Ordinary differential equations

In this section we will mainly deal with ordinary differeatiequations and numerical methods suitable for
dealing with them. However, before we proceed, a brief raohai on differential equations may be appropri-
ate.

220

— The order of the ODE refers to the order of the derivative @n¢ift-hand side in the equation

dy
— = f(t,y). 8.1
o = ty) (8.1)
This equation is of first order anglis an arbitrary function. A second-order equation goeiy like
d*y dy
A well-known second-order equation is Newton’s second law
d’x

wherek is the force constant. ODE depend only on one variable, vesere

— partial differential equations like the time-dependerir®dinger equation

LOP(x,t) R (0%Y(x,t) | 0*p(x,t) | 0*p(r,t)
ih ot “om ( Ox2 + dy? + 922 ) + V(x)(x,t), (8.4)

may depend on several variables. In certain cases, likeltbeeaequation, the wave function can be
factorized in functions of the separate variables, so thetSchrédinger equation can be rewritten in
terms of sets of ordinary differential equations.

— We distinguish also between linear and non-linear difféaéequation where e.g.,

W o), 8.5)

is an example of a linear equation, while

Y — P () - 90, X

is a non-linear ODE. Another concept which dictates the migakmethod chosen for solving an ODE,
is that of initial and boundary conditions. To give an examh our study of neutron stars below, we

will need to solve two coupled first-order differential etjaas, one for the total mass and one for the

pressureP as functions op
d
—dT: = 4nr?p(r)/c?,
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and dP G

o TQ(T)P(T)/CQ-
wherep is the mass-energy density. The initial conditions areatiict by the mass being zero at the
center of the star, i.e., when= 0, yieldingm(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at theygbéere we havé® = 0 in the solution of
the integral equations, we have the total radiuef the star and the total mass(r = R). These two
conditions dictate the solution of the equations. Sincedifferential equations are solved by stepping
the radius fromr = 0 to r = R, so-called one-step methods (see the next section) or Rkutje
methods may yield stable solutions.

In the solution of the Schrodinger equation for a particla jpotential, we may need to apply boundary
conditions as well, such as demanding continuity of the vaxetion and its derivative.

— In many cases it is possible to rewrite a second-order éiffigall equation in terms of two first-order
differential equations. Consider again the case of Newtsatond law in Eq[T8.3). If we define the
positionz(t) = 1) (t) and the velocity(t) = y(?)(t) as its derivative

dyM () dx(t)

= =yt 8.7
p ik AN O (8.7)

we can rewrite Newton's second law as two coupled first-odiféarential equations

dy® (t)

o = —ka(t) = —ky M (1), (8.8)

m

and
= =y ). (8.9)

8.3 Finite difference methods

These methods fall under the general class of one-step detfde algoritm is rather simple. Suppose we
have an initial value for the functiop(t) given by

Yo = y(t = to). (810)

We are interested in solving a differential equation in dordn space [a,b]. We define a stigoy splitting
the interval inN sub intervals, so that we have

b—a
h= . 8.11
¥ (8.11)
With this step and the derivative gfwe can construct the next value of the functipat
y1 =y(t1 =to+h), (8.12)

and so forth. If the function is rather well-behaved in thendin [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on feqedasthods only. Let us try to generalize the
above procedure by writing the stgp.; in terms of the previous stap

yirr = y(t = ti + h) = y(t:) + hA(ts, yi(t:) + O(hP), (8.13)
whereO(hP*1) represents the truncation error. To determineve Taylor expand our function

Pt
p!

Yier = y(t = 1+ 1) = y(t) + b <y’<tz—> ey ) ) Lo, (8.14)
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where we will associate the derivatives in the parenthetis w

1

At galt)) = O/ (t) + -+ () — ). (8.15)
We define
y'(t:) = f(ti,ys) (8.16)
and if we truncate\ at the first derivative, we have
Yirr = y(ti) + hf(ts,y:) + O(h?), (8.17)

which when complemented with,; = ¢; + h forms the algorithm for the well-known Euler method. Note
that at every step we make an approximation error of the atiéx(h?), however the total error is the sum
over all stepsV = (b — a)/h, yielding thus a global error which goes liRéO(h?) ~ O(h). To make Euler’s
method more precise we can obviously decréaiacreaseV). However, if we are computing the derivative
f numerically by e.g., the two-steps formula

fre(w) = w +0(h),

we can enter into roundoff error problems when we subtragtimost equal numbey§z + h) — f(z) ~ 0.
Euler's method is not recommended for precision calcutatdthough it is handy to use in order to get a first
view how a solution may look like. As an example, consider Ma&Vs equation rewritten in Eqd_{8.8) and
@B3). We defingyy = y(V)(t = 0) anvy = y? (¢t = 0). The first steps in Newton’s equations are then

y§1) = yo + hvo + O(h?) (8.18)
and
12 = vy — hyok/m + O(h?). (8.19)

The Euler method is asymmetric in time, since it uses infeiznaabout the derivative at the beginning of
the time interval. This means that we evaluate the positi(yﬁlé using the velocity ay((f) = vp. A simple
variation is to determingf}j1 using the velocity ayfﬁl that is (in a slightly more generalized form)

)y =y + hyZ, + o(n?) (8.20)
and
ol =y @ + hayn + O(h?), (8.21)

The acceleration,, is a function ofan(y,(}), y,(f), t) and needs to be evaluated as well. Thisis the Euler-Cromer

method.
Let us then include the second derivative in our Taylor esgam We have then
df (ti,yi)

A(ti, yilti)) = f(t:) + gT + O(h?). (8.22)

The second derivative can be rewritten as

v_p_ W _0F O0f0y _Of Of
Vel sw T w Tagar T o oy 8.23)
and we can rewrite E.{8114) as

h2
Yir1r =yt =t; +h) =y(t;) + hf(ti) + — <8f of

(Y a—yf) ) (8.24)
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which has a local approximation errox 1) and a global erro©(h?). These approximations can be general-
ized by using the derivativé to arbitrary order so that we have

p—1
Yir1 =yt =t; +h) = y(t;) + h(f(ti,y:) + .. 'f(p_l)(tivyi)hp! )+ O(hPHh). (8.25)

These methods, based on higher-order derivatives, arenierglenot used in numerical computation, since
they rely on evaluating derivatives several times. Unlessltas analytical expressions for these, the risk of
roundoff errors is large.

8.3.1 Improvements of Euler’s algorithm, higher-order hoets

The most obvious improvements to Euler’'s and Euler-Crosreddorithms, avoiding in addition the need for
computing a second derivative, is the so-called midpoirthioe We have then

h
W = o0+ 2 (24 02) + o) .20
and
b2 =@ 4 hay + O(h2), (8.27)
yielding
2
yy =y + by + %an +O(h?) (8.28)

implying that the local truncation error in the position iewmO(h?), whereas Euler's or Euler-Cromer’s
methods have a local error 6f(h?). Thus, the midpoint method yields a global error with seeordkr
accuracy for the position and first-order accuracy for thiecity. However, although these methods yield
exact results for constant accelerations, the error ise®m general with each time step.

One method that avoids this is the so-called half-step ntetHere we define

Uihijs = U1 s+ han + O(R?), (8.29)
and
1 2
=) + hyflll/z +O0(h?). (8.30)

Note that this method needs the calculatioryg/fz. This is done using e.g., Euler's method

h
yh = u” + g0+ O(h?). (8.31)
As this method is numerically stable, it is often used ingteBEuler’s method. Another method which one

may encounter is the Euler-Richardson method with

e = yP 4 han g + O(h?), (8.32)
and
1 2
vl =y +hyl) |+ O (8.33)

8.3.2 Predictor-Corrector methods
Consider again the first-order differential equation

dy
E - f(tay)a

which solved with Euler’s algorithm results in the followialgorithm
Yiv1 = y(ti) + hf(ti,yi)
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with ¢;11 = t; + h. This means geometrically that we compute the slopg ahd use it to predicj;; at a
later timet; ;. We introduce:; = f(t;,y;) and rewrite our prediction fay; 1 as

Yi+1 = y(tl) + hkl

We can then use the predictign,; to compute a new slope 8t by definingks = f(ti+1,yi+1). We define
the new value ofj;; 1 by taking the average of the two slopes, resulting in

i~ y(t) + 5 (k1 + k).
The algorithm is very simple,namely
1. Compute the slope &t, that is define the quantityy = f(¢;, y;).
2. Make a predicition for the solution by computing 1 ~ y(¢;) + hk1 by Euler's method.
3. Use the predicition; 1 to compute a new slope &t.; defining the quantityes = f(ti+1, Yi+1)-
4. Correctthe value af; 11 by taking the average of the two slopes yielding: ~ y(¢;) + %(kl + ko).

It can be shown [25] that this procedure results in a mathiealatuncation which goes lik&(h?), to be
contrasted with Euler's method which runs@éh). One additional function evaluation yields a better error
estimate.

This simple algorithm conveys the philosophy of a largestafamethods called predictor-corrector meth-
ods, see chapter 15 of Ref. [37] for additional algorithmssirple extension is obviously to use Simpson’s
method to approximate the integral

tit1
Yi+1 = Yi + / f(tv y)dtv
ti
when we solve the differential equation by successive maté&mns. The next section deals with a particular
class of efficient methods for solving ordinary differehéigquations, namely various Runge-Kutta methods.

8.4 More on finite difference methods, Runge-Kutta methods
Runge-Kutta (RK) methods are based on Taylor expansionudtarenbut yield in general better algorithms for

solutions of an ODE. The basic philosophy is that it providesntermediate step in the computationyof; .
To see this, consider first the following definitions

) (3:3)
and
o) = [ fiepat (8.35)
and -
Yis1 =y + / F(t )t (8.36)

To demonstrate the philosophy behind RK methods, let usidenthe second-order RK method, RK2. The
first approximation consists in Taylor expandifi@, y) around the center of the integration interyato ¢, 1,
i.e., att; + h/2, h being the step. Using the midpoint formula for an integrefidngy(t; + 1/2) = y;11/2
andt; + h/2 = t; 14 /o, we obtain

/ T F(t )t~ hf (ti o isj2) + O(RY). (8.37)

t;
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This means in turn that we have

Yir1 = Yi + hf (tiz1/2,Yivr1/2) + O(R?). (8.38)

However, we do not know the value 9f,,,,. Here comes thus the next approximation, namely, we use
Euler's method to approximaig, ; . We have then

hdy h
; = Y; —— =yl — (s, yq)- 8.39
Yari/2) = Yit 5 y(ti) + 2f( Yi) (8.39)

This means that we can define the following algorithm for #heosid-order Runge-Kutta method, RK2.

ki = hf(ti,yi), (8.40)
ko = hf(tiz1/2,yi +k1/2), (8.41)

with the final value
Yir1 = Yi + ko + O(R). (8.42)

The difference between the previous one-step methods tisvinaow need an intermediate step in our
evaluation, namely; + h/2 = t(;;1/2) where we evaluate the derivatiye This involves more operations,
but the gain is a better stability in the solution. The forwstder Runge-Kutta, RK4, which we will employ in
the solution of various differential equations below, isiBederived. The steps are as follows. We start again
with the equation

tit1
Yir1 = Yi +/ f(t,y)dt,

t;
but instead of approximating the integral with the midpairle, we use now Simpsons’ rule at+ h/2, h
being the step. Using Simpson’s formula for an integral riegy (t; +-7/2) = y; 12 andt; +h/2 = t, 12,
we obtain

tit1
[ pwde = § [ + 45 i ) + ftin,en)] 000 (8.43)

t;
This means in turn that we have
h 5
v =vitg [f(ti,yi) + A (tig1 2, Yir1/2) + [ (tiv1, yig1) ] + O(R®). (8.44)
However, we do not know the values gf, ; » andy; 1. The fourth-order Runge-Kutta method splits the

midpoint evaluations in two steps, that is we have

h
Yit1 = Yi + 5 [f (i, ys) + 21 (tig1 /2, Yir1/2) + 2f (biy1 )25 Yig12) + F (i1, yir1)]

since we want to approximate the slopgat, /, in two steps. The first two function evaluations are as for the
second order Runge-Kutta method. The algorithm is as fallow

1. We compute first
which is nothing but the slope &tIf we stop here we have Euler's method.

2. Thenwe compute the slope at the midpoint using Euler$ioteto predicy; ., /», as in the second-order
Runge-Kutta method. This leads to the computation of

ko =hf(t;+h/2,y; + k1/2). (8.46)
3. The improved slope at the midpoint is used to further inpithe slope ofj; ,,» by computing

ks =hf(ti+h/2,y; + k2/2). (8.47)
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4. With the latter slope we can in turn predict the valugqf; via the computation of

ks =hf(ti + h,yi + k3). (8.48)

5. The final algorithm becomes then

1
Yi+1 = Yi + 6 (kl + 2ko + 2k3 + k4) . (849)

Thus, the algorithm consists in first calculatiiagwith ¢;, y; and f as inputs. Thereafter, we increase the step
size byh/2 and calculaté,, thenks and finallyk,. With this caveat, we can then obtain the new value for the
variabley. It results in four function evaluations, but the accuracincreased by two orders compared with
the second-order Runge-Kutta method. The fourth order Bdfigta method has a global truncation error
which goes likeO(h*). Fig.[821 gives a geometrical interpretation of the foustder Runge-Kutta method.

y; andk;

ti ti+h/2 ti+h t

Figure 8.1: Geometrical interpretation of the fourth-arRBeinge-Kutta method. The derivative is evaluated
at four points, once at the intial point, twice at the trialdpoint and once at the trial endpoint. These four
derivatives constitute one Runge-Kutta step resultingérfinal value fory; 1 = y;+1/6(k1+2ko+2ks+ky4).

8.5 Adaptive Runge-Kutta and multistep methods

In preparation.

226



8.6 — Physics examples

Figure 8.2: Block tied to a wall with a spring tension actingio

8.6 Physics examples

8.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonitl@sons, namely a block sliding on a horizontal
frictionless surface. The block is tied to a wall with a sgriportrayed in e.g., Fig._8.2. If the spring is not
compressed or stretched too far, the force on the block ateagiositionz is

F = —ka. (8.50)

The negative sign means that the force acts to restore tleetaioj an equilibrium position. Newton’s
equation of motion for this idealized system is then

d2
Wf = —kz, (8.51)
or we could rephrase it as
d’z k
TE == —wi, (8.52)

with the angular frequenay? = k/m.
The above differential equation has the advantage thahibeasolved analytically with solutions on the
form
z(t) = Acos(wot + v),

whereA is the amplitude and the phase constant. This provides in turn an important eeshé numerical
solution and the development of a program for more comm@itatises which cannot be solved analytically.

As mentioned earlier, in certain cases it is possible toitever second-order differential equation as two
coupled first-order differential equations. With the piasitz(¢) and the velocitw(t) = dx/dt we can refor-
mulate Newton’s equation in the following way

d"’:lit) —u(t), (8.53)
and ol
1:15:) = —w2x(t). (8.54)

227



Differential equations

We are now going to solve these equations using the RungexKugthod to fourth order discussed previ-

ously. Before proceeding however, it is important to nosg th addition to the exact solution, we have at least
two further tests which can be used to check our solution.

Since functions like:os are periodic with a perio@r, then the solutior:(¢) has also to be periodic. This

means that

wit

z(t+T)==z(t), (8.55)
h T the period defined as

_ 2T 2

T (8.56)

wo +/k/m
Observe thal” depends only ok /m and not on the amplitude of the solution or the constant

In addition to the periodicity test, the total energy has atsbe conserved.
Suppose we choose the initial conditions

z(t=0)=1m v(t =0) =0m/s, (8.57)

meaning that block is at rest &t 0 but with a potential energy

Ey = %kw(t =0)%= k. (8.58)

The total energy at any timehas however to be conserved, meaning that our solution Halitthe condition

An

Ey = %kx(t)Q + %mv(t)z. (8.59)

algorithm which implements these equations is includeldw.

1. Choose the initial position and speed, with the most comoiwicev(t = 0) = 0 and some fixed
value for the position. Since we are going to test our reagtsnst the periodicity requirement, it is
convenient to set the final time equal= 27, where we choosk/m = 1. The initial time is set equal
tot; = 0. You could alternatively read in the ratig'm.

2. Choose the method you wish to employ in solving the problerthe enclosed program we have chosen
the fourth-order Runge-Kutta method. Subdivide the tinteriral[¢;, ¢ /] into a grid with step size

_lp =t

h
N )

whereN is the number of mesh points.

3. Calculate now the total energy given by

1 1
0=3 a( 0) D)

and use this when checking the numerically calculated grfeogn the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtain; andv;, starting from the previous values andv;..

5. When we have computedv),; we upgrade;; = t; + h.

6. This iterative process continues till we reach the maxmtime¢; = 2.
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Program to solve the differential equations for a sliding bbck

The program which implements the above algorithm is presthére, with a corresponding

http://www.fys.ulio.no/compphys/cp/programs/FYS3150/chapterl3/cpp/programl. cpp

/* This program solves Newton's equation for a block
sliding on a horizontal frictionless surface. The block
is tied to a wall with a spring, and Newton's equation
takes the form

m d*2x/dt"2 =-kx
with k the spring tension and m the mass of the block.
The angular frequency is omega™2 = k/m and we set it equal
1 in this example program.

Newton's equation is rewritten as two coupled differential
equations, one for the position x and one for the velocity v
dx/dt = v and
dv/dt -x when we set k/m=1

We use therefore a two-dimensional array to represent x and v
as functions of t

y[0] == x

y[l] == v

dy[0]/dt = v

dy[1]/dt -X

The derivatives are calculated by the user defined function
derivatives.

The user has to specify the initial velocity (usually v_0=0)
the number of steps and the initial position. In the programme
below we fix the time interval [a,b] to [0,2xpi].

*/

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

// function declarations

void derivatives(double, double *, double x*);

void initialise ( double&, double&, inté&);

void output( double, double *, double);

void runge_kutta_4(double %, double *, int, double, double,
double *, void (*)(double, double *, double x*));

int main(int argc, charx argv[])
{
// declarations of variables
double *y, *xdydt, *yout, t, h, tmax, EO;
double initial_x, initial_v;
int i, number_of_steps, n;
char xoutfilename;
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{

outfilename=argv([1l];
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}

ofile.open(outfilename);

// this is the number of differential equations

n=2;

// allocate space in memory for the arrays containing the derivatives
dydt = new double[n];

y = new double[n];

yout = new double[n];

// read in the initial position, velocity and number of steps
initialise (initial_x, initial_v, number_of_steps);

// setting initial values, step size and max time tmax

h = 4.xacos(-1.)/( (double) number_of_steps); // the step size

tmax = hxnumber_of_steps; // the final time
y[0] = initial_x; // initial position
y[1] = initial_v; // initial velocity
t=0.; // initial time

EO = 0.5xy[0]*y[0]+0.5+xy[1]*xy[1]; // the initial total energy
// now we start solving the differential equations using the RK4 method
while (t <= tmax){
derivatives(t, y, dydt); // initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i =0; i <n; i++) {
y[i] = yout[i];

}

t += h;

output(t, y, EO); // write to file
}

delete [] y; delete [] dydt; delete [] yout;
ofile.close(); // close output file
return 0;

} // End of main function

// Read in from screen the number of steps,

// initial position and initial speed

void initialise (double& initial_x, double& initial_v, int& number_of_steps)
{

cout << "Initial position = ";
cin >> initial_x;

cout << "Initial speed = ";
cin >> initial_v;

cout << "Number of steps = ";
cin >> number_of_steps;

} // end of function initialise

// this function sets up the derivatives for this special case
void derivatives(double t, double xy, double *dydt)
{
dydt[0]=y[1]; // derivative of x
dydt[1]=-y[0]; // derivative of v
} // end of function derivatives

// function to write out the final results

void output(double t, double *y, double EO)

{
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(1l5) << setprecision(8) << t;
ofile << setw(1l5) << setprecision(8) << y[0];
ofile << setw(1l5) << setprecision(8) << y[1];
ofile << setw(1l5) << setprecision(8) << cos(t);
ofile << setw(1l5) << setprecision(8) <<

0.5xy[0]+y[0]+0.5%xy[1]*y[1]-EO << endl;
} // end of function output

/* This function upgrades a function y (input as a pointer)
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and returns the result yout, also as a pointer. Note that
these variables are declared as arrays. It also receives as
input the starting value for the derivatives in the pointer
dydx. It receives also the variable n which represents the
number of differential equations, the step size h and
the initial value of x. It receives also the name of the
function *xderivs where the given derivative is computed
*/
void runge_kutta_4(double *y, double *dydx, int n, double x, double h,
double *yout, void (=xderivs)(double, double *, double x))

{

int i;

double xh, hh,h6;

double *dym, x*dyt, x*yt;

// allocate space for local vectors

dym = new double [n];

dyt = new double [n];

yt = new double [n];
hh = hx0.5;
hé = h/6.;
xh = x+hh;

for (1 =0; i <n; i++) {
yt[i] = y[il+hhxdydx[i];
}
(xderivs) (xh,yt,dyt); // computation of k2, eq. 3.60
for (i =0; i <n; i++) {
yt[i] = y[i]+hhxdyt[i];
}
(*derivs) (xh,yt,dym); // computation of k3, eq. 3.61
for (i=0; i < n; i++) {
yt[i] = y[i]+hxdym[i];
dym[i] += dyt[i];

}
(*derivs) (x+h,yt,dyt); // computation of k4, eq. 3.62
// now we upgrade y in the array yout

for (i =0; i < n; i++){
yout[i] = y[i]+h6x(dydx[i]+dyt[i]+2.0xdym[i]);
}
delete []ldym;
delete [] dyt;
delete [] yt;
} // end of function Runge-kutta 4

In Fig.[B:3 we exhibit the development of the difference leswthe calculated energy and the exact energy at
t = 0 after two periods and wittv = 1000 and N = 10000 mesh points. This figure demonstrates clearly the
need of developing tests for checking the algorithm usedsé&®ahat even fav = 1000 there is an increasing
difference between the computed energy and the exact eaftegyonly two periods.

8.6.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until tispldcement becomes zero. We call such a motion
for damped and the system is said to be dissipative rathardbaservative. Considering again the simple
block sliding on a plane, we could try to implement such aig&ts/e behavior through a drag force which is
proportional to the first derivative af, i.e., the velocity. We can then expand HQ. (8.52) to

d*x 9 dz
— = —WyT — V—,
dt2 0 dt

wherev is the damping coefficient, being a measure of the magnitbitteealrag term.
We could however counteract the dissipative mechanism plyiyg e.g., a periodic external force

(8.60)

F(t) = Bcos(wt), (8.61)
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Figure 8.3: Plot oNE(t) = Ep — Ecomputed fOr N = 1000 andN' = 10000 time steps up to two periods. The
initial positionxzg = 1 m and initial velocityvy = 0 m/s. The mass and spring tension are séttom = 1.
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Figure 8.4: Simple RLC circuit with a voltage soure

and we rewrite Eq{8.80) as
d*z 9 dx
Tz —WwoT — VE
Although we have specialized to a block sliding on a surféoe,above equations are rather general for
guite many physical systems.
If we replacer by the chargé), v with the resistanc&, the velocity with the current, the inductancé
with the massn, the spring constant with the inverse capacitafiand the forcer” with the voltage drop/,
we rewrite Eq.[8.82) as

+ F(t). (8.62)

L—2+ 2+ R =V(t). (8.63)

The circuit is shown in Fid_8l4.

How did we get there? We have defined an electric circuit whimhsists of a resistand@ with volt-
age drop/ R, a capacitor with voltage drof/C and an inductol. with voltage dropLdI/dt. The circuit
is powered by an alternating voltage source and using Kofflshlaw, which is a consequence of energy
conservation, we have

V(t)=IR+ Ldl/dt+ Q/C, (8.64)
and using
_daQ
I — - (8.65)
we arrive at Eq.[(8.83).

This section was meant to give you a feeling of the wide rarfggpplicability of the methods we have
discussed. However, before leaving this topic entirelyllwevelve into the problems of the pendulum, from
almost harmonic oscillations to chaotic motion!

8.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massat the end of a rigid rod of lengthattached to say a fixed frictionless pivot
which allows the pendulum to move freely under gravity inweetical plane as illustrated in Fig_8.5.
The angular equation of motion of the pendulum is again giweMewton’s equation, but now as a non-

linear differential equation
d*0 ,
mlW + mgsin(6) = 0, (8.66)

with an angular velocity and acceleration given by

do
=l— 8.67
v=15, (8.67)
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pivot

length |

mass

mg

Figure 8.5: A simple pendulum.

and )
d=0

For small angles, we can use the approximation
sin(6) =~ 6.
and rewrite the above differential equation as

d?o g
el —79, (8.69)
which is exactly of the same form as ER.(8.52). We can thuslcber solutions for small values éfagainst

an analytical solution. The period is how

o (8.70)

l/g
We do however expect that the motion will gradually come t@ad due a viscous drag torque acting on
the pendulum. In the presence of the drag, the above equammes
d*0 de
mlW + v + mgsin(6) =0, (8.71)
wherev is now a positive constant parameterizing the viscosithefhedium in question. In order to maintain
the motion against viscosity, it is necessary to add somereak driving force. We choose here, in analogy
with the discussion about the electric circuit, a periodividg force. The last equation becomes then
d*0 de .
mlW + o + mgsin(0) = Acos(wt), (8.72)
with A andw two constants representing the amplitude and the ang@quéncy respectively. The latter is
called the driving frequency.
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If we now define the natural frequency
wo = /g/l, (8.73)

the so-called natural frequency and the new dimensionlesstiies

t = wot, (8.74)
with the dimensionless driving frequency
o=2 (8.75)
wo

and introducing the quantity, called thequality factor,

Q= ﬂ’ (8.76)
wolV
and the dimensionless amplitude
A=A (8.77)
mg
we can rewrite Eq{8.12) as
d29+ L (6) = Acos(wi) (8.78)
ve - = Sin = cos(wt). .
ez Qdt

This equation can in turn be recast in terms of two coupletdirder differential equations as follows

do

— =1, 8.79
=0 (8.79)

and i .
d_ltj = —% — sin(0) 4+ Acos(t). (8.80)
These are the equations to be solved. The fagtoepresents the number of oscillations of the undriven
system that must occur before its energy is significantlyced due to the viscous drag. The amplitutie
is measured in units of the maximum possible gravitatiooajue whilew is the angular frequency of the

external torque measured in units of the pendulum’s naftegliency.

8.6.4 Spinning magnet

Another simple example is that of e.g., a compass needleigifage to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. Thaton is then

d*6
i —%Bocos(wt)sin(ﬁ), (8.81)
whered is the angle of the needle with respect to a fixed axis alondidie 1 is the magnetic moment of
the needle/ its moment of inertia an®, andw the amplitude and angular frequency of the magnetic field
respectively.

8.7 Physics Project: the pendulum

8.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum aalg be obtained through numerical efforts, it is
always useful to check our numerical code against analgtigions. For small angle® we havesinf ~ 6

and our equations become
de

— =1, 8.82
Z=0 (8.82)
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and i .

d—? - _% — 0+ Acos(wi). (8.83)
These equations are linear in the angknd are similar to those of the sliding block or the RLC citcWith
given initial conditionsiy andf, they can be solved analytically to yield

s B
o(t) = [90 - (1_01:‘2)()1271;&@2} e~ T/?Rcos(,/1 — o 7) (8.84)

~ A(1—302 _r . A(1—=0?)cos(OT)+ L sin(oT
+ [Uo + 29—602 - 7({4_(é2)?’2+gé2/g2} e~/ Rsin(, /1 — ﬁr) + ( (1)_@52_&&2/@@2 ( )7

A~
0(t) = [{20 — %} e~ T/?Rcos(,/1 — #7’) (8.85)
D Al(1—02)—@2 2 _r . DA[—(1—0?)sin(OT)+2 cos(wT
- [90 tag - Iél([l(iwz)z)m%/g?q ¢ /QQSW(\/ 1= 7))+ = (17232)2(%3/(52 e,

with @ > 1/2. The first two terms depend on the initial conditions and geogonentially in time. If we
wait long enough for these terms to vanish, the solutionsimecndependent of the initial conditions and the
motion of the pendulum settles down to the following simpleitin phase space

A1 — &?)cos(oT) + %szn(dﬁ)

o(t) = (1—a?)2+a2/Q? ’

(8.86)

and . 5
WA~ (1 = &?)sin(wT) + Geos(wT)]
(1-0%)?+0%/Q? ’

() -

A

VI =22 +02/Q
This curve forms an ellipse whose principal axes@endo. This curve is closed, as we will see from the
examples below, implying that the motion is periodic in tinike solution repeats itself exactly after each
periodT = 27/&. Before we discuss results for various frequencies, qudittors and amplitudes, it is
instructive to compare different numerical methods. In we show the angkas function of timer for
the case with) = 2, & = 2/3 andA = 0.5. The length is set equal tom and mass of the pendulum is set
equal tol kg. The inital velocity isi, = 0 andfy = 0.01. Four different methods have been used to solve
the equations, Euler's method from HQ.(8.17), Euler-Ridban’s method in Eq4_{8.B7)-(8133) and finally the
fourth-order Runge-Kutta scheme RK4. We note that aftertfieve steps, we obtain the classical harmonic
motion. We would have obtained a similar picture if we weresdtch off the external forced = 0 and
set the frictional damping to zero, i.€), = 0. Then, the qualitative picture is that of an idealized harimo
oscillation without damping. However, we see that Euler&timod performs poorly and after a few steps its
algorithmic simplicity leads to results which deviate dolesably from the other methods. In the discussion
hereafter we will thus limit ourselves to present resultaoted with the fourth-order Runge-Kutta method.

The corresponding phase space plot is shown in[Elg. 8.7 hiosame parameters as in HIg18.6. We
observe here that the plot moves towards an ellipse wittogierimotion. This stable phase-space curve is
called a periodic attractor. It is called attractor becairsespective of the initial conditions, the trajectory in
phase-space tends asymptotically to such a curve in thedimb oo. It is called periodic, since it exhibits
periodic motion in time, as seen from FIg.18.6. In additio® should note that this periodic motion shows
what we call resonant behavior since the the driving frequexfi the force approaches the natural frequency

i(t) =

tracing the closed phase-space curve

(8.87)

with
A p—

(8.89)
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Figure 8.6: Plot of) as function of timer with @ = 2, & = 2/3 andA = 0.5. The mass and length of the
pendulum are set equal to The initial velocity isty = 0 andf, = 0.01. Four different methods have been
used to solve the equations, Euler's method from Eq.18th&)half-step method, Euler-Richardson’s method
in Egs. [B3R){[8:33) and finally the fourth-order Rungetischeme RK4. Onlyv = 100 integration points
have been used for a time intervat [0, 107].

>

Figure 8.7: Phase-space curve of a linear damped pendultmw= 2, & = 2/3 andA = 0.5. The inital
velocity istg = 0 andfy = 0.01.
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of oscillation of the pendulum. This is essentially due @ fdict that we are studying a linear system, yielding
the well-known periodic motion. The non-linear system bilia much richer set of solutions and these can
only be studied numerically.

In order to go beyond the well-known linear approximationah@nge the initial conditions to sa@y =
0.3 but keep the other parameters equal to the previous case.curtie for6 is shown in Fig[8I8. The

0.5

SIS

Figure 8.8: Plot of as function of timer with Q = 2, © = 2/3 andA = 0.5. The mass of the pendulum is
set equal td kg and its length to 1 m. The inital velocityig = 0 andfy = 0.3.

corresponding phase-space curve is shown in[E1§. 8.9. TiNeaemonstrates that with the above given sets
of parameters, after a certain number of periods, the pHpaee curve stabilizes to the same curve as in the
previous case, irrespective of initial conditions. Howeutetakes more time for the pendulum to establish a
periodic motion and when a stable orbit in phase-space thesbtthe pendulum moves in accordance with the
driving frequency of the force. The qualitative picture iach the same as previously. The phase-space curve
displays again a final periodic attractor.

If we now change the strength of the amplitudefte= 1.35 we see in FigC8-10 thatas function of time
exhibits a rather different behavior from FIg.18.8, evenuido the initial conditions and all other parameters
exceptd are the same. The phase-space curve is shown ifiEg. 8.11.

We will explore these topics in more detail in Section 8.8Heve we extend our discussion to the phe-
nomena of period doubling and its link to chaotic motion.

8.7.2 The pendulum code

The program used to obtain the results discussed above semiesl here. The enclosed code solves the
pendulum equations for any andlevith an external forcelcos(wt). It employes several methods for solving
the two coupled differential equations, from Euler's methmadaptive size methods coupled with fourth-order
Runge-Kutta. It is straightforward to apply this progranother systems which exhibit harmonic oscillations
or change the functional form of the external force.

We have also introduced the class concept, where we defimmgamnethods for solving ordinary and
coupled first order differential equations via th@asspendulum. This methods access variables which belong
only to this particular class via theivate declaration. As such, the methods we list here can easilgused
by other types of ordinary differential equations. In theedelow, we list only the fourth order Runge Kutta
method, which was used to generate the above figures. Fairltbede see programs/chapterl3/program2.cpp.
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Figure 8.9: Phase-space curve wigh= 2, © = 2/3 andA = 0.5. The mass of the pendulum is set equal to
kg and its lengtli = 1 m.. The inital velocity i=oy = 0 andd, = 0.3.

0 20 40 60 80 100

>

Figure 8.10: Plot of as function of timer with @ = 2, & = 2/3 andA = 1.35. The mass of the pendulum
is set equal td kg and its length to 1 m. The inital velocity iy = 0 andf, = 0.3. Every timef passes the
value+t7 we reset its value to swing betweére [—, pi]. This gives the vertical jumps in amplitude.
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1.5
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Figure 8.11: Phase-space curve after 10 periods @itk 2, © = 2/3 andA = 1.35. The mass of the
pendulum is set equal tokg and its lengthi = 1 m. The inital velocity isip = 0 andfy = 0.3.

http://www.Tys.ulio.no/compphys/cp/programs/FYS3150/chapterl3/cpp/program2.cpp

#include <stdio.h>

#include <iostream.h>

#include <math.h>

#include <fstream.h>

/%

Different methods for solving ODEs are presented
We are solving the following egation:

mxl*(phi)'"' + viscosity*x(phi)' + mxgxsin(phi) = Axcos(omegaxt)

If you want to solve similar equations with other values you have to

rewrite the methods 'derivatives' and 'initialise' and change the variables in the private
part of the class Pendulum

At first we rewrite the equation using the following definitions:

omega_0 = sqrt(g*l)

t_roof = omega_0xt
omega_roof = omega/omega_0
Q = (mxg)/(omega_0xreib)
A_roof = A/(mxg)

and we get a dimensionless equation
(phi)'' + 1/Qx(phi)' + sin(phi) = A_roofxcos(omega_roofxt_roof)
This equation can be written as two equations of first order:

(phi)"' =v
(v)' = -v/Q - sin(phi) +A_roofxcos(omega_roof*t_roof)

ALl numerical methods are applied to the last two equations.

The algorithms are taken from the book "An introduction to computer simulation methods"
*/
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class pendelum

{

private:
double Q, A_roof, omega_0, omega_roof,g; //
double y[2]; //for the initial-values of phi and v
int n; // how many steps

double delta_t,delta_t_roof;
// Definition of methods to solve ODEs
public:
void derivatives(double,doublex,doublex);
void initialise();
void euler();
void euler_cromer();
void midpoint();
void euler_richardson();
void half_step();
void rk2(); //runge-kutta-second-order
void rk4_step(double,doublex,doublex,double); // we need it in function rk4() and asc()
void rk4(); //runge-kutta-fourth-order
void asc(); //runge-kutta-fourth-order with adaptive stepsize control

+;

// This function defines the particular coupled first order ODEs
void pendelum::derivatives(double t, doublex in, doublex out)
{ /* Here we are calculating the derivatives at (dimensionless) time t
'in' are the values of phi and v, which are used for the calculation
The results are given to 'out' */

out[@]=in[1]; //out[0] = (phi)' = v
if(Q)
out[1l]=-in[1]1/((double)Q)-sin(in[0])+A_roof*xcos(omega_roofxt); //out[1l] = (phi)"''
else
out[1l]=-sin(in[0])+A_roof*cos(omega_roofxt); //out[l] = (phi)"''
}
// Here we define all input parameters.

void pendelum::initialise()

{
double m,1,omega,A,viscosity,phi_0,v_0,t_end;
cout<<"Solving the differential egation of the pendulum!\n";
cout<<"We have a pendulum with mass m, length 1. Then we have a periodic force with amplitude A

and omega\n";

cout<<"Furthermore there is a viscous drag coefficient.\n";
cout<<"The initial conditions at t=0 are phi_0 and v_0\n";
cout<<"Mass m: ";
cin>>m;
cout<<"length 1: ";
cin>>1;
cout<<"omega of the force: ";
cin>>omega;
cout<<"amplitude of the force: ";
cin>>A;
cout<<"The value of the viscous drag constant (viscosity): ";
cin>>viscosity;
cout<<"phi_0: ";
cin>>y[0];
cout<<"v_0: ";
cin>>y[1];
cout<<"Number of time steps or integration steps:";
cin>>n;
cout<<"Final time steps as multiplum of pi:";
cin>>t_end;
t_end *x= acos(-1.);
9=9.81;
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// We need the following values:
omega_0=sqrt(g/((double)l)); // omega of the pendulum
if (viscosity) Q= mxg/((double)omega_0*viscosity);
else Q=0; //calculating Q
A_roof=A/((double)mxg);
omega_roof=omega/((double)omega_0);
delta_t_roof=omega_0+t_end/((double)n); //delta_t without dimension
delta_t=t_end/((double)n);
}
// fourth order Run
void pendelum::rk4_step(double t,double *yin,double *yout,double delta_t)
{
/%
The function calculates one step of fourth-order-runge-kutta-method
We will need it for the normal fourth-order-Runge-Kutta-method and
for RK-method with adaptive stepsize control

The function calculates the value of y(t + delta_t) using fourth-order-RK-method
Input: time t and the stepsize delta_t, yin (values of phi and v at time t)
Output: yout (values of phi and v at time t+delta_t)

*/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

// Calculation of k1

derivatives(t,yin,yout);

k1[1l]=yout[1l]*delta_t;

k1[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k1[0]*0.5;

y_k[1]=yin[1]+k1[1]%0.5;

/+Calculation of k2 =/

derivatives(t+delta_t*0.5,y_k,yout);

k2[1]=yout[1l]*delta_t;

k2[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k2[0]%0.5;

y_k[1]=yin[1]+k2[1]%0.5;

/* Calculation of k3 */

derivatives(t+delta_t*0.5,y_k,yout);

k3[1]=yout[1l]*delta_t;

k3[0]=yout[0]*delta_t;

y-k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

/*Calculation of k4 x/

derivatives(t+delta_t,y_k,yout);

k4[1l]l=yout[1l]*delta_t;

k4[0]=yout[0]*delta_t;

/*Calculation of new values of phi and v x/

yout[0]=yin[0]+1.0/6.0*(k1[0]+2xk2[0]+2xk3[0]+k4[0]);

yout[1l]l=yin[1]+1.0/6.0*(K1[1]+2xk2[1]+2xk3[1]+k4[1]);
}

void pendelum::rk4()
{
/+We are using the fourth-order-Runge-Kutta-algorithm
We have to calculate the parameters k1, k2, k3, k4 for v and phi,
so we use to arrays k1[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
k1[1], k2[1] are the parameters for v
*/

int i;
double t_h;
double yout[2],y_h[2]; //K1[2],k2[2],k3[2],k4[2],y_Kk[2];

t_h=0;
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y-h[0]=y[0]; //phi

y-h[1]l=y[1]; //v

ofstream fout("rk4.out");

fout.setf(ios::scientific);

fout.precision(20);

for(i=1; i<=n; i++){
rk4_step(t_h,y_h,yout,delta_t_roof);
fout<<ixdelta_t<<"\t\t"<<yout[0]<<"\t\t"<<yout[1l]<<"\n";
t_h+=delta_t_roof;
y_h[0]=yout[0O];
y-h[1]=yout[1];

}

fout.close;

}

int main()

{
pendelum testcase;
testcase.initialise();
testcase.rk4();
return 0;

} // end of main function

We can generalize the above by defining a class which inclselesral methods by defining the classes

ODESolver and ODEProblem. The header files of these classéscuded here.

ODESolver.h

VAT

ECEE R R R A

*

@code

#include "ODEProblem.h"
#include "ODESolver.h"
#include "SlidingBlock.h"

#include <cmath>

#include <fstream>
#include <iomanip>
#include <iostream>

ofstream ofile;

// Because an ODEProblem can have an ODESolver and an ODESolver can have

// an ODEProblem, we need pointers in both direction. This results often

// is so-called circular references. Deallocation of memory in one of these
// classes results in segmentation fault in the other, which can be tricky

// to fix for new begynner. To avoid this problem, we create the following

// and administrating the simulation herefrom.

// A more elaborate solution consists in using handles.

void run(ODEProblem *problem, ODESolverx solver, charx outputfile){

@file ODESolver.h
@class ODESolver
@brief Interface for solvers of ordinary differential equations.

@see ODEProblem

Example usage:

ofile.open(outputfile);

double x = problem->xmin();

double xf = problem->xmax();

double nsteps = solver->getSteps();

double dx = 4.xacos(-1.)/( (double) nsteps); // the step size
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Array<double> y = problem->getIC();

// Write initial conditions to file

ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(1l5) << setprecision(8) << x ;

ofile << setw(1l5) << setprecision(8) << y(0);

ofile << setw(1l5) << setprecision(8) << y(1) << endl;

while(x <= xf){
// Do an step of the algorithm for solving ODEs
solver->stepper(y, x, dx);

// Write the results of this step to file

ofile << setw(1l5) << setprecision(8) << x ;

ofile << setw(1l5) << setprecision(8) << y(0);

ofile << setw(15) << setprecision(8) << y(1l) << endl;

int main(int argc, char*x argv){

charx outputfile = argv[1l]; // Name of the output file
int neqs = 2; // Number of equations
int nsteps = 100; // Number of integration points

// Set an ODE problem
ODEProblem xproblem = new SlidingBlock(neqs);

// Set the initial conditions of the problem
problem->init();

// Set a ODE solver

ODESolver xsolver = new ForwardEuler(problem, nsteps);
///new RungeKuttad4(problem, nsteps);
/// new RungeKutta2(problem, nsteps);

// Run the simulation and print results to file
run(problem, solver, outputfile);

} // End main()

@endcode
*kk /

#ifndef ODESOLVER_H
#define ODESOLVER_H

#include "Array.h"
#include "Function.h"
#include "ODEProblem.h"

#include <cmath>
#include <iostream>
using namespace std;

/3 3k ok sk ok sk ok sk ok sk ok ok ok sk K ok ok sk K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k ok ok sk ok ok kK ok sk k /)

/* ODE SOLVER */

/**************************************************************/
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class ODESolver{

protected: // Access in the subclasses

ODEProblemx problem; ///< An ODESolver "has an" ODEProblem.

int nsteps; ///< Number of steps used in the numerical scheme.
public: // Access from outside the class

/**

* @brief Constructor

*

* @param problem_ Pointer to an object of the ordinary differential problem to be solved.
* @param nsteps_ Number of steps used in the numerical scheme.

** /

ODESolver (ODEProblem* problem_, int nsteps_): problem(problem_), nsteps(nsteps_){}

//! Destructor
virtual ~ODESolver();

/**

* @return Number of steps used in the numerical scheme.
** /

double getSteps()const{return nsteps;}

/**

* @brief Implement one step of the base algorithm.

*

* Base algorithms are ForwardEuler, BackwardEuler,

* RungeKutta2, RungeKutta4, etc and they has to be coded

* 1in the subclasses.

*

* @param y Dependent scalar/vectorial variable, i.e., the solution.

* @param t Independent variable.

* @param dt Step size of the independent variable in \f$t_{n+1} = t_n + dt\f$

** /
virtual void stepper(Array<double>& y, double& t, double& dt)=0;

};

// Note: It is very important to define a destructor in the superclass.

// In this way we avoid memory problems in case we forget to remove the pointer
// to ODEProblem in the subclasses.

inline ODESolver::~0DESolver(){delete problem;}

[ KKk ok ok KK sk oK ok K K oK oK oK o K K 3K oK oK oK K K K 3K oK ok K K 3K oK ok K K 3K oK ok S K KK oK ok o K KK oK ok ok o Kk sk ok ok /
/* RUNGE-KUTTA 2 */

/3 3k ok sk ok sk ok sk ok sk ok ok ok sk K ok ok 3k 3 ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok 3k K ok ok sk ok ok sk ok ok sk k /)

/**

* @file ODESolver.h

* @class RungeKutta2

* @brief Class implementing the Runge-Kutta 2 method for solving (systems of) ordinary differential
* equations.

*kk /

class RungeKutta2: public ODESolver{
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private:
Array<double> yt; // Temporary array
Array<double> k1; // Arrays needed in the algorithm
Array<double> k2;

public:
VAT
* @brief Constructor
*
* @param problem_ Pointer to an object of the ordinary differential problem to be solved.
* @param nsteps_ Number of steps used in the numerical scheme.
*x /
RungeKutta2(ODEProblem *problem_, int nsteps): ODESolver(problem_, nsteps){
int n = problem->size();
yt.redim(n);
kl.redim(n);
k2.redim(n);
}

//! Destructor. Override the destructor in the superclass ODESolver.
~RungeKutta2(){delete problem;}

VEE:

*+ @brief Implement one step of the base algorithm.

*

* Base algorithms are ForwardEuler, BackwardEuler,

* RungeKutta2, RungeKutta4, etc and they has to be coded

* 1in the subclasses.

*

* @param y Dependent scalar/vectorial variable, i.e., the solution.

*+ @param t Independent variable.

* @param dt Step size of the independent variable in \f$t_{n+1} = t_.n + dt\f$

*%/
void stepper(Array<double>& y, double& x, double& h);

/**************************************************************/
/* RUNGE -KUTTA 4 */
/**************************************************************/
VA
* @file ODESolver.h
* @class RungeKutta4
*+ @brief Class implementing the Runge-Kutta 4 method for solving (systems of) ordinary differential
* equations.
*kk /
class RungeKuttad4: public ODESolver{
private:

// Arrays needed in the algorithm

Array<double> k1;

Array<double> k2;

Array<double> k3;

Array<double> yt; // temporary array

public:
VAT
* @brief Constructor
*
* @param problem_ Pointer to an object of the ordinary differential problem to be solved.
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** /
RungeKutta4 (ODEProblemx problem_, int nsteps): ODESolver(problem_, nsteps){
int n = problem->size();
kl.redim(n);
k2.redim(n);
k3.redim(n);
yt.redim(n);

//! Destructor. Override the destructor in the superclass ODESolver.
~RungeKutta4(){delete problem;}

/**
* @brief Advance the solution one step in the Runge-Kutta 4 algorithm.

*

* @param y A scalar/vectorial quantity representing the solution, i.e., dependent variable.
* @param x Independent variable.

* @param h Step size in \f$x_{n+1} = x_n + h\f$.

*

**/

void stepper(Array<double>& y, double& x, double& h);

/**************************************************************/
/* FORWARD EULER */
/**************************************************************/
/**
* @file ODESolver.h
* @class ForwardEuler
* @brief Class implementing the forward Euler method for solving (systems of) ordinary differential
* equations.
*kk /
class ForwardEuler: public ODESolver{
private:
Array<double> dydx; // Derivative

public:

/**
* @brief Constructor
*
* @param problem_ Pointer to an object of the ordinary differential problem to be solved.
**/
ForwardEuler (ODEProblem *problem_, int nsteps): ODESolver(problem_, nsteps){
int n = problem->size();
dydx.redim(n);
}

//! Destructor. Override the destructor in the superclass ODESolver.
~ForwardEuler(){delete problem;}

/**

* @brief Advance the solution one step in the forward algorithm.

*

* @param y A scalar/vectorial quantity representing the solution, i.e., dependent variable.
* @param x Independent variable.

* @param h Step size in \f$x_{n+1l} = x_n + h\f$.
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*%/
void stepper(Array<double>& y, double& x, double& h);

+;

#endif

The ODEProblem class is defined in the file ODEProblem.huahedl here for the sake of completeness.

ODEProblem.h

VAT

* @file ODEProblem.h

* @class ODEProblem

*+ @brief Class describing an ordinary differential problem in general terms.
*

* The ordinary differential problem can be represented mathematically by a

* system of N-ordinary differential equations. For an initial value problem,
* for example:

*

* \f{egnarray}{

*  \frac{dy_i}{dt} &=& f(t, y_1, y_2,\cdots,y_N), \label{eq} \\

21, y_2
y-i(0) &=& y_{i}~{0}, \, i=1, 2,\cdots, N \label{ic}

\f}
*
*
* The scheme can also be applied to boundary value problems (BVP), etc.
*
* The specific ordinary differential equation is implemented in @ref equation, while
* the initial/boundary conditions are set in @ref init, in the respective subclases.
*
* Example usage:
*
*x /

#ifndef ODEPROBLEM_H
#define ODEPROBLEM_H

#include "Array.h"

/*****************************************************************************/

/* ODEPROBLEM CLASS */

/3 sk sk sk ok sk ok sk ok sk K ok ok sk K ok ok 3k 3 ok ok 3k 3 oK ok 3k 3 ok ok 3k 3 oK ok 3k 3 ok ok 3k K oK ok 3k K ok ok 3k K oK ok 3k 3 oK ok 3k 3 ok ok sk 3 oK ok 3k 3 ok ok sk 3k ok ok sk K ok sk sk ok ok ok /

class ODEProblem{
protected:
int negs; ///< Size of the odes system.
Array<double> y0; ///< Initial conditions.

// Variables used in the time loop:

double x0; ///< Initial value of the independent variable .

double xf; ///< Final value of the independent variable.
public:

/*%

* @brief Constructor. Create an ordinary differential equation (ODE) problem object.

* @param neqs_ Number of equations or size of the ordinary differential equation problem.
*%/

ODEProblem(int neqgs_): neqs(neqs_){y0.redim(neqs);}

VAT
*+ @brief Set the equation constituting the ODE problem.
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The right hand side function in the ODEs problem is defined according to:

O

\f$ \frac{d\mathbf{y}}{dt} = \frac{d}{dt}\left(

\begin{array}{c}

y-1\\

y_2

\end{array} \right)=\mathbf{f}(\mathbf{y}(t), t)

\f$

*

** /

virtual void equation(double x, const Array<double>& y, Array<double>& f)=0;

/x%

* @brief Get the initial conditions of the ODE problem.

* @return An array of doubles with the initial conditions of the ODE problem.
**/

Array<double>& getIC(){return y0;}

/**

* @return The minimum value of the independent variable.
** /

double xmin()const{return x0;}

/**

* @return The maximum value of the independent variable.
*%/

double xmax()const{return xf;}

//! Set initial conditions defined in \ref{ic}.
virtual void init()=0;

/**

* @return The size of the ODEs system.
*%/

int size()const{return neqgs;}

}; // End ODEProblem class definition

#endif

8.8 Exercises and projects

Project 8.1: studies of neutron stars

In the pendulum example we rewrote the equations as twordiff@al equations in terms of so-called dimen-
sionless variables. One should always do that. There aeasittwo good reasons for doing this.

— By rewriting the equations as dimensionless ones, the progvill most likely be easier to read, with
hopefully a better possibility of spotting eventual errots addtion, the various constants which are
pulled out of the equations in the process of rendering thagons dimensionless, are reintroduced at
the end of the calculation. If one of these constants is noécty defined, it is easier to spot an eventual
error.

249



Differential equations

— In many physics applications, variables which enter a difftial equation, may differ by orders of
magnitude. If we were to insist on not using dimensionlessijties, such differences can cause serious
problems with respect to loss of numerical precision.

An example which demonstrates these features is the setuatieqs for gravitational equilibrium of a
neutron star. We will not solve these equations numeridadise, rather, we will limit ourselves to merely
rewriting these equations in a dimensionless form.

The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompteddaarto predict the existence of neutron stars.
The birth of such stars in supernovae explosions was sugjbgtBaade and Zwicky 1934. First theoretical
neutron star calculations were performed by Tolman, Opeiemér and Volkoff in 1939 and Wheeler around
1960. Bell and Hewish were the first to discover a neutronistd®67 as aadio pulsar The discovery of
the rapidly rotating Crab pulsar ( rapidly rotating neutstar) in the remnant of the Crab supernova observed
by the chinese in 1054 A.D. confirmed the link to supernovaali®pulsars are rapidly rotating with periods
in the range).033 s < P < 4.0 s. They are believed to be powered by rotational energy lodsaee rapidly
spinning down with period derivatives of ord&r ~ 10~'2 — 10~!6. Their high magnetic field3 leads to
dipole magnetic braking radiation proportional to the metgrfield squared. One estimates magnetic fields of
the order ofB ~ 10'' — 10'3 G. The total number of pulsars discovered so far has justehenk1000 before
the turn of the millenium and the number is increasing rapidl

The physics of compact objects like neutron stars offersttiguing interplay between nuclear processes
and astrophysical observables, see Refs. [45—-47] forduitfiormation and references on the physics of neu-
tron stars. Neutron stars exhibit conditions far from theseountered on earth; typically, expected densities
p of a neutron star interior are of the orderi®f or more times the density; ~ 4 - 10!! g/cn?® at 'neutron
drip’, the density at which nuclei begin to dissolve and negagether. Thus, the determination of an equation
of state (EoS) for dense matter is essential to calculatdmeeutron star properties. The EoS determines
properties such as the mass range, the mass-radius rstafipthe crust thickness and the cooling rate. The
same EoS is also crucial in calculating the energy releasagupernova explosion.

Clearly, the relevant degrees of freedom will not be the siarttee crust region of a neutron star, where the
density is much smaller than the saturation density of rmucteatter, and in the center of the star, where density
is so high that models based solely on interacting nucleomsgj@estionable. Neutron star models including
various so-called realistic equations of state result éftilowing general picture of the interior of a neutron
star. The surface region, with typical densities: 10° g/cn?, is a region in which temperatures and magnetic
fields may affect the equation of state. The outer crust6§rg/cn?® < p < 4 - 10*'g/cn? is a solid region
where a Coulomb lattice of heavy nuclei coexistFequilibrium with a relativistic degenerate electron gas.
The inner crust fod - 10! g/lcm? < p < 2-10*g/cn? consists of a lattice of neutron-rich nuclei together with
a superfluid neutron gas and an electron gas. The neutrad fap2 - 104 g/cm? < p < -10'°g/cm? contains
mainly superfluid neutrons with a smaller concentrationugfesconducting protons and normal electrons. At
higher densities, typicallg — 3 times nuclear matter saturation density, interesting @li@ssitions from a
phase with just nucleonic degrees of freedom to quark matssrtake place. Furthermore, one may have a
mixed phase of quark and nuclear matter, kaon or pion comdgiesishyperonic matter, strong magnetic fields
in young stars etc.

Equilibrium equations

If the star is in thermal equilibrium, the gravitational éeron every element of volume will be balanced by
a force due to the spacial variation of the presdareél'he pressure is defined by the equation of state (EoS),
recall e.g., the ideal ga8 = NkpT'. The gravitational force which acts on an element of voluteedistance

r is given by

Gm
FG'r‘av = _T—QP/CQa (890)
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where( is the gravitational constani(r) is the mass density and(r) is the total mass inside a raditisThe
latter is given by

mir) = [ ot ®91)
¢ Jo
which gives rise to a differential equation for mass and igns
C;—T: = dnr’p(r)/c. (8.92)
When the star is in equilibrium we have
dP Gm(r) 5
= = - p(r)/c. (8.93)

The last equations give us two coupled first-order diffaedieiguations which determine the structure of a
neutron star when the EoS is known.

The initial conditions are dictated by the mass being zetbaicenter of the star, i.e., when= 0, we
havem(r = 0) = 0. The other condition is that the pressure vanishes at tHacgiof the star. This means
that at the point where we ha¥e= 0 in the solution of the differential equations, we get thatoadiusR of
the star and the total mass(r = R). The mass-energy density when= 0 is called the central densiy;.
Since both the final mas® and total radius? will depend onp;, a variation of this quantity will allow us to
study stars with different masses and radii.

Dimensionless equations

When we now attempt the numerical solution, we need howeverdcale the equations so that we deal with
dimensionless quantities only. To understand why, considevalue of the gravitational constaitand the
possible final mass:(r = R) = Mpg. The latter is normally of the order of some solar masgks with

Mg = 1.989 x 103 Kg. If we wish to translate the latter into units of MeV/ave will have thatM z ~ 1059
MeV/c%. The gravitational constant is in units 6f= 6.67 x 10745 x hic (MeV/c?)~2. Itis then easy to see
that including the relevant values for these quantitiesunaguations will most likely yield large numerical
roundoff errors when we add a huge num%érto a smaller numbeP in order to obtain the new pressure.
We list here the units of the various quantities and in cagghgs$ical constants, also their values. A bracketed
symbol like[P] stands for the unit of the quantity inside the brackets.

Quantity  Units

[P] MeVfm~—3

[p] MeVfm—3

[n] fm—3

[m] MeVc—2

Mg 1.989 x 1030 Kg= 1.1157467 x 10%° MeVc 2
1Kg =103°/1.78266270D0 MeVc 2

[r] m

G he6.67259 x 10~4° MeV—2¢~*

he 197.327 MeVfm

We introduce therefore dimensionless quantities for th&us = r/ Ry, mass-energy densify= p/ps,
pressure® = P/p, and massn = m,/ M.
The constants/, and Ry can be determined from the requirements that the equatinn%’}f and %
should be dimensionless. This gives
dMorin

TR - A R272 psp, (8.94)
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yielding
din o
- = A R3# psp/ M. (8.95)

If these equations should be dimensionless we must demand th
4mR3ps /Mo = 1. (8.96)
Correspondingly, we have for the pressure equation

dpSI:’

mpsp
= —GM, 8.97
dRo7 0 (8.97)

272
Rg7

and since this equation should also be dimensionless, Wweavié
GMy/Ry = 1. (8.98)

This means that the constarits and M, which will render the equations dimensionless are given by
1

Ry= —— 8.99
0 /—p5G47T’ ( )
and A
TPs
My= ————. 8.100
O N o (8.100)

However, since we would like to have the radius expressedits af 10 km, we should multiply, by 1019,
since 1 fm =10~'> m. Similarly, M, will come in units of MeV/c?, and it is convenient therefore to divide it
by the mass of the sun and express the total mass in termsaofrsaksed/ .

The differential equations read then

AP mp  din
= — =TT
dr 727 dr
Inthe solution of our problem, we will assume that the massrgy density is given by a simple parametriza-

tion from Bethe and Johnson [48]. This parametrizationgjivas a function of the number density= N/V/,
with IV the total number of baryons in a volurie It reads

p. (8.101)

n) = 236 x n?%* 4+ nm,, 8.102
p(n) ,

wherem,, = 938.926MeV/c?, the mass of the neutron (averaged). This means that gihem—3, we have
that the dimension of is [p] =MeV/c* fm~3. Through the thermodynamic relation

P= —2—5, (8.103)
whereF is the energy in units of MeVfcwe have
P(n) = nag(n) — p(n) = 363.44 x n?5%, (8.104)
n

We see that the dimension of pressure is the same as thatmétseenergy density, i.6] =MeV/c?fm—3.
Here comes an important point you should observe when gpthi@ two coupled first-order differential
equations. When you obtain the new pressure given by
dP

Pnew =—+ Polda (8105)
dr

this comes as a function ef However, having obtained the new pressure, you will neasstoEq. [8.104)
in order to find the number density. This will in turn allow you to find the new value of the massegy
densityp(n) at the relevant value of

In solving the differential equations for neutron star diguium, you should proceed as follows
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1. Make first a dimensional analysis in order to be sure thailations are really dimensionless.

2. Define the constant®, and M, in units of 10 km and solar magd,. Find their values. Explain why
it is convenient to insert these constants in the final resuitl not at each intermediate step.

3. Set up the algorithm for solving these equations and \ariteain program where the various variables
are defined.

4. Write thereafter a small function which uses the expogssior pressure and mass-energy density from

Egs. [B10¥) and(8.1ID2).

5. Write then a function which sets up the derivatives

mp A2 A
— TP (8.106)

6. Employ now the fourth order Runge-Kutta algorithm to abteew values for the pressure and the mass.
Play around with different values for the step size and camile results for mass and radius.

7. Replace the fourth order Runge-Kutta method with the Er&pler method and compare the results.

8. Replace the non-relativistic expression for the deikeatf the pressure with that from General Relativ-
ity (GR), the so-called Tolman-Oppenheimer-Volkov eqoati
dpP P+ p) (P 4+
_ LA AF P ) (8.107)

i 72 — 2rnf

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plottiags and radius as functions of the central
density.

Project 8.2: studies of white dwarf stars

This project contains a long description of the physics @hpact objects such as white dwarfs. It serves as a
background for understanding the final differential equragiyou need to solve. This project is taken from the
text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heauglei such as%Fe, with 26 protons, 30
neutrons and their respective electrons, see for examgdle[4&4. Charge equilibrium results in an equal
quantity of electrons and protons. You can read more aboitéwkvarfs, neutron stars and black holes at the
website of the Joint Institute for Nuclear Astrophysics wijivaweb.org or NASA's website www.nasa.org.
These stars are the endpoints of stars with masses of thersirealler than our sun. They are the outcome
of standard nuclear processes and end their lives as cadtshiike white dwarfs when they have used up all
their nuclear fuel.

Where a star ends up at the end of its life depends on the maasount of matter, it was born with. Stars
that have a lot of mass may end their lives as black holes drarestars. Low and medium mass stars will
become something called a white dwarf. A typical white dvigtfalf as massive as the Sun, yet only slightly
bigger than the Earth. This makes white dwarfs one of theel#risrms of matter, surpassed only by neutron
stars.

Medium mass stars, like our Sun, live by burning the hydrapen dwells within their cores, turning it
into helium. This is what our Sun is doing now. The heat the §merates by its nuclear fusion of hydrogen
into helium creates an outward pressure. In another 5 bijlears, the Sun will have used up all the hydrogen
in its core.

This situation in a star is similar to a pressure cooker. idgatomething in a sealed container causes
a build up in pressure. The same thing happens in the Sunoudththe Sun may not strictly be a sealed
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container, gravity causes it to act like one, pulling the stevard, while the pressure created by the hot gas in
the core pushes to get out. The balance between pressureaaitst ¢ very delicate.

Because a white dwarf is no longer able to create internaispre, gravity unopposedly crushes it down
until even the very electrons that make up a white dwarf’sstare mashed together. In normal circumstances,
identical electrons (those with the same "spin™) are nawad to occupy the same energy level. Since there
are only two ways an electron can spin, only two electronsazaupy a single energy level. This is what's
know in physics as the Pauli Exclusion Principle. And in anakgas, this isn't a problem; there aren’t enough
electrons floating around to completely fill up all the endeyels. But in a white dwarf, all of its electrons are
forced close together; soon all the energy levels in its atara filled up with electrons. If all the energy levels
are filled, and it is impossible to put more than two electrionsach level, then our white dwarf has become
degenerate. For gravity to compress the white dwarf anypitomeust force electrons where they cannot go.
Once a star is degenerate, gravity cannot compress it any Ibecause quantum mechanics tells us there is no
more available space to be taken up. So our white dwarf sesyivot by internal combustion, but by quantum
mechanical principles that prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth atmosphere of a white dwarf is very strange.
The heavier atoms in its atmosphere sink and the lighter mamaain at the surface. Some white dwarfs have
almost pure hydrogen or helium atmospheres, the lightesteofients. Also, the very strong gravity pulls the
atmosphere close around it in a very thin layer, that, if weos earth, would be lower than the tops of our
skyscrapers!

8.8.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exkillso charge equilibrium, meaning the number of
electrons has to balance the number of protons. The griavitdipull on every element of volume is balanced
by the pressure set up by a degenerate gas of electrdfis=at), since the temperature of the star is well
below the so-called Fermi temperature of the electrons.€ldtrons are assumed to be relativistic and since
the protons and neutrons have much lower kinetic energy,ssenae that the pressure which balances the
gravitational force is mainly set up by the relativisticatens. The kinetic energy of the electrons is also
much larger than the electron-electron repulsion or thattbn from the nuclei. This means that we can treat
the system as a gas of free degenerate electrdfis-ad moving in between a lattice of nuclei like iron. This
is our ansatz. Based on this we can derive the pressure whictterbalances the gravitational force given by
(for every element of volume in a distancérom the center of the star)

Gm(r)
r2

p(r),

with G being the gravitational constani(r) the mass density (mass per volume) of a volume element a
distancer from the center of the star, amd(r) is the integrated mass within a radiusThe latter reads

FGrav = -

m(r) = 471'/ p(r )" dr’
0

which yields a differential equation between the total nessthe mass density

d
% = 47nrp(r).

In equilibrium, the pressur® balances the gravitational force

= e o,

and usingiP/dp = (dp/dr)(dP/dp) we obtain

dp  (dP\ "' Gm
dr dp 2 P
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Together with‘g—’f = 4mr?p(r) we have now two coupled first-order ordinary differentialiations which
determine the structure of the white dwarf given an equatiostate P(p). The total radius is given by the
conditionp(R) = 0. Similarly, the mass for = 0 is m = 0. The density at = 0 is given by the central
densityp.., a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density profiléhe star. The radiu® is determined by the
point where the density distributionis= 0. The mass is then given iy = m(R). Since both the total mass
and the radiug will depend on the central density, a variation of this parameter will allow us to study stars
with different masses. However, before we can proceed, wé the pressure for a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermiah% = 0. From statistical physics we can then
obtain the particle density as
Lo, ki
=N/V=— k*dk = —=
" / 2 /0 32’
wherekr is the Fermi momentum, here represented by the wave nukaberhe wave number is connected
to the momentum vidr = pr/h. The energy density is given by

1 [k
e=E/V = k2dk+/(hck)? 4+ m2ct.

2 Jo
This expression is of the forrfiy?/y? + a2. Performing the integration we obtain
E/V = ngmec?zie(x),

where we have defined
e(z) = 833 (x(l +22°)V/1+ 22 —In(z+ 1+ IQ)) ,
xr

with the variabler defined as
hkp
xr=

MeC
We can rewriter in terms of the particle density as well

ki
— NV = 2E
" / 32’

so that

hkp  (nh3r2\'?
mec  \ m3c3 ’

3
where we defineg = Ame)e \yith m. the electron mass. Using the constagtesults finally in

372 (h)3
hkp < n )1/ 5
T = = — .
MeC no
Since the mass of the protons and neutrons are larger byaa taétthan the mass of the electroms, we can

approximate the total mass of the star by the mass densiheafucleons (protons and neutrons). This mass
density is given by

p = Mpny,

with M, being the mass of the proton ang the particle density of the nucleons. The mass of the praton a
the neutron are almost equal and we have set them equal heeepdrticle density:, can be related to the
electron density:, which is the quantity we can calculate. The relation is $anp

ny =n/Ye,
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whereY, is the number of electrons per nucleon. Ftfe we getr, = % = 0.464, since we need to have as

many electrons as protons in order to obtain a total chargerof Inserting numerical values for the electron
mass we get

no = 5.89 x 10¥cm 3.
The mass density is now
p=Myn/Y,,

( n )1/3 ( p )1/3
xTr = _— = _ 5
no £o

and inserting the numerical value for the proton mass weimbta
- ]\/[pno
Y.
Using the parametér, we can then study stars with different compositions. Thg ovdut parameters to your

code are thep. andY..

Now we want the equation for the pressure, based on the edemngity. Using the thermodynamical
relation

and with

7 =9.79 x 10°Y, 'g cm 3.

p_ OE  OF Ox
TV dx v’

we can find the pressure as a function of the mass densithereafter we can fin%%, which allows us to

determine the mass and the radius of the star.

The term
ox

v’
can be found using the fact thatx n'/3 oc V=2 This results in

ox T

av 3V’
Taking the derivative with respect towe obtain

1 de
P= —n0m602x4 —.

3 dx

1/3
We want the derivative aP in terms of the mass density Usingx = (%) , We obtain

dP  dPdx
dp — dwdp’
With
P 1 dz* <
%—gnome< dx )’
and
dr lpg/3 1
dp — 3pop*/3  3pyz?’
we find

dP MeC? ()
= TIe Z),
dp M,

where we defined )

v(z) = IWiswk

This is the equation for the derivative of the pressure todsaluo find

dp __(dP\"' Gm
dr dp 2 P

Note thatr and~y(x) are dimensionless quantities.
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Dimensionless form of the differential equations

In the numerical treatment of the two differential equasiome need to rescale our equations in terms of
dimensionless quantities, since several of the involvatstamts are either extremely large or very small.
Furthermore, the total mass is of the order of the mass ofithespproximatel x 103°kg while the mass of
the electron i® x 10731 kg.

We introduce therefore a dimensionless radius r/ Ry, a dimensionless densigy= p/po (recall that
2% = p/po) and a dimensionless mags= m /M.

We determine below the constanif, and Ry by requiring that the equations fdj% and% have to be
dimensionless. We get then

dMym 99  _
=47R,
dRor o pop;
resulting in
dm P
e A R3T? pop/ M.

If we want this equation to be dimensionless, we must require
4T R3po/ My = 1.

Correspondingly, we have

dp()ﬁ _ GMoMp m p ﬁ
Yemec? ) yR3T? o
with Ry
Y.mec?
0 (47Tp0GMp

in order to yield a dimensionless equation. This results in

1/2
) =7.72 x 10®Y,cm.

My = 47 R3py = 5.67 x 10*3Y2g.

The radius of the sun iR = 6.95 x 10'° cm and the mass of the sunfig, = 1.99 x 1033 g.
Our final differential equationg andm read

d?

e

=7%p.

dp mp
v 7

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a progveimch solves the two coupled differential

equations
dp _ m7p
a7
and
dm _5_
20— F
dr P

using the fourth order Runge-Kutta method by integratingvand from7 = 0. ChooseY, = 1 and
calculate the mass and radius of the star by varying the aleténsity, ranging from10~! to 10°.
Check the stability of your solutions by varying the radigsh. Discuss your results.

b) Compute also the density profiles for the above input patars and calculate the total kinetic energy
and rest energy of the electrons given by

R
U= / 4 <E) r2dr,
0 V
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where we have defined
E/V = ngmec?z3e(z),

with
e(z) = 83—3 (x(l +22%)V/1 422 —In(z + V1 + :102)) )
T

and the variable defined as
hkp

MeC

Compute also the gravitational energy

_ R Gm(r)p(r) 2 dr
W = /0 —— L A4qridr.

r

You need to make these equations dimensionless.

Try to discuss your results and trends through simple phi/sé@asoning.

c) Scale the mass-radius relation you found in a) to the aamessponding t6°Fe and*2C. Three white
dwarf stars, Sirius B, 40 Eri B and Stein 2051, have massesatidn units of solar values determined
from observations to b .053+0.028 M, 0.0074+0.0006 R), (0.48+0.02M ¢, 0.01244+0.0005R),
and(0.72+0.08 M, 0.0115 +0.0012R), respectively. Verify that these values are consisterit thie
model you have developed. Can you say something about theasitions of these stars?

Project 8.3: Period doubling and chaos

The angular equation of motion of the pendulum is given by téeég equation and with no external force it

reads
2

d=0 .
mlW + mgsin(6) =0, (8.108)

with an angular velocity and acceleration given by

df

=[— 8.109

=15, (8.109)
and ,
d-6

We do however expect that the motion will gradually come t@ad due a viscous drag torque acting on
the pendulum. In the presence of the drag, the above equatmmes

2
a0 + ud—9 + mgsin(6) =0, (8.111)

l_
e T

wherev is now a positive constant parameterizing the viscosithefhedium in question. In order to maintain
the motion against viscosity, it is necessary to add somereat driving force. We choose here a periodic
driving force. The last equation becomes then

d*0 df , .
mlw + v + mgsin(f) = Asin(wt), (8.112)

with A andw two constants representing the amplitude and the ang@guéncy respectively. The latter is
called the driving frequency.

a) Rewrite Eqs[18.111) and(8.112) as dimensionless emsati
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b)

d)

e)

Write then a code which solves ER(81111) using the feartter Runge Kutta method. Perform cal-
culations for at least ten periods witfi = 100, N = 1000 and N = 10000 mesh points and values of
v=1v=>5andv = 10. Setl = 1.0 m, g = 1 m/$> andm = 1 kg. Choose as initial conditions
6(0) = 0.2 (radians) and)(0) = 0 (radians/s). Make plots df (in radians) as function of time and
phase space plots 6fversus the velocity. Check the stability of your results as functions of time and
number of mesh points. Which case corresponds to dampedrdariped and overdamped oscillatory
motion? Comment your results.

Now we switch to Eq[{8.112) for the rest of the project. Audfdexternal driving force and set g = 1,
m = 1,v = 1/2andw = 2/3. Choose as initial conditior®§0) = 0.2 andv(0) = 0 andA = 0.5 and
A = 1.2. Make plots off (in radians) as function of time for at least 300 periods amaisg space plots
of 6 versus the velocity. Choose an appropriate time step. Comment and explain siuésdor the
different values ofA.

Keep now the constants from the previous exercise fixeddtuhowA = 1.35, A = 1.44 and A =
1.465. Plot# (in radians) as function of time for at least 300 periods f@se values aft and comment
your results.

We want to analyse further these results by making phasmegpots o) versus the velocity using
only the points where we havet = 2nm wheren is an integer. These are normally called the drive
periods. This is an example of what is called a Poincare@eetnd is a very useful way to plot and
analyze the behavior of a dynamical system. Comment youttses
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Chapter 9

Two point boundary value problems

9.1 Introduction

When diffential equations are required to satisfy boundanditions at more than one value of the independent
variable, the resulting problem is calledbaundary value probleniThe most common case by far is when
boundary conditions are supposed to be satisfied at twogeurgually the starting and ending values of the
integration. The Schroédinger equation is an important garof such a case. Here the eigenfunctions are
typically restricted to be finite everywhere (in particuar = 0) and for bound states the functions must go
to zero at infinity.

In the previous chapter we discussed the solution of diffggeequations determined by conditions im-
posed at one point only, the so-called initial condition.réd&e move on to differential equations where the
solution is required to satisfy conditions at more than ooiatp Typically these are the endpoints of the in-
terval under consideration. When discussing differemtiplations with boundary conditions, there are three
main groups of numerical methods, shooting methods, finfferdnce and finite element methods. In this
chapter we focus on the so-called shooting method, whetegster§l7 and10 focus on finite difference meth-
ods. Chaptelf]7 solves the finite difference problem as ameddge problem for a one variable differential
equation while in chaptér10 we present the simplest finfferdince methods for solving partial differential
equations with more than one variable. The finite elemenhaotkis not discussed in this text, see for example
Ref. [49] for a computational presentation of the finite edetrmethod.

In the discussion here we will limit ourselves to the simpesssible case, that of a linear second-order
differential equation whose solution is specified at twaidet points, for more complicated systems and equa-
tions see for example Refs. [50, 51]. The reader should ait®that the techniques discussed in this chapter
are restricted to ordinary differential equations only,lefiinite difference and finite element methods can
also be applied to boundary value problems for partial ciffidial equations. The discussion in this chapter
and chaptel]7 serves therefore as an intermediate step ahel toahe chapter on partial differential equa-
tions. Partial differential equations involve both boundeonditions and differential equations with functions
depending on more than one variable.

In this chapter we will discuss in particular the solutiortiod one-particle Schédinger equation and apply
the method to hydrogen-atom like problems. We start howesttr a familiar problem from mechanics,
namely that of a tightly stretched and flexible string or rofpseed at the endpoints. This problem has an
analytic solution which allows us to define our numericabaiilyims based on the shooting methods.
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Two point boundary value problems

9.2 Shooting methods

In many physics applications we encounter differentialagiguns like

PY 1200y — - b 9.1
@‘i‘ (x)y=F(x); a<x <D, (9.1)

with boundary conditions
y(a) = a, y(b) = p. (9.2)

We can interpref’(x) as an inhomogenous driving force whitézx) is a real function. If it is positive the
solutionsy(x) will be oscillatory functions, and if negative they are erpationally growing or decaying
functions.

To solve this equation we could start with for example the gl utta method or various improvements
to Euler’'s method, as discussed in the previous chapten ieavould need to transform this equation to a set
of coupled first-order equations. We could however stait thie discretized version for the second derivative.
We discretise our equation and introduce a step lehgth (b — a)/N, with N being the number of equally
spaced mesh points. Our discretised second derivative egadstep:;; = a + ih withi = 0,1, ...

v Yitl T Yio1 — 2y
[ h2

+0(h?),
leading to a discretised differential equation

Yir1 +¥i—1 — 2y;
72

+O(h?) + kiyi = Fi. (9.3)

Recall that the fourth-order Runge-Kutta method has a lexal of O(h*).
Since we want to integrate our equation fregni= a to 2y = b, we rewrite it as

Starting at = 1 we have after one step
Y2 = —1Yo + 1 (2 — th% —+ hQFl) .

Irrespective of method to approximate the second derwathis equation uncovers our first problem. While
yo = y(a) = 0, our function valuey; is unknown, unless we have an analytic expressionyfo) atz = 0.
Knowingy; is equivalent to knowing’ atz = 0 since the first derivative is given by

/ Yit1 — Y
N T 9.5
Y ” (9.5)

This means that we hayg =~ yo + hy.

9.2.1 Improved approximation to the second derivative, &oris method

Before we proceed, we mention how to improve the local trtionarror fromO(h?) to O(h%) without too
many additional function evaluations.

Our equation is a second order differential equation wittemy first order derivatives. Let us also for
the sake of simplicity assume tha¥xz) = 0. Numerov's method is designed to solve such an equation
numerically, achieving a local truncation er@(h°).

We start with the Taylor expansion of the desired solution

1) h? () e bt
) = y(e) + @) + oy (@) + 2y )+ Ly ) 4
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9.2 — Shooting methods

Herey(™ (x) is a shorthand notation for the nth derivativey /d2". Because the corresponding Taylor
expansion of)(xz — h) has odd powers df appearing with negative signs, all odd powers cancel wheadde
y(x + h) andy(x — h)

W+ 1) + 9z = h) = 20(e) + h2y D (a) + Ly (@) + 0010

We obtain
y(x +h)+ylx —h) —2y(x h?
To eliminate the fourth-derivative term we apply the operat + ’f—; j—;) on the differential equation
h? h? d?
y? (@) + 159 @) + B(@)y(@) + 575 (F(@)y() ~ 0.

In this expression thg(®) terms cancel. To treat the generatiependence of?(x) we approximate the
second derivative ofk?(z)y(x) by

P (ky(x) _ (B + Myl +h) + k(@)y(@) + (K@ = hy(e = h) + k(z)y(x))
da? h2 '

We replace theg(z + k) with the shorthand;; (and similarly for the other variables) and obtain a final
discretised algorithm for obtaining.

Yir1 = ( 12 ) hz( 5 12 1) + O(I’LG),
1+ 35k

wherex; = ih, k; = k(z; = ih) andy; = y(x; = ih) etc.
It is easy to add the termi; since we need only to take the second derivative. The finakigihgn reads
then
2(1— Sh%k2) y; — (L + Sh%k2 ) yio1 B2
Yit1 = 0=z ) hg( 2 1) Yt + = (Fip1 + Fio1 — 2F) + O(R°).
L+ Ekiﬂ 12

Starting at = 1 results in, using the boundary conditign= 0,

2 (1 — —152 h2k1y1) — (1 + —112 thgyo) h?
: + — (Fy + Fy — 2F)) + O(h").

Y2 =

This equation carries a local truncation error proportiea#. This is an order better than the fourth-order
Runge-Kutta method which has a local error proportiona®oThe global for the fourth-order Runge-Kutta
is proportional toh* while Numerov’s method has an error proportionahfo With few additional function
evulations, we have achieved an increased accuracy.

But even with an improved accuracy we end up with one unknowthe right hand side, namejy;.
The value ofy; can again be determined from the derivativg@tor by a good guess on its value. We need
therefore an additional constraint on our set of equati@fierk we start. We could then add to the boundary
conditions

y(a’) =a, y(b) =B,

the requiremeny’(a) = ¢, whered could be an arbitrary constant. In quantum mechanical egiins with
homogenous differential equations the normalization efgblution is normally not known. The choice of the
constant can therefore reflect specific symmetry requirements ofdhdisn.
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Two point boundary value problems

9.2.2 Wave equation with constant acceleration

We start with a well-known problem from mechanics, that oftariing string or rope fixed at both ends. We

could think of this as an idealization of a jumping rope aridggestions about its shape as it spins. Obviously,

in deriving the equations we will make several assumptiar@der to obtain an analytic solution. However,

the general differential equation it leads to, with addemhpglications not allowing an analytic solution, can be

solved numerically. We discuss the shooting methods as ossle numerical approach in the next section.
Our aim is to arrive at a differential equation which takess fibllowing form

y" + Ay =0; y(0) =0, y(L) =0,

wherelL is the length of the string andla constant or function of the variahleto be defined below.

We derive an equation fay(x) using Newton’s second lat = ma acting on a piece of the string with
masspAx, wherep is the mass density per unit length afa is small displacement in the intervalx + Ax.
The change\x is our step length.

We assume that the only force acting on this string elemeatcsnstant tensiofi’ acting on both ends.
The net vertical force in the positivedirection is

F =Tsin(0 + Af) — Tsin(0) = Tsin(0;41) — T'sin(6;).
For the angles we employ a finite difference approximation

sin(fiy1) = % +O0(Az?).

Using Newton’s second law = ma, with m = pAxz = ph and a constant angular velocitywhich relates
to the acceleration as= —w?y we arrive at

Yit1 +Yi-1 — 2y
T
Ax?

and taking the limitAz — 0 we can rewrite the last equation as

~ —pw’y,

Ty" + pw’y =0,

and defining\ = pw?/T and imposing the condition that the ends of the string arelfixe arrive at our final
second-order differential equation with boundary conodisi

y" + Ay =0; y(0) =0, y(L) =0. (9.6)

The reader should note that we have assumed a constantratioeleReplacing the constant acceleration with
the second derivative af as function of both position and time, we arrive at the welbdn wave equation
for y(z,t) in 1 4+ 1 dimension, namely
0%y B 0%y
o2~ "oz
We discuss the solution of this equation in chapifér 10.
If A > 0 the above wave equation has a solution of the form

y(x) = Acos(azx) + Bsin(ax), 9.7)

and imposing the boundary conditions results in an infirsguence of solutions of the form

yn(x) = sin(n—zx), n=123,... (9.8)
with eigenvalues
7’?,271'2
)\nzﬁ,n:1,2,3,... (99)
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9.2 — Shooting methods

Table 9.1: Integrated and exact solution of the differémtéaiationy” + Ay = 0 with boundary conditions

y(0) = 0 andy(1) = 0.

sin(mwa;)

y(z:)

0.000000E+00
0.100000E+00
0.200000E+00
0.300000E+00
0.400000E+00
0.500000E+00
0.600000E+00
0.700000E+00
0.800000E+00
0.900000E+00
0.100000E+01

0.000000E+00
0.951057E+00
0.587785E+00
-.587785E+00
-.951056E+00
0.268472E-06
0.951057E+00
0.587785E+00
-.587786E+00
-.951056E+00
0.000000E+00

0.000000E+00
0.125664E+01
0.528872E+00
-.103405E+01
-.964068E+00
0.628314E+00
0.122850E+01
-.111283E+00
-.127534E+01
-.425460E+00
0.109628E+01

For A = 0 we have

y(z) = Az + B,

(9.10)

and due to the boundary conditions we hgye) = 0, the trivial solution, which is not an eigenvalue of the
problem. The classical problem has no negative eigenvaliesve cannot find a solution fox < 0. The
trivial solution means that the string remains in its edpilim position with no deflection.

If we relate the constant angular spegtb the eigenvalues,, we have

oy =y 2L T a5
p L\ p

resulting in a series of discretised critical speeds of &argaotation. Only at these critical speeds can the string
change from its equilibrium position.

There is one impor