Homework Set #1.

Consider the Harmonic Oscillator

$$L(x,\dot{x}) = \frac{1}{2}\dot{x}^2 - \frac{1}{2}x^2$$

under the following discretization procedure of the Feynman Path integral (Lecture 2):

$$\Delta t = \frac{T_0}{128}$$

$$N_{\rm D} = 600$$
 $X_0 = -4$, $X_{\rm D} = +4$

$$\psi_{0} = \left(\frac{d}{T}\right)^{\frac{1}{2}} = \frac{d}{2} \left(x - x_{start}\right)^{2}$$
initial varefunction

1. Calculate the propagator K from Ke elementary
$$K_{\epsilon}$$
 matrix $(N_0+1) \times (N_0+1)$ dimensional, $\epsilon = \frac{T_0}{128} = \Delta t$ for time period $\frac{T_0}{16}$

$$K = (\Delta x)^{N-1} \cdot K_{\varepsilon}^{N} (\Delta t)$$

- 2. Evolve the wavefunction in time with To stepsize and measure (x) as a function of time. Make a plot
- 3. Calculate (E), (K), (V) is a function of time. Make a plot.
- 4. Calculate the evolution of the wave function as a function of time. Make plot.
- 5. Compare your plots with the first three plots of Ledwe 2
- 6. 142 and 242 : Animation of the varefunction