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Chapter 32 
 
 
1. We use 6

1
0Bnn=

Φ =∑  to obtain 
 

( )
5

6
1

1Wb 2 Wb 3Wb 4 Wb 5Wb 3Wb .B Bn
n=

Φ = − Φ = − − + − + − = +∑  

 
2. (a)   The flux through the top is +(0.30 T)πr2 where r = 0.020 m.  The flux through the 
bottom is +0.70 mWb as given in the problem statement.  Since the net flux must be zero 
then the flux through the sides must be negative and exactly cancel the total of the 
previously mentioned fluxes.  Thus (in magnitude) the flux though the sides is 1.1 mWb. 
 
(b) The fact that it is negative means it is inward. 
 
3. (a) We use Gauss’ law for magnetism: z ⋅ =B dA 0 . Now,  

 

z ⋅ = + +B dA CΦ Φ Φ1 2 , 

 
where Φ1 is the magnetic flux through the first end mentioned, Φ2 is the magnetic flux 
through the second end mentioned, and ΦC is the magnetic flux through the curved 
surface. Over the first end the magnetic field is inward, so the flux is Φ1 = –25.0 μWb. 
Over the second end the magnetic field is uniform, normal to the surface, and outward, so 
the flux is Φ2 = AB = πr2B, where A is the area of the end and r is the radius of the 
cylinder. Its value is 
 

Φ2
2 3 50120 160 10 7 24 10 72 4= × = + × = +− −π . . . . .m T Wb Wbb g c h μ  

 
Since the three fluxes must sum to zero, 
 

Φ Φ ΦC = − − = − = −1 2 25 0 72 4 47 4. . . .μ μ μWb Wb Wb  
 
Thus, the magnitude is | | 47.4 Wb.C μΦ =  
 
(b) The minus sign in CΦ indicates that the flux is inward through the curved surface. 
 
4. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the 
portion of the xz plane that lies within the cylinder. Here the normal direction of S2 is +y. 
Therefore, 
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5. We use the result of part (b) in Sample Problem — “Magnetic field induced by 
changing electric field,” 

( )
2

0 0 ,
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R dEB r R
r dt

μ ε
= ≥  

to solve for dE/dt: 
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6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal 
to  

 0 0 2

enclosed area (4.0 cm)(2.0 cm)(0.75 A) 52 nT m
total area 12 cmdiμ μ⎛ ⎞ = = ⋅⎜ ⎟

⎝ ⎠
. 

 
7. (a) Inside we have (by Eq. 32-16) 2

0 1 / 2dB i r Rμ π= , where 1 0.0200 m,r =  
0.0300 m,R =  and the displacement current is given by Eq. 32-38 (in SI units):  

 

 12 2 2 3 14
0 (8.85 10 C /N m )(3.00 10 V/m s) 2.66 10 AE

d
di

dt
ε − − −Φ

= = × ⋅ × ⋅ = × . 

 
Thus we find  
 

7 14
190 1
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(4 10 T m/A)(2.66 10 A)(0.0200 m) 1.18 10  T
2 2 (0.0300 m)

di rB
R

μ π
π π

− −
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= = = × . 

 
(b) Outside we have (by Eq. 32-17) 0 2/ 2dB i rμ π=  where r2 = 0.0500 cm.  Here we 
obtain  

7 14
190
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diB
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8. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the 
problem statement (and taking the derivative of the flux expression given in that sentence) 
leads to 

( )0 0(2 ) 0.60 V m/s rB r
R

π ε μ= ⋅ . 

 
Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain 
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(b) For a value of r larger than R, we must note that the flux enclosed has already reached 
its full amount (when r = R in the given flux expression).  Referring to the equation we 
wrote in our solution of part (a), this means that the final fraction ( /r R ) should be 
replaced with unity.  On the left hand side of that equation, we set r = 0.0500 m and solve.  
We now find  
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9. (a) Application of Eq. 32-7 with A = πr2 (and taking the derivative of the field 
expression given in the problem) leads to 
 
 ( )2

0 0(2 ) 0.00450 V/m sB r rπ ε μ π= ⋅ . 
 
For r = 0.0200 m, this gives  
 

0 0
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22
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(b) With r > R, the expression above must replaced by 
 

( )2
0 0(2 ) 0.00450 V/m sB r Rπ ε μ π= ⋅ . 

 
Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51 × 10−22 T. 
 
10. (a) Here, the enclosed electric flux is found by integrating 
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with SI units understood.  Then (after taking the derivative with respect to time) Eq. 32-3 
leads to   

3
2

0 0
1(2 )
2 3

rB r r
R

π ε μ π
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(note the B ∝ r–1 dependence — see also Eqs. 32-16 and 32-17). The plot (with SI units 
understood) is shown below. 
 

 
 

12. From Sample Problem — “Magnetic field induced by changing electric field,” we 
know that B ∝ r for r ≤ R and B ∝ r–1 for r ≥ R. So the maximum value of B occurs at r = 
R, and there are two possible values of r at which the magnetic field is 75% of Bmax. We 
denote these two values as r1 and r2, where r1 < R and r2 > R.  
 
(a) Inside the capacitor, 0.75 Bmax/Bmax = r1/R, or r1 = 0.75 R = 0.75 (40 mm) =30 mm. 
 
(b) Outside the capacitor, 0.75 Bmax/Bmax = (r2/R)–1, or  
 

r2 = R/0.75 = 4R/3 = (4/3)(40 mm) = 53 mm. 
 
(c) From Eqs. 32-15 and 32-17, 
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13. Let the area plate be A and the plate separation be d. We use Eq. 32-10: 
 

i d
dt

d
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Therefore, we need to change the voltage difference across the capacitor at the rate of 
57.5 10  V/s× . 

 
14. Consider an area A, normal to a uniform electric field E . The displacement current 
density is uniform and normal to the area. Its magnitude is given by Jd = id/A. For this 
situation , 0 ( / )di A dE dtε= , so 

J
A

A dE
dt

dE
dtd = =

1
0 0ε ε .  

 
15. The displacement current is given by 0 ( / ),di A dE dtε=  where A is the area of a plate 
and E is the magnitude of the electric field between the plates. The field between the 
plates is uniform, so E = V/d, where V is the potential difference across the plates and d is 
the plate separation. Thus, 

i A
d

dV
dtd =

ε 0 .  

 
Now, ε0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), 
so 

i C dV
dtd = .  

 
16. We use Eq. 32-14: 0 ( / ).di A dE dtε=  Note that, in this situation, A is the area over 
which a changing electric field is present. In this case r > R, so A = πR2. Thus, 
 

( )( )
12

22 12 2 2
0 0

2.0 A V7.2 10 .
m s8.85 10 C /N m 0.10 m

d di idE
dt A Rε ε π π −

= = = = ×
⋅× ⋅

 

 

17. (a) Using Eq. 27-10, we find E J i
A

= = =
× ⋅

×
=

−
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(b) The displacement current is 
 

( )( )( )12 8
0 0 0 0

16

8.85 10 F/m 1.62 10 2000A s

2.87 10 A.

E
d

d dE d i dii A A
dt dt dt A dt

ρε ε ε ε ρ − −

−

Φ ⎛ ⎞= = = = = × × Ω⎜ ⎟
⎝ ⎠

= ×
 

(c) The ratio of fields is ( )
( )

16
180

0

due to 2 2.87 10 A 2.87 10 .
due to 2 100A

d d dB i i r i
B i i r i

μ π
μ π

−
−×

= = = = ×  

 
18. From Eq. 28-11, we have i = (ε / R ) e− t/τ  since we are ignoring the self-inductance of 
the capacitor. Equation 32-16 gives 
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 0
22

di rB
R

μ
π

= . 

 
Furthermore, Eq. 25-9 yields the capacitance  
 

 
2

110 (0.05 m) 2.318 10 F
0.003 m

C ε π −= = × , 

 
so that the capacitive time constant is  
 

τ = (20.0 × 106 Ω)(2.318 × 10−11 F) = 4.636 × 10−4 s. 
 
At t = 250 × 10−6 s, the current is 
 

i = 
12.0 V

20.0 x 106 Ω  e− t/τ  = 3.50  × 10−7 A . 

 
Since i = id (see Eq. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we 
find 

7 7
130

2 2

(4 10 T m/A)(3.50 10 A)(0.030 m) 8.40 10  T
2 2 (0.050 m)

di rB
R

μ
π π

− −
−π× ⋅ ×

= = = × . 

 
19. (a) Equation 32-16 (with Eq. 26-5)  gives, with A = πR2,  
 

2
0 0 0

02 2 2

7 2

( ) 1
2 2 2 2
1 (4 10 T m/A)(6.00 A/m )(0.0200 m) 75.4 nT .
2

d d d
d

i r J Ar J R rB J r
R R R

μ μ μ π μ
π π π

−

= = = =

= π× ⋅ =
  

(b) Similarly, Eq. 32-17 gives 
2

0 0 67.9 nT
2 2

d di J RB
r r

μ μ π
π π

= = = . 

 

20. (a) Equation 32-16 gives  0
2 2.22 T

2
di rB
R

μ μ
π

= = .  

(b) Equation 32-17 gives 0 2.00 T
2

diB
r

μ μ
π

= = .  

 
21. (a) Equation 32-11 applies (though the last term is zero) but we must be careful with 
id,enc .  It is the enclosed portion of the displacement current, and if we related this to the 
displacement current density Jd , then 
 

( )
3

2 2
enc 0 0

12 (4.00 A/m )(2 ) 1 / 8
2 3

r r

d d
ri J r dr r R r dr r
R

π π π
⎛ ⎞
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⎝ ⎠

∫ ∫  

 


