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Chapter 31 
 
 
1. (a) All the energy in the circuit resides in the capacitor when it has its maximum 
charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 
total energy is 
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(b) When the capacitor is fully discharged, the current is a maximum and all the energy 
resides in the inductor. If I is the maximum current, then U = LI2/2 leads to 
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2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 
refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 
charge are multiples of the period: 
 

t nT n
f

n nA = = =
×

=
2 00 10

5003.
. ,

Hz
sμb g  

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 5.00 s.At μ=  
 
(b) We note that it takes t T= 1

2  for the charge on the other plate to reach its maximum 
positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 
acquires its most negative charge. From that time onward, this situation will repeat once 
every period. Consequently, 
 

( ) ( ) ( )
( ) ( )( )3

2 1 2 11 1( 1) 2 1 2 1 2.50 s ,
2 2 2 2 2 10 Hz

n n
t T n T n T n

f
μ

− −
= + − = − = = = −

×
 

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 2.50 s.t μ=  
 
(c) At t T= 1

4 , the current and the magnetic field in the inductor reach maximum values 
for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-
period (compare steps c and g in Fig. 31-1). Therefore, 
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( ) ( )( )( 1) 2 1 2 1 1.25 s ,
4 2 4L
T n T Tt n n μ−

= + = − = −  

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 1.25 s.t μ=  
 
3. (a) The period is T = 4(1.50 μs) = 6.00 μs. 
 

(b) The frequency is the reciprocal of the period: f
T

= = = ×
1 1

6 00
167 105

.
.

μs
Hz. 

 
(c) The magnetic energy does not depend on the direction of the current (since UB ∝ i2), 
so this will occur after one-half of a period, or 3.00 μs. 
 
4. We find the capacitance from U Q C= 1

2
2 : 
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5. According to U LI Q C= =1

2
2 1

2
2 ,  the current amplitude is 
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6. (a) The angular frequency is 
 

ω = = =
×

=
−

k
m

F x
m
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(b) The period is 1/f and f = ω/2π. Therefore, 
 

T = = = × −2 2 7 0 10 2π π
89ω rad s

s..  

(c) From ω = (LC)–1/2, we obtain 
 

C
L

= = = × −1 1
89 50

2 5 102 2
5
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F.b g b g.

.  

 
7. Table 31-1 provides a comparison of energies in the two systems. From the table, we 
see the following correspondences: 
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2

2 2 2

1, , , ,

1 1 1, .
2 2 2 2

dx dqx q k m L v i
C dt dt
qkx mv Li
C

↔ ↔ ↔ = ↔ =

↔ ↔
 

 
(a) The mass m corresponds to the inductance, so m = 1.25 kg. 
 
(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total 
energy is given by U = Q2/2C, where Q is the maximum charge on the capacitor and C is 
the capacitance, 
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(c) The maximum displacement corresponds to the maximum charge, so 

4
max 1.75 10  m.x −= ×  

 
(d) The maximum speed vmax corresponds to the maximum current. The maximum 
current is 
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Consequently, vmax = 3.02 × 10–3 m/s. 
 
8. We apply the loop rule to the entire circuit: 
 

( )1 1 1total j j jL C R L C R j j
j j j

di q di qL iR L iR
dt C dt C

ε ε ε ε ε ε ε
⎛ ⎞

= + + + = + + = + + = + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑  

with 
1 1, ,j j

j j jj

L L R R
C C

= = =∑ ∑ ∑  

 
and we require εtotal = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-
26(b). 
 
9. The time required is t = T/4, where the period is given by 2 / 2 .T LCπ ω π= =  
Consequently, 
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( )( )6
4

2 0.050H 4.0 10 F2 7.0 10 s.
4 4 4
T LCt

ππ
−

−
×

= = = = ×  

 

10. We find the inductance from ( ) 1
/ 2 2 .f LCω π π

−
= =  

 

( ) ( )
5

22 2 2 3 6

1 1 3.8 10 H.
4 4 10 10 Hz 6.7 10 F

L
f Cπ π

−

−
= = = ×

× ×
 

 
11. (a) Since the frequency of oscillation f is related to the inductance L and capacitance 
C by f LC= 1 2/ ,π  the smaller value of C gives the larger value of f. Consequently,  

max min min max1/ 2 , 1/ 2 ,f LC f LCπ π= =  and 
 

maxmax

min min

365pF
6.0.

10pF
Cf

f C
= = =  

 
(b) An additional capacitance C is chosen so the ratio of the frequencies is 
 

r = =
160
054

2 96.
.

. .MHz
MHz

 

 
Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 
to that of the tuning capacitor. If C is in picofarads (pF), then 
 

C
C

+

+
=
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2 96
pF
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. .  

The solution for C is 

C =
−

−
=
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(c) We solve f LC= 1 2/ π  for L. For the minimum frequency, C = 365 pF + 36 pF = 
401 pF and f = 0.54 MHz. Thus 
 

( ) ( ) ( )( )
4

2 222 12 6

1 1 2.2 10 H.
2 2 401 10 F 0.54 10 Hz

L
Cfπ π

−

−
= = = ×

× ×
 

 
12. (a) Since the percentage of energy stored in the electric field of the capacitor is  
(1 75.0%) 25.0%− = , then 
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U
U

q C
Q C

E = =
2

2

2
2

25 0%/
/

.  

 
which leads to / 0.250 0.500.q Q = =  
 
(b) From 

U
U

Li
LI

B = =
2

2

2
2

750%,/
/

.  

 
we find / 0.750 0.866.i I = =  
 
13. (a) The charge (as a function of time) is given by sinq Q tω= , where Q is the 
maximum charge on the capacitor and ω is the angular frequency of oscillation. A sine 
function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 
 

i dq
dt

Q t= = ω ωcos ,  

 
and at t = 0, it is I = ωQ. Since ω = 1/ ,LC  
 

Q I LC= = × × = ×− − −2 00 3 00 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 
(b) The energy stored in the capacitor is given by 
 

U q
C

Q t
CE = =

2 2 2

2 2
sin ω  

and its rate of change is 
dU
dt

Q t t
C

E =
2ω ω ωsin cos  

 
We use the trigonometric identity cos sin sinω ω ωt t t= 1

2 2b g  to write this as 
 

dU
dt

Q
C

tE =
ω ω

2

2
2sin .b g  

 
The greatest rate of change occurs when sin(2ωt) = 1 or 2ωt = π/2 rad. This means 
 

( )( )3 6 53.00 10 H 2.70 10 F 7.07 10 s.
4 4

t LCπ π π
ω

− − −= = = × × = ×
4

 

 
(c) Substituting ω = 2π/T and sin(2ωt) = 1 into dUE/dt = (ωQ2/2C) sin(2ωt), we obtain  
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2 2

max

2 .
2

EdU Q Q
dt TC TC

π π⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

 
Now T LC= = × × = ×− − −2 2 3 00 10 2 70 10 5 655 103 6 4π π . . .H F s,c hc h  so 

 

( )
( )( )

24

4 6
max

1.80 10 C
66.7 W.

5.655 10 s 2.70 10 F
EdU

dt
π −

− −

×⎛ ⎞ = =⎜ ⎟ × ×⎝ ⎠
 

 
We note that this is a positive result, indicating that the energy in the capacitor is indeed 
increasing at t = T/8. 
 
14. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 
(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  
 
(a) The smallest oscillation frequency is 
 

( ) ( )( )
2

3 2 6 6
1 2

1 1 6.0 10 Hz
2 2 1.0 10 H 2.0 10 F 5.0 10 F

f
L C Cπ π − − −

= = = ×
+ × × + ×

. 

 
(b) The second smallest oscillation frequency is 
 

 
( )( )

2
1 2 6

1

1 1 7.1 10 Hz
2 2 1.0 10 H 5.0 10 F

f
LCπ π − −

= = = ×
× ×

. 

 
(c) The second largest oscillation frequency is 
 

( )( )
3

2 2 6
2

1 1 1.1 10 Hz
2 2 1.0 10 H 2.0 10 F

f
LCπ π − −

= = = ×
× ×

. 

 
(d) The largest oscillation frequency is 

 

( ) ( )( )( )
6 6

3
4 2 6 6

1 2 1 2

1 1 2.0 10 F 5.0 10 F 1.3 10 Hz
2 1.0 10 H 2.0 10 F 5.0 10 F2 /

f
LC C C C ππ

− −

− − −

× + ×
= = = ×

× × ×+
. 

 
15. (a) The maximum charge is Q = CVmax = (1.0 × 10–9 F)(3.0 V) = 3.0 × 10–9 C. 
 
(b) From U LI Q C= =1

2
2 1

2
2 /  we get 
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(c) When the current is at a maximum, the magnetic energy is at a maximum also: 
 

U LIB ,max . . .= = × × = ×− − −1
2

1
2

30 10 17 10 4 5 102 3 3 2 9H A J.c hc h  

 
16. The linear relationship between θ (the knob angle in degrees) and frequency f is 
 

f f f
f

= +
°

F
HG

I
KJ ⇒ = ° −

F
HG
I
KJ0

0

1
180

180 1θ θ  

 
where f0 = 2 × 105 Hz. Since f = ω/2π = 1/2π LC , we are able to solve for C in terms of 
θ : 

( ) ( )2 22 2 2
0

1 81
4 1 /180 400000 180

C
Lfπ θ π θ

= =
+ ° ° +

 

 
with SI units understood. After multiplying by 1012 (to convert to picofarads), this is 
plotted below: 

 
 

17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 
frequency of oscillation is ω = 1/ LC . Consequently, 
 

( )( )3 6

1 1 275 Hz.
2 2 2 54.0 10 H 6.20 10 F

f
LC

ω
π π π − −

= = = =
× ×

 

 
(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 
zero. Thus, the maximum charge on the capacitor is Q = VC = (34.0 V)(6.20 × 10–6 F) = 
2.11 × 10–4 C. The current amplitude is 
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(b) Since f = ω/2π, the frequency is 
 

( )( )
3

3 6

1 1 1.33 10 Hz.
2 2 3.60 10 H 4.00 10 F

f
LCπ π − −

= = = ×
× ×

 

 
(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 
the period is the reciprocal of the frequency). Consequently, 
 

t T
f

= = =
×

= × −1
4

1
4

1
4 133 10

188 10
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4

.
.

Hz
s.
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21. (a) We compare this expression for the current with i = I sin(ωt+φ0). Setting (ωt+φ) = 
2500t + 0.680 = π/2, we obtain t = 3.56 × 10–4 s. 
 
(b) Since ω = 2500 rad/s = (LC)–1/2, 
 

L
C

= =
×

= ×
−

−1 1
2500 64 0 10

2 50 102 2 6
3

ω rad / s F
H.b g c h.

.  

 
(c) The energy is 
 

U LI= = × = ×− −1
2

1
2

2 50 10 160 320 102 3 2 3. . .H A J.c hb g  

 
22. For the first circuit ω = (L1C1)–1/2, and for the second one ω = (L2C2)–1/2. When the 
two circuits are connected in series, the new frequency is 
 

( ) ( ) ( ) ( )

( ) ( )

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1
/ /

1 1 ,
/

L C L L C C C C L C C L C C C C

L C C C C C

ω

ω

′ = = =
+ + + +

= =
+ +

 

 
where we use ω − = =1

1 1 2 2L C L C .  
 
23. (a) The total energy U is the sum of the energies in the inductor and capacitor: 
 

( )
( )

( ) ( )2 26 3 32 2
6

6

3.80 10 C 9.20 10 A 25.0 10 H
1.98 10 J.

2 2 22 7.80 10 FE B
q i LU U U
C

− − −
−

−

× × ×
= + = + = + = ×

×
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(b) We solve U = Q2/2C for the maximum charge: 
 

Q CU= = × × = ×− − −2 2 7 80 10 198 10 556 106 6 6. . .F J C.c hc h  

 
(c) From U = I2L/2, we find the maximum current: 
 

I U
L

= =
×

×
= ×

−

−
−2 2 198 10

250 10
126 10

6

3
2

.
.

.
J

H
A.

c h
 

 
(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos φ and 
 

φ =
F
HG
I
KJ =

×
×

F
HG

I
KJ = ± °− −

−

−cos cos .
.

. .1 1
6

6

380 10
556 10

46 9q
Q

C
C

 

 
For φ = +46.9° the charge on the capacitor is decreasing, for φ = –46.9° it is increasing. 
To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 
We obtain –ωQ sin φ, which we wish to be positive. Since sin(+46.9°) is positive and 
sin(–46.9°) is negative, the correct value for increasing charge is φ = –46.9°. 
 
(e) Now we want the derivative to be negative and sin φ to be positive. Thus, we take 

46.9 .φ = + °  
 
24. The charge q after N cycles is obtained by substituting t = NT = 2πN/ω' into Eq.  
31-25: 
 

( ) ( )
( ) ( )

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L

q Qe t Qe N

Qe N

Qe

π

π

ω φ ω π ω φ

π φ

φ

− −

−

−

′ ′ ′⎡ ⎤= + = +⎣ ⎦

= +

=

 

 
We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos φ, 
where q0 = 6.2 μC is given (with 3 significant figures understood). Consequently, we 
write the above result as ( )0 exp /Nq q N R C Lπ= − . 

 
(a) For N = 5, ( ) ( )( )5 6.2 C exp 5 7.2 0.0000032F/12H 5.85 C.q μ π μ= − Ω =  

 
(b) For N = 10, ( ) ( )( )10 6.2 C exp 10 7.2 0.0000032F/12H 5.52 C.q μ π μ= − Ω =  

 
(c) For N = 100, ( ) ( )( )100 6.2 C exp 100 7.2 0.0000032F/12H 1.93 C.q μ π μ= − Ω =  
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25. Since ω ≈ ω', we may write T = 2π/ω as the period and ω = 1/ LC  as the angular 
frequency. The time required for 50 cycles (with 3 significant figures understood) is 
 

( ) ( )( )( )3 6250 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LCπ π π
ω

− −⎛ ⎞= = = = × ×⎜ ⎟
⎝ ⎠

=
 

 
The maximum charge on the capacitor decays according toq Qe Rt L

max
/= − 2  (this is called 

the exponentially decaying amplitude in Section 31-5), where Q is the charge at time t = 0 
(if we take φ = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both 
sides, we obtain 

ln maxq
Q

Rt
L

F
HG
I
KJ = −

2
 

which leads to 
 

( ) ( )
3

3max
2 220 10 H2 ln ln 0.99 8.66 10 .

0.5104s
qLR

t Q

−
−

×⎛ ⎞
= − = − = × Ω⎜ ⎟

⎝ ⎠
 

 
26. The assumption stated at the end of the problem is equivalent to setting φ = 0 in Eq. 
31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 
where qmax is the maximum charge (during a given cycle), then we seek the time for 
which 

2 2
max

max
1 .

2 2 2 2
q Q Qq

C C
= ⇒ =  

 
Now qmax (referred to as the exponentially decaying amplitude in Section 31-5) is related 
to Q (and the other parameters of the circuit) by 
 

q Qe q
Q

Rt
L

Rt L
max

/ maxln .= ⇒
F
HG
I
KJ = −− 2

2
 

Setting q Qmax = / 2 , we solve for t: 
 

t L
R

q
Q

L
R

L
R

= −
F
HG
I
KJ = − F

HG
I
KJ =

2 2 1
2

2ln ln ln .max  

 
The identities ln ( / ) ln ln1 2 2 21

2= − = −  were used to obtain the final form of the 
result. 
 
27. Let t be a time at which the capacitor is fully charged in some cycle and let qmax 1 be 
the charge on the capacitor then. The energy in the capacitor at that time is 



 

  

1213

 

U t q
C

Q
C

e Rt L( ) max /= = −1
2 2

2 2
 

 
where 

q Qe Rt L
max

/
1

2= −  
 
(see the discussion of the exponentially decaying amplitude in Section 31-5). One period 
later the charge on the fully charged capacitor is  
 

( )2 /
max 2

2where = ,
'

R t T Lq Qe T
ω

− + π
=  

and the energy is 
2 2

( ) /max 2( ) .
2 2

R t T Lq QU t T e
C C

− ++ = =  

 
The fractional loss in energy is 
 

| | ( ) ( )
( )

.
/ ( )/

/
/ΔU

U
U t U t T

U t
e e

e
e

Rt L R t T L

Rt L
RT L=

− +
=

−
= −

− − +

−
−1  

 
Assuming that RT/L is very small compared to 1 (which would be the case if the 
resistance is small), we expand the exponential (see Appendix E). The first few terms are: 
 

e RT
L

R T
L

RT L− ≈ − + +/ .1
2

2 2

2  

 
If we approximate ω ≈ ω', then we can write T as 2π/ω. As a result, we obtain 
 

| | 21 1 .U RT RT R
U L L Lω

Δ π⎛ ⎞≈ − − + ≈ =⎜ ⎟
⎝ ⎠

 

 
28. (a) We use I = ε/Xc = ωdCε: 
 

62 2 Hz)(1.50 10 F)(30.0 V) 0.283 A .d m d mI C f Cω ε π ε π 3 −= = = (1.00×10 × =  
 
(b) I = 2π(8.00 × 103 Hz)(1.50 × 10–6 F)(30.0 V) = 2.26 A. 
 
29. (a) The current amplitude I is given by I = VL/XL, where XL = ωdL = 2πfdL. Since the 
circuit contains only the inductor and a sinusoidal generator, VL = εm. Therefore, 
 

3

30.0V 0.0955A 95.5 mA.
2 2 Hz)(50.0 10 H)

mL

L d

VI
X f L

ε
π π 3 −= = = = =

(1.00×10 ×
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 
is eight times larger and the current is one-eighth as much. The current is now  
 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 
 
30. (a) The current through the resistor is 
 

30.0V 0.600 A .
50.0

mI
R
ε

= = =
Ω

 

 
(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I =  
 
31. (a) The inductive reactance for angular frequency ωd is given by L dX Lω= , and the 
capacitive reactance is given by XC = 1/ωdC. The two reactances are equal if ωdL = 1/ωdC, 
or 1/d LCω = . The frequency is 
 

2

6

1 1 6.5 10  Hz.
2 2 2 H)(10 10 F)

d
df LC

ω
π π π −3 −

= = = = ×
(6.0×10 ×

 

 
(b) The inductive reactance is  
 

XL = ωdL = 2πfdL = 2π(650 Hz)(6.0 × 10–3 H) = 24 Ω. 
 
The capacitive reactance has the same value at this frequency. 
 
(c) The natural frequency for free LC oscillations is / 2f LCω π π= =1/2 , the same as 
we found in part (a). 
 
32. (a) The circuit consists of one generator across one inductor; therefore, εm = VL. The 
current amplitude is  
 

325.0 V 5.22 10 A .
(377 rad/s)(12.7 H)

m m

L d

I
X L
ε ε

ω
−= = = = ×  

 
(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives εL = 0 
at that instant. Stated another way, since ε(t) and i(t) have a 90° phase difference, then ε(t) 
must be zero when i(t) = I. The fact that φ = 90° = π/2 rad is used in part (c). 
 
(c) Consider Eq. 31-28 with / 2mε ε= − . In order to satisfy this equation, we require 
sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 
which (since it is already negative) means that it is becoming more negative. Thus, 
differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we 
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(b) We describe three methods here (each using information from different points on the 
graph):   
 
method 1: At ωd = 50 rad/s, we have Z ≈ 700 Ω, which gives C = (ωd Z2 - R2 )−1 = 41 μF. 
 
method 2: At ωd = 50 rad/s, we have XC  ≈ 500 Ω, which gives C = (ωd XC)−1 = 40 μF. 
 
method 3: At ωd = 250 rad/s, we have XC  ≈ 100 Ω, which gives C = (ωd XC)−1 = 40 μF. 
 
37. The rms current in the motor is  
 

( ) ( )
rms rms

rms 2 2 2 2

420V 7.61A.
45.0 32.0L

I
Z R X

ε ε
= = = =

+ Ω + Ω
 

 
38. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 
means (using Eq. 31-4)  
 

C = (ω2L)−1 = [(25000)2 ×200 × 10−6]−1 = 8.0 μF. 
 
(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 
resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 
emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Ω. 
 
39. (a) Now XL = 0, while R = 200 Ω and XC = 1/2πfdC = 177 Ω.  Therefore, the 
impedance is  
 2 2 2 2(200 ) (177 ) 267 .CZ R X= + = Ω + Ω = Ω  
 
(b) The phase angle is 

 1 1 0 177tan tan 41.5
200

L CX X
R

φ − − ⎛ ⎞− − Ω⎛ ⎞= = = − °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 

 
 (c) The current amplitude is  

36.0 V 0.135 A .
267

mI
Z
ε

= = =
Ω

 

 
(d) We first find the voltage amplitudes across the circuit elements: 
 

(0.135A)(200 ) 27.0V
(0.135A)(177 ) 23.9V

R

C C

V IR
V IX

= = Ω ≈
= = Ω ≈

 

 
The circuit is capacitive, so I leads ε m . The phasor diagram is drawn to scale next. 
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40. A phasor diagram very much like Fig. 31-11(d) leads to the condition: 
 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 
 
With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 
magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out 
of phase, the potential difference across the inductor is 8.00 V− . 
 
41. (a) The capacitive reactance is 
 

6

1 1 1 37.9 .
2 2 z)(70.0 10 F)C

d d

X
C f Cω π π −= = = = Ω

(60.0 Η ×
 

 
The inductive reactance 86.7 Ω is unchanged. The new impedance is 
 

2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .L CZ R X X= + − = Ω + Ω − Ω = Ω  
 
(b) The phase angle is 
 

1 1 86.7 37.9tan tan 13.7 .
200

L CX X
R

φ − − ⎛ ⎞− Ω − Ω⎛ ⎞= = = °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 

 
(c) The current amplitude is 

36.0 V 0.175A.
206

mI
Z
ε

= = =
Ω

 

 
(d) We first find the voltage amplitudes across the circuit elements: 
 

(0.175 A)(200 ) 35.0 V
(0.175 A)(86.7 ) 15.2 V
(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR
V IX
V IX

= = Ω =
= = Ω =
= = Ω =
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44. (a) The capacitive reactance is 
 

6

1 1 16.6 .
2 2  Hz)(24.0 10 F)CX

fCπ π −= = = Ω
(400 ×

 

 
(b) The impedance is 
 

2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL Xπ

π −

= + − = + −

= Ω + (400 × − Ω = Ω
 

 
(c) The current amplitude is 
 

I
Z

m= = =
ε 220 0521V

422
A .

Ω
.  

 
(d) Now X CC ∝ −

eq
1 . Thus, XC increases as Ceq decreases. 

 
(e) Now Ceq = C/2, and the new impedance is 
 

2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z −= Ω + π(400 × − Ω = Ω < Ω  
 
Therefore, the impedance decreases. 
 
(f) Since I Z∝ −1 , it increases. 
 
45. (a) Yes, the voltage amplitude across the inductor can be much larger than the 
amplitude of the generator emf. 
 
(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 
V IX I LL L d= = ω . At resonance, the driving angular frequency equals the natural angular 
frequency: ω ωd LC= = 1/ . For the given circuit 
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6

1.0 H 1000 .
(1.0 H)(1.0 10 F)

L
LX
LC −

= = = Ω
×

 

 
At resonance the capacitive reactance has this same value, and the impedance reduces 
simply: Z = R. Consequently, 
 

resonance

10 V 1.0 A .
10

m mI
Z R
ε ε

= = = =
Ω

 

 
The voltage amplitude across the inductor is therefore 
 

3(1.0A)(1000 ) 1.0 10 VL LV IX= = Ω = ×  
 
which is much larger than the amplitude of the generator emf. 
 
46. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label 
“IC” on the green arrow replaced with “VR.”   
 
(b) We have I R = I XC, or 

I R = I XC  →    R =  
1

 ωd C
  

 

which yields  5

1 1 159 Hz
2 2 2 (50.0 )(2.00 10 F)

df
RC

ω
π π π −= = = =

Ω ×
.  

 
(c) φ = tan−1(−VC /VR) = – 45°. 
 
(d) ωd = 1/RC =1.00 ×103 rad/s. 
 
(e) I = (12 V)/ R2 + XC

2  =  6/(25 2) ≈170 mA. 
 
47. (a) For a given amplitude εm of the generator emf, the current amplitude is given by 
 

2 2
.

( 1/ )
m m

d d

I
Z R L C
ε ε

ω ω
= =

+ −
 

 
We find the maximum by setting the derivative with respect to ω d  equal to zero: 
 

dI
d

E R L C L
C

L
Cd

m d d d
d dω

ω ω ω
ω ω

= − + − −
L
NM

O
QP +
L
NM

O
QP

−( ) [ ( / ) ] ./2 2 3 2
21 1 1  
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49. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 
is 

       

( )( )

( )( )

eq eq 1 2 1 2 3

3 3 6 6 6

1 1
2 2

1

2 1.70 10 H 2.30 10 H 4.00 10 F 2.50 10 F 3.50 10 F

796 Hz.

L C L L C C C
ω

π π

π − − − − −

= =
+ + +

=
× + × × + × + ×

=

 

 
(b) The resonant frequency does not depend on R so it will not change as R increases. 
 
(c) Since ω ∝ (L1 + L2)–1/2, it will decrease as L1 increases. 
 
(d) Since ω ∝ −Ceq

1/2  and Ceq decreases as C3 is removed, ω will increase. 
 
50. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label 
“IL” on the green arrow replaced with “VR.” 
 
(b) We have VR = VL, which implies 
 

I R = I XL   →    R  = ωd L 
 
which yields  f = ωd/2π = R/2πL = 318 Hz. 
 
(c) φ = tan−1(VL /VR) = +45°. 
 
(d) ωd = R/L = 2.00×103 rad/s. 
 
(e) I = (6 V)/ R2 + XL

2  = 3/(40 2) ≈ 53.0 mA. 
 
51. We use the expressions found in Problem 31-47: 
 

2 2 2 2

1 2
3 3 4 3 3 4,

2 2
CR C R LC CR C R LC

LC LC
ω ω+ + + − + +

= =  . 

 
We also use Eq. 31-4. Thus, 
 

Δω
ω

ω ω
ω

d CR LC
LC

R C
L

=
−

= =1 2 2 3
2

3 .  

 
For the data of Problem 31-47, 
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Δ
Ω

ω
ω

d =
×

= ×
−

−5 00
3 20 0 10

100
387 10

6
2.

.
.

. .b g c hF
H

 

 
This is in agreement with the result of Problem 31-47. The method of Problem 31-47, 
however, gives only one significant figure since two numbers close in value are 
subtracted (ω1 – ω2). Here the subtraction is done algebraically, and three significant 
figures are obtained. 
 
52. Since the impedance of the voltmeter is large, it will not affect the impedance of the 
circuit when connected in parallel with the circuit. So the reading will be 100 V in all 
three cases. 
 
53. (a) Using Eq. 31-61, the impedance is 
 

( ) ( )2 22 2( ) 12.0 1.30 0 12.1 .L CZ R X X= + − = Ω + Ω − = Ω  
 
(b) The average rate at which energy has been supplied is 
 

( ) ( )
( )

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07
RP

Z
ε Ω

= = = × ≈ ×
Ω

 

 
54. The amplitude (peak) value is 
 

V Vmax = = =2 2 100 141rms V V.b g  
 
55. The average power dissipated in resistance R when the current is alternating is given 
by P I Ravg rms

2= ,  where Irms is the root-mean-square current. Since I Irms = / 2 , where I is 
the current amplitude, this can be written Pavg = I2R/2. The power dissipated in the same 
resistor when the current id is direct is given by P i Rd= 2 .  Setting the two powers equal to 
each other and solving, we obtain 
 

i I
d = = =

2
2 60 184. .A

2
A.  

 
56. (a) The power consumed by the light bulb is P = I2R/2. So we must let Pmax/Pmin = 
(I/Imin)2 = 5, or 

I
I

Z
Z

Z
Z

R L
R

m

mmin

min

max

max

min

max/
/

.
F
HG
I
KJ =
F
HG

I
KJ =
F
HG
I
KJ =

+F
H
GG

I
K
JJ =

2 2 2 2 2
2

5ε
ε

ωb g
 

 
We solve for Lmax: 
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   L R
max

/
.

.= = = × −2 2 120 1000
2 60 0

7 64 10
2

2

ω
V W

Hz
H.b g

b gπ
 

 
(b) Yes, one could use a variable resistor. 
 
(c) Now we must let 

R R
R

max ,+F
HG

I
KJ =bulb

bulb

2

5  

or 

R Rmax . .= − = − =5 1 5 1
120
1000

17 8
2

d i d i b g
bulb

V
W

Ω  

 
(d) This is not done because the resistors would consume, rather than temporarily store, 
electromagnetic energy. 
 
57. We shall use 

( )

2 2

avg 2 22
.

2 2 1/
m m

d d

R RP
Z R L C

ε ε

ω ω
= =

⎡ ⎤+ −⎣ ⎦

 

 

where Z R L Cd d= + −2 21ω ω/b g  is the impedance.  
 
(a) Considered as a function of C, Pavg has its largest value when the factor 

( )22 1/d dR L Cω ω+ −  has the smallest possible value. This occurs for 1/ ,d dL Cω ω=  or 
 

C
Ld

= =
×

= ×
−

−1 1
2 60 0 60 0 10

117 102 2 2 3
4

ω πb g b g c h. .
.

Hz H
F.  

 
The circuit is then at resonance. 
 
(b) In this case, we want Z2 to be as large as possible. The impedance becomes large 
without bound as C becomes very small. Thus, the smallest average power occurs for C = 
0 (which is not very different from a simple open switch). 
 
(c) When ωdL = 1/ωdC, the expression for the average power becomes 
 

2

avg ,
2

mP
R

ε
=  

 
so the maximum average power is in the resonant case and is equal to 
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( )
( )

2

avg

30.0V
90.0 W.

2 5.00
P = =

Ω
 

 
(d) At maximum power, the reactances are equal: XL = XC. The phase angle φ in this case 
may be found from 

tan ,φ =
−

=
X X

R
L C 0  

which implies φ = 0° .  
 
(e) At maximum power, the power factor is cos φ = cos 0° = 1.  
 
(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 
 
(g) On the other hand, at minimum power XC ∝ 1/C is infinite, which leads us to set 
tanφ = −∞ . In this case, we conclude that φ = –90°. 
 
(h) At minimum power, the power factor is cos φ = cos(–90°) = 0. 
 
58. This circuit contains no reactances, so εrms = IrmsRtotal. Using Eq. 31-71, we find the 
average dissipated power in resistor R is 
 

P I R
r R

RR
m= =

+
F
HG
I
KJrms

2 ε 2

.  

 
In order to maximize PR we set the derivative equal to zero: 
 

( ) ( )
( )

( )
( )

22 2

4 3

2
0

m mR
r R r R R r RdP R r

dR r R r R

ε ε⎡ ⎤+ − + −⎣ ⎦= = = ⇒ =
+ +

 

 
59. (a) The rms current is 
 

( )

( ) ( )( ) ( )( ){ }

rms rms
rms 22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

ε ε

π π

π π μ

= =
+ −

=
Ω + − ⎡ ⎤⎣ ⎦

=

 

 
(b) The rms voltage across R is  
 
 ( )( )rms 2.59 A 15.0 38.8VabV I R= = Ω = . 



CHAPTER 31 1230 

(c) The phase constant is related to the reactance difference by tan φ = (XL – XC)/R. We 
have  

tan φ = tan(– 42.0°) = –0.900, 
 
a negative number. Therefore, XL – XC is negative, which leads to XC > XL. The circuit in 
the box is predominantly capacitive. 
 
(d) If the circuit were in resonance XL would be the same as XC, tan φ would be zero, and 
φ would be zero. Since φ is not zero, we conclude the circuit is not in resonance. 
 
(e) Since tan φ is negative and finite, neither the capacitive reactance nor the resistance 
are zero. This means the box must contain a capacitor and a resistor.  
 
(f) The inductive reactance may be zero, so there need not be an inductor. 
 
(g) Yes, there is a resistor. 
 
(h) The average power is 
 

P Imavg V A W.= = =
1
2

1
2

750 120 0 743 334ε φcos . . . .b gb gb g  

 
(i) The answers above depend on the frequency only through the phase constant φ, which 
is given. If values were given for R, L and C then the value of the frequency would also 
be needed to compute the power factor. 
 
62. We use Eq. 31-79 to find 
 

V V N
Ns p

s

p

=
F
HG
I
KJ = F

HG
I
KJ = ×100 500

50
100 103V V.b g .  

 
63. (a) The stepped-down voltage is 
 

V V N
Ns p

s

p

=
F
HG
I
KJ = F

HG
I
KJ =120 10

500
2 4V V.b g .  

 

(b) By Ohm’s law, the current in the secondary is I V
Rs

s

s

= = =
2 4
15

016. .V A.
Ω

 

 
We find the primary current from Eq. 31-80: 
 

I I N
Np s

s

p

=
F
HG
I
KJ = F

HG
I
KJ = × −016 10

500
32 10 3. .A A.b g  
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(c) As shown above, the current in the secondary is 0.16A.sI =  
 
64. For step-up transformer: 
 
(a) The smallest value of the ratio /s pV V is achieved by using T2T3 as primary and T1T3 as 
secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 
 
(b) The second smallest value of the ratio /s pV V is achieved by using T1T2 as primary and 
T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 
 
(c) The largest value of the ratio /s pV V is achieved by using T1T2 as primary and T1T3 as 
secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 
 
For the step-down transformer, we simply exchange the primary and secondary coils in 
each of the three cases above.   
 
(d) The smallest value of the ratio /s pV V is 1/5.00 = 0.200. 
 
(e) The second smallest value of the ratio /s pV V is 1/4.00 = 0.250. 
 
(f) The largest value of the ratio /s pV V is 1/1.25 = 0.800. 
 
65. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.= = × × =/ .250 10 31253 c h  

Therefore, the rms voltage drop is Δ ΩV I R= = =rms A V3125 2 0 30 19. . .b gb gb g . 
 
(b) The rate of energy dissipation is P I Rd = = =rms

2 A W.3125 2 0 60 59. . .b gb gb gΩ  
 
(c) Now I rms

3W / 8.0 10 V A= × × =250 10 31253 c h . , so ( )( )31.25A 0.60 19V.VΔ = Ω =   
 
(d) Pd = = ×3125 0 60 59 102 2. . .A W.b g b gΩ  
 
(e) ( )3 3

rms 250 10 W/ 0.80 10 V 312.5 AI = × × = , so ( )( )312.5A 0.60VΔ = Ω = 21.9 10 V× .  
 
(f) ( ) ( )2 4312.5A 0.60 5.9 10 W.dP = Ω = ×   
 
66. (a) The amplifier is connected across the primary windings of a transformer and the 
resistor R is connected across the secondary windings.  
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( )
3

3
3

1.30 10 4.60 10 Hz.
2 2 45.0 10 H

LXf
Lπ π −

× Ω
= = = ×

×
 

 
(b) The capacitance is found from XC = (ωC)–1 = (2πfC)–1: 
 

( )( )
8

3 3

1 1 2.66 10 F.
2 2 4.60 10 Hz 1.30 10C

C
fXπ π

−= = = ×
× × Ω

 

 
(c) Noting that XL ∝ f and XC ∝ f –1, we conclude that when f is doubled, XL doubles and 
XC reduces by half. Thus,  
 

XL = 2(1.30 × 103  Ω) = 2.60 × 103 Ω . 
 
(d) XC = 1.30 × 103 Ω/2 = 6.50 × 102 Ω. 
 
71. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 Ω. 
 
(b) We can write cos φ = R/Z. Therefore, 
 

R = (64.0 Ω)cos(0.650 rad) = 50.9 Ω. 
 
(c) Since the current leads the emf, the circuit is capacitive. 
 
72. (a) From Eq. 31-65, we have 
 

φ =
−F

HG
I
KJ =

−F
HG

I
KJ

− −tan tan ( / . )
( / . )

1 1 150
2 00

V V
V

V V
V

L C

R

L L

L

 

 
which becomes tan–1 (2/3 ) = 33.7° or 0.588 rad. 
 
(b) Since φ > 0, it is inductive (XL > XC). 
 
(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 
Therefore, from Eq. 31-60, we have 
 

2 2 2 2( ) (9.98 V) (20.0 V 13.3 V) 12.0 Vm R L CV V Vε = + − = + − = . 
 
73. (a) From Eq. 31-4, we have L = (ω2C)−1 = ((2πf)2C)−1 = 2.41 μH. 
 
(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 
have Umax = 12 LI2 = 21.4 pJ. 


