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Chapter 26 
 
 
1. (a) The charge that passes through any cross section is the product of the current and 
time. Since t = 4.0 min = (4.0 min)(60 s/min) = 240 s,  
 

q = it = (5.0 A)(240 s) = 1.2× 103 C. 
 
(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge 
on an electron. Thus, 
 

N = q/e = (1200 C)/(1.60 × 10–19 C) = 7.5 × 1021. 
 
2. Suppose the charge on the sphere increases by Δq in time Δt. Then, in that time its 
potential increases by 

0

,
4

qV
rπε

Δ
Δ =  

 
where r is the radius of the sphere. This means 04 .q r VπεΔ = Δ  Now, Δq = (iin – iout) Δt, 
where iin is the current entering the sphere and iout is the current leaving. Thus, 
 

( )( )
( )( )

0
9
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3
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3. We adapt the discussion in the text to a moving two-dimensional collection of charges. 
Using σ for the charge per unit area and w for the belt width, we can see that the transport 
of charge is expressed in the relationship i = σvw, which leads to 
 

σ = =
×

×
= ×

−

−
−i

vw
100 10
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m s m
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4. We express the magnitude of the current density vector in SI units by converting the 
diameter values in mils to inches (by dividing by 1000) and then converting to meters (by 
multiplying by 0.0254) and finally using 
 

2 2

4 .i i iJ
A R Dπ π

= = =  
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For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a 
(maximum safe) current density of J = 7.2 × 106 A/m2. In fact, this is the wire with the 
largest value of J allowed by the given data. The values of J in SI units are plotted below 
as a function of their diameters in mils. 
 

 
 
5. (a) The magnitude of the current density is given by J = nqvd, where n is the number of 
particles per unit volume, q is the charge on each particle, and vd is the drift speed of the 
particles. The particle concentration is n = 2.0 × 108/cm3 = 2.0 × 1014 m–3, the charge is  
 

q = 2e = 2(1.60 × 10–19 C) = 3.20 × 10–19 C, 
 
and the drift speed is 1.0 × 105 m/s. Thus, 
 

J = × × × =−2 10 32 10 10 10 6 414 19 5/ . . . .m C m / s A / m2c hc hc h  
 
(b) Since the particles are positively charged the current density is in the same direction 
as their motion, to the north. 
 
(c) The current cannot be calculated unless the cross-sectional area of the beam is known. 
Then i = JA can be used. 
 
6. (a) Circular area depends, of course, on r2, so the horizontal axis of the graph in Fig. 
26-23(b) is effectively the same as the area (enclosed at variable radius values), except 
for a factor of π.  The fact that the current increases linearly in the graph means that i/A = 
J = constant.   Thus, the answer is “yes, the current density is uniform.” 
 
(b) We find  i/(πr2) = (0.005 A)/(π × 4 × 10−6 m2) = 398 ≈ 4.0 × 102 A/m2. 
 
7. The cross-sectional area of wire is given by A = πr2, where r is its radius (half its 
thickness). The magnitude of the current density vector is  
 

2/ / ,J i A i rπ= =  
so 
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( )
4

4 2

0.50 A 1.9 10 m.
440 10 A/m

ir
Jπ π

−= = = ×
×

 

 
The diameter of the wire is therefore d = 2r = 2(1.9 × 10–4 m) = 3.8 × 10–4 m. 
 
8. (a) The magnitude of the current density vector is 
 

( )
( )

10
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22 3
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i iJ
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−
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−
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(b) The drift speed of the current-carrying electrons is 
 

v J
ned = =

×
× ×

= ×
−

−
−2 4 10

8 47 10 160 10
18 10
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28 19
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. / .
.A / m
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2
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9. We note that the radial width Δr = 10 μm is small enough (compared to r = 1.20 mm) 
that we can make the approximation 
 
 2 2Br rdr Br r rπ π≈ Δ∫  
 
Thus, the enclosed current is 2πBr2Δr = 18.1 μA.  Performing the integral gives the same 
answer. 
 
10. Assuming J  is directed along the wire (with no radial flow) we integrate, starting 
with Eq. 26-4, 

( )2 4 4

9 /10

1| | ( )2 0.656
2

R

R
i J dA kr rdr k R Rπ π= = = −∫ ∫  

 
where k = 3.0 × 108 and SI units are understood. Therefore, if R = 0.00200 m, we 
obtain 32.59 10 Ai −= × . 
 
11. (a) The current resulting from this nonuniform current density is 
 

2 3 2 4 20
0cylinder 0

2 22 (3.40 10 m) (5.50 10 A/m )
3 3

1.33 A.

R

a
Ji J dA r rdr R J
R

π π π −= = ⋅ = = × ×

=

∫ ∫ . 

 
(b) In this case, 
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2 3 2 4 2
0 0cylinder 0

1 11 2 (3.40 10 m) (5.50 10 A/m )
3 3

0.666 A.

R

b
ri J dA J rdr R J
R

π π π −⎛ ⎞= = − = = × ×⎜ ⎟
⎝ ⎠

=

∫ ∫  

 
(c) The result is different from that in part (a) because Jb is higher near the center of the 
cylinder (where the area is smaller for the same radial interval) and lower outward, 
resulting in a lower average current density over the cross section and consequently a 
lower current than that in part (a). So, Ja has its maximum value near the surface of the 
wire. 
 
12. (a) Since 1 cm3 = 10–6 m3, the magnitude of the current density vector is 
 

J nev= =
F
HG

I
KJ × × = ×−

− −8 70
10

160 10 470 10 6 54 106
19 3 7. . . .

m
C m / s A / m3

2c hc h  

 
(b) Although the total surface area of Earth is 24 ERπ  (that of a sphere), the area to be used 
in a computation of how many protons in an approximately unidirectional beam (the solar 
wind) will be captured by Earth is its projected area. In other words, for the beam, the 
encounter is with a “target” of circular area 2

ERπ . The rate of charge transport implied by 
the influx of protons is 
 

( ) ( )22 6 7 2 76.37 10 m 6.54 10 A/m 8.34 10 A.Ei AJ R Jπ π −= = = × × = ×  
 
13. We use vd = J/ne = i/Ane. Thus, 
 

( ) ( ) ( ) ( )14 2 28 3 19

2

0.85m 0.21 10 m 8.47 10 / m 1.60 10 C
/ 300A

8.1 10 s 13min .
d

L L LAnet
v i Ane i

− −× × ×
= = = =

= × =

 

 
14. Since the potential difference V and current i are related by V = iR, where R is the 
resistance of the electrician, the fatal voltage is V = (50 × 10–3 A)(2000 Ω) = 100 V. 
 
15. The resistance of the coil is given by R = ρL/A, where L is the length of the wire, ρ is 
the resistivity of copper, and A is the cross-sectional area of the wire. Since each turn of 
wire has length 2πr, where r is the radius of the coil, then  
 

L = (250)2πr = (250)(2π)(0.12 m) = 188.5 m. 
 
If rw is the radius of the wire itself, then its cross-sectional area is  
 

2
wA rπ=  = π (0.65 × 10–3 m)2 = 1.33 × 10–6 m2. 
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According to Table 26-1, the resistivity of copper is 81.69 10 mρ −= × Ω⋅ . Thus, 
 

R L
A

= =
× ⋅

×
=

−

−

ρ 169 10 1885
133 10

2 4
8

6 2

. .
.

. .
Ω

Ω
m m

m
c hb g

 

 
16. We use R/L = ρ/A = 0.150 Ω/km. 
 
(a) For copper J = i/A = (60.0 A)(0.150 Ω/km)/(1.69 × 10–8 Ω · m) = 5.32 × 105 A/m2. 
 
(b) We denote the mass densities as ρm. For copper,  
 

(m/L)c = (ρmA)c = (8960 kg/m3) (1.69 × 10–8 Ω · m)/(0.150 Ω/km) = 1.01 kg/m. 
 
(c) For aluminum J = (60.0 A)(0.150 Ω/km)/(2.75 × 10–8 Ω · m) = 3.27 × 105 A/m2. 
 
(d) The mass density of aluminum is 
 

(m/L)a = (ρmA)a = (2700 kg/m3)(2.75 × 10–8 Ω · m)/(0.150 Ω/km) = 0.495 kg/m. 
 
17. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows: 
 

σ
ρ

= = = = =
×

= × ⋅
−

1 10
10 10

2 0 10
6 2

6L
RA

L
V i A
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.
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b gb g
b gc h

m 4.0 A
2.0 V m

mΩ  

 
18. (a) i = V/R = 23.0 V/15.0 × 10–3 Ω = 1.53 × 103 A. 
 
(b) The cross-sectional area is 2 21

4A r Dπ π= = . Thus, the magnitude of the current 
density vector is 

( )
( )

3
7 2

22 3

4 1.53 10 A4 5.41 10 A/m .
6.00 10 m

i iJ
A Dπ π

−

−

×
= = = = ×

×
 

(c) The resistivity is 
 

3 3 2
8(15.0 10 ) (6.00 10 m) 10.6 10  m.

4(4.00 m)
RA
L

πρ
− −

−× Ω ×
= = = × Ω⋅  

 
(d) The material is platinum. 
 
19. The resistance of the wire is given by R L A= ρ / , where ρ is the resistivity of the 
material, L is the length of the wire, and A is its cross-sectional area. In this case, 
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( )22 3 7 20.50 10 m 7.85 10 m .A rπ π − −= = × = ×  
Thus, 

( ) ( )3 7 2
8

50 10 7.85 10 m
2.0 10 m.

2.0m
RA
L

ρ
− −

−
× Ω ×

= = = × Ω⋅  

 
20. The thickness (diameter) of the wire is denoted by D. We use R ∝ L/A (Eq. 26-16) 
and note that 2 21

4 .A D Dπ= ∝  The resistance of the second wire is given by 
 

R R A
A

L
L

R D
D

L
L

R R2
1

2

2

1

1

2

2

2

1

22 1
2

2=
F
HG
I
KJ
F
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I
KJ =
F
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I
KJ
F
HG
I
KJ = F

HG
I
KJ =b g .  

 
21. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 Ω. Thus, 
from R – R0 = R0α (T – T0), we find 
 

3
0 3

0

1 1 9.671 20 C 1 1.8 10  C
4.5 10 K 1.1

RT T
Rα −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω
= + − = ° + − = × °⎜ ⎟ ⎜ ⎟ ⎜ ⎟× Ω⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the 
value of α used in this calculation is not inconsistent with the other units involved. Table 
26-1 has been used. 
 
22. Let 2.00 mmr = be the radius of the kite string and 0.50 mmt = be the thickness of 
the water layer. The cross-sectional area of the layer of water is 
 
 2 2 3 2 3 2 6 2( ) [(2.50 10  m) (2.00 10  m) ] 7.07 10  mA r t rπ π − − −⎡ ⎤= + − = × − × = ×⎣ ⎦ . 
 
Using Eq. 26-16, the resistance of the wet string is 
 

( )( ) 10
6 2

150 m 800 m
1.698 10 .

7.07 10 m
LR

A
ρ

−

Ω ⋅
= = = × Ω

×
 

 
The current through the water layer is  
 

 
8

3
10

1.60 10 V 9.42 10 A
1.698 10

Vi
R

−×
= = = ×

× Ω
. 

 
23. We use J = E/ρ, where E is the magnitude of the (uniform) electric field in the wire, J 
is the magnitude of the current density, and ρ is the resistivity of the material. The 
electric field is given by E = V/L, where V is the potential difference along the wire and L 
is the length of the wire. Thus J = V/Lρ and 
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ρ = =
×

= × ⋅−V
LJ
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24. (a)  Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 
26-11) that the electric fields (in the various rods) are directly proportional to their 
current-densities.  Thus, J1: J2: J3 are in the ratio 2.5/4/1.5  (see Fig. 26-24).  Now the 
currents in the rods must be the same (they are “in series”) so  
 

J1 A1  = J3 A3 ,      J2 A2  = J3 A3   . 
 

Since A = πr2, this leads (in view of the aforementioned ratios) to  
 

4r2
2  = 1.5r3

2 ,      2.5r1
2  = 1.5r3

2 . 
 
Thus, with r3 = 2 mm, the latter relation leads to r1 = 1.55 mm. 
 
(b) The 4r2

2  = 1.5r3
2 relation leads to r2 = 1.22 mm. 

 
25. Since the mass density of the material does not change, the volume remains the same. 
If L0 is the original length, L is the new length, A0 is the original cross-sectional area, and 
A is the new cross-sectional area, then L0A0 = LA and A = L0A0/L = L0A0/3L0 = A0/3. The 
new resistance is 

R L
A

L
A

L
A

R= = = =
ρ ρ ρ3

3
9 90

0

0

0
0/
,  

 
where R0 is the original resistance. Thus, R = 9(6.0 Ω) = 54 Ω. 
 
26. The absolute values of the slopes (for the straight-line segments shown in the graph of 
Fig. 26-25(b)) are equal to the respective electric field magnitudes.  Thus, applying Eq. 
26-5 and Eq. 26-13 to the three sections of the resistive strip, we have 
 

   J1  =  
i
A  =  σ1 E1  =  σ1 (0.50 × 103 V/m) 

 

   J2  =  
i
A  =  σ2 E2 =  σ2 (4.0 × 103 V/m) 

 

   J3  =  
i
A  =  σ3 E3  =  σ3 (1.0 × 103 V/m)  . 

 
We note that the current densities are the same since the values of i and A are the same 
(see the problem statement) in the three sections, so J1  = J2  = J3 .   
 
(a) Thus we see that σ1 = 2σ3  = 2 (3.00 × 107(Ω · m)−1 ) = 6.00 × 107  (Ω · m)−1. 
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(b) Similarly, σ2 = σ3/4  =  (3.00 × 107(Ω · m)−1 )/4 = 7.50 × 106 (Ω · m)−1 . 
 
27. The resistance of conductor A is given by 

R L
rA

A

=
ρ
p 2 ,  

 
where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri 
is its inside diameter, then its cross-sectional area is π(ro

2 – ri
2), and its resistance is 

 

( )2 2
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o i
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r r
ρ

π
=

−
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=
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28. The cross-sectional area is A = πr2  = π(0.002 m)2.  The resistivity from Table 26-1 is   
ρ = 1.69 × 10−8 Ω · m.  Thus, with L = 3 m, Ohm’s Law leads to V = iR = iρL/A, or 
 
   12 × 10−6 V  = i (1.69 × 10−8 Ω · m)(3.0 m)/ π(0.002 m)2 
 
which yields i = 0.00297 A or roughly 3.0 mA. 
 
29. First we find the resistance of the copper wire to be 
 

( )( )8
5

3 2

1.69 10 m 0.020 m
2.69 10 .

(2.0 10 m)
LR

A
ρ

π

−
−

−

× Ω⋅
= = = × Ω

×
 

 
With potential difference 3.00 nVV = , the current flowing through the wire is 
 

9
4

5

3.00 10 V 1.115 10 A
2.69 10

Vi
R

−
−

−

×
= = = ×

× Ω
. 

 
Therefore, in 3.00 ms, the amount of charge drifting through a cross section is 
 

4 3 7(1.115 10 A)(3.00 10 s) 3.35 10 CQ i t − − −Δ = Δ = × × = ×  . 
 
30. We use R ∝ L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. 
Thus from R = ρL/A we find the resistance of 25 ft of 22-gauge copper wire to be  
 

R = (1.00 Ω)(25 ft/1000 ft)(4)2 = 0.40 Ω. 
 
31. (a) The current in each strand is i = 0.750 A/125 = 6.00 × 10–3 A. 
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36. Since the current spreads uniformly over the hemisphere, the current density at any 
given radius r from the striking point is 2/ 2J I rπ= . From Eq. 26-10, the magnitude of 
the electric field at a radial distance r is 

 22
w

w
IE J
r

ρρ
π

= = , 

 
where 30 mwρ = Ω⋅ is the resistivity of water. The potential difference between a point at 
radial distance D and a point at D r+ Δ is 
 

2

1 1
2 2 2 ( )

D r D r w w w
D D

I I I rV Edr dr
r D r D D D r

ρ ρ ρ
π π π

+Δ +Δ Δ⎛ ⎞Δ = − = − = − = −⎜ ⎟+ Δ + Δ⎝ ⎠∫ ∫ , 

 
which implies that the current across the swimmer is 
 

| |
2 ( )

wIV ri
R R D D r

ρ
π

Δ Δ
= =

+ Δ
. 

 
Substituting the values given, we obtain 
 

4
2

3

(30.0 m)(7.80 10 A) 0.70 m 5.22 10 A
2 (4.00 10 ) (35.0 m)(35.0 m 0.70 m)

i
π

−Ω ⋅ ×
= = ×

× Ω +
. 

 
37. From Eq. 26-25, ρ ∝ τ–1 ∝ veff. The connection with veff is indicated in part (b) of 
Sample Problem —“Mean free time and mean free distance,” which contains useful 
insight regarding the problem we are working now. According to Chapter 20, v Teff ∝ .  
Thus, we may conclude that ρ ∝ T .  
 
38. The slope of the graph is P = 5.0 × 10−4 W.  Using this in the P = V2/R relation leads 
to V = 0.10 Vs. 
 
39. Eq. 26-26 gives the rate of thermal energy production: 
 

(10.0A)(120V) 1.20 kW.P iV= = =  
 
Dividing this into the 180 kJ necessary to cook the three hotdogs leads to the result 

150 s.t =  
 
40. The resistance is R = P/i2 = (100 W)/(3.00 A)2 = 11.1 Ω. 
 
41. (a) Electrical energy is converted to heat at a rate given by 2 / ,P V R=  where V is the 
potential difference across the heater and R is the resistance of the heater. Thus, 
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P = = × =
( . .120

14
10 10 103V) W kW.

2

Ω
 

 
(b) The cost is given by (1.0kW)(5.0h)(5.0cents/kW h) US$0.25.⋅ =  
 
42. (a) Referring to Fig. 26-32, the electric field would point down (toward the bottom of 
the page) in the strip, which means the current density vector would point down, too (by 
Eq. 26-11).  This implies (since electrons are negatively charged) that the conduction 
electrons would be “drifting” upward in the strip. 
 
(b) Equation 24-6 immediately gives 12 eV, or (using e = 1.60 × 10−19 C) 1.9 × 10−18 J for 
the work done by the field (which equals, in magnitude, the potential energy change of 
the electron). 
 
(c) Since the electrons don’t (on average) gain kinetic energy as a result of this work done, 
it is generally dissipated as heat.  The answer is as in part (b): 12 eV or 1.9 × 10−18 J. 
 
43. The relation P = V 2/R implies P ∝ V 2. Consequently, the power dissipated in the 
second case is 

P =
F
HG

I
KJ =

150 0540 0135
2

. ( . .V
3.00 V

W) W.  

 
44. Since P = iV, the charge is  
 

q = it = Pt/V = (7.0 W) (5.0 h) (3600 s/h)/9.0 V = 1.4 × 104 C. 
 
45. (a) The power dissipated, the current in the heater, and the potential difference across 
the heater are related by P = iV. Therefore, 
 

i P
V

= = =
1250 10 9W
115 V

A..  

 
(b) Ohm’s law states V = iR, where R is the resistance of the heater. Thus, 
 

R V
i

= = =
115 10 6V
10.9 A

. .Ω  

 
(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is 
 

6(1250W)(3600s) 4.50 10 J.E Pt= = = ×  
 
46. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have 
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( )8 2
6 2

2.00A| | | | 1.69 10 m 1.69 10 V/m.
2.00 10 m

E Jρ − −
−

⎛ ⎞
= = × Ω⋅ = ×⎜ ⎟×⎝ ⎠

 

 
(b) Using L = 4.0 m, the resistance is found from Eq. 26-16:  
 

R = ρL/A = 0.0338 Ω. 
 
The rate of thermal energy generation is found from Eq. 26-27:  
 

P = i2 R = (2.00 A)2(0.0338 Ω) = 0.135 W. 
 
Assuming a steady rate, the amount of thermal energy generated in 30 minutes is found to 
be (0.135 J/s)(30 × 60 s) = 2.43 × 102 J. 
 
47. (a) From P = V 2/R = AV 2 / ρL, we solve for the length: 
 

L AV
P

= =
×
× ⋅

=
−

−

2 6

7

2 60 10 750
500 10

585
ρ

( . )( .
( .

.m V)
m)(500 W)

m.
2 2

Ω
 

 

(b) Since L ∝ V 2 the new length should be ′ =
′F
HG
I
KJ =

F
HG

I
KJ =L L V

V

2 2

585 10 4( . .m) 100 V
75.0 V

m. 

 
48. The mass of the water over the length is  
 
 3 5 2(1000 kg/m )(15 10  m )(0.12 m) 0.018 kgm ALρ −= = × = , 
 
and the energy required to vaporize the water is  
 
 4(2256 kJ / kg)(0.018 kg) 4.06 10  JQ Lm= = = × . 
 
The thermal energy is supplied by joule heating of the resistor: 
 
 2Q P t I R t= Δ = Δ . 
 
Since the resistance over the length of water is  
 

( )( ) 5
5 2

150 m 0.120 m
1.2 10

15 10 m
wLR
A

ρ
−

Ω⋅
= = = × Ω

×
, 

 
the average current required to vaporize water is  
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4

5 3

4.06 10  J 13.0 A
(1.2 10 )(2.0 10 s)

QI
R t −

×
= = =

Δ × Ω ×
. 

 
49. (a) Assuming a 31-day month, the monthly cost is  
 

(100 W)(24 h/day)(31days/month) (6 cents/kW h)⋅ =  446 cents US$4.46= . 
 
(b) R = V 2/P = (120 V)2/100 W = 144 Ω. 
 
(c) i = P/V = 100 W/120 V = 0.833 A. 
 
50. The slopes of the lines yield P1 = 8 mW and P2 = 4 mW.  Their sum (by energy 
conservation) must be equal to that supplied by the battery: Pbatt = ( 8 + 4 ) mW = 12 mW. 
 
51. (a) We use Eq. 26-16 to compute the resistances: 
 

6
2 2

1.0 m(2.0 10 m) 2.55 .
 m

C
C C

C

LR
r

ρ
π π

−= = × Ω⋅ = Ω
(0.00050 )

 

 
The voltage follows from Ohm’s law: 1 2| | (2.0 A)(2.55 ) 5.1V.C CV V V iR− = = = Ω =  
 
(b) Similarly, 

6
2 2

1.0 m(1.0 10 m) 5.09
 m

D
D D

D

LR
r

ρ
π π

−= = × Ω⋅ = Ω
(0.00025 )

 

 
and 2 3| | (2.0 A)(5.09 ) 10.2V 10VD DV V V iR− = = = Ω = ≈ . 
 
(c) The power is calculated from Eq. 26-27: 2 10WC CP i R= = . 
 
(d) Similarly, 2 20W D DP i R= = . 
 
52. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4: 
 

i  =  ⌡⌠| J  
→

| dA = 2

0
2

R
kr rdrπ∫  =  

1
2 kπR4 = 3.50 A 

 
where k = 2.75 × 1010 A/m4 and R = 0.00300 m.  The rate of thermal energy generation is 
found from Eq. 26-26: P = iV = 210 W. Assuming a steady rate, the thermal energy 
generated in 40 s is Q P t= Δ = (210 J/s)(3600 s) = 7.56 × 105 J. 
 
53. (a) From P = V 2/R we find R = V 2/P = (120 V)2/500 W = 28.8 Ω. 
 
(b) Since i = P/V, the rate of electron transport is 


