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2 CHAPTER 1. FUNDAMENTALS OF PROBABILITY

1.2 Statistical Properties of Random Walks

1.2.1 One-dimensional random walk

Consider the mechanical system depicted in Fig. 1.1, a version of which is often sold in novelty shops.
A ball is released from the top, which cascades consecutively throughN levels. The details of each ball’s
motion are governed by Newton’s laws of motion. However, to predict where any given ball will end up
in the bottom row is difficult, because the ball’s trajectory depends sensitively on its initial conditions,
and may even be influenced by random vibrations of the entire apparatus. We therefore abandon all
hope of integrating the equations of motion and treat the system statistically. That is, we assume, at
each level, that the ball moves to the right with probability p and to the left with probability q = 1− p. If
there is no bias in the system, then p = q = 1

2 . The position XN after N steps may be written

X =

N∑
j=1

σj , (1.1)

where σj = +1 if the ball moves to the right at level j, and σj = −1 if the ball moves to the left at level
j. At each level, the probability for these two outcomes is given by

Pσ = p δσ,+1 + q δσ,−1 =

{
p if σ = +1

q if σ = −1 .
(1.2)

This is a normalized discrete probability distribution of the type discussed in section 1.5 below. The
multivariate distribution for all the steps is then

P (σ1 , . . . , σN ) =

N∏
j=1

P (σj) . (1.3)

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a
sidewalk taking steps to the right and left at random. After N steps, the pedestrian’s location is X .

Now let’s compute the average of X :

〈X〉 =
〈 N∑
j=1

σj
〉

= N〈σ〉 = N
∑
σ=±1

σ P (σ) = N(p− q) = N(2p− 1) . (1.4)

This could be identified as an equation of state for our system, as it relates a measurable quantity X to the
number of steps N and the local bias p. Next, let’s compute the average of X2:

〈X2〉 =
N∑
j=1

N∑
j′=1

〈σjσj′〉 = N2(p− q)2 + 4Npq . (1.5)

Here we have used

〈σjσj′〉 = δjj′ +
(
1− δjj′

)
(p− q)2 =

{
1 if j = j′

(p− q)2 if j 6= j′ .
(1.6)
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Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

Note that 〈X2〉 ≥ 〈X〉2, which must be so because

Var(X) = 〈(∆X)2〉 ≡
〈(
X − 〈X〉

)2〉
= 〈X2〉 − 〈X〉2 . (1.7)

This is called the variance of X . We have Var(X) = 4Np q. The root mean square deviation, ∆Xrms, is the
square root of the variance: ∆Xrms =

√
Var(X). Note that the mean value of X is linearly proportional

to N1, but the RMS fluctuations ∆Xrms are proportional to N1/2. In the limit N → ∞ then, the ratio
∆Xrms/〈X〉 vanishes as N−1/2. This is a consequence of the central limit theorem (see §1.5.2 below), and
we shall meet up with it again on several occasions.

We can do even better. We can find the complete probability distribution for X . It is given by

PN,X =

(
N

NR

)
pNR qNL , (1.8)

whereNR/L are the numbers of steps taken to the right/left, withN = NR +NL, andX = NR−NL. There
are many independent ways to take NR steps to the right. For example, our first NR steps could all be
to the right, and the remaining NL = N − NR steps would then all be to the left. Or our final NR steps
could all be to the right. For each of these independent possibilities, the probability is pNR qNL . How
many possibilities are there? Elementary combinatorics tells us this number is(

N

NR

)
=

N !

NR!NL!
. (1.9)

Note that N ±X = 2NR/L, so we can replace NR/L = 1
2(N ±X). Thus,

PN,X =
N !(

N+X
2

)
!
(
N−X

2

)
!
p(N+X)/2 q(N−X)/2 . (1.10)

1The exception is the unbiased case p = q = 1
2

, where 〈X〉 = 0.
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Figure 1.2: Comparison of exact distribution of eqn. 1.10 (red squares) with the Gaussian distribution of
eqn. 1.19 (blue line).

1.2.2 Thermodynamic limit

Consider the limit N → ∞ but with x ≡ X/N finite. This is analogous to what is called the thermody-
namic limit in statistical mechanics. Since N is large, x may be considered a continuous variable. We
evaluate lnPN,X using Stirling’s asymptotic expansion

lnN ! ' N lnN −N +O(lnN) . (1.11)

We then have

lnPN,X ' N lnN −N − 1
2N(1 + x) ln

[
1
2N(1 + x)

]
+ 1

2N(1 + x)

− 1
2N(1− x) ln

[
1
2N(1− x)

]
+ 1

2N(1− x) + 1
2N(1 + x) ln p+ 1

2N(1− x) ln q

= −N
[(

1+x
2

)
ln
(

1+x
2

)
+
(

1−x
2

)
ln
(

1−x
2

)]
+N

[(
1+x

2

)
ln p+

(
1−x

2

)
ln q
]
.

(1.12)

Notice that the terms proportional to N lnN have all cancelled, leaving us with a quantity which is
linear in N . We may therefore write lnPN,X = −Nf(x) +O(lnN), where

f(x) =
[(

1+x
2

)
ln
(

1+x
2

)
+
(

1−x
2

)
ln
(

1−x
2

)]
−
[(

1+x
2

)
ln p+

(
1−x

2

)
ln q
]
. (1.13)

We have just shown that in the large N limit we may write

PN,X = C e−Nf(X/N) , (1.14)

where C is a normalization constant2. Since N is by assumption large, the function PN,X is dominated
by the minimum (or minima) of f(x), where the probability is maximized. To find the minimum of f(x),

2The origin of C lies in the O(lnN) and O(N0) terms in the asymptotic expansion of lnN !. We have ignored these terms
here. Accounting for them carefully reproduces the correct value of C in eqn. 1.20.
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we set f ′(x) = 0, where

f ′(x) = 1
2 ln

(
q

p
· 1 + x

1− x

)
. (1.15)

Setting f ′(x) = 0, we obtain
1 + x

1− x
=
p

q
⇒ x̄ = p− q . (1.16)

We also have
f ′′(x) =

1

1− x2
, (1.17)

so invoking Taylor’s theorem,

f(x) = f(x̄) + 1
2f
′′(x̄) (x− x̄)2 + . . . . (1.18)

Putting it all together, we have

PN,X ≈ C exp

[
− N(x− x̄)2

8pq

]
= C exp

[
− (X − X̄)2

8Npq

]
, (1.19)

where X̄ = 〈X〉 = N(p− q) = Nx̄. The constant C is determined by the normalization condition,

∞∑
X=−∞

PN,X ≈ 1
2

∞∫
−∞

dX C exp

[
− (X − X̄)2

8Npq

]
=
√

2πNpq C , (1.20)

and thus C = 1/
√

2πNpq. Why don’t we go beyond second order in the Taylor expansion of f(x)? We
will find out in §1.5.2 below.

1.2.3 Entropy and energy

The function f(x) can be written as a sum of two contributions, f(x) = e(x)− s(x), where

s(x) = −
(

1+x
2

)
ln
(

1+x
2

)
−
(

1−x
2

)
ln
(

1−x
2

)
e(x) = −1

2 ln(pq)− 1
2x ln(p/q) .

(1.21)

The function S(N, x) ≡ Ns(x) is analogous to the statistical entropy of our system3. We have

S(N, x) = Ns(x) = ln

(
N

NR

)
= ln

(
N

1
2N(1 + x)

)
. (1.22)

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the
same value of X (at fixed N ). The second contribution to f(x) is the energy term. We write

E(N, x) = Ne(x) = −1
2N ln(pq)− 1

2Nx ln(p/q) . (1.23)

3The function s(x) is the specific entropy.
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The energy term biases the probability PN,X = exp(S − E) so that low energy configurations are more
probable than high energy configurations. For our system, we see that when p < q (i.e. p < 1

2 ), the energy
is minimized by taking x as small as possible (meaning as negative as possible). The smallest possible
allowed value of x = X/N is x = −1. Conversely, when p > q (i.e. p > 1

2 ), the energy is minimized
by taking x as large as possible, which means x = 1. The average value of x, as we have computed
explicitly, is x̄ = p− q = 2p− 1, which falls somewhere in between these two extremes.

In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called S
here is really S/kB, which is the entropy in units of Boltzmann’s constant. And what we have called E
here is really E/kBT , which is energy in units of Boltzmann’s constant times temperature.

1.3 Basic Concepts in Probability Theory

Here we recite the basics of probability theory.

1.3.1 Fundamental definitions

The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics:
ω ∈ A is a binary relation which says that the object ω is an element of the set A. Another binary relation
is set inclusion. If all members of A are in B, we write A ⊆ B. The union of sets A and B is denoted A∪B
and the intersection of A and B is denoted A∩B. The Cartesian product of A and B, denoted A×B, is the
set of all ordered elements (a, b) where a ∈ A and b ∈ B.

Some details: If ω is not in A, we write ω /∈ A. Sets may also be objects, so we may speak of sets of
sets, but typically the sets which will concern us are simple discrete collections of numbers, such as the
possible rolls of a die {1,2,3,4,5,6}, or the real numbers R, or Cartesian products such as RN . If A ⊆ B
but A 6= B, we say that A is a proper subset of B and write A ⊂ B. Another binary operation is the set
difference A\B, which contains all ω such that ω ∈ A and ω /∈ B.

In probability theory, each object ω is identified as an event. We denote by Ω the set of all events, and ∅
denotes the set of no events. There are three basic axioms of probability:

i) To each set A is associated a non-negative real number P (A), which is called the probability of A.

ii) P (Ω) = 1.

iii) If {Ai} is a collection of disjoint sets, i.e. if Ai ∩Aj = ∅ for all i 6= j, then

P
(⋃

i

Ai

)
=
∑
i

P (Ai) . (1.24)

From these axioms follow a number of conclusions. Among them, let ¬A = Ω\A be the complement of
A, i.e. the set of all events not in A. Then since A ∪ ¬A = Ω, we have P (¬A) = 1− P (A). Taking A = Ω,
we conclude P (∅) = 0.
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The meaning of P (A) is that if events ω are chosen from Ω at random, then the relative frequency for
ω ∈ A approaches P (A) as the number of trials tends to infinity. But what do we mean by ’at random’?
One meaning we can impart to the notion of randomness is that a process is random if its outcomes
can be accurately modeled using the axioms of probability. This entails the identification of a probability
space Ω as well as a probability measure P . For example, in the microcanonical ensemble of classical
statistical physics, the space Ω is the collection of phase space points ϕ = {q1, . . . , qn, p1, . . . , pn} and the
probability measure is dµ = Σ−1(E)

∏n
i=1 dqi dpi δ

(
E −H(q, p)

)
, so that for A ∈ Ω the probability of A

is P (A) =
∫
dµ χA(ϕ), where χA(ϕ) = 1 if ϕ ∈ A and χ

A(ϕ) = 0 if ϕ /∈ A is the characteristic function of
A. The quantity Σ(E) is determined by normalization:

∫
dµ = 1.

1.3.2 Bayesian statistics

We now introduce two additional probabilities. The joint probability for sets A and B together is written
P (A ∩ B). That is, P (A ∩ B) = Prob[ω ∈ A and ω ∈ B]. For example, A might denote the set of all
politicians, B the set of all American citizens, and C the set of all living humans with an IQ greater than
60. Then A ∩B would be the set of all politicians who are also American citizens, etc. Exercise: estimate
P (A ∩B ∩ C).

The conditional probability of B given A is written P (B|A). We can compute the joint probability P (A ∩
B) = P (B ∩A) in two ways:

P (A ∩B) = P (A|B) · P (B) = P (B|A) · P (A) . (1.25)

Thus,

P (A|B) =
P (B|A)P (A)

P (B)
, (1.26)

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as {Ai}. Then

P (B) =
∑
i

P (B|Ai)P (Ai) . (1.27)

We then have

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

, (1.28)

a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary
partition’ {A,¬A}, we have

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|¬A)P (¬A)
. (1.29)

Note that P (A|B) + P (¬A|B) = 1 (which follows from ¬¬A = A).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly
contagious disease A which occurs in 0.01% of the general population. Suppose further that there is
a simple test for the disease which is accurate 99.99% of the time. That is, out of every 10,000 tests,
the correct answer is returned 9,999 times, and the incorrect answer is returned only once. Now let us
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administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine
group actually has the disease? We use Bayes’ theorem with the binary partition {A,¬A}. Let B denote
the event that an individual tests positive. Anyone from the quarantine group has tested positive. Given
this datum, we want to know the probability that that person has the disease. That is, we want P (A|B).
Applying eqn. 1.29 with

P (A) = 0.0001 , P (¬A) = 0.9999 , P (B|A) = 0.9999 , P (B|¬A) = 0.0001 ,

we find P (A|B) = 1
2 . That is, there is only a 50% chance that someone who tested positive actually has

the disease, despite the test being 99.99% accurate! The reason is that, given the rarity of the disease in
the general population, the number of false positives is statistically equal to the number of true positives.

In the above example, we had P (B|A) + P (B|¬A) = 1, but this is not generally the case. What is true
instead is P (B|A) +P (¬B|A) = 1. Epidemiologists define the sensitivity of a binary classification test as
the fraction of actual positives which are correctly identified, and the specificity as the fraction of actual
negatives that are correctly identified. Thus, se = P (B|A) is the sensitivity and sp = P (¬B|¬A) is the
specificity. We then have P (B|¬A) = 1− P (¬B|¬A). Therefore,

P (B|A) + P (B|¬A) = 1 + P (B|A)− P (¬B|¬A) = 1 + se− sp . (1.30)

In our previous example, se = sp = 0.9999, in which case the RHS above gives 1. In general, if P (A) ≡ f
is the fraction of the population which is afflicted, then

P (infected | positive) =
f · se

f · se + (1− f) · (1− sp)
. (1.31)

For continuous distributions, we speak of a probability density. We then have

P (y) =

∫
dx P (y|x)P (x) (1.32)

and

P (x|y) =
P (y|x)P (x)∫

dx′ P (y|x′)P (x′)
. (1.33)

The range of integration may depend on the specific application.

The quantities P (Ai) are called the prior distribution. Clearly in order to compute P (B) or P (Ai|B)
we must know the priors, and this is usually the weakest link in the Bayesian chain of reasoning. If
our prior distribution is not accurate, Bayes’ theorem will generate incorrect results. One approach to
approximating prior probabilities P (Ai) is to derive them from a maximum entropy construction.

1.3.3 Random variables and their averages

Consider an abstract probability space X whose elements (i.e. events) are labeled by x. The average of
any function f(x) is denoted as Ef or 〈f〉, and is defined for discrete sets as

Ef = 〈f〉 =
∑
x∈X

f(x)P (x) , (1.34)
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where P (x) is the probability of x. For continuous sets, we have

Ef = 〈f〉 =

∫
X

dx f(x)P (x) . (1.35)

Typically for continuous sets we have X = R or X = R≥0. Gardiner and other authors introduce an
extra symbol, X , to denote a random variable, with X(x) = x being its value. This is formally useful but
notationally confusing, so we’ll avoid it here and speak loosely of x as a random variable.

When there are two random variables x ∈ X and y ∈ Y , we have Ω = X × Y is the product space, and

Ef(x, y) = 〈f(x, y)〉 =
∑
x∈X

∑
y∈Y

f(x, y)P (x, y) , (1.36)

with the obvious generalization to continuous sets. This generalizes to higher rank products, i.e. xi ∈ Xi
with i ∈ {1, . . . , N}. The covariance of xi and xj is defined as

Cij ≡
〈(
xi − 〈xi〉

)(
xj − 〈xj〉

)〉
= 〈xixj〉 − 〈xi〉〈xj〉 . (1.37)

If f(x) is a convex function then one has

Ef(x) ≥ f(Ex) . (1.38)

For continuous functions, f(x) is convex if f ′′(x) ≥ 0 everywhere4. If f(x) is convex on some interval
[a, b] then for x1,2 ∈ [a, b] we must have

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2) , (1.39)

where λ ∈ [0, 1]. This is easily generalized to

f
(∑

n

pnxn

)
≤
∑
n

pnf(xn) , (1.40)

where pn = P (xn), a result known as Jensen’s theorem.

1.4 Entropy and Probability

1.4.1 Entropy and information theory

It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information5.
Suppose we observe that a particular event occurs with probability p. We associate with this observation
an amount of information I(p). The information I(p) should satisfy certain desiderata:

4A function g(x) is concave if −g(x) is convex.
5See ‘An Introduction to Information Theory and Entropy’ by T. Carter, Santa Fe Complex Systems Summer School, June

2011. Available online at http://astarte.csustan.edu/$\sim$tom/SFI-CSSS/info-theory/info-lec.pdf.
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1 Information is non-negative, i.e. I(p) ≥ 0.

2 If two events occur independently so their joint probability is p1 p2, then their information is addi-
tive, i.e. I(p1p2) = I(p1) + I(p2).

3 I(p) is a continuous function of p.

4 There is no information content to an event which is always observed, i.e. I(1) = 0.

From these four properties, it is easy to show that the only possible function I(p) is

I(p) = −A ln p , (1.41)

where A is an arbitrary constant that can be absorbed into the base of the logarithm, since logb x =
lnx/ ln b. We will take A = 1 and use e as the base, so I(p) = − ln p. Another common choice is to
take the base of the logarithm to be 2, so I(p) = − log2 p. In this latter case, the units of information are
known as bits. Note that I(0) =∞. This means that the observation of an extremely rare event carries a
great deal of information6

Now suppose we have a set of events labeled by an integer n which occur with probabilities {pn}. What
is the expected amount of information inN observations? Since event n occurs an average ofNpn times,
and the information content in pn is − ln pn, we have that the average information per observation is

S =
〈IN 〉
N

= −
∑
n

pn ln pn , (1.42)

which is known as the entropy of the distribution. Thus, maximizing S is equivalent to maximizing the
information content per observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint
on the probability distribution is that of overall normalization, then S is maximized when all the proba-
bilities pn are equal. The binary entropy is then S = log2 Γ , since pn = 1/Γ . Thus, for pass/fail grading,
the maximum average information per grade is − log2(1

2) = log2 2 = 1 bit. If only A, B, C, D, and F
grades are assigned, then the maximum average information per grade is log2 5 = 2.32 bits. If we ex-
pand the grade options to include {A+, A, A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average
information per grade is log2 11 = 3.46 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence {n1, n2, . . . , nN}
where each element nj takes one of K possible values. There are then KN such possible sequences, and
to specify one of them requires log2(KN ) = N log2K bits of information. However, if the value n occurs
with probability pn, then on average it will occur Nn = Npn times in a sequence of length N , and the
total number of such sequences will be

g(N) =
N !∏K

n=1Nn!
. (1.43)

6My colleague John McGreevy refers to I(p) as the surprise of observing an event which occurs with probability p. I like this
very much.
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In general, this is far less that the total possible number KN , and the number of bits necessary to specify
one from among these g(N) possibilities is

log2 g(N) = log2(N !)−
K∑
n=1

log2(Nn!) ≈ −N
K∑
n=1

pn log2 pn , (1.44)

up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform,
then we have pn = 1

K for all n ∈ {1, . . . ,K}, and log2 g(N) = N log2K.

1.4.2 Probability distributions from maximum entropy

We have shown how one can proceed from a probability distribution and compute various averages.
We now seek to go in the other direction, and determine the full probability distribution based on a
knowledge of certain averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an
N -step random walk from knowledge of the average 〈X〉 = (2p − 1)N , where p is the probability of
moving to the right at each step (see §1.2 above). The problem seems ridiculously underdetermined,
since there are 2N possible configurations for anN -step random walk: σj = ±1 for j = 1, . . . , N . Overall
normalization requires ∑

{σj}

P (σ1, . . . , σN ) = 1 , (1.45)

but this just imposes one constraint on the 2N probabilities P (σ1, . . . , σN ), leaving 2N −1 overall param-
eters. What principle allows us to reconstruct the full probability distribution

P (σ1, . . . , σN ) =

N∏
j=1

(
p δσj ,1 + q δσj ,−1

)
=

N∏
j=1

p(1+σj)/2 q(1−σj)/2 , (1.46)

corresponding to N independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution {pn} is defined as

S = −
∑
n

pn ln pn , (1.47)

where here we take e as the base of the logarithm. The entropy may therefore be regarded as a function
of the probability distribution: S = S

(
{pn}

)
. One special property of the entropy is the following.

Suppose we have two independent normalized distributions
{
pAa
}

and
{
pBb
}

. The joint probability for
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events a and b is then Pa,b = pAa p
B
b . The entropy of the joint distribution is then

S = −
∑
a

∑
b

Pa,b lnPa,b = −
∑
a

∑
b

pAa p
B
b ln

(
pAa p

B
b

)
= −

∑
a

∑
b

pAa p
B
b

(
ln pAa + ln pBb

)
= −

∑
a

pAa ln pAa ·
∑
b

pBb −
∑
b

pBb ln pBb ·
∑
a

pAa = −
∑
a

pAa ln pAa −
∑
b

pBb ln pBb

= SA + SB .

Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about {pn} was that it was normalized. Then
∑

n pn = 1. This is a constraint on
the values {pn}. Let us now extremize the entropy S with respect to the distribution {pn}, but subject
to the normalization constraint. We do this using Lagrange’s method of undetermined multipliers. We
define

S∗
(
{pn}, λ

)
= −

∑
n

pn ln pn − λ
(∑

n

pn − 1
)

(1.48)

and we freely extremize S∗ over all its arguments. Thus, for all n we have

0 =
∂S∗

∂pn
= −

(
ln pn + 1 + λ

)
0 =

∂S∗

∂λ
=
∑
n

pn − 1 .
(1.49)

From the first of these equations, we obtain pn = e−(1+λ), and from the second we obtain∑
n

pn = e−(1+λ) ·
∑
n

1 = Γ e−(1+λ) , (1.50)

where Γ ≡
∑

n 1 is the total number of possible events. Thus, pn = 1/Γ , which says that all events are
equally probable.

Now suppose we know one other piece of information, which is the average value X =
∑

nXn pn of
some quantity. We now extremize S subject to two constraints, and so we define

S∗
(
{pn}, λ0, λ1

)
= −

∑
n

pn ln pn − λ0

(∑
n

pn − 1
)
− λ1

(∑
n

Xn pn −X
)
. (1.51)

We then have
∂S∗

∂pn
= −

(
ln pn + 1 + λ0 + λ1Xn

)
= 0 , (1.52)

which yields the two-parameter distribution

pn = e−(1+λ0) e−λ1Xn . (1.53)

To fully determine the distribution {pn}we need to invoke the two equations
∑

n pn = 1 and
∑

nXn pn =
X , which come from extremizing S∗ with respect to λ0 and λ1, respectively:

1 = e−(1+λ0)
∑
n

e−λ1Xn

X = e−(1+λ0)
∑
n

Xn e
−λ1Xn .

(1.54)
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General formulation

The generalization to K extra pieces of information (plus normalization) is immediately apparent. We
have

Xa =
∑
n

Xa
n pn , (1.55)

and therefore we define

S∗
(
{pn}, {λa}

)
= −

∑
n

pn ln pn −
K∑
a=0

λa

(∑
n

Xa
n pn −Xa

)
, (1.56)

with X
(a=0)
n ≡ X(a=0) = 1. Then the optimal distribution which extremizes S subject to the K + 1

constraints is

pn = exp

{
− 1−

K∑
a=0

λaX
a
n

}

=
1

Z
exp

{
−

K∑
a=1

λaX
a
n

}
,

(1.57)

where Z = e1+λ0 is determined by normalization:
∑

n pn = 1. This is a (K + 1)-parameter distribution,
with {λ0, λ1, . . . , λK} determined by the K + 1 constraints in eqn. 1.55.

Example

As an example, consider the random walk problem. We have two pieces of information:∑
σ1

· · ·
∑
σN

P (σ1, . . . , σN ) = 1

∑
σ1

· · ·
∑
σN

P (σ1, . . . , σN )

N∑
j=1

σj = X .

(1.58)

Here the discrete label n from §1.4.2 ranges over 2N possible values, and may be written as an N digit
binary number rN · · · r1, where rj = 1

2(1 + σj) is 0 or 1. Extremizing S subject to these constraints, we
obtain

P (σ1, . . . , σN ) = C exp

{
− λ

∑
j

σj

}
= C

N∏
j=1

e−λσj , (1.59)

where C ≡ e−(1+λ0) and λ ≡ λ1. Normalization then requires

Tr P ≡
∑
{σj}

P (σ1, . . . , σN ) = C
(
eλ + e−λ

)N
, (1.60)
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hence C = (coshλ)−N . We then have

P (σ1, . . . , σN ) =
N∏
j=1

e−λσj

eλ + e−λ
=

N∏
j=1

(
p δσj ,1 + q δσj ,−1

)
, (1.61)

where

p =
e−λ

eλ + e−λ
, q = 1− p =

eλ

eλ + e−λ
. (1.62)

We then have X = (2p − 1)N , which determines p = 1
2(N + X), and we have recovered the Bernoulli

distribution.

Of course there are no miracles7, and there are an infinite family of distributions for which X = (2p −
1)N that are not Bernoulli. For example, we could have imposed another constraint, such as E =∑N−1

j=1 σj σj+1. This would result in the distribution

P (σ1, . . . , σN ) =
1

Z
exp

{
− λ1

N∑
j=1

σj − λ2

N−1∑
j=1

σj σj+1

}
, (1.63)

with Z(λ1, λ2) determined by normalization:
∑
σ P (σ) = 1. This is the one-dimensional Ising chain

of classical equilibrium statistical physics. Defining the transfer matrix Rss′ = e−λ1(s+s′)/2 e−λ2ss
′

with
s, s′ = ±1 ,

R =

(
e−λ1−λ2 eλ2

eλ2 eλ1−λ2

)
= e−λ2 coshλ1 I + eλ2 τx − e−λ2 sinhλ1 τ

z ,

(1.64)

where τx and τ z are Pauli matrices, we have that

Zring = Tr
(
RN
)

, Zchain = Tr
(
RN−1S

)
, (1.65)

where Sss′ = e−λ1(s+s′)/2 , i.e.

S =

(
e−λ1 1

1 eλ1

)
= coshλ1 I + τx − sinhλ1 τ

z .

(1.66)

The appropriate case here is that of the chain, but in the thermodynamic limit N → ∞ both chain and
ring yield identical results, so we will examine here the results for the ring, which are somewhat easier
to obtain. Clearly Zring = ζN+ + ζN− , where ζ± are the eigenvalues of R:

ζ± = e−λ2 coshλ1 ±
√
e−2λ2 sinh2λ1 + e2λ2 . (1.67)

In the thermodynamic limit, the ζ+ eigenvalue dominates, and Zring ' ζN+ . We now have

X =
〈 N∑
j=1

σj

〉
= −∂ lnZ

∂λ1

= − N sinhλ1√
sinh2λ1 + e4λ2

. (1.68)

7See §10 of An Enquiry Concerning Human Understanding by David Hume (1748).
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We also have E = −∂ lnZ/∂λ2. These two equations determine the Lagrange multipliers λ1(X,E,N)
and λ2(X,E,N). In the thermodynamic limit, we have λi = λi(X/N,E/N). Thus, if we fixX/N = 2p−1
alone, there is a continuous one-parameter family of distributions, parametrized ε = E/N , which satisfy
the constraint on X .

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives
us a calculable distribution which is consistent with maximum ignorance given our known constraints.
In that sense, it is as unbiased as possible, from an information theoretic point of view. As a starting
point, a maximum entropy distribution may be improved upon, using Bayesian methods for example
(see §1.6.2 below).

1.4.3 Continuous probability distributions

Suppose we have a continuous probability density P (ϕ) defined over some set Ω. We have observables

Xa =

∫
Ω

dµ Xa(ϕ)P (ϕ) , (1.69)

where dµ is the appropriate integration measure. We assume dµ =
∏D
j=1 dϕj , where D is the dimension

of Ω. Then we extremize the functional

S∗
[
P (ϕ), {λa}

]
= −

∫
Ω

dµ P (ϕ) lnP (ϕ)−
K∑
a=0

λa

(∫
Ω

dµ P (ϕ)Xa(ϕ)−Xa

)
(1.70)

with respect to P (ϕ) and with respect to {λa}. Again, X0(ϕ) ≡ X0 ≡ 1. This yields the following result:

lnP (ϕ) = −1−
K∑
a=0

λaX
a(ϕ) . (1.71)

The K + 1 Lagrange multipliers {λa} are then determined from the K + 1 constraint equations in eqn.
1.69.

As an example, consider a distribution P (x) over the real numbers R. We constrain

∞∫
−∞

dx P (x) = 1 ,

∞∫
−∞

dx xP (x) = µ ,

∞∫
−∞

dx x2 P (x) = µ2 + σ2 . (1.72)

Extremizing the entropy, we then obtain

P (x) = C e−λ1x−λ2x2 , (1.73)

where C = e−(1+λ0). We already know the answer:

P (x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (1.74)

In other words, λ1 = −µ/σ2 and λ2 = 1/2σ2, with C = (2πσ2)−1/2 exp(−µ2/2σ2).
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1.5 General Aspects of Probability Distributions

1.5.1 Discrete and continuous distributions

Consider a system whose possible configurations |n 〉 can be labeled by a discrete variable n ∈ C, where
C is the set of possible configurations. The total number of possible configurations, which is to say the
order of the set C, may be finite or infinite. Next, consider an ensemble of such systems, and let Pn denote
the probability that a given random element from that ensemble is in the state (configuration) |n 〉. The
collection {Pn} forms a discrete probability distribution. We assume that the distribution is normalized,
meaning ∑

n∈C
Pn = 1 . (1.75)

Now let An be a quantity which takes values depending on n. The average of A is given by

〈A〉 =
∑
n∈C

PnAn . (1.76)

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an
example, consider the throw of a single six-sided die. Then Pn = 1

6 for each n ∈ {1, . . . , 6}. Let An = 0 if
n is even and 1 if n is odd. Then find 〈A〉 = 1

2 , i.e. on average half the throws of the die will result in an
even number.

It may be that the system’s configurations are described by several discrete variables {n1, n2, n3, . . .}. We
can combine these into a vector n and then we write Pn for the discrete distribution, with

∑
n Pn = 1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous
variables, ϕ = {ϕ1, . . . , ϕn}. We write ϕ ∈ Ω, where Ω is the phase space (or configuration space) of the
system. Let dµ be a measure on this space. In general, we can write

dµ = W (ϕ1, . . . , ϕn) dϕ1 dϕ2 · · · dϕn . (1.77)

The phase space measure used in classical statistical mechanics gives equal weight W to equal phase
space volumes:

dµ = C
r∏

σ=1

dqσ dpσ , (1.78)

where C is a constant we shall discuss later on below8.

Any continuous probability distribution P (ϕ) is normalized according to∫
Ω

dµP (ϕ) = 1 . (1.79)

8Such a measure is invariant with respect to canonical transformations, which are the broad class of transformations among
coordinates and momenta which leave Hamilton’s equations of motion invariant, and which preserve phase space volumes
under Hamiltonian evolution. For this reason dµ is called an invariant phase space measure.
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The average of a function A(ϕ) on configuration space is then

〈A〉 =

∫
Ω

dµP (ϕ)A(ϕ) . (1.80)

For example, consider the Gaussian distribution

P (x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (1.81)

From the result9
∞∫
−∞

dx e−αx
2
e−βx =

√
π

α
eβ

2/4α , (1.82)

we see that P (x) is normalized. One can then compute

〈x〉 = µ

〈x2〉 − 〈x〉2 = σ2 .
(1.83)

We call µ the mean and σ the standard deviation of the distribution, eqn. 1.81.

The quantity P (ϕ) is called the distribution or probability density. One has

P (ϕ) dµ = probability that configuration lies within volume dµ centered at ϕ

For example, consider the probability density P = 1 normalized on the interval x ∈
[
0, 1
]
. The probabil-

ity that some x chosen at random will be exactly 1
2 , say, is infinitesimal – one would have to specify each

of the infinitely many digits of x. However, we can say that x ∈
[
0.45 , 0.55

]
with probability 1

10 .

If x is distributed according to P1(x), then the probability distribution on the product space (x1 , x2)
is simply the product of the distributions: P2(x1, x2) = P1(x1)P1(x2). Suppose we have a function
φ(x1, . . . , xN ). How is it distributed? Let P (φ) be the distribution for φ. We then have

P (φ) =

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN PN (x1, . . . , xN ) δ
(
φ(x1, . . . , xN )− φ

)

=

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN P1(x1) · · ·P1(xN ) δ
(
φ(x1, . . . , xN )− φ

)
,

(1.84)

where the second line is appropriate if the {xj} are themselves distributed independently. Note that

∞∫
−∞

dφ P (φ) = 1 , (1.85)

so P (φ) is itself normalized.
9Memorize this!
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1.5.2 Central limit theorem

In particular, consider the distribution function of the sum X =
∑N

i=1 xi. We will be particularly inter-
ested in the case where N is large. For general N , though, we have

PN (X) =

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN P1(x1) · · ·P1(xN ) δ
(
x1 + x2 + . . .+ xN −X

)
. (1.86)

It is convenient to compute the Fourier transform10 of P (X):

P̂N (k) =

∞∫
−∞

dX PN (X) e−ikX

=

∞∫
−∞

dX

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN P1(x1) · · ·P1(xN ) δ
(
x1 + . . .+ xN −X) e−ikX =

[
P̂1(k)

]N
,

(1.87)

where

P̂1(k) =

∞∫
−∞

dxP1(x) e−ikx (1.88)

is the Fourier transform of the single variable distribution P1(x). The distribution PN (X) is a convolution
of the individual P1(xi) distributions. We have therefore proven that the Fourier transform of a convolution
is the product of the Fourier transforms.

OK, now we can write for P̂1(k)

P̂1(k) =

∞∫
−∞

dxP1(x)
(
1− ikx− 1

2 k
2x2 + 1

6 i k
3 x3 + . . .

)
= 1− ik〈x〉 − 1

2 k
2〈x2〉+ 1

6 i k
3〈x3〉+ . . . .

(1.89)

10Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age eight, Fourier’s
ignoble status rendered him ineligible to receive a commission in the scientific corps of the French army. A Benedictine minister
at the École Royale Militaire of Auxerre remarked, ”Fourier, not being noble, could not enter the artillery, although he were a
second Newton.” Fourier prepared for the priesthood but his affinity for mathematics proved overwhelming, and so he left
the abbey and soon thereafter accepted a military lectureship position. Despite his initial support for revolution in France, in
1794 Fourier ran afoul of a rival sect while on a trip to Orleans and was arrested and very nearly guillotined. Fortunately the
Reign of Terror ended soon after the death of Robespierre, and Fourier was released. He went on Napoleon Bonaparte’s 1798
expedition to Egypt, where he was appointed governor of Lower Egypt. His organizational skills impressed Napoleon, and
upon return to France he was appointed to a position of prefect in Grenoble. It was in Grenoble that Fourier performed his
landmark studies of heat, and his famous work on partial differential equations and Fourier series. It seems that Fourier’s
fascination with heat began in Egypt, where he developed an appreciation of desert climate. His fascination developed into
an obsession, and he became convinced that heat could promote a healthy body. He would cover himself in blankets, like
a mummy, in his heated apartment, even during the middle of summer. On May 4, 1830, Fourier, so arrayed, tripped and
fell down a flight of stairs. This aggravated a developing heart condition, which he refused to treat with anything other than
more heat. Two weeks later, he died. Fourier’s is one of the 72 names of scientists, engineers and other luminaries which are
engraved on the Eiffel Tower.
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Thus,
ln P̂1(k) = −iµk − 1

2σ
2k2 + 1

6 i γ
3 k3 + . . . , (1.90)

where

µ = 〈x〉
σ2 = 〈x2〉 − 〈x〉2

γ3 = 〈x3〉 − 3 〈x2〉 〈x〉+ 2 〈x〉3
(1.91)

We can now write [
P̂1(k)

]N
= e−iNµk e−Nσ

2k2/2 eiNγ
3k3/6 · · · (1.92)

Now for the inverse transform. In computing PN (X), we will expand the term eiNγ
3k3/6 and all subse-

quent terms in the above product as a power series in k. We then have

PN (X) =

∞∫
−∞

dk

2π
eik(X−Nµ) e−Nσ

2k2/2
{

1 + 1
6 iNγ

3k3 + . . .
}

=

(
1− γ3

6
N

∂3

∂X3
+ . . .

)
1√

2πNσ2
e−(X−Nµ)2/2Nσ2

=

(
1− γ3

6
N−1/2 ∂3

∂ξ3
+ . . .

)
1√

2πNσ2
e−ξ

2/2σ2
.

(1.93)

In going from the second line to the third, we have writtenX = Nµ+
√
N ξ, in which case ∂X = N−1/2 ∂ξ,

and the non-Gaussian terms give a subleading contribution which vanishes in the N → ∞ limit. We
have just proven the central limit theorem: in the limitN →∞, the distribution of a sum ofN independent
random variables xi is a Gaussian with mean Nµ and standard deviation

√
N σ. Our only assumptions

are that the mean µ and standard deviation σ exist for the distribution P1(x). Note that P1(x) itself
need not be a Gaussian – it could be a very peculiar distribution indeed, but so long as its first and
second moment exist, where the kth moment is simply 〈xk〉, the distribution of the sum X =

∑N
i=1 xi is

a Gaussian.

1.5.3 Moments and cumulants

Consider a general multivariate distribution P (x1, . . . , xN ) and define the multivariate Fourier trans-
form

P̂ (k1, . . . , kN ) =

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN P (x1, . . . , xN ) exp

(
− i

N∑
j=1

kjxj

)
. (1.94)

The inverse relation is

P (x1, . . . , xN ) =

∞∫
−∞

dk1

2π
· · ·
∞∫
−∞

dkN
2π

P̂ (k1, . . . , kN ) exp

(
+ i

N∑
j=1

kjxj

)
. (1.95)
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Acting on P̂ (k), the differential operator i ∂
∂ki

brings down from the exponential a factor of xi inside the
integral. Thus, [(

i
∂

∂k1

)m1

· · ·
(
i
∂

∂kN

)mN
P̂ (k)

]
k=0

=
〈
x
m1
1 · · ·x

mN
N

〉
. (1.96)

Similarly, we can reconstruct the distribution from its moments, viz.

P̂ (k) =
∞∑

m1=0

· · ·
∞∑

mN=0

(−ik1)m1

m1!
· · ·

(−ikN )mN

mN !

〈
x
m1
1 · · ·x

mN
N

〉
. (1.97)

The cumulants 〈〈xm1
1 · · ·x

mN
N 〉〉 are defined by the Taylor expansion of ln P̂ (k):

ln P̂ (k) =
∞∑

m1=0

· · ·
∞∑

mN=0

(−ik1)m1

m1!
· · ·

(−ikN )mN

mN !

〈〈
x
m1
1 · · ·x

mN
N

〉〉
. (1.98)

There is no general form for the cumulants. It is straightforward to derive the following low order
results:

〈〈xi〉〉 = 〈xi〉
〈〈xixj〉〉 = 〈xixj〉 − 〈xi〉〈xj〉

〈〈xixjxk〉〉 = 〈xixjxk〉 − 〈xixj〉〈xk〉 − 〈xjxk〉〈xi〉 − 〈xkxi〉〈xj〉+ 2〈xi〉〈xj〉〈xk〉 .
(1.99)

1.5.4 Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

P (x) ≡
(
detA

(2π)n

)1/2

exp
(
− 1

2 xiAij xj

)
, (1.100)

where A is a positive definite matrix of rank n. A mathematical result which is extremely important
throughout physics is the following:

Z(b) =

(
detA

(2π)n

)1/2
∞∫
−∞

dx1 · · ·
∞∫
−∞

dxn exp
(
− 1

2 xiAij xj + bi xi

)
= exp

(
1
2 biA

−1
ij bj

)
. (1.101)

Here, the vector b = (b1 , . . . , bn) is identified as a source. Since Z(0) = 1, we have that the distribution
P (x) is normalized. Now consider averages of the form

〈xj1· · · xj2k 〉 =

∫
dnx P (x) xj1· · · xj2k =

∂nZ(b)

∂bj1
· · · ∂bj2k

∣∣∣∣
b=0

=
∑

contractions

A−1
j
σ(1)

j
σ(2)
· · ·A−1

j
σ(2k−1)

j
σ(2k)

.

(1.102)
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The sum in the last term is over all contractions of the indices {j1 , . . . , j2k}. A contraction is an arrange-
ment of the 2k indices into k pairs. There are C2k = (2k)!/2kk! possible such contractions. To obtain this
result forCk, we start with the first index and then find a mate among the remaining 2k−1 indices. Then
we choose the next unpaired index and find a mate among the remaining 2k − 3 indices. Proceeding in
this manner, we have

C2k = (2k − 1) · (2k − 3) · · · 3 · 1 =
(2k)!

2kk!
. (1.103)

Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2kk! since
permutation within a given pair results in the same contraction and permutation among the k pairs
results in the same contraction. For example, for k = 2, we have C4 = 3, and

〈xj1xj2xj3xj4 〉 = A−1
j1j2

A−1
j3j4

+A−1
j1j3

A−1
j2j4

+A−1
j1j4

A−1
j2j3

. (1.104)

If we define bi = iki, we have

P̂ (k) = exp
(
− 1

2 kiA
−1
ij kj

)
, (1.105)

from which we read off the cumulants 〈〈xixj〉〉 = A−1
ij , with all higher order cumulants vanishing.

1.6 Bayesian Statistical Inference

1.6.1 Frequentists and Bayesians

There field of statistical inference is roughly divided into two schools of practice: frequentism and
Bayesianism. You can find several articles on the web discussing the differences in these two approaches.
In both cases we would like to model observable data x by a distribution. The distribution in general
depends on one or more parameters θ. The basic worldviews of the two approaches are as follows:

Frequentism: Data x are a random sample drawn from an infinite pool at some frequency.
The underlying parameters θ, which are to be estimated, remain fixed during this process.
There is no information prior to the model specification. The experimental conditions under
which the data are collected are presumed to be controlled and repeatable. Results are gen-
erally expressed in terms of confidence intervals and confidence levels, obtained via statistical
hypothesis testing. Probabilities have meaning only for data yet to be collected. Calculations
generally are computationally straightforward.

Bayesianism: The only data x which matter are those which have been observed. The pa-
rameters θ are unknown and described probabilistically using a prior distribution, which is
generally based on some available information but which also may be at least partially sub-
jective. The priors are then to be updated based on observed data x. Results are expressed
in terms of posterior distributions and credible intervals. Calculations can be computationally
intensive.
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In essence, frequentists say the data are random and the parameters are fixed. while Bayesians say the data are
fixed and the parameters are random11. Overall, frequentism has dominated over the past several hundred
years, but Bayesianism has been coming on strong of late, and many physicists seem naturally drawn to
the Bayesian perspective.

1.6.2 Updating Bayesian priors

Given data D and a hypothesis H , Bayes’ theorem tells us

P (H|D) =
P (D|H)P (H)

P (D)
. (1.106)

Typically the data is in the form of a set of values x = {x1, . . . , xN}, and the hypothesis in the form of a set
of parameters θ = {θ1, . . . , θK}. It is notationally helpful to express distributions of x and distributions
of x conditioned on θ using the symbol f , and distributions of θ and distributions of θ conditioned on x
using the symbol π, rather than using the symbol P everywhere. We then have

π(θ|x) =
f(x|θ)π(θ)∫

Θ

dθ′ f(x|θ′)π(θ′)
, (1.107)

where Θ 3 θ is the space of parameters. Note that
∫
Θdθ π(θ|x) = 1. The denominator of the RHS

is simply f(x), which is independent of θ, hence π(θ|x) ∝ f(x|θ)π(θ). We call π(θ) the prior for θ,
f(x|θ) the likelihood of x given θ, and π(θ|x) the posterior for θ given x. The idea here is that while our
initial guess at the θ distribution is given by the prior π(θ), after taking data, we should update this
distribution to the posterior π(θ|x). The likelihood f(x|θ) is entailed by our model for the phenomenon
which produces the data. We can use the posterior to find the distribution of new data points y, called
the posterior predictive distribution,

f(y|x) =

∫
Θ

dθ f(y|θ)π(θ|x) . (1.108)

This is the update of the prior predictive distribution,

f(x) =

∫
Θ

dθ f(x|θ)π(θ) . (1.109)

Example: coin flipping

Consider a model of coin flipping based on a standard Bernoulli distribution, where θ ∈ [0, 1] is the
probability for heads (x = 1) and 1− θ the probability for tails (x = 0). That is,

f(x1, . . . , xN |θ) =

N∏
j=1

[
(1− θ) δxj ,0 + θ δxj ,1

]
= θX(1− θ)N−X ,

(1.110)

11”A frequentist is a person whose long-run ambition is to be wrong 5% of the time. A Bayesian is one who, vaguely
expecting a horse, and catching glimpse of a donkey, strongly believes he has seen a mule.” – Charles Annis.



1.6. BAYESIAN STATISTICAL INFERENCE 23

where X =
∑N

j=1 xj is the observed total number of heads, and N − X the corresponding number of
tails. We now need a prior π(θ). We choose the Beta distribution,

π(θ) =
θα−1(1− θ)β−1

B(α, β)
, (1.111)

where B(α, β) = Γ(α) Γ(β)/Γ(α + β) is the Beta function. One can check that π(θ) is normalized on the
unit interval:

∫ 1
0 dθ π(θ) = 1 for all positive α, β. Even if we limit ourselves to this form of the prior,

different Bayesians might bring different assumptions about the values of α and β. Note that if we
choose α = β = 1, the prior distribution for θ is flat, with π(θ) = 1.

We now compute the posterior distribution for θ:

π(θ|x1, . . . , xN ) =
f(x1, . . . , xN |θ)π(θ)∫ 1

0 dθ
′ f(x1, . . . , xN |θ′)π(θ′)

=
θX+α−1(1− θ)N−X+β−1

B(X + α,N −X + β)
. (1.112)

Thus, we retain the form of the Beta distribution, but with updated parameters,

α′ = X + α

β′ = N −X + β .
(1.113)

The fact that the functional form of the prior is retained by the posterior is generally not the case in
Bayesian updating. We can also compute the prior predictive,

f(x1, . . . , xN ) =

1∫
0

dθ f(x1, . . . , xN |θ)π(θ)

=
1

B(α, β)

1∫
0

dθ θX+α−1(1− θ)N−X+β−1 =
B(X + α,N −X + β)

B(α, β)
.

(1.114)

The posterior predictive is then

f(y1, . . . , yM |x1, . . . , xN ) =

1∫
0

dθ f(y1, . . . , yM |θ)π(θ|x1, . . . , xN )

=
1

B(X + α,N −X + β)

1∫
0

dθ θX+Y+α−1(1− θ)N−X+M−Y+β−1

=
B(X + Y + α,N −X +M − Y + β)

B(X + α,N −X + β)
.

(1.115)

1.6.3 Hyperparameters and conjugate priors

In the above example, θ is a parameter of the Bernoulli distribution, i.e. the likelihood, while quantities α
and β are hyperparameters which enter the prior π(θ). Accordingly, we could have written π(θ|α, β) for
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the prior. We then have for the posterior

π(θ|x,α) =
f(x|θ)π(θ|α)∫

Θ

dθ′ f(x|θ′)π(θ′|α)
, (1.116)

replacing eqn. 1.107, etc., where α ∈ A is the vector of hyperparameters. The hyperparameters can
also be distributed, according to a hyperprior ρ(α), and the hyperpriors can further be parameterized by
hyperhyperparameters, which can have their own distributions, ad nauseum.

What use is all this? We’ve already seen a compelling example: when the posterior is of the same form
as the prior, the Bayesian update can be viewed as an automorphism of the hyperparameter space A, i.e.
one set of hyperparameters α is mapped to a new set of hyperparameters α̃.

Definition: A parametric family of distributions P =
{
π(θ|α) | θ ∈ Θ, α ∈ A

}
is called a

conjugate family for a family of distributions
{
f(x|θ) |x ∈ X , θ ∈ Θ

}
if, for all x ∈ X and

α ∈ A,

π(θ|x,α) ≡ f(x|θ)π(θ|α)∫
Θ

dθ′ f(x|θ′)π(θ′|α)
∈ P . (1.117)

That is, π(θ|x,α) = π(θ|α̃) for some α̃ ∈ A, with α̃ = α̃(α,x).

As an example, consider the conjugate Bayesian analysis of the Gaussian distribution. We assume a
likelihood

f(x|u, s) = (2πs2)−N/2 exp

{
− 1

2s2

N∑
j=1

(xj − u)2

}
. (1.118)

The parameters here are θ = {u, s}. Now consider the prior distribution

π(u, s|µ0, σ0) = (2πσ2
0)−1/2 exp

{
− (u− µ0)2

2σ2
0

}
. (1.119)

Note that the prior distribution is independent of the parameter s and only depends on u and the hy-
perparameters α = (µ0, σ0). We now compute the posterior:

π(u, s|x, µ0, σ0) ∝ f(x|u, s)π(u, s|µ0, σ0)

= exp

{
−
(

1

2σ2
0

+
N

2s2

)
u2 +

(
µ0

σ2
0

+
N〈x〉
s2

)
u−

(
µ2

0

2σ2
0

+
N〈x2〉

2s2

)}
,

(1.120)

with 〈x〉 = 1
N

∑N
j=1 xj and 〈x2〉 = 1

N

∑N
j=1 x

2
j . This is also a Gaussian distribution for u, and after

supplying the appropriate normalization one finds

π(u, s|x, µ0, σ0) = (2πσ2
1)−1/2 exp

{
− (u− µ1)2

2σ2
1

}
, (1.121)
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with

µ1 = µ0 +
N
(
〈x〉 − µ0

)
σ2

0

s2 +Nσ2
0

σ2
1 =

s2σ2
0

s2 +Nσ2
0

.

(1.122)

Thus, the posterior is among the same family as the prior, and we have derived the update rule for the
hyperparameters (µ0, σ0) → (µ1, σ1). Note that σ1 < σ0 , so the updated Gaussian prior is sharper than
the original. The updated mean µ1 shifts in the direction of 〈x〉 obtained from the data set.

1.6.4 The problem with priors

We might think that the for the coin flipping problem, the flat prior π(θ) = 1 is an appropriate initial
one, since it does not privilege any value of θ. This prior therefore seems ’objective’ or ’unbiased’, also
called ’uninformative’. But suppose we make a change of variables, mapping the interval θ ∈ [0, 1] to
the entire real line according to ζ = ln

[
θ/(1− θ)

]
. In terms of the new parameter ζ, we write the prior as

π̃(ζ). Clearly π(θ) dθ = π̃(ζ) dζ, so π̃(ζ) = π(θ) dθ/dζ. For our example, find π̃(ζ) = 1
4sech2(ζ/2), which

is not flat. Thus what was uninformative in terms of θ has become very informative in terms of the new
parameter ζ. Is there any truly unbiased way of selecting a Bayesian prior?

One approach, advocated by E. T. Jaynes, is to choose the prior distribution π(θ) according to the prin-
ciple of maximum entropy. For continuous parameter spaces, we must first define a parameter space
metric so as to be able to ’count’ the number of different parameter states. The entropy of a distribution
π(θ) is then dependent on this metric: S = −

∫
dµ(θ)π(θ) lnπ(θ).

Another approach, due to Jeffreys, is to derive a parameterization-independent prior from the likelihood
f(x|θ) using the so-called Fisher information matrix,

Iij(θ) = −Eθ
(
∂2 lnf(x|θ)

∂θi ∂θj

)
= −

∫
dx f(x|θ)

∂2 lnf(x|θ)

∂θi ∂θj
.

(1.123)

The Jeffreys prior πJ(θ) is defined as
πJ(θ) ∝

√
det I(θ) . (1.124)

One can check that the Jeffries prior is invariant under reparameterization. As an example, consider the
Bernoulli process, for which ln f(x|θ) = X ln θ + (N −X) ln(1− θ), where X =

∑N
j=1 xj . Then

−d
2 ln p(x|θ)
dθ2

=
X

θ2
+

N −X
(1− θ)2

, (1.125)

and since EθX = Nθ, we have

I(θ) =
N

θ(1− θ)
⇒ πJ(θ) =

1

π

1√
θ(1− θ)

, (1.126)
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which felicitously corresponds to a Beta distribution with α = β = 1
2 . In this example the Jeffries prior

turned out to be a conjugate prior, but in general this is not the case.

We can try to implement the Jeffreys procedure for a two-parameter family where each xj is normally
distributed with mean µ and standard deviation σ. Let the parameters be (θ1, θ2) = (µ, σ). Then

− ln f(x|θ) = N ln
√

2π +N lnσ +
1

2σ2

N∑
j=1

(xj − µ)2 , (1.127)

and the Fisher information matrix is

I(θ) = −∂
2 lnf(x|θ)

∂θi ∂θj
=

 Nσ−2 σ−3
∑

j(xj − µ)

σ−3
∑

j(xj − µ) −Nσ−2 + 3σ−4
∑

j(xj − µ)2

 . (1.128)

Taking the expectation value, we have E (xj − µ) = 0 and E (xj − µ)2 = σ2, hence

E I(θ) =

(
Nσ−2 0

0 2Nσ−2

)
(1.129)

and the Jeffries prior is πJ(µ, σ) ∝ σ−2. This is problematic because if we choose a flat metric on the
(µ, σ) upper half plane, the Jeffries prior is not normalizable. Note also that the Jeffreys prior no longer
resembles a Gaussian, and hence is not a conjugate prior.
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2.2 Introduction to Stochastic Processes

A stochastic process is one which is partially random, i.e. it is not wholly deterministic. Typically the
randomness is due to phenomena at the microscale, such as the effect of fluid molecules on a small
particle, such as a piece of dust in the air. The resulting motion (called Brownian motion in the case of
particles moving in a fluid) can be described only in a statistical sense. That is, the full motion of the
system is a functional of one or more independent random variables. The motion is then described by its
averages with respect to the various random distributions.

2.2.1 Diffusion and Brownian motion

Fick’s law (1855) is a phenomenological relationship between number current j and number density
gradient ∇n , given by j = −D∇n. Combining this with the continuity equation ∂tn+∇·j, one arrives
at the diffusion equation1,

∂n

∂t
= ∇·(D∇n) . (2.1)

Note that the diffusion constant D may be position-dependent. The applicability of Fick’s law was
experimentally verified in many different contexts and has applicability to a wide range of transport
phenomena in physics, chemistry, biology, ecology, geology, etc.

The eponymous Robert Brown, a botanist, reported in 1827 on the random motions of pollen grains sus-
pended in water, which he viewed through a microscope. Apparently this phenomenon attracted little
attention until the work of Einstein (1905) and Smoluchowski (1906), who showed how it is described
by kinetic theory, in which the notion of randomness is essential, and also connecting it to Fick’s laws
of diffusion. Einstein began with the ideal gas law for osmotic pressure, p = nkBT . In steady state,
the osmotic force per unit volume acting on the solute (e.g. pollen in water), −∇p, must be balanced by
viscous forces. Assuming the solute consists of spherical particles of radius a, the viscous force per unit
volume is given by the hydrodynamic Stokes drag per particle F = −6πηav times the number density n,
where η is the dynamical viscosity of the solvent. Thus, j = nv = −D∇n , where D = kBT/6πaη.

To connect this to kinetic theory, Einstein reasoned that the solute particles were being buffeted about
randomly by the solvent, and he treated this problem statistically. While a given pollen grain is not
significantly effected by any single collision with a water molecule, after some characteristic microscopic
time τ the grain has effectively forgotten it initial conditions. Assuming there are no global currents, on
average each grain’s velocity is zero. Einstein posited that over an interval τ , the number of grains which
move a distance within d3∆ of ∆ is nφ(∆) d3∆, where φ(∆) = φ

(
|∆|
)

is isotropic and also normalized
according to

∫
d3∆ φ(∆) = 1. Then

n(x, t+ τ) =

∫
d3∆ n(x−∆, t)φ(∆) , (2.2)

Taylor expanding in both space and time, to lowest order in τ one recovers the diffusion equation,

1The equation j = −D∇n is sometimes called Fick’s first law, and the continuity equation ∂tn = −∇·j Fick’s second law.
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∂tn = D∇2n, where the diffusion constant is given by

D =
1

6τ

∫
d3∆ φ(∆)∆2 . (2.3)

The diffusion equation with constant D is easily solved by taking the spatial Fourier transform. One
then has, in d spatial dimensions,

∂n̂(k, t)

∂t
= −Dk2n̂(k, t) ⇒ n(x, t) =

∫
ddk

(2π)d
n̂(k, t0) e−Dk

2(t−t0) eik·x . (2.4)

If n(x, t0) = δ(x− x0), corresponding to n̂(k, t0) = e−ik·x0 , we have

n(x, t) =
(
4πD|t− t0|

)−d/2
exp

{
− (x− x0)2

4D|t− t0|

}
, (2.5)

where d is the dimension of space.

WTF just happened?

We’re so used to diffusion processes that most of us overlook a rather striking aspect of the above solu-
tion to the diffusion equation. At t = t0, the probability density is P (x, t = t0) = δ(x−x0), which means
all the particles are sitting at x = x0. For any t > t0, the solution is given by Eqn. 2.5, which is nonzero
for all x. If we take a value of x such that |x − x0| > ct, where c is the speed of light, we see that there
is a finite probability, however small, for particles to diffuse at superluminal speeds. Clearly this is non-
sense. The error lies in the diffusion equation itself, which does not recognize any limiting propagation
speed. For most processes, this defect is harmless, as we are not interested in the extreme tails of the
distribution. Diffusion phenomena and the applicability of the diffusion equation are well-established
in virtually every branch of science. To account for a finite propagation speed, one is forced to consider
various generalizations of the diffusion equation. Some examples are discussed in the appendix §2.7.

2.2.2 Langevin equation

Consider a particle of mass M subjected to dissipative and random forcing. We’ll examine this system
in one dimension to gain an understanding of the essential physics. We write

u̇+ γu =
F

M
+ η(t) . (2.6)

Here, u is the particle’s velocity, γ is the damping rate due to friction, F is a constant external force,
and η(t) is a stochastic random force. This equation, known as the Langevin equation, describes a ballistic
particle being buffeted by random forcing events2. Think of a particle of dust as it moves in the atmo-
sphere. F would then represent the external force due to gravity and η(t) the random forcing due to

2See the appendix in §2.8 for the solution of the Langevin equation for a particle in a harmonic well.
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interaction with the air molecules. For a sphere of radius a moving in a fluid of dynamical viscosity η,
hydrodynamics gives γ = 6πηa/M , where M is the mass of the particle. It is illustrative to compute γ
in some setting. Consider a micron sized droplet (a = 10−4 cm) of some liquid of density ρ ∼ 1.0 g/cm3

moving in air at T = 20◦C. The viscosity of air is η = 1.8 × 10−4 g/cm · s at this temperature3. If the
droplet density is constant, then γ = 9η/2ρa2 = 8.1× 104 s−1, hence the time scale for viscous relaxation
of the particle is τ = γ−1 = 12µs. We should stress that the viscous damping on the particle is of course
due to the fluid molecules, in some average ‘coarse-grained’ sense. The random component to the force
η(t) would then represent the fluctuations with respect to this average.

We can easily integrate this equation:

d

dt

(
u eγt

)
=

F

M
eγt + η(t) eγt

u(t) = u(0) e−γt +
F

γM

(
1− e−γt

)
+

t∫
0

ds η(s) eγ(s−t)
(2.7)

Note that u(t) is indeed a functional of the random function η(t). We can therefore only compute aver-
ages in order to describe the motion of the system.

The first average we will compute is that of v itself. In so doing, we assume that η(t) has zero mean:〈
η(t)

〉
= 0. Then 〈

u(t)
〉

= u(0) e−γt +
F

γM

(
1− e−γt

)
. (2.8)

On the time scale γ−1, the initial conditions u(0) are effectively forgotten, and asymptotically for t� γ−1

we have
〈
u(t)

〉
→ F/γM , which is the terminal momentum.

Next, consider

〈
u2(t)

〉
=
〈
u(t)

〉2
+

t∫
0

ds1

t∫
0

ds2 e
γ(s1−t) eγ(s2−t)

〈
η(s1) η(s2)

〉
. (2.9)

We now need to know the two-time correlator
〈
η(s1) η(s2)

〉
. We assume that the correlator is a function

only of the time difference ∆s = s1 − s2, and that the random force η(s) has zero average,
〈
η(s)

〉
= 0,

and autocorrelation 〈
η(s1) η(s2)

〉
= φ(s1 − s2) . (2.10)

The function φ(s) is the autocorrelation function of the random force. A macroscopic object moving in
a fluid is constantly buffeted by fluid particles over its entire perimeter. These different fluid particles
are almost completely uncorrelated, hence φ(s) is basically nonzero except on a very small time scale
τφ , which is the time a single fluid particle spends interacting with the object. We can take τφ → 0 and
approximate

φ(s) ≈ Γ δ(s) . (2.11)

We shall determine the value of Γ from equilibrium thermodynamic considerations below.

3The cgs unit of viscosity is the Poise (P). 1 P = 1 g/cm·s.
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With this form for φ(s), we can easily calculate the equal time momentum autocorrelation:

〈
u2(t)

〉
=
〈
u(t)

〉2
+ Γ

t∫
0

ds e2γ(s−t)

=
〈
u(t)

〉2
+
Γ

2γ

(
1− e−2γt

)
.

(2.12)

Consider the case where F = 0 and the limit t� γ−1. We demand that the object thermalize at temper-
ature T . Thus, we impose the condition

〈
1
2Mu2(t)

〉
= 1

2kBT =⇒ Γ =
2γkBT

M
. (2.13)

This fixes the value of Γ .

We can now compute the general momentum autocorrelator:

〈
u(t)u(t′)

〉
−
〈
u(t)

〉〈
u(t′)

〉
=

t∫
0

ds

t′∫
0

ds′ eγ(s−t) eγ(s′−t′) 〈η(s) η(s′)
〉

=
Γ

2γ
e−γ|t−t

′| (t, t′ →∞ , |t− t′| finite) .

(2.14)

Let’s now compute the position x(t). We find

x(t) =
〈
x(t)

〉
+

1

M

t∫
0

ds

s∫
0

ds1 η(s1) eγ(s1−s) , (2.15)

where 〈
x(t)

〉
= x(0) +

1

γ

(
u(0)− F

γM

)(
1− e−γt

)
+

Ft

γM
. (2.16)

Note that for γt � 1 we have
〈
x(t)

〉
= x(0) + u(0) t + 1

2M
−1Ft2 + O(t3), as is appropriate for ballistic

particles moving under the influence of a constant force. This long time limit of course agrees with our
earlier evaluation for the terminal velocity,

〈
u(∞)

〉
= F/γM . We next compute the position autocorre-

lation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

1

M2

t∫
0

ds

t′∫
0

ds′ e−γ(s+s′)

s∫
0

ds1

s′∫
0

ds′1 e
γ(s1+s2)

〈
η(s1) η(s2)

〉
=

2kBT

γM
min(t, t′) +O(1) .

In particular, the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

2kBT t

γM
≡ 2D t , (2.17)
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at long times, up to terms of order unity. Here, D = Γ/2γ2 = kBT/γM is the diffusion constant. For a
liquid droplet of radius a = 1µm moving in air at T = 293 K, for which η = 1.8× 10−4 P, we have

D =
kBT

6πηa
=

(1.38× 10−16 erg/K) (293 K)

6π (1.8× 10−4 P) (10−4 cm)
= 1.19× 10−7 cm2/s . (2.18)

This result presumes that the droplet is large enough compared to the intermolecular distance in the
fluid that one can adopt a continuum approach and use the Navier-Stokes equations, and then assuming
a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. The diffusion constant is then
D = `2/2τ , where ` is the mean free path and τ is the collision time. Elementary kinetic theory gives
that the mean free path `, collision time τ , number density n, and total scattering cross section σ are
related by4 ` = v̄τ = 1/

√
2nσ, where v̄ =

√
8kBT/πm is the average particle speed. Approximating

the particles as hard spheres, we have σ = 4πa2, where a is the hard sphere radius. At T = 293 K,
and p = 1 atm, we have n = p/kBT = 2.51 × 1019 cm−3. Since air is predominantly composed of N2

molecules, we take a = 1.90 × 10−8 cm and m = 28.0 amu = 4.65 × 10−23 g, which are appropriate
for N2. We find an average speed of v̄ = 471 m/s and a mean free path of ` = 6.21 × 10−6 cm. Thus,
D = 1

2`v̄ = 0.146 cm2/s. Though much larger than the diffusion constant for large droplets, this is still
too small to explain common experiences. Suppose we set the characteristic distance scale at d = 10 cm
and we ask how much time a point source would take to diffuse out to this radius. The answer is
∆t = d2/2D = 343 s, which is between five and six minutes. Yet if someone in the next seat emits a foul
odor, you detect the offending emission in on the order of a second. What this tells us is that diffusion
isn’t the only transport process involved in these and like phenomena. More important are convection
currents which distribute the scent much more rapidly.

2.3 Distributions and Functionals

2.3.1 Basic definitions

Let x ∈ R be a random variable, and P (x) a probability distribution for x. The average of any function
φ(x) is then 〈

φ(x)
〉

=

∞∫
−∞

dx P (x)φ(x)

/ ∞∫
−∞

dx P (x) . (2.19)

Let η(t) be a random function of t, with η(t) ∈ R, and let P
[
η(t)

]
be the probability distribution functional

for η(t). Then if Φ
[
η(t)

]
is a functional of η(t), the average of Φ is given by∫

Dη P
[
η(t)

]
Φ
[
η(t)

]/∫
Dη P

[
η(t)

]
(2.20)

4The scattering time τ is related to the particle density n, total scattering cross section σ, and mean speed v̄ through the
relation nσv̄relτ = 1, which says that on average one scattering event occurs in a cylinder of cross section σ and length v̄relτ .
Here v̄rel =

√
v̄ is the mean relative speed of a pair of particles.
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Figure 2.1: Discretization of a continuous function η(t). Upon discretization, a functional Φ
[
η(t)

]
be-

comes an ordinary multivariable function Φ({ηj}).

The expression
∫
Dη P [η]Φ[η] is a functional integral. A functional integral is a continuum limit of a

multivariable integral. Suppose η(t) were defined on a set of t values tn = nτ . A functional of η(t)
becomes a multivariable function of the values ηn ≡ η(tn). The metric then becomes Dη =

∏
n dηn .

In fact, for our purposes we will not need to know any details about the functional measure Dη ; we will
finesse this delicate issue5. Consider the generating functional,

Z
[
J(t)

]
=

∫
Dη P [η] exp


∞∫
−∞

dt J(t) η(t)

 . (2.21)

It is clear that

1

Z[J ]

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣∣
J(t)=0

=
〈
η(t1) · · · η(tn)

〉
. (2.22)

The function J(t) is an arbitrary source function. We functionally differentiate with respect to it in order
to find the η-field correlators. The functional derivative δZ

[
J(t)

]
/δJ(s) can be computed by substituting

J(t)→ J(t) + ε δ(t− s) inside the functional Z[J ], and then taking the ordinary derivative with respect
to ε, i.e.

δZ
[
J(t)

]
δJ(s)

=
dZ
[
J(t) + ε δ(t− s)

]
dε

∣∣∣∣
ε=0

. (2.23)

Thus the functional derivative δZ
[
J(t)

]
/δJ(s) tells us how the functional Z[J ] changes when the func-

tion J(t) is replaced by J(t) + ε δ(t − s). Equivalently, one may eschew this ε prescription and use the
familiar chain rule from differential calculus, supplemented by the rule δJ(t)

/
δJ(s) = δ(t− s) .

5A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals.
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Let’s compute the generating functional for a class of distributions of the Gaussian form,

P [η] = exp

− 1

2Γ

∞∫
−∞

dt
(
τ2 η̇2 + η2

)
= exp

− 1

2Γ

∞∫
−∞

dω

2π

(
1 + ω2τ2

) ∣∣η̂(ω)
∣∣2 .

(2.24)

Then Fourier transforming the source function J(t), it is easy to see that

Z[J ] = Z[0] · exp

Γ2
∞∫
−∞

dω

2π

∣∣Ĵ(ω)
∣∣2

1 + ω2τ2

 . (2.25)

Note that with η(t) ∈ R and J(t) ∈ R we have η∗(ω) = η(−ω) and Ĵ∗(ω) = Ĵ(−ω). Transforming back
to real time, we have

Z[J ] = Z[0] · exp

1

2

∞∫
−∞

dt

∞∫
−∞

dt′ J(t)G(t− t′) J(t′)

 , (2.26)

where
G(s) =

Γ

2τ
e−|s|/τ , Ĝ(ω) =

Γ

1 + ω2τ2
(2.27)

is the Green’s function, in real and Fourier space. Note that

∞∫
−∞

ds G(s) = Ĝ(0) = Γ . (2.28)

We can now compute

〈
η(t1) η(t2)

〉
= G(t1 − t2) (2.29)〈

η(t1) η(t2) η(t3) η(t4)
〉

= G(t1 − t2)G(t3 − t4) +G(t1 − t3)G(t2 − t4) (2.30)
+G(t1 − t4)G(t2 − t3) .

The generalization is now easy to prove, and is known as Wick’s theorem:〈
η(t1) · · · η(t2n)

〉
=

∑
contractions

G(ti1 − ti2) · · · G(ti2n−1
− ti2n) , (2.31)

where the sum is over all distinct contractions of the sequence 1 ·2 · · · 2n into products of pairs. How
many terms are there? Some simple combinatorics answers this question. Choose the index 1. There
are (2n − 1) other time indices with which it can be contracted. Now choose another index. There are
(2n− 3) indices with which that index can be contracted. And so on. We thus obtain

C(n) ≡
{

# of contractions
of 1-2-3 · · · 2n

}
= (2n− 1)(2n− 3) · · · 3 · 1 =

(2n)!

2n n!
. (2.32)
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2.3.2 Correlations for the Langevin equation

Now suppose we have the Langevin equation

du

dt
+ γu = η(t) (2.33)

with u(0) = 0. We wish to compute the joint probability density

P (u1, t1; . . . ;uN , tN ) =
〈
δ
(
u1 − u(t1)

)
· · · δ

(
uN − u(tN )

)〉
, (2.34)

where the average is over all realizations of the random variable η(t):〈
F
[
η(t)

]〉
=

∫
Dη P

[
η(t)

]
F
[
η(t)

]
. (2.35)

Using the integral representation of the Dirac δ-function, we have

P (u1, t1; . . . ;uN , tN ) =

∞∫
0

dω1

2π
· · ·
∞∫

0

dωN
2π

e−i(ω1u1+...+ωNuN )
〈
eiω1u(t1) · · · eiωNu(tN )

〉
. (2.36)

Now integrating the Langevin equation with the initial condition u(0) = 0 gives

u(tj) =

tj∫
0

dt eγ(t−tj) η(t) , (2.37)

and therefore we may write
N∑
j=1

ωj u(tj) =

∞∫
−∞

dt f(t) η(t) (2.38)

with

f(t) =

N∑
j=1

ωj e
γ(t−tj) Θ(t) Θ(tj − t) . (2.39)

We assume that the random variable η(t) is distributed as a Gaussian, with
〈
η(t) η(t′)

〉
= G(t − t′), as

described above. Using our previous results, we may perform the functional integral over η(t) to obtain

〈
exp i

∞∫
−∞

dt f(t) η(t)
〉

= exp

−1

2

∞∫
−∞

dt

∞∫
−∞

dt′ G(t− t′) f(t) f(t′)


= exp

{
− 1

2

N∑
j,j′=1

Mjj′ ωj ωj′

}
,

(2.40)

where Mjj′ = M(tj , tj′) with

M(t, t′) =

t∫
0

ds

t′∫
0

ds′ G(s− s′) eγ(s−t) eγ(s′−t′) . (2.41)
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We now have

P (u1, t1; . . . ;uN , tN ) =

∞∫
0

dω1

2π
· · ·
∞∫

0

dωN
2π

e−i(ω1u1+...+ωNuN ) exp

{
− 1

2

N∑
j,j′=1

Mjj′ ωj ωj′

}

= det−1/2(2πM) exp

{
− 1

2

N∑
j,j′=1

M−1
jj′ uj uj′

}
.

(2.42)

In the limit G(s) = Γ δ(s), we have

Mjj′ = Γ

min(tj ,tj′ )∫
0

dt e2γt e
−γ(tj+tj′ )

=
Γ

2γ

(
e
−γ|tj−tj′ | − e−γ(tj+tj′ )

)
.

(2.43)

From this and the previous expression, we have, assuming t1,2 � γ−1 but making no assumptions about
the size of |t1 − t2| ,

P (u1, t1) =

√
γ

πΓ
e−γu

2
1/Γ . (2.44)

The conditional distribution P (u1, t1 |u2, t2) = P (u1, t1;u2, t2)/P (u2, t2) is found to be

P (u1, t1 |u2, t2) =

√
γ/πΓ

1− e−2γ(t1−t2)
exp

{
− γ
Γ
·
(
u1 − e−γ(t1−t2) u2

)2
1− e−2γ(t1−t2)

}
. (2.45)

Note that P (u1, t1 |u2, t2) tends to P (u1, t1) independent of the most recent condition, in the limit t1 −
t2 � γ−1.

As we shall discuss below, a Markov process is one where, at any given time, the statistical properties
of the subsequent evolution are fully determined by state of the system at that time. Equivalently,
every conditional probability depends only on the most recent condition. Is u(t) a continuous time Markov
process? Yes it is! The reason is that u(t) satisfies a first order differential equation, hence only the
initial condition on u is necessary in order to derive its probability distribution at any time in the future.
Explicitly, we can compute P (u1t1|u2t2, u3t3) and show that it is independent of u3 and t3 for t1 > t2 >
t3. This is true regardless of the relative sizes of tj − tj+1 and γ−1.

While u(t) defines a Markov process, its integral x(t) does not. This is because more information than
the initial value of x is necessary in order to integrate forward to a solution at future times. Since x(t)
satisfies a second order ODE, its conditional probabilities should in principle depend only on the two
most recent conditions. We could also consider the evolution of the pair ϕ = (x, u) in phase space, writing

d

dt

(
x
u

)
=

(
0 1
0 −γ

)(
x
u

)
+

(
0
η(t)

)
, (2.46)

or ϕ̇ = Aϕ + η(t), where A is the above 2 × 2 matrix, and the stochastic term η(t) has only a lower
component. The paths ϕ(t) are also Markovian, because they are determined by a first order set of
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coupled ODEs. In the limit where tj − tj+1 � γ−1, x(t) effectively becomes Markovian, because we
interrogate the paths on time scales where the separations are such that the particle has ’forgotten’ its
initial velocity.

2.3.3 General ODEs with random forcing

Now let’s make a leap to the general nth order linear autonomous inhomogeneous ODE

Lt x(t) = η(t) , (2.47)

where η(t) is a random function and where

Lt = an
dn

dtn
+ an−1

dn−1

dtn−1
+ · · ·+ a1

d

dt
+ a0 (2.48)

is an nth order differential operator. We are free, without loss of generality, to choose an = 1. In the
appendix in §2.9 we solve this equation using a Fourier transform method. But if we want to impose a
boundary condition at t = 0, it is more appropriate to consider a Laplace transform.

The Laplace transform x̌(z) is obtained from a function x(t) via

x̌(z) =

∞∫
0

dt e−zt x(t) . (2.49)

The inverse transform is given by

x(t) = 1
2πi

c+i∞∫
c−i∞

dz ezt x̌(z) , (2.50)

where the integration contour is a straight line which lies to the right of any singularities of x̌(z) in the
complex z plane. Now let’s take the Laplace transform of Eqn. 2.47. Note that integration by parts yields

∞∫
0

dt e−zt
df

dt
= zf̌(z)− f(0) (2.51)

for any function f(t). Applying this result iteratively, we find that the Laplace transform of Eqn. 2.47 is

L(z) x̌(z) = η̌(z) +R0(z) , (2.52)

where
L(z) = anz

n + an−1z
n−1 + . . .+ a0 (2.53)

is an nth order polynomial in z with coefficients aj for j ∈ {0, . . . , n}, and

R0(z) = an x
(n−1)(0) +

(
zan + an−1

)
x(n−2)(0) + · · ·+

(
zn−1an + . . .+ a1

)
x(0) (2.54)
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and x(k)(t) = dkx/dtk. We now have

x̌(z) =
1

L(z)

{
η̌(z) +R0(z)

}
. (2.55)

The formal solution to Eqn. 2.47 is then given by the inverse Laplace transform. One finds

x(t) =

t∫
0

dt′ K(t− t′) η(t′) + xh(t) , (2.56)

where xh(t) is a solution to the homogeneous equation Lt x(t) = 0, and

K(s) = 1
2πi

c+i∞∫
c−i∞

dz
ezs

L(z)
=

n∑
l=1

ezls

L′(zl)
. (2.57)

Note that K(s) vanishes for s < 0 because then we can close the contour in the far right half plane. The
RHS of the above equation follows from the fundamental theorem of algebra, which allows us to factor
L(z) as

L(z) = an(z − z1) · · · (z − zn) , (2.58)

with all the roots zl lying to the left of the contour. In deriving the RHS of Eqn. 2.57, we assume that all
roots are distinct6. The general solution to the homogeneous equation is

xh(t) =

n∑
l=1

Al e
zlt , (2.59)

again assuming the roots are nondegenerate7. In order that the homogeneous solution not grow with
time, we must have Re (zl) ≤ 0 for all l.

For example, if Lt = d
dt + γ , then L(z) = z + γ and K(s) = e−γs. If Lt = d2

dt2
+ γ d

dt , then L(z) = z2 + γz
and K(s) = (1− e−γs)/γ.

Let us assume that all the initial derivatives dkx(t)/dtk vanish at t = 0 , hence xh(t) = 0. Now let us
compute the generalization of Eqn. 2.36,

P (x1, t1; . . . ;xN , tN ) =

∞∫
0

dω1

2π
· · ·
∞∫

0

dωN
2π

e−i(ω1x1+...+ωNxN )
〈
eiω1x(t1) · · · eiωNx(tN )

〉

= det−1/2(2πM) exp

{
− 1

2

N∑
j,j′=1

M−1
jj′ xj xj′

}
,

(2.60)

where

M(t, t′) =

t∫
0

ds

t′∫
0

ds′ G(s− s′)K(t− s)K(t′ − s′) , (2.61)

6If two or more roots are degenerate, one can still use this result by first inserting a small spacing ε between the degenerate
roots and then taking ε→ 0.

7If a particular root zj appears k times, then one has solutions of the form ezjt, t ezjt, . . . tk−1 ezjt.
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with G(s − s′) =
〈
η(s) η(s′)

〉
as before. For t � γ−1, we have K(s) = γ−1, and if we take G(s −

s′) = Γ δ(s − s′) we obtain M(t, t′) = Γ min(t, t′)/γ2 = 2Dmin(t, t′). We then have P (x, t) = exp
(
−

x2/4Dt
)
/
√

4πDt , as expected.

2.4 The Fokker-Planck Equation

2.4.1 Basic derivation

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt)− x(t) , (2.62)

and we assume 〈
δx(t)

〉
= F1

(
x(t)

)
δt (2.63)〈[

δx(t)
]2〉

= F2

(
x(t)

)
δt (2.64)

but
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is due to diffusion.

Now consider the conditional probability density, P (x, t |x0, t0), defined to be the probability distribu-
tion for x ≡ x(t) given that x(t0) = x0. The conditional probability density satisfies the composition
rule,

P (x2, t2 |x0, t0) =

∞∫
−∞

dx1 P (x2, t2 |x1, t1)P (x1, t1 |x0, t0) , (2.65)

for any value of t1. This is also known as the Chapman-Kolmogorov equation. In words, what it says is that
the probability density for a particle being at x2 at time t2, given that it was at x0 at time t0, is given by
the product of the probability density for being at x2 at time t2 given that it was at x1 at t1, multiplied by
that for being at x1 at t1 given it was at x0 at t0, integrated over x1. This should be intuitively obvious,
since if we pick any time t1 ∈ [t0, t2], then the particle had to be somewhere at that time. What is perhaps
not obvious is why the conditional probability P (x2, t2 |x1, t1) does not also depend on (x0, t0). This is
so if the system is described by a Markov process, about we shall have more to say below in §2.6.1. At any
rate, a picture is worth a thousand words: see Fig. 2.2.

Proceeding, we may write

P (x, t+ δt |x0, t0) =

∞∫
−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) . (2.66)

Now

P (x, t+ δt |x′, t) =
〈
δ
(
x− δx(t)− x′

)〉
=

{
1 +

〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}
δ(x− x′) (2.67)

= δ(x− x′) + F1(x′)
d δ(x− x′)

dx′
δt+ 1

2F2(x′)
d2δ(x− x′)

dx′2
δt+O

(
(δt)2

)
,
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Figure 2.2: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

where the average is over the random variables. We now insert this result into eqn. 2.66, integrate by
parts, divide by δt, and then take the limit δt→ 0. The result is the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

1

2

∂2

∂x2

[
F2(x)P (x, t)

]
. (2.68)

2.4.2 Brownian motion redux

Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results,
we have F1(x) = F/γM and F2(x) = 2D . A formal proof of these results is left as an exercise for the
reader. The Fokker-Planck equation is then

∂P

∂t
= −u ∂P

∂x
+D

∂2P

∂x2
, (2.69)

where u = F/γM is the average terminal velocity. If we make a Galilean transformation and define
y = x− ut and s = t , then our Fokker-Planck equation takes the form

∂P

∂s
= D

∂2P

∂y2
. (2.70)

This is known as the diffusion equation. Eqn. 2.69 is also a diffusion equation, rendered in a moving
frame.

While the Galilean transformation is illuminating, we can easily solve eqn. 2.69 without it. Let’s take a
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look at this equation after Fourier transforming from x to q:

P (x, t) =

∞∫
−∞

dq

2π
eiqx P̂ (q, t) (2.71)

P̂ (q, t) =

∞∫
−∞

dx e−iqx P (x, t) . (2.72)

Then as should be well known to you by now, we can replace the operator ∂
∂x with multiplication by iq,

resulting in
∂

∂t
P̂ (q, t) = −(Dq2 + iqu) P̂ (q, t) , (2.73)

with solution
P̂ (q, t) = e−Dq

2t e−iqut P̂ (q, 0) . (2.74)

We now apply the inverse transform to get back to x-space:

P (x, t) =

∞∫
−∞

dq

2π
eiqx e−Dq

2t e−iqut
∞∫
−∞

dx′ e−iqx
′
P (x′, 0)

=

∞∫
−∞

dx′ P (x′, 0)

∞∫
−∞

dq

2π
e−Dq

2t eiq(x−ut−x
′) =

∞∫
−∞

dx′ K(x− x′, t)P (x′, 0) ,

(2.75)

where
K(x, t) =

1√
4πDt

e−(x−ut)2/4Dt (2.76)

is the diffusion kernel. We now have a recipe for obtaining P (x, t) given the initial conditions P (x, 0). If
P (x, 0) = δ(x), describing a particle confined to an infinitesimal region about the origin, then P (x, t) =
K(x, t) is the probability distribution for finding the particle at x at time t. There are two aspects to
K(x, t) which merit comment. The first is that the center of the distribution moves with velocity u.
This is due to the presence of the external force. The second is that the standard deviation σ =

√
2Dt

is increasing in time, so the distribution is not only shifting its center but it is also getting broader as
time evolves. This movement of the center and broadening are what we have called drift and diffusion,
respectively.

2.4.3 Ornstein-Uhlenbeck process

Starting from any initial condition P (x, 0), the Fokker-Planck equation for Brownian motion, even with
drift, inexorably evolves the distribution P (x, t) toward an infinitesimal probability uniformly spread
throughout all space. Consider now the Fokker-Planck equation with F2(x) = 2D as before, but with
F1(x) = −βx. Thus we have diffusion but also drift, where the local velocity is −βx. For x > 0,
probability which diffuses to the right will also drift to the left, so there is a competition between drift
and diffusion. Who wins?
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We can solve this model exactly. Starting with the FPE

∂tP = ∂x(βxP ) +D∂2
xP , (2.77)

we first Fourier transform

P̂ (k, t) =

∞∫
−∞

dx P (x, t) e−ikx . (2.78)

Expressed in terms of independent variables k and t, one finds that the FPE becomes

∂tP̂ + βk ∂kP̂ = −Dk2P̂ . (2.79)

This is known as a quasilinear partial differential equation, and a general method of solution for such equa-
tions is the method of characteristics, which is briefly reviewed in appendix §2.10. A quasilinear PDE in N
independent variables can be transformed into N +1 coupled ODEs. Applying the method to Eqn. 2.79,
one finds

P̂ (k, t) = P̂
(
k e−βt, t = 0

)
exp

{
− D

2β

(
1− e−2βt

)
k2

}
. (2.80)

Suppose P (x, 0) = δ(x − x0), in which case P̂ (k, 0) = e−ikx0 . We may now apply the inverse Fourier
transform to obtain

P (x, t) =

√
β

2πD
· 1

1− e−2βt
exp

{
− β

2D

(
x− x0 e

−βt)2
1− e−2βt

}
. (2.81)

Taking the limit t→∞, we obtain the asymptotic distribution

P (x, t→∞) =

√
β

2πD
e−βx

2/2D , (2.82)

which is a Gaussian centered at x = 0, with standard deviation σ =
√
D/β .

Physically, the drift term F1(x) = −βx arises when the particle is confined to a harmonic well. The
equation of motion is then ẍ + γẋ + ω2

0x = η, which is discussed in the appendix, §2.8. If we average
over the random forcing, then setting the acceleration to zero yields the local drift velocity vdrift =
−ω2

0 x/γ, hence β = ω2
0/γ. Solving by Laplace transform, one has L(z) = z2 + γz + ω2

0 , with roots

z± = −γ
2 ±

√
γ2

4 − ω
2
0 , and

K(s) =
ez+s − ez−s

z+ − z−
Θ(s) . (2.83)

Note that Re (z±) < 0. Plugging this result into Eqn. 2.61 and integrating, we find

lim
t→∞

M(t, t) =
γΓ

ω2
0

, (2.84)

hence the asymptotic distribution is

P (x, t→∞) =

√
γω2

0

2πΓ
e−γω

2
0x

2/2Γ . (2.85)
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Comparing with Eqn. 2.82, we once again find D = Γ/2γ2. Does the Langevin particle in a harmonic
well describe an Ornstein-Uhlenbeck process for finite t? It does in the limit γ →∞ , ω0 →∞ , Γ →∞ ,
with β = ω2

0/γ and D = Γ/2γ2 finite. In this limit, one has M(t, t) = β−1D
(
1 − e−βt

)
. For γ < ∞, the

velocity relaxation time is finite, and on time scales shorter than γ−1 the path x(t) is not Markovian.

In the Ornstein-Uhlenbeck model, drift would like to collapse the distribution to a delta-function at
x = 0, whereas diffusion would like to spread the distribution infinitely thinly over all space. In that
sense, both terms represent extremist inclinations. Yet in the limit t→∞, drift and diffusion gracefully
arrive at a grand compromise, with neither achieving its ultimate goal. The asymptotic distribution is
centered about x = 0, but has a finite width. There is a lesson here for the United States Congress, if
only they understood math.

2.5 The Master Equation

Let Pi(t) be the probability that the system is in a quantum or classical state i at time t. Then write

dPi
dt

=
∑
j

(
Wij Pj −Wji Pi

)
, (2.86)

where Wij is the rate at which j makes a transition to i. This is known as the Master equation. Note that
we can recast the Master equation in the form

dPi
dt

= −
∑
j

Γij Pj , (2.87)

with

Γij =

{
−Wij if i 6= j∑′

kWkj if i = j ,
(2.88)

where the prime on the sum indicates that k = j is to be excluded. The constraints on the Wij are that
Wij ≥ 0 for all i, j, and we may take Wii ≡ 0 (no sum on i). Fermi’s Golden Rule of quantum mechanics
says that

Wij =
2π

~
∣∣〈 i | V̂ | j 〉∣∣2 ρ(Ej) , (2.89)

where Ĥ0

∣∣ i 〉 = Ei
∣∣ i 〉, V̂ is an additional potential which leads to transitions, and ρ(Ei) is the density

of final states at energy Ei. The fact that Wij ≥ 0 means that if each Pi(t = 0) ≥ 0, then Pi(t) ≥ 0 for all
t ≥ 0. To see this, suppose that at some time t > 0 one of the probabilities Pi is crossing zero and about
to become negative. But then eqn. 2.86 says that Ṗi(t) =

∑
jWijPj(t) ≥ 0. So Pi(t) can never become

negative.

2.5.1 Equilibrium distribution and detailed balance

If the transition rates Wij are themselves time-independent, then we may formally write

Pi(t) =
(
e−Γt

)
ij
Pj(0) . (2.90)



44 CHAPTER 2. STOCHASTIC PROCESSES

Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over
(in this case, the j index). Note that ∑

i

Γij = 0 , (2.91)

which says that the total probability
∑

i Pi is conserved:

d

dt

∑
i

Pi = −
∑
i,j

Γij Pj = −
∑
j

(
Pj
∑
i

Γij

)
= 0 . (2.92)

We conclude that ~φ = (1, 1, . . . , 1) is a left eigenvector of Γ with eigenvalue λ = 0. The corresponding
right eigenvector, which we write as P eq

i , satisfies ΓijP
eq
j = 0, and is a stationary (i.e. time independent)

solution to the Master equation. Generally, there is only one right/left eigenvector pair corresponding
to λ = 0, in which case any initial probability distribution Pi(0) converges to P eq

i as t→∞.

In equilibrium, the net rate of transitions into a state | i 〉 is equal to the rate of transitions out of | i 〉. If,
for each state | j 〉 the transition rate from | i 〉 to | j 〉 is equal to the transition rate from | j 〉 to | i 〉, we say
that the rates satisfy the condition of detailed balance. In other words,

Wij P
eq
j = Wji P

eq
i . (2.93)

Assuming Wij 6= 0 and P eq
j 6= 0, we can divide to obtain

Wji

Wij

=
P eq
j

P eq
i

. (2.94)

Note that detailed balance is a stronger condition than that required for a stationary solution to the
Master equation.

If Γ = Γ t is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other,
hence P eq = 1/N , where N is the dimension of Γ . The system then satisfies the conditions of detailed
balance. See Appendix II (§2.5.3) for an example of this formalism applied to a model of radioactive
decay.

2.5.2 Boltzmann’s H-theorem

Suppose for the moment that Γ is a symmetric matrix, i.e. Γij = Γji. Then construct the function

H(t) =
∑
i

Pi(t) lnPi(t) . (2.95)

Then
dH

dt
=
∑
i

dPi
dt

(
1 + lnPi) =

∑
i

dPi
dt

lnPi

= −
∑
i,j

Γij Pj lnPi

=
∑
i,j

Γij Pj
(
lnPj − lnPi

)
,

(2.96)
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where we have used
∑

i Γij = 0. Now switch i↔ j in the above sum and add the terms to get

dH

dt
=

1

2

∑
i,j

Γij
(
Pi − Pj

) (
lnPi − lnPj

)
. (2.97)

Note that the i = j term does not contribute to the sum. For i 6= j we have Γij = −Wij ≤ 0, and using
the result

(x− y) (lnx− ln y) ≥ 0 , (2.98)

we conclude
dH

dt
≤ 0 . (2.99)

In equilibrium, P eq
i is a constant, independent of i. We write

P eq
i =

1

Ω
, Ω =

∑
i

1 =⇒ H = − ln Ω . (2.100)

If Γij 6= Γji, we can still prove a version of the H-theorem. Define a new symmetric matrix

W ij ≡Wij P
eq
j = Wji P

eq
i = W ji , (2.101)

and the generalized H-function,

H(t) ≡
∑
i

Pi(t) ln

(
Pi(t)

P eq
i

)
. (2.102)

Then
dH

dt
= −1

2

∑
i,j

W ij

(
Pi
P eq
i

−
Pj
P eq
j

)[
ln

(
Pi
P eq
i

)
− ln

(
Pj
P eq
j

)]
≤ 0 . (2.103)

2.5.3 Formal solution to the Master equation

Recall the Master equation Ṗi = −Γij Pj . The matrix Γij is real but not necessarily symmetric. For such
a matrix, the left eigenvectors φαi and the right eigenvectors ψβj are not the same: general different:

φαi Γij = λα φ
α
j

Γij ψ
β
j = λβ ψ

β
i .

(2.104)

Note that the eigenvalue equation for the right eigenvectors is Γψ = λψ while that for the left eigenvec-
tors is Γ tφ = λφ. The characteristic polynomial is the same in both cases:

F (λ) ≡ det (λ− Γ ) = det (λ− Γ t) , (2.105)

which means that the left and right eigenvalues are the same. Note also that
[
F (λ)

]∗
= F (λ∗), hence the

eigenvalues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation
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for φα on the right by ψβj and summing over j, and multiplying the eigenvector equation for ψβ on the
left by φαi and summing over i, and subtracting the two results yields(

λα − λβ
) 〈
φα
∣∣ψβ 〉 = 0 , (2.106)

where the inner product is 〈
φ
∣∣ψ 〉 =

∑
i

φi ψi . (2.107)

We can now demand 〈
φα
∣∣ψβ 〉 = δαβ , (2.108)

in which case we can write

Γ =
∑
α

λα
∣∣ψα 〉〈φα ∣∣ ⇐⇒ Γij =

∑
α

λα ψ
α
i φ

α
j . (2.109)

We have seen that ~φ = (1, 1, . . . , 1) is a left eigenvector with eigenvalue λ = 0, since
∑

i Γij = 0. We do
not know a priori the corresponding right eigenvector, which depends on other details of Γij . Now let’s
expand Pi(t) in the right eigenvectors of Γ , writing

Pi(t) =
∑
α

Cα(t)ψαi . (2.110)

Then

dPi
dt

=
∑
α

dCα
dt

ψαi

= −Γij Pj = −
∑
α

Cα Γij ψ
α
j = −

∑
α

λαCα ψ
α
i ,

(2.111)

and linear independence of the eigenvectors |ψα 〉 allows us to conclude

dCα
dt

= −λαCα =⇒ Cα(t) = Cα(0) e−λαt . (2.112)

Hence, we can write
Pi(t) =

∑
α

Cα(0) e−λαt ψαi . (2.113)

It is now easy to see that Re (λα) ≥ 0 for all λ, or else the probabilities will become negative. For
suppose Re (λα) < 0 for some α. Then as t → ∞, the sum in eqn. 2.113 will be dominated by the term
for which λα has the largest negative real part; all other contributions will be subleading. But we must
have

∑
i ψ

α
i = 0 since

∣∣ψα 〉 must be orthogonal to the left eigenvector ~φα=0 = (1, 1, . . . , 1). Therefore,
at least one component of ψαi (i.e. for some value of i) must have a negative real part, which means a
negative probability!8 As we have already proven that an initial nonnegative distribution {Pi(t = 0)}
will remain nonnegative under the evolution of the Master equation, we conclude that Pi(t) → P eq

i as
t→∞, relaxing to the λ = 0 right eigenvector, with Re (λα) ≥ 0 ∀ α.

8Since the probability Pi(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex, there will
be a corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for Pi(t).
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Poisson process

Consider the Poisson process, for which

Wmn =

{
λ if m = n+ 1

0 if m 6= n+ 1 .
(2.114)

We then have
dPn
dt

= λ
(
Pn−1 − Pn

)
. (2.115)

The generating function P (z, t) =
∑∞

n=0 z
nPn(t) then satisfies

∂P

∂t
= λ(z − 1)P ⇒ P (z, t) = e(z−1)λt P (z, 0) . (2.116)

If the initial distribution is Pn(0) = δn,0 , then

Pn(t) =
(λt)n

n!
e−λt , (2.117)

which is known as the Poisson distribution. If we define α ≡ λt, then from Pn = αn e−α/n! we have

〈nk〉 = e−α
(
α
∂

∂α

)k
eα . (2.118)

Thus, 〈n〉 = α , 〈n2〉 = α2 + α , etc.

Radioactive decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let
Pn(t) be the probability that n atoms are excited at some time t. We then model the decay dynamics by

Wmn =


0 if m ≥ n
nγ if m = n− 1

0 if m < n− 1 .

(2.119)

Here, γ is the decay rate of an individual atom, which can be determined from quantum mechanics. The
Master equation then tells us

dPn
dt

= (n+ 1) γ Pn+1 − nγ Pn . (2.120)

The interpretation here is as follows: let
∣∣n 〉 denote a state in which n atoms are excited. Then Pn(t) =∣∣〈ψ(t) |n 〉

∣∣2. Then Pn(t) will increase due to spontaneous transitions from |n+1 〉 to |n 〉, and will de-
crease due to spontaneous transitions from |n 〉 to |n−1 〉.

The average number of particles in the system is N(t) =
∑∞

n=0 nPn(t). Note that

dN

dt
=

∞∑
n=0

n
[
(n+ 1) γ Pn+1 − nγ Pn

]
= −γ

∞∑
n=0

nPn = −γ N . (2.121)
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Thus, N(t) = N(0) e−γt. The relaxation time is τ = γ−1, and the equilibrium distribution is P eq
n = δn,0,

which satisfies detailed balance.

Making use again of the generating function P (z, t) =
∑∞

n=0 z
n Pn(t) , we derive the PDE

∂P

∂t
= γ

∞∑
n=0

zn
[
(n+ 1)Pn+1 − nPn

]
= γ

∂P

∂z
− γz ∂P

∂z
. (2.122)

Thus, we have ∂tP = γ(1 − z) ∂zP , which is solved by any function f(ξ), where ξ = γt − ln(1 − z).
Thus, we can write P (z, t) = f

(
γt− ln(1− z)

)
. Setting t = 0 we have P (z, 0) = f

(
−ln(1− z)

)
, whence

f(u) = P (1− e−u, 0) is now given in terms of the initial distribution P (z, t = 0). Thus, the full solution
for P (z, t) is

P (z, t) = P
(
1 + (z − 1) e−γt , 0

)
. (2.123)

The total probability is P (z=1, t) =
∑∞

n=0 Pn , which clearly is conserved: P (1, t) = P (1, 0). The average
particle number is then N(t) = ∂z P (z, t)

∣∣
z=1

= e−γt P (1, 0) = e−γtN(0).

2.6 Formal Theory of Stochastic Processes

Here we follow the presentation in chapter 3 in the book by C. Gardiner. Given a time-dependent
random variable X(t), we define the probability distribution

P (x, t) =
〈
δ
(
x−X(t)

)〉
, (2.124)

where the average is over different realizations of the random process. P (x, t) is a density with units
L−d. This distribution is normalized according to

∫
dx P (x, t) = 1 , where dx = ddx is the differential for

the spatial volume, and does not involve time. If we integrate over some region A, we obtain

PA(t) =

∫
A

dx P (x, t) = probability that X(t) ∈ A . (2.125)

We define the joint probability distributions as follows:

P (x1, t1 ; x2, t2 ; . . . ; xN , tN ) =
〈
δ
(
x1 −X(t1)

)
· · · δ

(
xN −X(tN )

)〉
. (2.126)

From the joint probabilities we may form conditional probability distributions

P (x1, t1 ; x2, t2 ; . . . ; xN , tN | y1, τ1 ; . . . ; yM , τM ) =
P (x1, t1 ; . . . ; xN , tN ; y1, τ1 ; . . . ; yM , τM )

P (y1, τ1 ; . . . ; yM , τM )
.

(2.127)
Although the times can be in any order, by convention we order them so they decrease from left to right:

t1 > · · · > tN > τ1 > · · · τM . (2.128)
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2.6.1 Markov processes

In a Markov process, any conditional probability is determined by its most recent condition. Thus,

P (x1, t1 ; x2, t2 ; . . . ; xN , tN | y1, τ1 ; . . . ; yM , τM ) = P (x1, t1 ; x2, t2 ; . . . ; xN , tN | y1, τ1) , (2.129)

where the ordering of the times is as in Eqn. 2.128. This definition entails that all probabilities may be
constructed fromP (x, t) and from the conditionalP (x, t | y, τ). ClearlyP (x1, t1 ; x2, t2) = P (x1, t1 |x2, t2)P (x2, t2).
At the next level, we have

P (x1, t1 ; x2, t2 ; x3, t3) = P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 ; x3, t3)

= P (x1, t1 |x2, t2)P (x2, t2 |x3, t3)P (x3, t3) .

Proceeding thusly, we have

P (x1, t1 ; . . . ; xN , tN ) = P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) · · ·P (xN−1, tN−1 |xN , tN )P (xN , tN ) , (2.130)

so long as t1 > t2 > . . . > tN .

Chapman-Kolmogorov equation

The probability density P (x1, t1) can be obtained from the joint probability density P (x1, t1 ; x2, t2) by
integrating over x2:

P (x1, t1) =

∫
dx2 P (x1, t1 ; x2, t2) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2) . (2.131)

Similarly9,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2 ; x3, t3)P (x2, t2 |x3, t3) . (2.132)

For Markov processes, then,

P (x1, t1 |x3, t3) =

∫
dx2 P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) . (2.133)

For discrete spaces, we have
∫
dx →

∑
x , and

∑
x2
P (x1, t1 |x2, t2)P (x2, t2 |x3, t3) is a matrix multipli-

cation.

Do Markov processes exist in nature and are they continuous?

A random walk in which each step is independently and identically distributed is a Markov process.
Consider now the following arrangement. You are given a bag of marbles, an initial fraction p0 of
which are red, q0 of which are green, and r0 of which are blue, with p0 + q0 + r0 = 1. Let σj = +1,
0, or −1 according to whether the jth marble selected is red, green, or blue, respectively, and define

9Because P (x1, t1 ; x2, t3 |x3, t3) =
[
P (x1, t1 ; x2, t2 ; x3, t3)/P (x2, t2 ; x3, t3)

]
·
[
P (x2, t2 ; x3, t3)/P (x3, t3)

]
.
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Xn =
∑n

j=1 σj , which would correspond to the position of a random walker who steps either to the
right (σj = +1), remain stationary (σj = 0), or steps left (σj = −1) during each discrete time interval.
If the bag is infinite, then {X1, X2 , . . .} is a Markov process. The probability for σj = +1 remains at
p = p0 and is unaffected by the withdrawal of any finite number of marbles from the bag. But if the
contents of the bag are finite, then the probability p changes with discrete time, and in such a way that
cannot be determined from the instantaneous value of Xn alone. Note that if there were only two colors
of marbles, and σj ∈ {+1 , −1}, then given X0 = 0 and knowledge of the initial number of marbles in
the bag, specifying Xn tells us everything we need to know about the composition of the bag at time n.
But with three possibilities σj ∈ {+1 , 0 , −1} we need to know the entire history in order to determine
the current values of p, q, and r. The reason is that the sequences 0000, 0011, 1111 (with 1 ≡ −1) all have
the same effect on the displacement X , but result in a different composition of marbles remaining in the
bag.

In physical systems, processes we might model as random have a finite correlation time. We saw above
that the correlator of the random force η(t) in the Langevin equation is written

〈
η(t) η(t + s)

〉
= φ(s),

where φ(s) decays to zero on a time scale τφ. For time differences |s| < τφ , the system is not Markovian.
In addition, the system itself may exhibit some memory. For example, in the Langevin equation u̇+γu =
η(t), there is a time scale γ−1 over which the variable p(t) forgets its previous history. Still, if τφ = 0 , u(t)
is a Markov process, because the equation is first order and therefore only the most recent condition is
necessary in order to integrate forward from some past time t = t0 to construct the statistical ensemble
of functions u(t) for t > t0. For second order equations, such as ẍ + γẋ = η(t), two initial conditions
are required, hence diffusion paths X(t) are only Markovian on time scales beyond γ−1, over which the
memory of the initial velocity is lost. More generally, if ϕ is an N -component vector in phase space, and

dϕi
dt

= Ai(ϕ, t) +Bij(ϕ, t) ηj(t) , (2.134)

where we may choose
〈
ηi(t) ηj(t

′)
〉

= δij δ(t− t′), then the path ϕ(t) is a Markov process.

While a random variable X(t) may take values in a continuum, as a function of time it may still exhibit
discontinuous jumps. That is to say, even though time t may evolve continuously, the sample paths
X(t) may be discontinuous. As an example, consider the Brownian motion of a particle moving in a
gas or fluid. On the scale of the autocorrelation time, the velocity changes discontinuously, while the
position X(t) evolves continuously (although not smoothly). The condition that sample paths X(t)
evolve continuously is known as the Lindeberg condition,

lim
τ→0

1

τ

∫
|x−y|>ε

dy P (y, t+ τ |x, t) = 0 . (2.135)

If this condition is satisfied, then the sample paths X(t) are continuous with probability one. Two
examples:

(1) Wiener process: As we shall discuss below, this is a pure diffusion process with no drift or jumps,
with

P (x, t |x′, t′) =
1√

4πD|t− t′|
exp

(
− (x− x′)2

4D|t− t′|

)
(2.136)
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Figure 2.3: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From K. Jacobs
and D. A. Steck, New J. Phys. 13, 013016 (2011).

in one space dimension. The Lindeberg condition is satisfied, and the sample paths X(t) are
continuous.

(2) Cauchy process: This is a process in which sample paths exhibit finite jumps, and hence are not
continuous. In one space dimension,

P (x, t |x′, t′) =
|t− t′|

π
[
(x− x′)2 + (t− t′)2

] . (2.137)

Note that in both this case and the Wiener process described above, we have limt−t′→0 P (xt |x′t′) =
δ(x− x′). However in this example the Lindeberg condition is not satisfied.

To simulate, given xn = X(t = nτ), choose y ∈ Db(xn), whereDb(xn) is a ball of radius b > ε centered at
xn. Then evaluate the probability p ≡ P (y, (n+ 1)τ |x, nτ). If p exceeds a random number drawn from
a uniform distribution on [0, 1], accept and set xn+1 = X

(
(n+ 1)τ

)
= y. Else reject and choose a new y

and proceed as before.

2.6.2 Martingales

A Martingale is a stochastic process for which the conditional average of the random variable X(t) does
not change from its most recent condition. That is,

〈
x(t)

∣∣ {y1 τ1 ; y2, τ2 ; . . . ; yM , τM
}〉

=

∫
dx P (x, t | y1, τ1 ; . . . ; yM , τM )x = y1 . (2.138)

In this sense, a Martingale is a stochastic process which represents a ’fair game’. Not every Martingale
is a Markov process, and not every Markov process is a Martingale. The Wiener process is a Martingale.
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One very important fact about Martingales, which we will here derive in d = 1 dimension. For t1 > t2,〈
x(t1)x(t2)

〉
=

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)xx2 =

∫
dx1

∫
dx2 P (x1, t1 ; x2, t2)P (x2, t2)x1 x2

=

∫
dx2 P (x2, t2)x2

∫
dx1 P (x1, t1 |x2, t2)x1 =

∫
dx2 P (x2, t2)x2

2

=
〈
x2(t2)

〉
.

(2.139)

One can further show that, for t2 > t2 > t3 ,〈[
x(t1)− x(t2)

][
x(t2)− x(t3)

]〉
= 0 , (2.140)

which says that at the level of pair correlations, past performance provides no prediction of future results.

2.6.3 Differential Chapman-Kolmogorov equations

Suppose the following conditions apply:

|y − x| > ε =⇒ lim
τ→0

1

τ
P (y, t+ τ |x, t) = W (y |x, t) (2.141)

lim
τ→0

1

τ

∫
|y−x|<ε

dy (yµ − xµ)P (y, t+ τ |x, t) = Aµ(x, t) +O(ε) (2.142)

lim
τ→0

1

τ

∫
|y−x|<ε

dy (yµ − xµ) (yν − xν)P (y, t+ τ |x, t) = Bµν(x, t) +O(ε) , (2.143)

where the last two conditions hold uniformly in x, t, and ε. Then following §3.4.1 and §3.6 of Gardiner,
one obtains the forward differential Chapman-Kolmogorov equation (DCK+),

∂P (x, t |x′, t′)
∂t

= −
∑
µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+

1

2

∑
µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]
+

∫
dy
[
W (x | y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
,

(2.144)

and the backward differential Chapman-Kolmogorov equation (DCK−),

∂P (x, t |x′, t′)
∂t′

= −
∑
µ

Aµ(x′, t′)
∂P (x, t |x′, t′)

∂x′µ
+

1

2

∑
µ,ν

Bµν(x′, t′)
∂2P (x, t |x′, t′)

∂x′µ ∂x
′
ν

+

∫
dyW (y |x′, t′)

[
P (x, t |x′, t′)− P (x, t | y, t′)

]
.

(2.145)

Note that the Lindeberg condition requires that

lim
τ→0

1

τ

∫
|x−y|>ε

dy P (y, t+ τ |x, t) =

∫
|x−y|>ε

dyW (y |x, t) = 0 , (2.146)
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which must hold for any ε > 0. Taking the limit ε → 0, we conclude10 W (y |x, t) = 0 if the Lindeberg
condition is satisfied. If there are any jump processes, i.e. if W (y |x, t) does not identically vanish for all
values of its arguments, then Lindeberg is violated, and the paths are discontinuous.

Some applications:

(1) Master equation: If Aµ(x, t) = 0 and Bµν(x, t) = 0, then we have from DCK+,

∂P (x, t |x′, t′)
∂t

=

∫
dy
[
W (x | y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
. (2.147)

Let’s integrate this equation over a time interval ∆t. Assuming P (x, t |x′, t) = δ(x− x′), we have

P (x, t+ ∆t |x′, t) =
[
1−∆t

∫
dyW (y |x′, t)

]
δ(x− x′) +W (x |x′, t) ∆t . (2.148)

Thus,

Q(x′, t+ ∆t, t) = 1−∆t

∫
dyW (y |x′, t) (2.149)

is the probability for a particle to remain at x′ over the interval
[
t, t+ ∆t

]
given that it was at x′ at

time t. Iterating this relation, we find

Q(x, t, t0) =
(

1− Λ(x, t−∆t) ∆t
)(

1− Λ(x, t− 2∆t) ∆t
)
· · ·
(

1− Λ(x, t0) ∆t
) 1︷ ︸︸ ︷
Q(x, t0, t0)

= P exp

{
−

t∫
t0

dt′ Λ(x, t′)

}
,

(2.150)

where Λ(x, t) =
∫
dy W (y |x, t) and P is the path ordering operator which places earlier times to

the right.

The interpretation of the function W (y |x, t) is that it is the probability density rate for the random
variable X to jump from x to y at time t. Thus, the dimensions of W (y |x, t) are L−d T−1. Such
processes are called jump processes. For discrete state spaces, the Master equation takes the form

∂P (n, t |n′, t′)
∂t

=
∑
m

[
W (n |m, t)P (m, t |n′, t′)−W (m |n, t)P (n, t |n′, t′)

]
. (2.151)

Here W (n |m, t) has units T−1, and corresponds to the rate of transitions from state m to state n
at time t.

10What about the case y = x, which occurs for ε = 0, which is never actually reached throughout the limiting procedure?
The quantity W (x |x, t) corresponds to the rate at which the system jumps from x to x at time t, which is not a jump process
at all. Note that the contribution from y = x cancels from the DCK± equations. In other words, we can set W (x |x, t) ≡ 0.
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(2) Fokker-Planck equation: If W (x | y, t) = 0, DCK+ gives

∂P (x, t |x′, t′)
∂t

= −
∑
µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
+ 1

2

∑
µ,ν

∂2

∂xµ ∂xν

[
Bµν(x, t)P (x, t |x′, t′)

]
,

(2.152)
which is a more general form of the Fokker-Planck equation we studied in §2.4 above. Defining
the average

〈
F (x, t)

〉
=
∫
ddx F (x, t)P (x, t |x′, t′) , via integration by parts we derive

d

dt

〈
xµ
〉

=
〈
Aµ
〉

d

dt

〈
xµ xν

〉
=
〈
xµAν

〉
+
〈
Aµ xν

〉
+ 1

2

〈
Dµν +Dνµ

〉
.

(2.153)

For the case where Aµ(x, t) and Bµν(x, t) are constants independent of x and t, we have the solu-
tion

P (x, t |x′, t′) = det−1/2
[
2πB∆t

]
exp

{
− 1

2 ∆t

(
∆xµ −Aµ ∆t

)
B−1
µν

(
∆xν −Aν ∆t

)}
, (2.154)

where ∆x ≡ x − x′ and ∆t ≡ t − t′. This is normalized so that the integral over x is unity. If we
subtract out the drift A∆t, then clearly〈(

∆xν −Aν ∆t
) (

∆xµ −Aµ ∆t
)〉

= Bµν ∆t , (2.155)

which is diffusive.

(3) Liouville equation: If W (x | y, t) = 0 and Bµν(x, t) = 0, then DCK+ gives

∂P (x, t |x′, t′)
∂t

= −
∑
µ

∂

∂xµ

[
Aµ(x, t)P (x, t |x′, t′)

]
. (2.156)

This is Liouville’s equation from classical mechanics, also known as the continuity equation. Sup-
pressing the (x′, t′) variables, the above equation is equivalent to

∂%

∂t
+ ∇·(% v) = 0 , (2.157)

where %(x, t) = P (x, t |x′, t′) and v(x, t) = A(x, t). The product ofA and P is the current is j = %v.
To find the general solution, we assume the initial conditions are P (x, t |x′, t) = δ(x− x′). Then if
x(t;x′) is the solution to the ODE

dx(t)

dt
= A

(
x(t), t

)
(2.158)

with boundary condition x(t′) = x′, then by applying the chain rule, we see that

P (x, t |x′, t′) = δ
(
x− x(t;x′)

)
(2.159)

solves the Liouville equation. Thus, the probability density remains a δ-function for all time.
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2.6.4 Stationary Markov processes and ergodic properties

Stationary Markov processes satisfy a time translation invariance:

P (x1, t1 ; . . . ; xN , tN ) = P (x1, t1 + τ ; . . . ; xN , tN + τ) . (2.160)

This means

P (x, t) = P (x)

P (x1, t1 |x2, t2) = P (x1, t1 − t2 |x2, 0) .
(2.161)

Consider the case of one space dimension and define the time average

XT ≡
1

T

T/2∫
T/2

dt x(t) . (2.162)

We use a bar to denote time averages and angular brackets 〈 · · · 〉 to denote averages over the random-
ness. Thus, 〈XT 〉 = 〈x〉, which is time-independent for a stationary Markov process. The variance of
XT is

Var
(
XT

)
=

1

T 2

T/2∫
T/2

dt

T/2∫
T/2

dt′
〈
x(t)x(t′)

〉
c
, (2.163)

where the connected average is 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. We define

C(t1 − t2) ≡ 〈x(t1)x(t2)
〉

=

∞∫
−∞

dx1

∞∫
−∞

dx2 x1 x2 P (x1, t1 ; x2, t2) . (2.164)

If C(τ) decays to zero sufficiently rapidly with τ , for example as an exponential e−γτ , then Var
(
XT

)
→ 0

as T → ∞, which means that XT→∞ = 〈x〉. Thus the time average is the ensemble average, which
means the process is ergodic.

Wiener-Khinchin theorem

Define the quantity

x̂T (ω) =

T/2∫
T/2

dt x(t) eiωt . (2.165)

The spectral function ST (ω) is given by

ST (ω) =
〈 1

T

∣∣x̂T (ω)
∣∣2〉 . (2.166)

We are interested in the limit T →∞. Does S(ω) ≡ ST→∞(ω) exist?
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Observe that

〈∣∣x̂T (ω)
∣∣2〉 =

T/2∫
T/2

dt1

T/2∫
T/2

dt2 eiω(t2−t1)

C(t1−t2)︷ ︸︸ ︷〈
x(t1)x(t2)

〉

=

T∫
−T

dτ e−iωτ C(τ)
(
T − |τ |

)
.

(2.167)

Thus,

S(ω) = lim
T→∞

∞∫
−∞

dτ e−iωτ C(τ)

(
1− |τ |

T

)
Θ
(
T − |τ |

)
=

∞∫
−∞

dτ e−iωτ C(τ) . (2.168)

The second equality above follows from Lebesgue’s dominated convergence theorem, which you can
look up on Wikipedia11. We therefore conclude the limit exists and is given by the Fourier transform of
the correlation function C(τ) =

〈
x(t)x(t+ τ)

〉
.

2.6.5 Approach to stationary solution

We have seen, for example, how in general an arbitrary initial state of the Master equation will converge
exponentially to an equilibrium distribution. For stationary Markov processes, the conditional distribu-
tion P (x, t |x′, t′) converges to an equilibrium distribution Peq(x) as t−t′ →∞. How can we understand
this convergence in terms of the differential Chapman-Kolmogorov equation? We summarize here the
results in §3.7.3 of Gardiner.

Suppose P1(x, t) and P2(x, t) are each solutions to the DCK+ equation, and furthermore thatW (x |x′, t),
Aµ(x, t), and Bµν(x, t) are all independent of t. Define the Lyapunov functional

K[P1, P2, t] =

∫
dx
(
P1 ln(P1/P2) + P2 − P1

)
. (2.169)

Since P1,2(x, t) are both normalized, the integrals of the last two terms inside the big round brackets
cancel. Nevertheless, it is helpful to express K in this way since, factoring out P1 from the terms inside
the brackets, we may use f(z) = z − ln z − 1 ≥ 0 for z ∈ R+ , where z = P2/P1. Thus, K ≥ 0, and the
minimum value is obtained for P1(x, t) = P2(x, t).

Next, evaluate the time derivative K̇:

dK

dt
=

∫
dx

{
∂P1

∂t
·
[

lnP1 − lnP2 + 1
]
− ∂P2

∂t
· P1

P2

}
. (2.170)

11If we define the one parameter family of functions CT (τ) = C(τ)
(

1− |τ |
T

)
Θ(T − |τ |), then as T → ∞ the function

CT (τ) e−iωτ converges pointwise to C(τ) e−iωτ , and if |C(τ)| is integrable on R, the theorem guarantees the second equality
in Eqn. 2.168.
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We now use DCK+ to obtain ∂tP1,2 and evaluate the contributions due to drift, diffusion, and jump
processes. One finds(

dK

dt

)
drift

= −
∑
µ

∫
dx

∂

∂xµ

[
Aµ P1 ln

(
P1/P2

)]
(2.171)(

dK

dt

)
diff

= −1

2

∑
µ,ν

∫
dxBµν

∂ ln(P1/P2)

∂xµ

∂ ln(P1/P2)

∂xν
+

1

2

∫
dx

∂2

∂xµ ∂xν

[
Bµν P1 ln(P1/P2)

]
(2.172)(

dK

dt

)
jump

=

∫
dx

∫
dx′W (x |x′)P2(x′, t)

[
φ′ ln(φ/φ′)− φ+ φ′

]
, (2.173)

where φ(x, t) ≡ P1(x, t)/P2(x, t) in the last line. Dropping the total derivative terms, which we may set
to zero at spatial infinity, we see that K̇drift = 0, K̇diff ≤ 0, and K̇jump ≤ 0. Barring pathological cases12,
one has that K(t) is a nonnegative decreasing function. Since K = 0 when P1(x, t) = P2(x, t) = Peq(x),
we see that the Lyapunov analysis confirms that K is strictly decreasing. If we set P2(x, t) = Peq(x), we
conclude that P1(x, t) converges to Peq(x) as t→∞.

2.7 Appendix : Nonlinear diffusion

2.7.1 PDEs with infinite propagation speed

Starting from an initial probability density P (x, t = 0) = δ(x), we saw how Fickian diffusion, described
by the equation ∂tP = ∇·(D∇P ), gives rise to the solution

P (x, t) = (4πDt)−d/2 e−x
2/4Dt , (2.174)

for all t > 0, assuming D is a constant. As remarked in §2.2.1, this violates any physical limits on the
speed of particle propagation, including that set by special relativity, because P (x, t) > 0 for all x at any
finite value of t.

It’s perhaps good to step back at this point and recall the solution to the one-dimensional discrete ran-
dom walk, where after each time increment the walker moves to the right (∆X = 1) with probability p
and to the left (∆X = −1) with probability 1 − p. To make things even simpler we’ll consider the case
with no drift, i.e. p = 1

2 . The distribution for X after N time steps is of the binomial form:

PN (X) = 2−N
(

N
1
2(N −X)

)
. (2.175)

Invoking Stirling’s asymptotic result lnK! = K lnK −K +O(lnK) for K � 1, one has13

PN (X) '
√

2

πN
e−X

2/2N . (2.176)

12See Gardiner, §3.7.3.
13The prefactor in this equation seems to be twice the expected (2πN)−1/2, but since each step results in ∆X = ±1, if we

start from X0 = 0 then after N steps X will be even if N is even and odd if N is odd. Therefore the continuum limit for the
normalization condition on PN (X) is

∑
X PN (X) ≈ 1

2

∫∞
−∞ dX PN (X) = 1.
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We note that the distribution in Eqn. 2.175 is cut off at |X| = N , so that PN (X) = 0 for |X| > N .
This reflects the fact that the walker travels at a fixed speed of one step per time interval. This feature
is lost in Eqn. 2.176, because the approximation which led to this result is not valid in the tails of the
distribution. One might wonder about the results of §2.3 in this context, since we ultimately obtained
a diffusion form for P (x, t) using an exact functional averaging method. However, since we assumed
a Gaussian probability functional for the random forcing η(t), there is a finite probability for arbitrarily
large values of the forcing. For example, consider the distribution of the integrated force φ =

∫ t2
t1
dt η(t):

P (φ,∆t) =

〈
δ

(
φ−

t2∫
t1

dt η(t)

)〉
=

1√
2πΓ ∆t

e−φ
2/2Γ∆t , (2.177)

where ∆t = t2 − t1. This distribution is nonzero for arbitrarily large values of φ.

Mathematically, the diffusion equation is an example of what is known as a parabolic partial differential
equation. The Navier-Stokes equations of hydrodynamics are also parabolic PDEs. The other two classes
are called elliptical and hyperbolic. Paradigmatic examples of these classes include Laplace’s equation
(elliptical) and the Helmholtz equation (hyperbolic). Hyperbolic equations propagate information at
finite propagation speed. For second order PDEs of the form

Aij
∂2Ψ

∂xi ∂xj
+Bi

∂Ψ

∂xi
+ CΨ = S , (2.178)

the PDE is elliptic if the matrix A is positive definite or negative definite, parabolic if A has one zero
eigenvalue, and hyperbolic ifA is nondegenerate and indefinite (i.e. one positive and one negative eigen-
value). Accordingly, one way to remedy the unphysical propagation speed in the diffusion equation is
to deform it to a hyperbolic PDE such as the telegrapher’s equation,

τ
∂2Ψ

∂t2
+
∂Ψ

∂t
+ γΨ = D

∂2Ψ

∂x2
. (2.179)

When γ = 0, the solution for the initial condition Ψ(x, 0) = δ(x) is

Ψ(x, t) =
1√
4Dt

e−t/2τ I0

√( t

2τ

)2

− x2

4Dτ

Θ
(√

D/τ t− |x|
)
. (2.180)

Note that Ψ(x, t) vanishes for |x| > ct , where c =
√
D/τ is the maximum propagation speed. One can

check that in the limit τ → 0 one recovers the familiar diffusion kernel.

The telegrapher’s equation

To derive the telegrapher’s equation, consider the section of a transmission line shown in Fig. 2.4. Let
V (x, t) be the electrical potential on the top line, with V = 0 on the bottom (i.e. ground). Per unit
length a, the potential drop along the top line is ∆V = a ∂xV = −IR − L∂tI , and the current drop is
∆I = a ∂xI = −GV − C ∂tV . Differentiating the first equation with respect to x and using the second
for ∂xI , one arrives at Eqn. 2.179 with τ = LC/(RC+GL), γ = RG/(RC+GL), andD = a2/(RC+GL).
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2.7.2 The porous medium and p-Laplacian equations

Another way to remedy this problem with the diffusion equation is to consider some nonlinear exten-
sions thereof14. Two such examples have been popular in the mathematical literature, the porous medium
equation (PME),

∂u

∂t
= ∇2

(
um
)
, (2.181)

and the p-Laplacian equation,
∂u

∂t
= ∇·

(
|∇u|p−2 ∇u

)
. (2.182)

Both these equations introduce a nonlinearity whereby the diffusion constant D depends on the field
u. For example, the PME can be rewritten ∂tu = ∇ ·

(
mum−1∇u

)
, whence D = mum−1. For the p-

Laplacian equation, D = |∇u|p−2. These nonlinearities strangle the diffusion when u or |∇u| gets small,
preventing the solution from advancing infinitely fast.

As its name betokens, the PME describes fluid flow in a porous medium. A fluid moving through a
porous medium is described by three fundamental equations:

(i) Continuity: In a medium with porosity ε, the continuity equation becomes ε ∂t% + ∇· (%v) = 0,
where % is the fluid density. This is because in a volume Ω where the fluid density is changing at
a rate ∂t%, the rate of change of fluid mass is εΩ ∂t%.

(ii) Darcy’s law: First articulated in 1856 by the French hydrologist Henry Darcy, this says that the flow
velocity is directly proportional to the pressure gradient according to the relation v = −(K/µ)∇p,
where the permeability K depends on the medium but not on the fluid, and µ is the shear viscosity
of the fluid.

(iii) Fluid equation of state: This is a relation between the pressure p and the density % of the fluid. For
ideal gases, p = A%γ where A is a constant and γ = cp/cV is the specific heat ratio.

Putting these three equations together, we obtain

∂%

∂t
= C∇2

(
%m
)
, (2.183)

where C = Aγk/(k + 1)εµ and m = 1 + γ.
14See J. L. Vazquez, The Porous Medium Equation (Oxford, 2006).

Figure 2.4: Repeating unit of a transmission line. Credit: Wikipedia



60 CHAPTER 2. STOCHASTIC PROCESSES

2.7.3 Illustrative solutions

A class of solution to the PME was discussed in the Russian literature in the early 1950’s in a series
of papers by Zeldovich, Kompaneets, and Barenblatt. The ZKB solution, which is isotropic in d space
dimensions, is of the scaling form,

U(r, t) = t−α F
(
r t−α/d

)
; F (ξ) =

(
C − k ξ2

) 1
m−1

+
, (2.184)

where r = |x| ,

α =
d

(m− 1)d+ 2
, k =

m− 1

2m
· 1

(m− 1)d+ 2
, (2.185)

and the + subscript in the definition of F (ξ) in Eqn. 2.184 indicates that the function is cut off and van-
ishes when the quantity inside the round brackets becomes negative. We also take m > 1, which means
that α < 1

2d. The quantity C is determined by initial conditions. The scaling form is motivated by the
fact that the PME conserves the integral of u(x, t) over all space, provided the current j = −mum−1∇u
vanishes at spatial infinity. Explicitly, we have∫

ddx U(x, t) = Ωd

∞∫
0

dr rd−1 t−α F
(
r t−α/d

)
= Ωd

∞∫
0

ds sd−1 F (s) , (2.186)

where Ωd is the total solid angle in d space dimensions. The above integral is therefore independent of t,
which means that the integral of U is conserved. Therefore as t→ 0, we must have U(x, t = 0) = Aδ(x),
where A is a constant which can be expressed in terms of C, m, and d. We plot the behavior of this
solution for the case m = 2 and d = 1 in Fig. 2.5, and compare and contrast it to the solution of the
diffusion equation. Note that the solutions to the PME have compact support, i.e. they vanish identically
for r >

√
C/k tα/d, which is consistent with a finite maximum speed of propagation. A similar point

source solution to the p-Laplacian equation in d = 1 was obtained by Barenblatt:

U(x, t) = t−m
(
C − k |ξ|1+m−1

) m
m−1

, (2.187)

for arbitrary C > 0, with ξ = x t−1/2m, and k = (m− 1)(2m)−(m+1)/m.

To derive the ZKB solution of the porous medium equation, it is useful to write the PME in terms of the
’pressure’ variable v = m

m−1 u
m−1. The PME then takes the form

∂v

∂t
= (m− 1) v∇2v + (∇v)2 . (2.188)

We seek an isotropic solution in d space dimensions, and posit the scaling form

V (x, t) = t−λG
(
r t−µ

)
, (2.189)

where r = |x|. Acting on isotropic functions, the Laplacian is given by ∇2 = ∂2

∂r2
+ d−1

r
∂
∂r . Defining

ξ = r t−µ, we have

∂V

∂t
= −t−1

[
λG+ µ ξ G′

]
,

∂V

∂r
= t−(λ+µ)G′ ,

∂2V

∂r2
= t−(λ+2µ)G′′ , (2.190)
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Figure 2.5: Top panel: evolution of the diffusion equation with D = 1 and σ = 1 for times t = 0.1, 0.25,
0.5, 1.0, and 2.0. Bottom panel: evolution of the porous medium equation with m = 2 and d = 1 and C
chosen so that P (x = 0, t = 0.1) is equal to the corresponding value in the top panel (i.e. the peak of the
blue curve).

whence

−
[
λG+ µ ξ G′

]
t−1 =

[
(m− 1)GG′′ + (m− 1) (d− 1) ξ−1GG′ + (G′)2

]
t−2(λ+µ) . (2.191)

At this point we can read off the result λ+µ = 1
2 and eliminate the t variable, which validates our initial

scaling form hypothesis. What remains is

λG+ µ ξG′ + (m− 1)GG′′ + (m− 1)(d− 1) ξ−1GG′ + (G′)2 = 0 . (2.192)

Inspection now shows that this equation has a solution of the form G(ξ) = A− b ξ2. Plugging this in, we
find

λ = (m− 1)α , µ =
α

d
, b =

α

2d
, α ≡ d

(m− 1) d+ 2
. (2.193)

The quadratic function G(ξ) = A − b ξ2 goes negative for ξ2 > A/b, which is clearly unphysical in
the context of diffusion. To remedy this, Zeldovich et al. proposed to take the maximum value of G(ξ)
and zero. Clearly G = 0 is a solution, hence G(ξ) =

(
A − b ξ2

)
+

is a solution for |ξ| <
√
A/b and
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for |ξ| >
√
A/b , but what about the points ξ = ±

√
A/b ? The concern is that the second derivative

G′′(ξ) has a delta function singularity at those points, owing to the discontinuity of G′(ξ). However, an
examination of Eqn. 2.192 shows that G′′ is multiplied by G, and we know that limx→0 x δ(x) = 0. The
remaining nonzero terms in this equation are then

[
µ ξ +G′(ξ)

]
G′(ξ) , which agreeably vanishes. So we

have a solution of the form15

V (x, t) =
1

t

(
A′ t2α/d − αx2

)
+

, (2.194)

where A′ = 2dA.

2.8 Appendix : Langevin equation for a particle in a harmonic well

Consider next the equation

Ẍ + γẊ + ω2
0X =

F

M
+ η(t) , (2.195)

where F is a constant force. We write X = x0 + x and measure x relative to the potential minimum
x0 = F/Mω2

0 , yielding
ẍ+ γ ẋ+ ω2

0 x = η(t) . (2.196)

We solve via Laplace transform. Recall

x̌(z) =

∞∫
0

dt e−zt x(t)

x(t) =

∫
C

dz

2πi
e+zt x̌(z) ,

(2.197)

where the contour C proceeds from c− i∞ to c+ i∞ such that all poles of the integrand lie to the left of
C. Then

∞∫
0

dt e−zt
(
ẍ+ γ ẋ+ ω2

0 x
)

= −(z + γ)x(0)− ẋ(0) +
(
z2 + γz + ω2

0

)
x̌(z)

=

∞∫
0

dt e−zt η(t) = η̌(z) .

(2.198)

Thus, we have

x̌(z) =
(z + γ)x(0) + ẋ(0)

z2 + γz + ω2
0

+
1

z2 + γz + ω2
0

∞∫
0

dt e−zt η(t) . (2.199)

15Actually the result limx→0 x δ(x) = 0 is valid in the distribution sense, i.e. underneath an integral, provided x δ(x) is mul-
tiplied by a nonsingular function of x. Thus, Eqn. 2.194 constitutes a weak solution to the pressure form of the porous medium
equation 2.188. Zeldovich et al. found numerically that cutting off the negative part of A− b ξ2 is appropriate. Mathematically,
Vazquez has shown that when the initial data are taken within a suitable class of integrable functions, the weak solution exists
and is unique.
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Now we may write
z2 + γz + ω2

0 = (z − z+)(z − z−) , (2.200)

where z± = −1
2γ ±

√
1
4γ

2 − ω2
0 . Note that Re (z±) ≤ 0 and that z∓ = −γ − z± .

Performing the inverse Laplace transform, we obtain

x(t) =
x(0)

z+ − z−

(
z+ e

z−t − z− ez+t
)

+
ẋ(0)

z+ − z−

(
ez+t − ez−t

)
+

∞∫
0

ds K(t− s) η(s) , (2.201)

where

K(t− s) =
Θ(t− s)

(z+ − z−)

(
ez+(t−s) − ez−(t−s)

)
(2.202)

is the response kernel and Θ(t − s) is the step function which is unity for t > s and zero otherwise. The
response is causal, i.e. x(t) depends on η(s) for all previous times s < t, but not for future times s > t.
Note that K(τ) decays exponentially for τ → ∞, if Re(z±) < 0. The marginal case where ω0 = 0 and
z+ = 0 corresponds to the diffusion calculation we performed in the previous section.

It is now easy to compute

〈
x2(t)

〉
c

= Γ

t∫
0

ds K2(s) =
Γ

2ω2
0γ

(t→∞) (2.203)

〈
ẋ2(t)

〉
c

= Γ

t∫
0

ds K̇2(s) =
Γ

2γ
(t→∞) , (2.204)

where the connected average is defined by 〈AB〉c = 〈AB〉 − 〈A〉〈B〉. Therefore,〈
1
2Mẋ2 + 1

2Mω2
0x

2
〉
t→∞

=
MΓ

2γ
. (2.205)

Setting this equal to 2× 1
2kBT by equipartition again yields Γ = 2γkBT/M .

2.9 Appendix : General Linear Autonomous Inhomogeneous ODEs

2.9.1 Solution by Fourier transform

We can also solve general autonomous linear inhomogeneous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) . (2.206)

We can write this as
Lt x(t) = ξ(t) , (2.207)
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where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (2.208)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫
−∞

dt′ G(t, t′) ξ(t′) , (2.209)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 2.207 and 2.209 to
be true, we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫
−∞

dt′ LtG(t, t′) ξ(t′) = ξ(t) , (2.210)

which means that
LtG(t, t′) = δ(t− t′) , (2.211)

where δ(t− t′) is the Dirac δ-function.

If the differential equation Lt x(t) = ξ(t) is defined over some finite or semi-infinite t interval with
prescribed boundary conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately.
For the case we are now considering, let the interval be the entire real line t ∈ (−∞,∞). Then G(t, t′) =
G(t− t′) is a function of the single variable t− t′.

Note that Lt = L
(
d
dt

)
may be considered a function of the differential operator d

dt . If we now Fourier
transform the equation Lt x(t) = ξ(t), we obtain

∞∫
−∞

dt eiωt ξ(t) =

∞∫
−∞

dt eiωt
{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t)

=

∞∫
−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) .

(2.212)

Thus, if we define

L̂(ω) =

n∑
k=0

ak (−iω)k , (2.213)

then we have L̂(ω) x̂(ω) = ξ̂(ω) , where an ≡ 1. According to the Fundamental Theorem of Algebra, the
nth degree polynomial L̂(ω) may be uniquely factored over the complex ω plane into a product over n
roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (2.214)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus, the roots

appear in pairs which are symmetric about the imaginary axis. I.e. if Ω = a + ib is a root, then so is
−Ω∗ = −a+ ib.
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The general solution to the homogeneous equation is

xh(t) =

n∑
σ=1

Aσ e
−iωσt , (2.215)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in Fourier
space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (2.216)

Note that
[
Ĝ(ω)

]∗
= Ĝ(−ω), which is equivalent to the statement that G(t − t′) is a real function of its

argument. The general solution to the inhomogeneous equation is then

x(t) = xh(t) +

∞∫
−∞

dt′ G(t− t′) ξ(t′) , (2.217)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(t− t′) =

∞∫
−∞

dω

2π
e−iω(t−t′) Ĝ(ω)

= in
∞∫
−∞

dω

2π

e−iω(t−t′)

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=
n∑
σ=1

e−iωσ(t−t′)

i L̂′(ωσ)
Θ(t− t′) ,

(2.218)

where we assume that Imωσ < 0 for all σ. This guarantees causality – the response x(t) to the influence
ξ(t′) is nonzero only for t > t′.

As an example, consider the familiar case

L̂(ω) = −ω2 − iγω + ω2
0

= −(ω − ω+) (ω − ω−) , (2.219)

with ω± = − i
2γ ± β, and β =

√
ω2

0 − 1
4γ

2 . This yields L̂′(ω±) = ∓(ω+ − ω−) = ∓2β , hence according to
equation 2.218,

G(s) =

{
e−iω+s

iL′(ω+)
+

e−iω−s

iL′(ω−)

}
Θ(s)

=

{
e−γs/2 e−iβs

−2iβ
+
e−γs/2 eiβs

2iβ

}
Θ(s) = β−1 e−γs/2 sin(βs) Θ(s) .

(2.220)
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Now let us evaluate the two-point correlation function
〈
x(t)x(t′)

〉
, assuming the noise is correlated

according to
〈
ξ(s) ξ(s′)

〉
= φ(s− s′). We assume t, t′ →∞ so the transient contribution xh is negligible.

We then have

〈
x(t)x(t′)

〉
=

∞∫
−∞

ds

∞∫
−∞

ds′ G(t− s)G(t′ − s′)
〈
ξ(s) ξ(s′)

〉
=

∞∫
−∞

dω

2π
φ̂(ω)

∣∣Ĝ(ω)
∣∣2 eiω(t−t′) . (2.221)

2.9.2 Higher order ODEs

Note that any nth order ODE, of the general form

dnx

dtn
= F

(
x ,

dx

dt
, . . . ,

dn−1x

dtn−1

)
, (2.222)

may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with
k = 1, . . . , n. Thus, for k < n we have ϕ̇k = ϕk+1, and ϕ̇n = F . In other words,

ϕ̇︷ ︸︸ ︷
d

dt


ϕ1
...

ϕn−1

ϕn

=

V (ϕ)︷ ︸︸ ︷
ϕ2
...
ϕn

F
(
ϕ1, . . . , ϕp

)

 . (2.223)

An inhomogeneous linear nth order ODE,

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) (2.224)

may be written in matrix form, as

d

dt


ϕ1

ϕ2
...
ϕn

 =

Q︷ ︸︸ ︷
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−a0 −a1 −a2 · · · −an−1



ϕ1

ϕ2
...
ϕn

+

ξ︷ ︸︸ ︷
0
0
...

ξ(t)

 . (2.225)

Thus,
ϕ̇ = Qϕ+ ξ , (2.226)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous.

For the homogeneous case where ξ(t) = 0, the solution is obtained by exponentiating the constant matrix
Qt:

ϕ(t) = exp(Qt)ϕ(0) ; (2.227)
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the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not au-
tonomous, then Q = Q(t) is time-dependent, and the solution is given by the path-ordered exponential,

ϕ(t) = P exp

{ t∫
0

dt′Q(t′)

}
ϕ(0) , (2.228)

where P is the path ordering operator which places earlier times to the right. As defined, the equation
ϕ̇ = V (ϕ) is autonomous, since the t-advance mapping gt depends only on t and on no other time
variable. However, by extending the phase space M 3 ϕ from M→M×R, which is of dimension n+ 1,
one can describe arbitrary time-dependent ODEs.

In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider
the autonomous case whereQ is a constant matrix in time. We will assume the matrixQ is real, but other
than that it has no helpful symmetries. We can however decompose it into left and right eigenvectors:

Qij =
n∑
σ=1

νσ Rσ,i Lσ,j . (2.229)

Or, in bra-ket notation, Q =
∑

σ νσ |Rσ〉〈Lσ|. We adopt the normalization convention
〈
Lσ
∣∣Rσ′ 〉 = δσσ′ ,

where
{
νσ
}

are the eigenvalues of Q. The eigenvalues may be real or imaginary. Since the characteristic
polynomial P (ν) = det (ν I −Q) has real coefficients, we know that the eigenvalues of Q are either real
or come in complex conjugate pairs.

Consider, for example, the n = 2 system we studied earlier. Then

Q =

(
0 1
−ω2

0 −γ

)
. (2.230)

The eigenvalues are as before: ν± = −1
2γ ±

√
1
4γ

2 − ω2
0 . The left and right eigenvectors are

L± =
±1

ν+ − ν−

(
−ν∓ 1

)
, R± =

(
1
ν±

)
. (2.231)

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

f(Q) =
n∑
σ=1

f(νσ)
∣∣Rσ 〉 〈Lσ ∣∣ (2.232)

for any function f . Thus, the solution to the general autonomous homogeneous case is

∣∣ϕ(t)
〉

=
n∑
σ=1

eνσt
∣∣Rσ 〉 〈Lσ ∣∣ϕ(0)

〉
ϕi(t) =

n∑
σ=1

eνσtRσ,i

n∑
j=1

Lσ,j ϕj(0) .

(2.233)



68 CHAPTER 2. STOCHASTIC PROCESSES

If Re (νσ) ≤ 0 for all σ, then the initial conditions ϕ(0) are forgotten on time scales τσ = ν−1
σ . Physicality

demands that this is the case.

Now let’s consider the inhomogeneous case where ξ(t) 6= 0. We begin by recasting eqn. 2.226 in the
form

d

dt

(
e−Qt ϕ

)
= e−Qt ξ(t) . (2.234)

We can integrate this directly:

ϕ(t) = eQt ϕ(0) +

t∫
0

ds eQ(t−s) ξ(s) . (2.235)

In component notation,

ϕi(t) =

n∑
σ=1

eνσtRσ,i
〈
Lσ
∣∣ϕ(0)

〉
+

n∑
σ=1

Rσ,i

t∫
0

ds eνσ(t−s) 〈Lσ ∣∣ ξ(s) 〉. (2.236)

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case
when ξ(s) = 0.

The solution in eqn. 2.236 holds for general Q and ξ(s). For the particular form of Q and ξ(s) in eqn.
2.225, we can proceed further. For starters, 〈Lσ|ξ(s)〉 = Lσ,n ξ(s). We can further exploit a special feature
of the Q matrix to analytically determine all its left and right eigenvectors. Applying Q to the right
eigenvector |Rσ〉 , we find Rσ,j = νσ Rσ,j−1 for j > 1. We are free to choose Rσ,1 = 1 for all σ and
defer the issue of normalization to the derivation of the left eigenvectors. Thus, we obtain the pleasingly
simple result, Rσ,k = νk−1

σ . Applying Q to the left eigenvector 〈Lσ| , we obtain

−a0 Lσ,n = νσ Lσ,1

Lσ,j−1 − aj−1 Lσ,n = νσ Lσ,j (j > 1) .
(2.237)

From these equations we may derive

Lσ,k = −
Lσ,n
νσ

k−1∑
j=0

aj ν
j−k−1
σ =

Lσ,n
νσ

n∑
j=k

aj ν
j−k−1
σ . (2.238)

The equality in the above equation is derived using the result P (νσ) =
∑n

j=0 aj ν
j
σ = 0. Recall also that

an ≡ 1. We now impose the normalization condition,

n∑
k=1

Lσ,k Rσ,k = 1 . (2.239)

This condition determines our last remaining unknown quantity (for a given σ), Lσ,p :

〈
Lσ
∣∣Rσ 〉 = Lσ,n

n∑
k=1

k ak ν
k−1
σ = P ′(νσ)Lσ,n , (2.240)
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where P ′(ν) is the first derivative of the characteristic polynomial. Thus, we find Lσ,n = 1/P ′(νσ) .

Now let us evaluate the general two-point correlation function,

Cjj′(t, t
′) ≡

〈
ϕj(t)ϕj′(t

′)
〉
−
〈
ϕj(t)

〉 〈
ϕj′(t

′)
〉
. (2.241)

We write 〈
ξ(s) ξ(s′)

〉
= φ(s− s′) =

∞∫
−∞

dω

2π
φ̂(ω) e−iω(s−s′) . (2.242)

When φ̂(ω) is constant, we have
〈
ξ(s) ξ(s′)

〉
= φ̂(t) δ(s−s′). This is the case of so-called white noise, when

all frequencies contribute equally. The more general case when φ̂(ω) is frequency-dependent is known
as colored noise. Appealing to eqn. 2.236, we have

Cjj′(t, t
′) =

∑
σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

t∫
0

ds eνσ(t−s)
t′∫

0

ds′ eνσ′ (t
′−s′) φ(s− s′) (2.243)

=
∑
σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1
σ′

P ′(νσ′)

∞∫
−∞

dω

2π

φ̂(ω) (e−iωt − eνσt)(eiωt′ − eνσ′ t′)
(ω − iνσ)(ω + iνσ′)

. (2.244)

In the limit t, t′ → ∞, assuming Re (νσ) < 0 for all σ (i.e. no diffusion), the exponentials eνσt and eνσ′ t
′

may be neglected, and we then have

Cjj′(t, t
′) =

∑
σ,σ′

νj−1
σ

P ′(νσ )

νj
′−1

σ′

P ′(νσ′)

∞∫
−∞

dω

2π

φ̂(ω) e−iω(t−t′)

(ω − iνσ)(ω + iνσ′)
. (2.245)

2.9.3 Kramers-Krönig relations

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP16. Then for all ν, we must have

∞∫
−∞

dν

2π

χ̂(ν)

ν − ω + iε
= 0 , (2.246)

where ε is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming
χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak
restriction on χ̂(ω), given the fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iε
=

ν − ω
(ν − ω)2 + ε2

− iε

(ν − ω)2 + ε2
. (2.247)

16In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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which we have separated into real and imaginary parts. Under an integral sign, the first term, in the
limit ε→ 0, is equivalent to taking a principal part of the integral. That is, for any function F (ν) which is
regular at ν = ω,

lim
ε→0

∞∫
−∞

dν

2π

ν − ω
(ν − ω)2 + ε2

F (ν) ≡ ℘
∞∫
−∞

dν

2π

F (ν)

ν − ω
. (2.248)

The principal part symbol ℘ means that the singularity at ν = ω is elided, either by smoothing out the
function 1/(ν − ε) as above, or by simply cutting out a region of integration of width ε on either side of
ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ε

u2 + ε2
. (2.249)

For |u| � ε, h(u) ' ε/u2, which vanishes as ε→ 0. For u = 0, h(0) = 1/ε which diverges as ε→ 0. Thus,
h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a
distance greater that ε. Finally, note that

∞∫
−∞

duh(u) = π , (2.250)

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

lim
ε→0

ε

u2 + ε2
= πδ(u) . (2.251)

Thus, for positive infinitesimal ε,
1

u± iε
=
℘

u
∓ iπδ(u) , (2.252)

a most useful result.

We now return to our initial result 2.246, and we separate χ̂(ω) into real and imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (2.253)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore
have, for every real value of ω,

0 =

∞∫
−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [ ℘

ν − ω
− iπδ(ν − ω)

]
. (2.254)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

χ′(ω) = +℘

∞∫
−∞

dν

π

χ̂′′(ν)

ν − ω
(2.255)

χ′′(ω) = −℘
∞∫
−∞

dν

π

χ̂′(ν)

ν − ω
. (2.256)
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2.10 Appendix : Method of Characteristics

2.10.1 Quasilinear partial differential equations

Consider the quasilinear PDE

a1(x, φ)
∂φ

∂x1

+ a2(x, φ)
∂φ

∂x2

+ . . .+ aN (x, φ)
∂φ

∂xN
= b(x, φ) . (2.257)

This PDE is called ‘quasilinear’ because it is linear in the derivatives ∂φ/∂xj . The N independent vari-
ables are the elements of the vector x = (x1, . . . , xN ). A solution is a function φ(x) which satisfies the
PDE.

Now consider a curve x(s) parameterized by a single real variable s satisfying

dxj
ds

= aj
(
x, φ(x)

)
, (2.258)

where φ(x) is a solution of eqn. 2.257. Along such a curve, which is called a characteristic, the variation
of φ is

dφ

ds
=

N∑
j=1

∂φ

∂xj

dxj
ds

= b
(
x(s), φ

)
. (2.259)

Thus, we have converted our PDE into a set of N + 1 ODEs. To integrate, we must supply some initial
conditions of the form

g
(
x, φ)

∣∣∣
s=0

= 0 . (2.260)

This defines an (N − 1)-dimensional hypersurface, parameterized by {ζ1, . . . , ζN−1}:

xj(s = 0) = hj(ζ1, . . . , ζN−1) , j ∈ {1, . . . , N}
φ(s = 0) = f(ζ1, . . . , ζN−1) .

(2.261)

If we can solve for all the characteristic curves, then the solution of the PDE follows. For every x, we
identify the characteristic curve upon which x lies. The characteristics are identified by their parameters
(ζ1, . . . , ζN−1). The solution is then φ(x) = φ(s; ζ1, . . . , ζN−1). If two or more characteristics cross, the
solution is multi-valued, or a shock has occurred.

2.10.2 Example

Consider the PDE
φt + t2 φx = −xφ . (2.262)

We identify a1(t, x, φ) = 1 and a2(t, x, φ) = t2, as well as b(t, x, φ) = −xφ. The characteristics are curves(
t(s), x(s)

)
satisfing

dt

ds
= 1 ,

dx

ds
= t2 . (2.263)
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The variation of φ along each of the characteristics is given by

dφ

ds
= −xφ . (2.264)

The initial data are expressed parametrically as

t(s = 0) = 0 , x(s = 0) = ζ , φ(s = 0) = f(ζ) . (2.265)

We now solve for the characteristics. We have

dt

ds
= 1 ⇒ t(s, ζ) = s . (2.266)

It then follows that
dx

ds
= t2 = s2 ⇒ x(s, ζ) = ζ + 1

3s
3 . (2.267)

Finally, we have

dφ

ds
= −xφ = −

(
ζ + 1

3s
3
)
φ ⇒ φ(s, ζ) = f(ζ) exp

(
− 1

12s
4 − sζ

)
. (2.268)

We may now eliminate (ζ, s) in favor of (x, t), writing s = t and ζ = x− 1
3 t

3, yielding the solution

φ(x, t) = φ
(
x− 1

3 t
3, t = 0

)
exp

(
1
4 t

4 − xt
)
. (2.269)
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3.2 Gaussian White Noise

Consider a generalized Langevin equation of the form

du

dt
= f(u, t) + g(u, t) η(t) , (3.1)

where η(t) is a Gaussian random function with zero mean and〈
η(t) η(t′)

〉
= φ(t− t′) . (3.2)

The spectral function of the noise is given by the Fourier transform,

φ̂(ω) =

∞∫
−∞

ds φ(s) e−iωs = lim
T→∞

〈 1

T

∣∣η̂T (ω)
∣∣2〉 , (3.3)

using the notation of §2.6.3. When φ(s) = Γ δ(s) , we have φ̂(ω) = Γ , i.e. independent of frequency. This
is the case of Gaussian white noise. When φ̂(ω) has a nontrivial dependence on frequency, the noise is said
to be colored. Gaussian white noise has an infinite variance φ(0), which leads to problems. In particular,
the derivative u̇ strictly speaking does not exist because the function η(t) is not continuous.

As an example of the sort of problem this presents, consider the differential equation u̇(t) = η(t)u(t).
Let’s integrate this over a time period ∆t from tj to tj+1, where tj = j∆t. We then have u(tj+1) =(
1 + η(tj)∆t

)
u(tj). Thus, we find

u(tN ) =
(

1 + η(tN−1) ∆t
)
· · ·
(

1 + η(t0) ∆t
)
u(t0) . (3.4)

Now let’s compute the average
〈
u(tN )

〉
. Since η(tj) is uncorrelated with η(tk) for all k 6= j, we can

take the average of each of the terms individually, and since η(tj) has zero mean, we conclude that〈
u(tN )

〉
= u(t0). On average, there is no drift.

Now let’s take a continuum limit of the above result, which is to say ∆t → 0 with N∆t finite. Setting
t0 = 0 and tN = t, we have

u(t) = u(0) exp


t∫

0

ds η(s)

 , (3.5)

and for Gaussian η(s) we have

〈
u(t)

〉
= u(0) exp

1
2

t∫
0

ds

t∫
0

ds′
〈
η(s) η(s′)

〉 = u(0) eΓt/2 . (3.6)

In the continuum expression, we find there is noise-induced drift. The continuum limit of our discrete
calculation has failed to match the continuum results. Clearly we have a problem that we must resolve.
The origin of the problem is the aforementioned infinite variance of η(t). This means that the Langevin
equation 3.1 is not well-defined, and in order to get a definite answer we must provide a prescription
regarding how it is to be integrated1.

1We will see that Eqn. 3.4 corresponds to the Itô prescription and Eqn. 3.5 to the Stratonovich prescription.
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3.3 Stochastic Integration

3.3.1 Langevin equation in differential form

We can make sense of Eqn. 3.1 by writing it in differential form,

du = f(u, t) dt+ g(u, t) dW (t) , (3.7)

where

W (t) =

t∫
0

ds η(s) . (3.8)

This is because W (t) is described by a Wiener process, for which the sample paths are continuous with
probability unity. We shall henceforth take Γ ≡ 1, in which case W (t) is Gaussianly distributed with
〈W (t)〉 = 0 and 〈

W (t)W (t′)
〉

= min(t, t′) . (3.9)

The solution to Eqn. 3.7 is formally

u(t) = u(0) +

t∫
0

ds f
(
u(s), s

)
+

t∫
0

dW (s) g
(
u(s), s

)
. (3.10)

Note that Eqn. 3.9 implies

d

dt′
〈
W (t)W (t′)

〉
= Θ(t− t′) ⇒

〈dW (t)

dt

dW (t′)

dt′
〉

=
〈
η(t) η(t′)

〉
= δ(t− t′) . (3.11)

3.3.2 Defining the stochastic integral

Let F (t) be an arbitrary function of time, and let {tj} be a discretization of the interval [0, t] with j ∈
{0, . . . , N}. The simplest example to consider is tj = j∆t where ∆t = t/N . Consider the quantity

SN (α) =
N−1∑
j=0

[
(1− α)F (tj) + αF (tj+1)

][
W (tj+1)−W (tj)

]
, (3.12)

where α ∈ [0, 1]. Note that the first term in brackets on the RHS can be approximated as

F (τj) = (1− α)F (tj) + αF (tj+1) , (3.13)

where τj ≡ (1−α) tj +α tj+1 ∈ [tj , tj+1]. To abbreviate notation, we will write F (tj) = Fj , W (tj) = Wj ,
etc. We may take t0 ≡ 0 and W0 ≡ 0. The quantities ∆Wj ≡ Wj+1 −Wj are independently and Gaussianly
distributed with zero mean for each j. This means

〈
∆Wj

〉
= 0 and〈

∆Wj ∆Wk

〉
=
〈
(∆Wj)

2
〉
δjk = ∆tj δjk , (3.14)
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where ∆tj ≡ tj+1 − tj . Wick’s theorem then tells us〈
∆Wj ∆Wk ∆Wl ∆Wm

〉
=
〈
∆Wj ∆Wk

〉〈
∆Wl ∆Wm

〉
+
〈
∆Wj ∆Wl

〉〈
∆Wk ∆Wm

〉
+
〈
∆Wj ∆Wm

〉〈
∆Wk ∆Wl

〉
= ∆tj ∆tl δjk δlm + ∆tj ∆tk δjl δkm + ∆tj ∆tk δjm δkl . (3.15)

EXERCISE: Show that
〈
W 2
N

〉
= t and

〈
W 4
N

〉
= 3t2.

The expression in Eqn. 3.12 would converge to the integral

S =

t∫
0

dW (s)F (s) (3.16)

independent of αwere it not for the fact that ∆Wj/∆tj has infinite variance in the limitN →∞. Instead,
we will find that SN (α) in general depends on the value of α. For example, the Itô integral is defined as
the N → ∞ limit of SN (α) with α = 0, whereas the Stratonovich integral is defined as the N → ∞ limit
of SN (α) with α = 1

2 .

We now define the stochastic integral

t∫
0

dW (s)
[
F (s)

]
α
≡ ms− lim

N→∞

N−1∑
j=0

[
(1− α)F (tj) + αF (tj+1)

][
W (tj+1)−W (tj)

]
, (3.17)

where ms-lim stands for mean square limit. We say that a sequence SN converges to S in the mean square
if limN→∞

〈
(SN − S)2

〉
= 0. Consider, for example, the sequence SN =

∑N−1
j=0 (∆Wj)

2. We now take
averages, using

〈
(∆Wj)

2
〉

= tj+1 − tj ≡ ∆tj . Clearly S = 〈SN 〉 = t. We also have

〈
S2
N

〉
=

N−1∑
j=0

N−1∑
k=0

〈
(∆Wj)

2 (∆Wk)
2
〉

= (N2 + 2N)(∆t)2 = t2 +
2t2

N
, (3.18)

where we have used Eqn. 3.15. Thus,
〈
(SN − S)2

〉
= 2t2/N → 0 in the N → ∞ limit. So SN converges

to t in the mean square.

Next, consider the case where F (t) = W (t). We find

SN (α) =
N−1∑
j=0

[
(1− α)W (tj) + αW (tj+1)

][
W (tj+1)−W (tj)

]
=

N−1∑
j=0

(
Wj + α∆Wj

)
∆Wj

= 1
2

N−1∑
j=0

[(
Wj + ∆Wj

)2 −W 2
j + (2α− 1)

(
∆Wj

)2]
= 1

2W
2
N + (α− 1

2)

N−1∑
j=0

(
∆Wj

)2
.

(3.19)

Taking the average, 〈
SN (α)

〉
= 1

2 tN + (α− 1
2)

N−1∑
j=0

(tj+1 − tj) = α t . (3.20)
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Does SN converge to 〈SN 〉 = αt in the mean square? Let’s define QN ≡
∑N−1

j=0 (∆Wj)
2, which is the

sequence we analyzed previously. Then SN = 1
2W

2
N + (α− 1

2)QN . We then have〈
S2
N

〉
= 1

4

〈
W 4
N

〉
+ (α− 1

2)
〈
W 2
N QN

〉
+ (α− 1

2)2
〈
Q2
N

〉
, (3.21)

with

〈
W 4
N

〉
=

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

〈
∆Wj ∆Wk ∆Wl ∆Wm

〉
= 3N2(∆t)2

〈
W 2
N QN

〉
=

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

〈
∆Wj ∆Wk (∆Wl)

2
〉

= (N2 + 2N)(∆t)2

〈
Q2
N

〉
=

N−1∑
j=0

N−1∑
k=0

〈
(∆Wj)

2 (∆Wk)
2
〉

= (N2 + 2N)(∆t)2 .

(3.22)

Therefore 〈
S2
N

〉
=
(
α2 + 1

2

)
t2 +

(
α2 − 1

4

)
· 2t2

N
. (3.23)

Therefore
〈
(SN − αt

)2〉
= 1

2 t
2 +O(N−1) and SN does not converge to αt in the mean square! However,

if we take

S ≡
t∫

0

dW (s)
[
W (s)

]
α

= 1
2W

2(t) +
(
α− 1

2

)
t , (3.24)

we have SN − S = (α − 1
2)(QN − t), SN converges to S in the mean square. What happened in this

example is that QN =
∑N−1

j=0 (∆Wj)
2 has zero variance in the limit N → ∞, but W 2

N has finite variance.
Therefore SN has finite variance, and it cannot converge in the mean square to any expression which
has zero variance.

3.3.3 Summary of properties of the Itô stochastic integral

For the properties below, it is useful to define the notion of a nonanticipating function F (t) as one which
is independent of the difference W (s)−W (t) for all s > t at any given t. An example of such a function
would be any Itô integral of the form

∫ t
0dW (s)G(s) or

∫ t
0dW (s)G[W (s)] , where we drop the [· · · ]α

notation since the Itô integral is specified. We then have:2

(i) The Itô integral
t∫

0

dW (s)F (s) exists for all smooth nonanticipating functions F (s).

(ii) [dW (t)]2 = dt but [dW (t)]2+2p = 0 for any p > 0. This is because

t∫
0

[dW (s)]2 F (s) = ms− lim
N→∞

N−1∑
j=0

Fj (∆Wj)
2 =

t∫
0

ds F (s) , (3.25)

2See Gardiner §4.2.7.
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and because
〈
(∆Wj)

2+2p
〉
∝ (∆t)1+p for p > 0. For the same reason, we may neglect products

such as dt dW (t).

(iii) We see in (ii) that the mth power of the differential dW (t) is negligible for m > 2. If, on the other
hand, we take the differential of the mth power of W (t), we obtain

d[Wm(t)] =
[
W (t) + dW (t)

]m − [W (t)
]m

=

m∑
k=1

(
m

k

)
Wm−k(t)

[
dW (t)

]k
= mWm−1(t) dW (t) + 1

2m(m− 1)Wm−2(t) dt+ o(dt2) .

(3.26)

Evaluating the above expression for m = n+ 1 and integrating, we have

t∫
0

d
[
Wn+1(s)

]
= Wn+1(t)−Wn+1(0)

= (n+ 1)

t∫
0

dW (s)Wn(s) + 1
2n(n+ 1)

t∫
0

ds Wn−1(s) ,

(3.27)

and therefore
t∫

0

dW (s)Wn(s) =
Wn+1(t)−Wn+1(0)

n+ 1
− 1

2n

t∫
0

ds Wn−1(s) . (3.28)

(iv) Consider the differential of a function f
[
W (t), t

]
:

df
[
W (t), t

]
=

∂f

∂W
dW +

∂f

∂t
dt+

1

2

∂2f

∂W 2
(dW )2 +

∂2f

∂W ∂t
dW dt+

1

2

∂2f

∂t2
(dt)2 + . . .

=

(
∂f

∂t
+

1

2

∂2f

∂W 2

)
dt+

∂f

∂W
dW + o(dt) .

(3.29)

For example, for f = exp(W ), we have d eW (t) = eW (t)
(
dW (t)+ 1

2dt
)
. This is known as Itô’s formula.

As an example of the usefulness of Itô’s formula, consider the function f
[
W (t), t

]
= W 2(t) − t ,

for which Itô’s formula yields df = 2WdW . Integrating the differential df , we thereby recover the
result,

t∫
0

dW (s)W (s) = 1
2W

2(t)− 1
2 t . (3.30)

(v) If F (t) is nonanticipating, then 〈 t∫
0

dW (s) F (s)

〉
= 0 . (3.31)

Again, this is true for the Itô integral but not the Stratonovich integral.
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(vi) The correlator of two Itô integrals of nonanticipating functions F (s) and G(s′) is given by〈 t∫
0

dW (s) F (s)

t′∫
0

dW (s′)G(s′)

〉
=

t̃∫
0

ds F (s)G(s) , (3.32)

where t̃ = min(t, t′). This result was previously obtained by writing dW (s) = η(s) ds and then
invoking the correlator

〈
η(s) η(s′)

〉
= δ(s− s′).

(vii) Oftentimes we encounter stochastic integrals in which the integrand contains a factor of δ(t − t1)
or δ(t − t2), where the range of integration is the interval [t1, t2]. Appealing to the discretization
defined in §3.3.2, it is straightforward to show

I1 =

t2∫
t1

dt f(t) δ(t− t1) = (1− α) f(t1)

I2 =

t2∫
t1

dt f(t) δ(t− t2) = α f(t2) .

(3.33)

Thus, for Itô, I1 = f(t1) and I2 = 0, whereas for Stratonovich I1 = 1
2 f(t1) and I2 = 1

2 f(t2).

3.3.4 Fokker-Planck equation

We saw in §2.4 how the drift and diffusion relations〈
δu(t)

〉
= F1

(
u(t)

)
δt ,

〈[
δu(t)

]2〉
= F2

(
u(t)

)
δt , (3.34)

where δu(t) = u(t+ δt)− u(t), results in a Fokker-Planck equation

∂P (u, t)

∂t
= − ∂

∂u

[
F1(u)P (u, t)

]
+

1

2

∂2

∂u2

[
F2(u)P (u, t)

]
. (3.35)

Consider now the differential Langevin equation

du = f(u, t) dt+ g(u, t) dW (t) . (3.36)

Let’s integrate over the interval [0, t], and work only to order t in u(t) − u0, where u0 ≡ u(0). We then
have

u(t)− u0 =

t∫
0

ds f
(
u(s)

)
+

t∫
0

dW (s) g
(
u(s)

)

= f(u0) t+ g(u0)

t∫
0

dW (s) + g′(u0)

t∫
0

dW (s)
[
u(s)− u0

]
+ . . .

= f(u0) t+ g(u0)W (t) + f(u0) g′(u0)

t∫
0

dW (s) s+ g(u0) g′(u0)

t∫
0

dW (s)W (s) + . . . ,

(3.37)
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where W (t) =
t∫

0

ds η(s) = 0, hence W (0) = 0. Averaging, we find

〈
u(t)− u0

〉
= f(u0) t+ α g(u0) g′(u0) t+ . . . (3.38)

and 〈[
u(t)− u0

]2〉
= g2(u0) t+ . . . (3.39)

After a brief calculation, we obtain

F1(u) = f(u) + α g(u) g′(u)

F2(u) = g2(u) .
(3.40)

We see how, for any choice other than the Itô value α = 0, there is a noise-induced drift.

3.4 Stochastic Differential Equations

The general form we are considering is

du = f(u, t) dt+ g(u, t) dW . (3.41)

This is a stochastic differential equation (SDE). We are here concerned with (i) change of variables, (ii)
multivariable formulations, and (iii) differences between Itô and Stratonovich solutions.

3.4.1 Itô change of variables formula

Suppose we change variables from u to v(u, t). Then

dv =
∂v

∂t
dt+

∂v

∂u
du+

1

2

∂2v

∂u2
(du)2 + o(dt)

=

(
∂v

∂t
+ f

∂v

∂u
+ 1

2g
2 ∂

2v

∂u2

)
dt+ g

∂v

∂u
dW + o(dt) ,

(3.42)

where we have used (dW )2 = dt. Note that if v = v(u) we do not have the ∂v
∂t dt term. This change of

variables formula is only valid for the Itô case. In §3.4.5 below, we will derive the corresponding result
for the Stratonovich case, and show that it satisfies the familiar chain rule.

EXERCISE: Derive the change of variables formula for general α. Hint: First integrate the SDE over a
small but finite time interval ∆tj to obtain

∆uj = fj ∆tj +
[
(1− α) gj + α gj+1

]
∆Wj

=
[
fj + α gj g

′
j

]
∆tj + gj ∆Wj ,

(3.43)

up to unimportant terms, where uj = u(tj), fj = f(uj , tj), gj = g(uj , tj), and g′j = ∂g
∂u

∣∣
uj ,tj

.
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Example: Kubo oscillator

As an example, consider the Kubo oscillator3,

du = iω u dt+ iλ u dW . (3.44)

This can be interpreted as a linear oscillator with a fluctuating frequency. If λ = 0, we have u̇ = iωu,
with solution u(t) = u(0) eiωt. We now implement two changes of variables:

(i) First, we define v = u e−iωt. Plugging this into Eqn. 3.42, we obtain

dv = iλ v dW . (3.45)

(ii) Second, we write y = ln v. Appealing once again to the Itô change of variables formula, we find

dy = 1
2λ

2 dt+ iλ dW . (3.46)

The solution is therefore

y(t) = y(0) + 1
2λ

2t+ iλW (t) =⇒ u(t) = u(0) eiωt eλ
2t/2 eiλW (t) . (3.47)

Averaging over the Gaussian random variable W , we have〈
u(t)

〉
= u(0) eiωt eλ

2t/2 e−λ
2〈W 2(t)〉/2 = u(0) eiωt . (3.48)

Thus, the average of u(t) behaves as if it is unperturbed by the fluctuating piece. There is no noise-induced
drift. We can also compute the correlator,〈

u(t)u∗(t′)
〉

=
∣∣u(0)

∣∣2 eiω(t−t′) eλ
2min(t,t′) . (3.49)

Thus,
〈∣∣u(t)

∣∣2〉 =
∣∣u(0)

∣∣2 eλ2t. If u(0) is also a stochastic variable, we must average over it as well.

3.4.2 Solvability by change of variables

Following Riecke4, we ask under what conditions the SDE du = f(u, t) dt+g(u, t) dW can be transformed
to

dv = α(t) dt+ β(t) dW , (3.50)

which can be directly integrated via Itô. From Itô’s change of variables formula Eqn. 3.42, we have

dv =

(
∂v

∂t
+ f

∂v

∂u
+ 1

2g
2 ∂

2v

∂u2

)
dt+ g

∂v

∂u
dW , (3.51)

hence

α(t) =
∂v

∂t
+ f

∂v

∂u
+ 1

2g
2 ∂

2v

∂u2
, β(t) = g

∂v

∂u
. (3.52)

3See Riecke, §5.4.1 and Gardiner §4.5.3.
4See Riecke, §5.4.2.
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We therefore have

∂v

∂u
=

β(t)

g(u, t)
⇒ ∂2v

∂u2
= − β

g2

∂g

∂u
,

∂2v

∂u ∂t
=

1

g

dβ

dt
− β

g2

∂g

∂t
. (3.53)

Setting ∂α/∂u = 0 then results in

1

g

dβ

dt
− β

g2

∂g

∂t
+

∂

∂u

[
β
f

g
− 1

2β
∂g

∂u

]
= 0 , (3.54)

or
d lnβ

dt
=
∂ ln g

∂t
− g ∂

∂u

(
f

g

)
+ 1

2 g
∂2g

∂u2
. (3.55)

The LHS of the above equation is a function of t alone, hence the solvability condition becomes

∂

∂u

[
∂ ln g

∂t
− g ∂

∂u

(
f

g

)
+ 1

2 g
∂2g

∂u2

]
= 0 . (3.56)

If the above condition holds, one can find a u-independent β(t), and from the second of Eqn. 3.52 one
then obtains ∂v/∂u. Plugging this into the first of Eqn. 3.52 then yields α(t), which is itself guaranteed
to be u-independent.

3.4.3 Multicomponent SDE

Let u = {u1, . . . , uK} and consider the SDE

dua = Aa dt+Bab dWb , (3.57)

where repeated indices are summed over, and where〈
dWb dWc

〉
= δbc dt . (3.58)

Now suppose f(u) is a scalar function of the collection {u1, . . . , uK}. We then have

df =
∂f

∂ua
dua +

1

2

∂2f

∂ua ∂ub
dua dub + o(dt)

=
∂f

∂ua

(
Aa dt+Bab dWb

)
+

1

2

∂2f

∂ua ∂ub

(
Aa dt+Baa′ dWa′

)(
Ab dt+Bbb′ dWb′

)
+ o(dt)

=

[
Aa

∂f

∂ua
+

1

2

∂2f

∂ua ∂ub

(
BBt

)
ba

]
dt+

∂f

∂ua
Bab dWb + o(dt) .

(3.59)

We also may derive the Fokker-Planck equation,

∂P

∂t
= − ∂

∂ua

(
AaP

)
+

1

2

∂2

∂ua ∂ub

[
(BBt)abP

]
. (3.60)
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3.4.4 SDEs with general α expressed as Itô SDEs (α = 0)

We return to the single component case and the SDE

du = f(u, t) dt+ g(u, t) dW (t) . (3.61)

Formally, we can write

u(t)− u(0) =

t∫
0

ds f
(
u(s), s

)
+

t∫
0

dW (s) g
(
u(s), s

)
. (3.62)

The second term on the RHS is defined via its discretization, with

t∫
0

dW (s)
[
g
(
u(s), s

)]
α
≡ ms− lim

N→∞

N−1∑
j=0

g
(
(1− α)uj + αuj+1, tj

)
∆Wj

= ms− lim
N→∞

N−1∑
j=0

[
g(uj , tj) ∆Wj + α

∂g

∂u
(uj , tj) (uj+1 − uj) ∆Wj

]
.

(3.63)

Now if u satisfies the SDE du = f dt+ g dW , then

uj+1 − uj = f(uj , tj) ∆tj + g(uj , tj) ∆Wj , (3.64)

where ∆tj = tj+1 − tj , and inserting this into the previous equation gives

t∫
0

dW (s)
[
g
(
u(s), s

)]
α

= ms− lim
N→∞

N−1∑
j=0

[
g(uj , tj) ∆Wj + α f(uj , tj)

∂g

∂u
(uj , tj) ∆tj ∆Wj + α g(uj , tj)

∂g

∂u
(uj , tj) (∆Wj)

2
]

=

t∫
0

dW (s)
[
g
(
u(s), s

)]
0

+ α

t∫
0

ds g
(
u(s), s

)∂g
∂u

(
u(s), s

)
,

(3.65)

where the stochastic integral with α = 0 found on the last line above is the Itô integral. Thus, the
solution of the stochastic differential equation Eqn. 3.61, using the prescription of stochastic integration
for general α, is equivalent to the solution using the Itô prescription (α = 0) if we substitute

fI(u, t) = f(u, t) + α g(u, t)
∂g(u, t)

∂u
, gI(u, t) = g(u, t) , (3.66)

where the I subscript denotes the Itô case. In particular, since α = 1
2 for the Stratonovich case,

du = f dt+ g dW [Itô] =⇒ du =

(
f − 1

2 g
∂g

∂u

)
dt+ g dW [Stratonovich]

du = f dt+ g dW [Stratonovich] =⇒ du =

(
f + 1

2 g
∂g

∂u

)
dt+ g dW [Itô] .
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Kubo oscillator as a Stratonovich SDE

Consider the case of the Kubo oscillator, for which f = iωu and g = iλu. Viewed as a Stratonovich SDE,
we transform to Itô form to obtain

du =
(
iω − 1

2λ
2
)
u dt+ iλu dW . (3.67)

Solving as in §3.4.1, we find
u(t) = u(0) eiωt eiλW (t) , (3.68)

hence 〈
u(t)

〉
= u(0) eiωt e−λ

2t/2 ,
〈
u(t)u∗(t′)

〉
=
∣∣u(0)

∣∣2 eiω(t−t′) e−λ
2|t−t′|/2 . (3.69)

We see that there is noise-induced drift and decay in the Stratonovich case.

Multivariable case

Suppose we have

dua = Aa dt+Bab dWb (α−discretization)

= Ãa dt+ B̃ab dWb (Itô) .
(3.70)

Using 〈 dWa dWb 〉 = δab dt , applying the above derivation in §3.4.3, we obtain

Ãa = Aa + α
∂Bac
∂ub

Bt
cb , B̃ab = Bab , (3.71)

where repeated indices are summed. The resulting Fokker-Planck equation is then

∂P

∂t
= − ∂

∂ua

[(
Aa + α

∂Bac
∂ub

Bt
cb

)
P

]
+

1

2

∂2

∂ua ∂ub

[(
BBt)ab P

]
. (3.72)

When α = 1
2 , we obtain the Stratonovich form,

∂P

∂t
= − ∂

∂ua

(
Aa P

)
+

1

2

∂

∂ua

[
Bac

∂

∂ub

(
Bt
cb P

)]
. (3.73)

3.4.5 Change of variables in the Stratonovich case

We saw in Eqn. 3.42 how a change of variables leads to a new SDE in the Itô case. What happens in the
Stratonovich case? To see this, we write the Stratonovich SDE,

du = f dt+ g dW , (3.74)

in its Itô form,

du =

(
f + 1

2 g
∂g

∂u

)
dt+ g dW , (3.75)
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and now effect the change of variables v = v(u). We leave the general case of v = v(u, t) to the student.
Applying Eqn. 3.42, we find

dv =

[(
f +

1

2
g
∂g

∂u

)
dv

du
+

1

2

d2v

du2
g2

]
dt+

∂v

∂u
g dW

=

[
f

u′
+

1

2

∂g

∂v

g

(u′)2
− 1

2

g2 u′′

(u′)3

]
dt+

g

u′
dW ,

(3.76)

where u′ = du/dv and u′′ = d2u/dv2. Now that everything in the last line above is expressed in terms of
v and t, we transform back to the Stratonovich form, resulting in

dv = f̃ dt+ g̃ dW , (3.77)

with

f̃ =
f

u′
+

1

2

∂g

∂v

g

(u′)2
− 1

2

g2 u′′

(u′)3
− 1

2

(
g

u′

)
∂

∂v

(
g

u′

)
=
f

u′
(3.78)

and
g̃ =

g

u′
. (3.79)

Thus,

dv =
1

u′

[
f dt+ g dW

]
=
dv

du
du , (3.80)

which satisfies the familiar chain rule!

3.5 Applications

3.5.1 Ornstein-Uhlenbeck redux

The Ornstein-Uhlenbeck process is described by the SDE

dx = −β x dt+
√

2DdW (t) . (3.81)

Since the coefficient of dW is independent of x, this equation is the same when the Itô prescription is
taken. Changing variables to y = x eβt , we have

dy =
√

2Deβt dW (t) , (3.82)

with solution

x(t) = x(0) e−βt +
√

2D

t∫
0

dW (s) e−β(t−s) . (3.83)

We may now compute

〈
x(t)

〉
= x(0) e−βt ,

〈(
x(t)− x(0) e−βt

)2〉
=
D

β

(
1− e−2βt

)
. (3.84)
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The correlation function is also easily calculable:〈
x(t)x(t′)

〉
c

=
〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
= 2D

〈 t∫
0

dW (s) e−β(t−s)
t′∫

0

dW (s′) e−β(t′−s′)
〉

= 2De−β(t+t′)

min(t,t′)∫
0

ds e2βs =
D

β

(
e−β|t−t

′| − e−β(t+t′)
)
.

(3.85)

3.5.2 Time-dependence

Consider the SDE,
du = α(t)u dt+ β(t)u dW (t) . (3.86)

Writing v = lnu and appealing the the Itô change of variables formula in Eqn. 3.42, we have

dv =
(
α(t)− 1

2β
2(t)
)
dt+ β(t) dW (t) , (3.87)

which may be directly integrated to yield

u(t) = u(0) exp


t∫

0

ds
[
α(s)− 1

2β
2(s)

]
+

t∫
0

dW (s) β(s)

 . (3.88)

Using the general result for the average of the exponential of a Gaussian random variable,
〈
exp(φ)

〉
=

exp
(

1
2〈φ

2〉
)
, we have

〈
un(t)

〉
= un(0) exp


t∫

0

ds
[
nα(s) + 1

2n(n− 1)β2(s)
] . (3.89)

3.5.3 Colored noise

We can model colored noise using the following artifice5. We saw above how the Ornstein-Uhlenbeck
process yields a correlation function

C(s) =
〈
u(t)u(t+ s)

〉
=
D

β
e−β|s| , (3.90)

in the limit t→∞. This means that the spectral function is

Ĉ(ω) =

∞∫
−∞

ds C(s) e−iωs =
2D

β2 + ω2
, (3.91)

5See Riecke §5.6.
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which has spectral variation. We henceforth set 2D ≡ β2 so that C(s) = 1
2β e

−β|s|, and Ĉ(ω) = β2/(β2 +

ω2). Note that Ĉ(0) =
∞∫
−∞
ds C(s) = 1.

Consider now a quantity x(t) which is driven by the OU process, viz.

du = −β u dt+ β dW (t)

dx

dt
= a(t)x+ b(t)u(t)x ,

(3.92)

where a(t) and b(t) may be time-dependent. The second of these is an ordinary differential equation
and not a SDE since u(t) is a continuous function, even though it is stochastic. As we saw above, the
solution for u(t) is

u(t) = u(0) e−βt + β

t∫
0

dW (s) e−β(t−s) . (3.93)

Therefore

x(t) = x(0) exp


t∫

0

ds a(s) + u(0)

t∫
0

ds b(s) e−βs + β

t∫
0

ds b(s)

s∫
0

dW (s′) e−β(s−s′)

 . (3.94)

It is convenient to reexpress the last term in brackets such that

x(t) = x(0) exp


t∫

0

ds a(s) + u(0)

t∫
0

ds b(s) e−βs + β

t∫
0

dW (s′)

t∫
s′

ds b(s) e−β(s−s′)

 . (3.95)

Now let us take the β →∞ limit. We know that for any smooth function f(s) that

lim
β→∞

β

t∫
s′

ds b(s) e−β(s−s′) = b(s′) , (3.96)

hence

lim
β→∞

x(t) = x(0) exp


t∫

0

ds a(s) +

t∫
0

dW (s) b(s)

 . (3.97)

Now since
〈
u(t)u(t′)

〉
= C(t− t′) = δ(t− t′) in the β → ∞ limit, we might as well regard x(t) as being

stochastically forced by a Wiener process and describe its evolution using the SDE,

dx = a(t)x dt+ b(t)x dW (t) (α =??) . (3.98)

As we have learned, the integration of SDEs is a negotiable transaction, which requires fixing a value of
the interval parameter α. What value of α do we mean for the above equation? We can establish this
by transforming it to an Itô SDE with α = 0, using the prescription in Eqn. 3.66. Thus, with α as yet
undetermined, the Itô form of the above equation is

dx =
[
a(t) + α b2(t)

]
x dt+ b(t)x dW (t) . (3.99)
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Now we use the Itô change of variables formula 3.42 to write this as a SDE for y = lnx:

dy =
[
a(t) + (α− 1

2) b2(t)
]
dt+ b(t) dW (t) , (3.100)

which may be integrated directly, yielding

x(t) = x(0) exp


t∫

0

ds
[
a(s) + (α− 1

2) b2(s)
]

+

t∫
0

dW (s) b(s)

 . (3.101)

Comparing with Eqn. 3.97, we see that α = 1
2 , i.e. Stratonovich form.

Finally, what of the correlations? Consider the case where a(t) → iν and b(t) → iλ are complex con-
stants, in which case we have a colored noise version of the Kubo oscillator:

du = −β u dt+ β dW (t)

dz

dt
= iν z + iλ u(t) z .

(3.102)

The solution is

z(t) = z(0) exp

iνt+
iλ

β
u(0)

(
1− e−βt

)
+ iλ

t∫
0

dW (s)
(

1− e−β(t−s)
) . (3.103)

This matches the Stratonovich solution to the Kubo oscillator, z(t) = z(0) eiνt eiλW (t) in the limit β →∞ ,
as we should by now expect. The average oscillator coordinate is

〈
z(t)

〉
= z(0) exp

{
iνt+

iλ

β
u(0)

(
1− e−βt

)
− 1

2λ
2t+

λ2

2β

(
1− e−βt

)2}
. (3.104)

As β → ∞ we recover the result from Eqn. 3.69. For β → 0, the stochastic variable u(t) is fixed at u(0),
and z(t) = z(0) exp

(
i[ν + λu(0)] t

)
, which is correct.

Let’s now compute the correlation function
〈
z(t) z∗(t′)

〉
in the limit t, t′ → ∞, where it becomes a func-

tion of t−t′ alone due to decay of the transients arising from the initial conditions. It is left as an exercise
to the reader to show that

Y (s) = lim
t→∞

〈
z(t+ s) z∗(t)

〉
= |z(0)|2 exp

{
iνs− 1

2λ
2 |s|+ λ2

2β

(
1− e−β|s|

)}
. (3.105)

As β → ∞ , we again recover the result from Eqn. 3.69, and for β = 0 (which is taken after t → ∞),
we also obtain the expected result. We see that the coloration of the noise affects the correlator Y (s),
resulting in a different time dependence and hence a different spectral function Ŷ (ω).
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3.5.4 Remarks about financial markets

Let p be the price of a financial asset, such as a single share of stock. We model the dynamics of p(t) by
a stochastic process described by the SDE

dp = r(p, t) dt+
√

2D(p, t) dW (t) , (3.106)

where r(p, t) and D(p, t) represent drift and diffusion terms. We might set r(p, t) = µ(t) p, where µ(t) is
the current interest rate being paid by banks. What about diffusion? In the late 1950’s, M. Osborne noted
that stock prices are approximately log-normally distributed. To model this, we can take D = 1

2λ
2p2.

Thus, our SDE is
dp = µ p dt+ λ p dW (t) . (3.107)

As we shall now see, this will lead to some problematic consequences.

We’ve solved this equation many times before. Changing variables to x = ln p, we have dx =
(
µ −

1
2λ

2) dt+ λ dW , and assuming µ and λ are time-independent, we have

p(t) = p(0) eµt e−λ
2t/2 eλW (t) . (3.108)

Averaging, we obtain the moments 〈
pn(t)

〉
= pn(0) enµt en(n−1)λ2t/2 . (3.109)

To appreciate the consequences of this result, let’s compute the instantaneous variance,

Var p(t) =
〈
p2(t)

〉
−
〈
p(t)

〉2

= p2(0) e2µt
(
eλ

2t − 1
)
.

(3.110)

The ratio of the standard deviation to the mean is therefore growing exponentially, and the distribution
keeps getting broader ad infinitum.

Another way to see what is happening is to examine the associated Fokker-Planck equation,

∂P

∂t
= −µ ∂

∂p

(
pP
)

+ 1
2λ

2 ∂2

∂p2

(
p2P

)
. (3.111)

Let’s look for a stationary solution by setting the LHS to zero. We integrate once on p to cancel one
power of d

dp , and set the associated constant of integration to zero, because P (p =∞, t) = 0. This leaves

d

dp

(
p2P

)
=

2µ

λ2
pP =

2µ

λ2p
(p2P ) . (3.112)

The solution is a power law,
P (p) = C p2µλ−2−2 , (3.113)

However, no pure power law distribution is normalizable on the interval [0,∞), so there is no mean-
ingful steady state for this system. If markets can be modeled by such a stochastic differential equation,
then this result is a refutation of Adam Smith’s ”invisible hand”, which is the notion that markets should
in time approach some sort of stable equilibrium.
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Stochastic variance

A more realistic model is obtained by writing6

dp = µ p dt+
√
v(p, t) p dW (t) , (3.114)

where v(p, t) is strongly nonlinear and nonseparable in p and t. Another approach is to assume the
variance v(t) is itself stochastic. We write

dp = µ p dt+
√
v(t) p dW (t)

dv = f(p, v, t) dt+ g(p, v, t)
[

cos θ dW (t) + sin θ dY (t)
]
,

(3.115)

where W (t) and Y (t) are independent Wiener processes. The variance v(t) of stock prices is observed
to relax on long-ish time scales of γ−1 ≈ 22 days. This is particularly true for aggregate quantities such
as market indices (e.g. the Dow-Jones Industrial Average (DJIA) or the Deutscher Aktien-Index (DAX)).
One typically assumes

f(p, v, t) = γ(v∞ − v) , (3.116)

describing a drift toward v = v∞, similar to the drift in the Ornstein-Uhlenbeck model. As for the
diffusive term g(p, v, t), two popular models are the Heston and Hull-White models:

g(p, v, t) =

{
κ
√
v Heston

βv Hull-White .
(3.117)

Empirically, θ ≈ π
2 , which we shall henceforth assume.

The Fokker-Planck equation for the distribution of the variance, P (v, t), is given by

∂P

∂t
=

∂

∂v

[
γ(v − v∞)P

]
+

1

2

∂2

∂v2

[
g2(v)P

]
. (3.118)

We seek a steady state solution for which the LHS vanishes. Assuming vP (v) → 0 for v → ∞, we
integrate setting the associated constant of integration to zero. This results in the equation

d

dv

[
g2(v)P (v)

]
= 2γ

(
v∞ − v
g2(v)

)
g2(v)P (v) , (3.119)

with solution

P (v) =
1

g2(v)
exp

{
2γ

v∫
dv′
(
v∞ − v′

g2(v′)

)}
. (3.120)

For the Heston model, we find

PH(v) = CH v
(2γv∞κ

−2−1) e−2γv/γ2 , (3.121)

whereas for the Hull-White model,

PHW(v) = CHW v−2(1+γβ−2) e−2γv∞/β
2v . (3.122)

6See the discussion in McCauley, §4.5 and chapter 6.
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Figure 3.1: Comparison of predictions of the Heston model (left) and the Hull-White model (right)
with the empirical probability distribution P (y, τ) for logarithmic returns of the German DAX index
between Feb. 5, 1996 and Dec. 28, 2001 (open circles). Parameters for the Heston model are r = 1.36 ,
v∞ = 5.15 × 10−5 h−1, µ = 3.03 × 10−4 h−1. Parameters for the Hull-White model are s = 0.08 , v∞ =
3.21× 10−4 h−1, and µ = 2.97× 10−4 h−1. The time interval was taken to be τ = 1 h. From R. Remer and
R. Mahnke, Physica A 344, 236 (2004).

Note that both distributions are normalizable. The explicit normalized forms are:

PH(v) =
rr

Γ(r) v∞

(
v

v∞

)r−1

exp
(
− rv/v∞

)
PHW(v) =

ss

Γ(s) v∞

(
v∞
v

)s+2

exp
(
− sv∞/v

)
,

(3.123)

with r = 2γv∞/κ
2 and s = 2γ/β2. Note that the tails of the Heston model variance distribution are

exponential with a power law prefactor, while those of the Hull-White model are power law ”fat tails”.

The SDE for the logarithmic price x = ln
[
p(t)/p(0)

]
, obtained from Itô’s change of variables formula, is

dx = µ̃ dt+
√
v dW (t) , (3.124)

where µ̃ = µ − 1
2 v. Here we assume that v is approximately constant in time as x(t) fluctuates. This

is akin to the Born-Oppenheimer approximation in quantum mechanics – we regard v(t) as the ”slow
variable” and x(t) as the ”fast variable”. Integrating this over a short time interval τ , we have

y = µ̃τ +
√
v∆W , (3.125)

with y = x(t+ τ)− x(t) and ∆W = W (t+ τ)−W (t). This says that y− µ̃τ is distributed normally with
variance

〈
(
√
v∆W )2

〉
= vτ , hence

P (y, τ | v) = (2πvτ)−1/2 exp

{
− (y − µ̃τ)2

2vτ

}
. (3.126)
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To find the distribution P (y, τ) of the logarithmic returns y, we must integrate over v with a weight
P (v), the steady state distribution of the variance:

P (y, τ) =

∞∫
0

dv P (y, τ | v)P (v) . (3.127)

The results for the Heston and Hull-White models are shown in Fig. 3.1, where they are compared with
empirical data from the DAX.



Chapter 4

The Fokker-Planck and Master Equations

4.1 References

– C. Gardiner, Stochastic Methods (4th edition, Springer-Verlag, 2010)
Very clear and complete text on stochastic methods, with many applications.
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Another standard text. Very readable, but less comprehensive than Gardiner.
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In-depth discussion of continuous path stochastic processes and connections to partial differential
equations.

– R. Mahnke, J. Kaupužs, and I. Lubashevsky, Physics of Stochastic Processes (Wiley, 2009)
Introductory sections are sometimes overly formal, but a good selection of topics.
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4.2 Fokker-Planck Equation

Here we mainly follow the discussion in chapter 5 of Gardiner, and chapter 4 of Mahnke et al.

4.2.1 Forward and backward time equations

We have already met the Fokker-Planck equation,

∂P (x, t |x′, t′)
∂t

= − ∂

∂xi

[
Ai(x, t)P (x, t |x′, t′)

]
+

1

2

∂2

∂xi ∂xj

[
Bij(x, t)P (x, t |x′, t′)

]
. (4.1)

Defining the probability flux,

Ji(x, t |x′, t′) = Ai(x, t)P (x, t |x′, t′)− 1

2

∂

∂xj

[
Bij(x, t)P (x, t |x′, t′)

]
, (4.2)

the Fokker-Planck equation takes the form of the continuity equation,

∂P (x, t |x′, t′)
∂t

+ ∇ · J(x, t |x′, t′) = 0 . (4.3)

The corresponding backward Fokker-Planck equation is given by

−∂P (x, t |x′, t′)
∂t′

= +Ai(x
′, t′)

∂P (x, t |x′, t′)
∂x′i

+ 1
2Bij(x

′, t′)
∂2P (x, t |x′, t′)

∂x′i ∂x
′
j

. (4.4)

The initial conditions in both cases may be taken to be

P (x, t |x′, t) = δ(x− x′) . (4.5)

4.2.2 Surfaces and boundary conditions

Forward equation

Integrating Eqn. 4.3 over some region Ω, we have

d

dt

∫
Ω

dx P (x, t |x′, t′) = −
∫
∂Ω

dΣ n̂ · J(x, t |x′, t′) , (4.6)

where n̂ is locally normal to the surface ∂Ω. At surfaces we need to specify boundary conditions. Gen-
erally these fall into one of three types:

(i) Reflecting surfaces satisfy n̂ · J(x, t |x′, t′)
∣∣
Σ

= 0 at the surface Σ.

(ii) Absorbing surfaces satisfy P (x, t |x′, t′)
∣∣
Σ

= 0.



4.2. FOKKER-PLANCK EQUATION 95

(iii) Continuity at a surface entails

P (x, t |x′, t′)
∣∣
Σ+

= P (x, t |x′, t′)
∣∣
Σ−

, n̂·J(x, t |x′, t′)
∣∣
Σ+

= n̂·J(x, t |x′, t′)
∣∣
Σ−

.

(4.7)

These conditions may be enforced even if the functions Ai(x, t) and Bij(x, t) may be discontinuous
across Σ.

Backward equation

For the backward FPE, we have the following1:

(i) Reflecting surfaces satisfy ni(x
′)Bij(x

′) ∂
∂x′j

P (x, t |x′, t′)
∣∣
Σ

= 0 for x′ ∈ Σ.

(ii) Absorbing surfaces satisfy P (x, t |x′, t′)
∣∣
Σ

= 0.

4.2.3 One-dimensional Fokker-Planck equation

Consider the Fokker-Planck equation in d = 1. On an infinite interval x ∈ (−∞,+∞), normalization
requires P (±∞, t) = 0, which generally2 implies ∂xP (±∞, t) = 0. On a finite interval x ∈ [a, b], we may
impose periodic boundary conditions P (a) = P (b) and J(a) = J(b).

Recall that the Fokker-Planck equation follows from the stochastic differential equation

dx = f(x, t) dt+ g(x, t) dW (t) , (4.8)

with f(x, t) = A(x, t) and g(x, t) =
√
B(x, t) , and where W (t) is a Wiener process. In general3, a

solution to the above Itô SDE exists and is unique provided the quantities f and g satisfy a Lipschitz
condition, which says that there exists a K > 0 such that

∣∣f(x, t)− f(y, t)
∣∣+
∣∣g(x, t)− g(y, t)

∣∣ < K|x− y|
for x, y ∈ [a, b]4. Coupled with this is a growth condition which says that there exists an L > 0 such that
f2(x, t) + g2(x, t) < L(1 + x2) for x ∈ [a, b]. If these two conditions are satisfied for t ∈ [0, T ], then there
is a unique solution on this time interval.

Now suppose B(a, t) = 0, so there is no diffusion at the left endpoint. The left boundary is then said to
be prescribed. From the Lipschitz condition on

√
B, this says thatB(x, t) vanishes no slower than (x−a)2,

which says that ∂xB(a, t) = 0. Consider the above SDE with the condition B(a, t) = 0. We see that

(i) If A(a, t) > 0, a particle at a will enter the region [a, b] with probability one. This is
called an entrance boundary.

(ii) If A(a, t) < 0, a particle at a will exit the region [a, b] with probability one. This is called
an exit boundary.

1See Gardiner, §5.1.2.
2I.e. for well-behaved functions which you would take home to meet your mother.
3See L. Arnold, Stochastic Differential Equations (Dover, 2012).
4One can choose convenient dimensionless units for all quantities.
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(iii) If A(a, t) = 0, a particle at a remain fixed with probability one. This is called a natural
boundary.

Mutatis mutandis, similar considerations hold at x = b, where A(b, t) > 0 for an exit and A(b, t) < 0 for
an entrance.

Stationary solutions

We now look for stationary solutions P (x, t) = Peq(x). We assume A(x, t) = A(x) and B(x, t) = B(x).
Then

J = A(x)Peq(x)− 1

2

d

dx

[
B(x)Peq(x)

]
= constant . (4.9)

Define the function

ψ(x) = exp

{
2

x∫
a

dx′
A(x′)

B(x′)

}
, (4.10)

so ψ′(x) = 2ψ(x)A(x)/B(x). Then

d

dx

(
B(x)Peq(x)

ψ(x)

)
= − 2J

ψ(x)
, (4.11)

with solution

Peq(x) =
B(a)

B(x)
· ψ(x)

ψ(a)
· Peq(a)− 2J ψ(x)

B(x)

x∫
a

dx′

ψ(x′)
. (4.12)

Note ψ(a) = 1. We now consider two different boundary conditions.

Zero current : In this case J = 0 and we have

Peq(x) =
B(a)

B(x)
· ψ(x)

ψ(a)
· Peq(a) . (4.13)

The unknown quantity P (a) is then determined by normalization:
b∫
a
dx Peq(x) = 1.

Periodic boundary conditions : Here we invoke P (a) = P (b), which requires a specific value
for J ,

J =
Peq(a)

2

[
B(a)

ψ(a)
− B(b)

ψ(b)

]/ b∫
a

dx′

ψ(x′)
. (4.14)

This leaves one remaining unknown, Peq(a), which again is determined by normalization.
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Examples

We conclude this section with two examples. The first is diffusion in a gravitational field, for which the
Langevin equation takes the form

dx = −vD dt+
√

2D dW (t) , (4.15)

where the drift velocity is vD = g/γ, with γ the frictional damping constant (Ffr = −γMẋ) and g the
acceleration due to gravity. Thus, the Fokker-Planck equation is ∂tP = vD ∂xP + D∂2

xP , whence the
solution with a reflecting (J = 0) condition at x = 0 is

Peq(x) =
D

vD
exp
(
−vD x/D

)
, (4.16)

where we have normalized P (x) on the interval x ∈ [0,+∞). This steady state distribution reflects the
fact that particles tend to fall to the bottom. If we apply instead periodic boundary conditions at x = 0
and x = L, the solution is a constant P (x) = P (0) = P (L). In this case the particles fall through the
bottom x = 0 only to return at the top x = L and keep falling, like in the game Portal 5.

Our second example is that of the Ornstein-Uhlenbeck process, described by ∂tP = ∂x(βxP ) + D∂2
xP .

The steady state solution is
Peq(x) = Peq(0) exp

(
−βx2/2D

)
. (4.17)

This is normalizable over the real line x ∈ (−∞,∞). On a finite interval, we write

Peq(x) = Peq(a) eβ(a2−x2)/2D . (4.18)

4.2.4 Eigenfunction expansions for Fokker-Planck

We saw in §4.2.1 how the (forward) Fokker-Planck equation could be written as

∂P (x, t)

∂t
= LP (x, t) , L = − ∂

∂x
A(x) +

1

2

∂2

∂x2
B(x) , (4.19)

and how the stationary state solution Peq(x) satisfies J = APeq − 1
2∂x(B Peq). Consider the operator

L̃ = +A(x)
∂

∂x
+

1

2
B(x)

∂2

∂x2
, (4.20)

where, relative to L, the sign of the leading term is reversed. It is straightforward to show that, for any
functions f and g, 〈

f
∣∣ L̃ ∣∣ g 〉− 〈 g ∣∣L ∣∣ f 〉 =

[
g Jf − fKg

]b
a
, (4.21)

where 〈
g
∣∣L ∣∣ f 〉 =

a∫
0

dx g(x)L f(x) , (4.22)

5The cake is a lie.
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and Jf = Af − 1
2(Bf)′ and Kg = −1

2Bg
′. Thus we conclude that L̃ = L†, the adjoint of L, if either (i)

Jf and Kg vanish at the boundaries x = a and x = b (reflecting conditions), or (ii) the functions f and g
vanish at the boundaries (absorbing conditions).

We can use the zero current steady state distribution Peq(x) , for which J = APeq − 1
2∂x(BPeq) = 0 , to

convert between solutions of the forward and backward time Fokker-Planck equations. Suppose P (x, t)
satisfies ∂tP = LP . Then define Q(x, t) ≡ P (x, t)/Peq(x), in which case

Define P (x, t) = Peq(x)Q(x, t). Then

∂tP = Peq ∂tQ = −∂x(APeqQ) + 1
2∂

2
x(BPeqQ)

=
{
− ∂x(APeq) + 1

2∂
2
x(BPeq)

}
Q+

{
−A∂xQ+ 1

2B ∂
2
xQ
}
Peq + ∂x(BPeq) ∂xQ

=
{
A∂xQ+ 1

2B ∂
2
xQ
}
Peq ,

(4.23)

where we have used ∂x(BPeq) = 2APeq. Thus, we have that Q(x, t) satisfies ∂tQ = L̃Q. We saw in §4.2.1
how the (forward) Fokker-Planck equation could be written as

∂Q(x, t)

∂t
= L†Q(x, t) , L† = A(x)

∂

∂x
+

1

2
B(x)

∂2

∂x2
, (4.24)

which is the backward Fokker-Planck equation when written in terms of the time variable s = −t.

Now let us seek eigenfunctions Pn(x) and Qn(x) which satisfy6

LPn(x) = −λnPn(x) , L†Qn(x) = −λnQn(x) . (4.25)

where now A(x, t) = A(x) and B(x, t) = B(x) are assumed to be time-independent. If the functions
Pn(x) and Qn(x) form complete sets, then a solution to the Fokker-Planck equations for P (x, t) and
Q(x, t) is of the form7

P (x, t) =
∑
n

Cn Pn(x) e−λnt , Q(x, t) =
∑
n

CnQn(x) e−λnt . (4.26)

To elicit the linear algebraic structure here, we invoke Eqn. 4.25 and write

(λm − λn)Qm(x)Pn(x) = Qm(x)LPn(x)− Pn(x)L†Qm(x) . (4.27)

Next we integrate over the interval [a, b], which gives

(λm − λn)

b∫
a

dx Qm(x)Pn(x) =
[
Qm(x) Jn(x)−Km(x)Pn(x)

]b
a

= 0 , (4.28)

where Jn(x) = A(x)Pn(x)− 1
2∂x
[
B(x)Pn(x)

]
and Km(x) = −1

2B(x) ∂xQm(x). For absorbing boundary
conditions, the functions Pn(x) and Qn(x) vanish at x = a and x = b, so the RHS above vanishes. For

6In the eigensystem, the partial differential operators ∂
∂x

in L and L† may be regarded as ordinary differential operators d
dx

.
7Since Pn(x) = Peq(x)Qn(x), the same expansion coefficients {Cn} appear in both sums.
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reflecting boundaries, it is the currents Jn and Km(x) which vanish at the boundaries. Thus (λm −
λn)

〈
Qm

∣∣Pn 〉 = 0, where the inner product is

〈
Q
∣∣P 〉 ≡ b∫

a

dx Q(x)P (x) . (4.29)

Thus we obtain the familiar result from Sturm-Liouville theory that when the eigenvalues differ, the
corresponding eigenfunctions are orthogonal. In the case of eigenvalue degeneracy, we can invoke the
Gram-Schmidt procedure, in which case we may adopt the general normalization

〈
Qm

∣∣Pn 〉 =

b∫
a

dx Qm(x)Pn(x) =

b∫
a

dx Peq(x)Qm(x)Qn(x) =

b∫
a

dx
Pm(x)Pn(x)

Peq(x)
= δmn . (4.30)

A general solution to the Fokker-Planck equation with reflecting boundaries may now be written as

P (x, t) =
∑
n

Cn Pn(x) e−λnt , (4.31)

where the expansion coefficients {Cn} are given by

Cn =

b∫
a

dx Qn(x)P (x, 0) =
〈
Qn
∣∣P (0)

〉
. (4.32)

Suppose our initial condition is P (x, 0 |x0, 0) = δ(x− x0). Then Cn = Qn(x0) , and

P (x, t |x0, 0) =
∑
n

Qn(x0)Pn(x) e−λnt . (4.33)

We may now take averages, such as

〈
F
(
x(t)

)〉
=

b∫
a

dx F (x)
∑
n

Qn(x0)Pn(x) e−λnt . (4.34)

Furthermore, if we also average over x0 = x(0), assuming is is distributed according to Peq(x0), we have
the correlator

〈
x(t)x(0)

〉
=

b∫
a

dx0

b∫
a

dx xx0 P (x, t |x0, 0)Peq(x0)

=
∑
n

[ b∫
a

dx xPn(x)

]2
e−λnt =

∑
n

∣∣〈x ∣∣Pn 〉∣∣2 e−λnt .
(4.35)
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Absorbing boundaries

At an absorbing boundary x = a , one has P (a) = Q(a) = 0. We may still use the function Peq(x) obtained
from the J = 0 reflecting boundary conditions to convert between forward and backward Fokker-Planck
equation solutions.

Next we consider some simple examples of the eigenfunction formalism.

Heat equation

We consider the simplest possible Fokker-Planck equation,

∂P

∂t
= D

∂2P

∂x2
, (4.36)

which is of course the one-dimensional diffusion equation. We choose our interval to be x ∈ [0, L].

Reflecting boundaries : The normalized steady state solution is simply Peq(x) = 1/L. The
eigenfunctions are P0(x) = Peq(x) and

Pn(x) =

√
2

L
cos

(
nπx

L

)
, Qn(x) =

√
2 cos

(
nπx

L

)
(4.37)

for n > 0. The eigenvalues are λn = D (nπ/L)2. We then have

P (x, t |x0, 0) =
1

L
+

2

L

∞∑
n=1

cos

(
nπx0

L

)
cos

(
nπx

L

)
e−λnt . (4.38)

Note that as t → ∞ one has P (x,∞|x0, 0) = 1/L , which says that P (x, t) relaxes to Peq(x).
Both boundaries are natural boundaries, which prevent probability flux from entering or
leaking out of the region [0, L].

Absorbing boundaries : Now we have

Pn(x) =

√
2

L
sin

(
nπx

L

)
, Qn(x) =

√
2 sin

(
nπx

L

)
(4.39)

and

P (x, t |x0, 0) =
2

L

∞∑
n=1

sin

(
nπx0

L

)
sin

(
nπx

L

)
e−λnt , (4.40)

again with λn = D (nπ/L)2. Since λn > 0 for all allowed n, we have P (x,∞|x0, 0) = 0, and
all the probability leaks out by diffusion. The current is J(x) = −DP ′(x), which does not
vanish at the boundaries.

Mixed boundaries : Now suppose x = 0 is an absorbing boundary and x = L a reflecting
boundary. Then

Pn(x) =

√
2

L
sin

(
(2n+ 1)πx

2L

)
, Qn(x) =

√
2 sin

(
(2n+ 1)πx

2L

)
(4.41)
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with n ≥ 0. The eigenvalues are λn = D
(
(n+ 1

2)π/L
)2.

We can write the eigenfunctions in all three cases in the form Pn(x) =
√

2
L sin(knx+δ), where kn = nπx/L

or (n+ 1
2)πx/L and δ = 0 or δ = 1

2π, with λn = Dk2
n. One then has

〈
x
∣∣Pn 〉 =


1
2L reflecting, n = 0

−
(√

8/Lk2
n

)
δn,odd reflecting, n > 0

(−1)n+1
√

2/kn absorbing, n > 0

(−1)n+1
√

2/Lk2
n half reflecting, half absorbing, n > 0 .

(4.42)

Note that when a zero mode λmin = 0 is part of the spectrum, one has P0(x) = Peq(x), to which P (x, t)
relaxes in the t → ∞ limit. When one or both of the boundaries is absorbing, the lowest eigenvalue
λmin > 0 is finite, hence P (x, t→∞)→ 0, i.e. all the probability eventually leaks out of the interval.

Ornstein-Uhlenbeck process

The Fokker-Planck equation for the OU process is ∂tP = ∂x(βxP ) +D∂2
xP . Over the real line x ∈ R, the

normalized steady state distribution is Peq(x) = (β/2πD)1/2 exp(−βx2/2D). The eigenvalue equation
for Qn(x) is

D
d2Qn
dx2

− βx dQn
dx

= −λnQn(x) . (4.43)

Changing variables to ξ = x/`, where ` = (2D/β)1/2, we obtain Q′′n − 2ξQ′n + (2λn/β)Qn = 0, which is
Hermite’s equation. The eigenvalues are λn = nβ, and the normalized eigenfunctions are then

Qn(x) =
1√

2n n!
Hn

(
x/`
)

Pn(x) =
1√

2n n!π`2
Hn

(
x/`
)
e−x

2/`2 ,

(4.44)

which satisfy the orthonormality relation 〈Qm|Pn〉 = δmn. SinceH1(ξ) = 2ξ , one has 〈x|Pn〉 =
(
`/
√

2
)
δn,1,

hence the correlator is given by
〈
x(t)x(0)

〉
= 1

2`
2 e−βt.

4.2.5 First passage problems

Suppose we have a particle on an interval x ∈ [a, b] with absorbing boundary conditions, which means
that particles are removed as soon as they get to x = a or x = b and not replaced. Following Gardiner8,
define the quantity

G(x, t) =

b∫
a

dx′ P (x′, t |x, 0) . (4.45)

8See Gardiner §5.5.



102 CHAPTER 4. THE FOKKER-PLANCK AND MASTER EQUATIONS

Thus, G(x, t) is the probability that x(t) ∈ [a, b] given that x(0) = x. Since the boundary conditions
are absorbing, there is no reentrance into the region, which means that G(x, t) is strictly decreasing as a
function of time, and that

−∂G(x, t)

∂t
dt = probability, starting from x at t = 0, to exit [a, b] during time interval [t, t+ dt] . (4.46)

If we assume the process is autonomous, then

G(x, t) =

b∫
a

dx′ P (x′, 0 |x,−t) , (4.47)

which satisfies the backward Fokker-Planck equation,

∂G

∂t
= A

∂G

∂x
+ 1

2B
∂2G

∂x2
= L†G . (4.48)

We may average functions of the exit time t according to

〈
f(t)

〉
x

=

∞∫
0

dt f(t)

(
− ∂G(x, t)

∂t

)
. (4.49)

In particular, the mean exit time T (x) is given by

T (x) = 〈t〉x =

∞∫
0

dt t

(
− ∂G(x, t)

∂t

)
=

∞∫
0

dt G(x, t) . (4.50)

From the Fokker-Planck equation for G(x, t), the mean exit time T (x) satisfies the ODE

1

2
B(x)

d2T

dx2
+A(x)

dT

dx
= −1 . (4.51)

This is derived by applying the operator L† = 1
2B(x) ∂2

∂x2
+ A(x) ∂

∂x to the above expression for T (x).

Acting on the integrandG(x, t), this produces ∂G
∂t , according to Eq. 4.48, hence

∞∫
0

dt∂tG(x, t) = G(x,∞)−

G(x, 0) = −1.

To solve Eqn. 4.51, we once again invoke the services of the function

ψ1(x) = exp


x∫
a

dx′
2A(x′)

B(x′)

 , (4.52)

which satisfies ψ′1(x)/ψ1(x) = 2A(x)/B(x). Thus, we may reexpress eqn. 4.51 as

T ′′ +
ψ′1
ψ1

T ′ = − 2

B
⇒

(
ψ1 T

′ )′ = −2ψ1

B
. (4.53)
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We may integrate this to obtain

T ′(x) =
T ′(a)

ψ1(x)
− ψ2(x)

ψ1(x)
, (4.54)

where we have defined

ψ2(x) = 2

x∫
a

dx′
ψ1(x′)

B(x′)
. (4.55)

Note that ψ1(a) = 1 and ψ2(a) = 0. We now integrate one last time to obtain

T (x) = T (a) + T ′(a)ψ3(x)− ψ4(x) , (4.56)

where

ψ3(x) =

x∫
a

dx′

ψ1(x′)
, ψ4(x) =

x∫
a

dx′
ψ2(x′)

ψ1(x′)
. (4.57)

Note that ψ3(a) = ψ4(a) = 0

Eqn. 4.56 involves two constants of integration, T (a) and T ′(a), which are to be determined by imposing
two boundary conditions. For an absorbing boundary at a, we have T (a) = 0. To determine the second
unknown T ′(a), we impose the condition T (b) = 0 , which yields T ′(a) = ψ4(b)/ψ3(b). The final result
for the mean exit time is then

T (x) =
ψ3(x)ψ4(b)− ψ3(b)ψ4(x)

ψ3(b)
. (4.58)

As an example, consider the case of pure diffusion: A(x) = 0 and B(x) = 2D. Then

ψ1(x) = 1 , ψ2(x) = (x− a)/D , ψ3(x) = (x− a) , ψ4(x) = (x− a)2/2D , (4.59)

whence

T (x) =
(x− a)(b− x)

2D
. (4.60)

A particle starting in the middle x = 1
2(a + b) at time t = 0 will then exit the region in an average time

(b− a)2/8D.

One absorbing, one reflecting boundary

Suppose the boundary at a is now reflecting, while that at b remains absorbing. We then have the
boundary conditions ∂xG(a, t) = 0 and G(b, t) = 0, which entails T ′(a) = 0 and T (b) = 0. Then the
general result of Eqn. 4.56 then gives T (x) = T (a)− ψ4(x). Requiring T (b) = 0 then yields the result

T (x) = T (b)− ψ4(x) = 2

b∫
x

dy

ψ1(y)

y∫
a

dz
ψ1(z)

B(z)
(x = a reflecting , x = b absorbing) . (4.61)
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Under the opposite condition, where the boundary at a is absorbing while that at b is reflecting, we have
T (a) = 0 and T ′(b) = 0. Eqn. 4.56 then gives T (x) = T ′(a)ψ3(x)−ψ4(x) , and imposing T ′(b) = 0 entails
T ′(a) = ψ2(b), hence

T (x) = ψ2(b)ψ3(x)− ψ4(x) = 2

x∫
a

dy

ψ1(y)

b∫
y

dz
ψ1(z)

B(z)
(x = a absorbing , x = b reflecting) . (4.62)

Escape through either boundary

Define the quantities

Ga(x, t) = −
∞∫
t

dt′ J(a, t′ |x, 0) =

∞∫
t

dt′
{
−A(a)P (a, t′ |x, 0) + 1

2∂a

[
B(a)P (a, t′ |x, 0)

]}

Gb(x, t) = +

∞∫
t

dt′ J(b, t′ |x, 0) =

∞∫
t

dt′
{

+A(b)P (b, t′ |x, 0)− 1
2∂b

[
B(b)P (b, t′ |x, 0)

]}
.

(4.63)

Since −J(a, t |x, 0) is the left-moving probability flux at x = a , Ga(x, t) represents the probability that a
particle starting at x ∈ [a, b] exits at a sometime after a time t. The second expression for Gb(x, t) yields
the probability that a particle starting at x exits at b sometime after t. Note that

Ga(x, t) +Gb(x, t) =

∞∫
t

dt′
b∫
a

dx′ ∂x′

{
A(x′)P (x′, t′ |x, 0)− 1

2∂x′
[
B(x′)P (x′, t |x, 0)

]}

=

∞∫
t

dt′
b∫
a

dx′
[
− ∂t′ P (x′, t′ |x, 0)

]
=

b∫
a

dx′ P (x′, t |x, 0) = G(x, t) ,

(4.64)

which is the total probability starting from x to exit the region after t.

Since P (a, t′ |x, 0) satisfies the backward Fokker-Planck equation, i.e. L† P (a, t′ |x, 0) = ∂t′P (a, t′ |x, 0),
we have

L†Ga(x, t) = J(a, t |x, 0) = +∂tGa(x, t)

L†Gb(x, t) = J(b, t |x, 0) = −∂tGb(x, t) .
(4.65)

Now let us evaluate the above equations in the limit t → 0. Since P (x′, 0 |x, 0) = δ(x − x′), there can
only be an infinitesimal particle current at any finite distance from the initial point x at an infinitesimal
value of the elapsed time t. Therefore we have

L†Gc(x, 0) =

{
A(x)

∂

∂x
+

1

2
B(x)

∂2

∂x2

}
Gc(x, 0) = 0 . (4.66)
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Thus, Gc(x, 0) is the total probability for exit via c ∈ {a, b} over all time, conditioned at starting at x at
time 0. The boundary conditions here are

Ga(a, 0) = 1 , Ga(b, 0) = 0 ; Gb(b, 0) = 1 , Gb(a, 0) = 0 , (4.67)

which says that a particle starting at a is immediately removed with probability unity and therefore can

never exit through b, and vice versa. Solving using the function ψ1(x) = exp
x∫
a
dx 2A(x′)/B(x′) , we have

Ga(x, 0) =

b∫
x

dy ψ1(y)

/ b∫
a

dz ψ1(x)

Gb(x, 0) =

x∫
a

dy ψ1(y)

/ b∫
a

dz ψ1(x) .

(4.68)

Note Ga(x, 0) + Gb(x, 0) = 1, which says that eventually the particle exits via either a or b. We next
define

Tc(x) =

∞∫
0

dt
Gc(x, t)

Gc(x, 0)
, (4.69)

which is the mean exit time through c, given that the particle did exit through that boundary. This then
satisfies

L†
[
Gc(x, 0)Tc(x)

]
= −Gc(x, 0) . (4.70)

For pure diffusion, A(x) = 0 and B(x) = 2D, and we found ψ1(x) = 1. Therefore

Ga(x, 0) =
b− x
b− a

, Gb(x, 0) =
x− a
b− a

. (4.71)

We may then solve the equations

D
d2

dx2

[
Gc(x, 0)Tc(x)

]
= −Gc(x, 0) (4.72)

to obtain

Ta(x) =
(x− a)(2b− x− a)

6D
, Tb(x) =

(b− x)(b+ x− 2a)

6D
. (4.73)

Note that

Ga(x, 0)Ta(x) +Gb(x, 0)Tb(x) =
(x− a)(b− x)

2D
= T (x) , (4.74)

which we found previously in Eqn. 4.60.
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4.2.6 Escape from a metastable potential minimum

In the presence of a local potential U(x), the local drift velocity is −U ′(x)/γm, where m is the particle’s
mass and γ its frictional damping (Ffr = −γmẋ). An example potential U(x) is depicted in Fig. 4.1.
Gardiner in §5.5.3 begins with the equation

∂P

∂t
=

∂

∂x

(
U ′(x)

γm
P

)
+D

∂2P

∂x2
, (4.75)

which resembles a Fokker-Planck equation for P (x, t) with drift vD(x) = −U ′(x)/γm. However, Eqn.
4.75 is not a Fokker-Planck equation but rather something called the Smoluchowski equation. Recall that
the position x(t) of a Brownian particle does not execute a Markov process. So where does Eqn. 4.75 come
from, and under what conditions is it valid?

It is the two-component phase space vector ϕ = (x, v) which executes a Markov process, and for whose
conditional probability density we can derive a Fokker-Planck equation, and not the position x alone.
The Brownian motion problem may be written as two coupled first order differential equations,

dx = v dt

dv = −

[
1

m
U ′(x) + γv

]
dt+

√
Γ dW (t) ,

(4.76)

where Γ = 2γkBT/m = 2γ2D, and where W (t) is a Wiener process. The first of these is an ODE and the
second an SDE. Viewed as a multicomponent SDE, the Fokker-Planck equation for P (x, v, t) is

∂P

∂t
= − ∂

∂x

(
vP ) +

∂

∂v

[(
U ′(x)

m
+ γv

)
P

]
+
γkBT

m

∂2P

∂v2
. (4.77)

Suppose though that the damping γ is large. Then we can approximate the second equation in 4.76 by
assuming v rapidly relaxes, which is to say dv ≈ 0. Then we have

v dt ≈ − 1

γm
U ′(x) dt+

√
2D dW (t) (4.78)

and replacing v in the first equation with this expression we obtain the SDE

dx = vD(x) dt+
√

2D dW (t) , (4.79)

which immediately yields the Smoluchowski equation 4.75. This procedure is tantamount to an adia-
batic elimination of the fast variable. It is valid only in the limit of large damping γ = 6πηa/m , which is
to say large fluid viscosity η.

Taking the Smoluchowski equation as our point of departure, the steady state distribution is then found
to be

Peq(x) = C e−U(x)/kBT , (4.80)

where we invoke the resultD = kBT/γm from §2.2.2. We now consider the first passage time T (x |x0) for
a particle starting at x = x0 escaping to a point x ≈ x∗ in the vicinity of the local potential maximum. We
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Figure 4.1: Escape from a metastable potential minimum.

apply the result of our previous analysis, with (a, b, x) in Eqn. 4.61 replaced by (−∞, x, x0), respectively,
and x>∼x

∗. Note that A(x) = −U ′(x)/γm, and B(x) = 2D, hence

lnψ1(x) =

x∫
a

dx′
2A(x′)

B(x′)
=
U(a)− U(x)

kBT
. (4.81)

Formally we may have U(a) =∞, but it drops out of the expression for the mean exit time,

T (x |x0) =
1

D

x∫
x0

dy

ψ1(y)

y∫
−∞

dz ψ1(z) =
1

D

x∫
x0

dy eU(y)/kBT

y∫
−∞

dz e−U(z)/kBT . (4.82)

The above integrals can be approximated as follows. Expand U(x) about the local extrema at x0 and x∗

as

U(x0 + δx) = U(x0) + 1
2K0(δx)2 + . . .

U(x∗ + δx) = U(x∗)− 1
2K
∗(δx)2 + . . . ,

(4.83)

where K0 = U ′′(x0) and K∗ = −U ′′(x∗). At low temperatures, integrand e−U(z)/kBT is dominated by the
region z ≈ x0, hence

y∫
−∞

dz e−U(z)/kBT ≈
(

2πkBT

K0

)1/2

e−U(x0)/kBT . (4.84)

Similarly, the integrand eU(y)/kBT is dominated by the region y ≈ x∗, so for x somewhere between x∗

and x1 , we may write9

x∫
x0

dy eU(y)/kBT ≈
(

2πkBT

K∗

)1/2

eU(x∗)/kBT . (4.85)

9We take x > x∗ to lie somewhere on the downslope of the potential curve, on the other side of the barrier from the
metastable minimum.
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We then have

T (x1 |x0) ≈ 2πkBT

D
√
K0K

∗ exp

(
U(x∗)− U(x0)

kBT

)
. (4.86)

Known as the Arrhenius law, this is one of the most ubiquitous results in nonequilibrium statistical
physics, with abundant consequences for chemistry, biology, and many other fields of science. With
∆E = U(x∗)−U(x0), the energy necessary to surmount the barrier, the escape rate is seen to be propor-
tional to exp(−∆E/kBT ).

4.2.7 Detailed balance

Let ϕ denote a coordinate vector in phase space. In classical mechanics, ϕ = (q, p) consists of all the
generalized coordinates and generalized momenta. The condition of detailed balance says that each in-
dividual transition balances precisely with its time reverse, resulting in no net probability currents in
equilibrium. Note that this is a much stronger condition than conservation of probability.

In terms of joint probability densities, detailed balance may be stated as follows:

P (ϕ, t ; ϕ′, t′) = P (ϕ′
T
,−t′ ; ϕT ,−t) = P (ϕ′

T
, t ; ϕT , t′) , (4.87)

where we have assumed time translation invariance. Here, ϕT is the time reverse of ϕ. This is accom-
plished by multiplying each component ϕi by a quantity εi = ±1. For positions ε = +1, while for
momenta ε = −1. If we define the diagonal matrix εij = εi δij (no sum on i), then ϕTi = εijϕj (implied
sum on j). Thus we may rewrite the above equation as

P (ϕ, t ; ϕ′, t′) = P (εϕ′, t ; εϕ, t′) . (4.88)

In terms of the conditional probability distributions, we have

P (ϕ, t |ϕ′, 0)Peq(ϕ′) = P (εϕ′, t | εϕ, 0)Peq(εϕ) , (4.89)

where Peq(ϕ) is the equilibrium distribution, which we assume holds at time t′ = 0. Now in the limit
t→ 0 we have P (ϕ, t→ 0 |ϕ′, 0) = δ(ϕ− ϕ′), and we therefore conclude

Peq(εϕ) = Peq(ϕ) . (4.90)

The equilibrium distribution Peq(ϕ) is time-reversal invariant. Thus, detailed balance entails

P (ϕ, t |ϕ′, 0)Peq(ϕ′) = P (εϕ′, t | εϕ, 0)Peq(ϕ) . (4.91)

One then has 〈
ϕi
〉

=

∫
dϕ Peq(ϕ)ϕi = εi

〈
ϕi
〉

Gij(t) ≡
〈
ϕi(t)ϕj(0)

〉
=

∫
dϕ

∫
dϕ′ ϕi ϕ

′
j P (ϕ, t |ϕ′, 0)Peq(ϕ′) = εi εiGji(t) .

(4.92)

Thus, as a matrix, G(t) = εGt(t) ε.
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The conditions under which detailed balance holds are10

W (ϕ |ϕ′)Peq(ϕ′) = W (εϕ′ | εϕ)Peq(ϕ)[
Ai(ϕ) + εiAi(εϕ)

]
Peq(ϕ) =

∂

∂ϕj

[
Bij(ϕ)Peq(ϕ)

]
εiεjBij(εϕ) = Bij(ϕ) (no sum on i and j) .

(4.93)

Detailed balance for the Fokker-Planck equation

It is useful to define the reversible and irreversible drift as

Ri(ϕ) ≡ 1

2

[
Ai(ϕ) + εiAi(εϕ)

]
Ii(ϕ) ≡ 1

2

[
Ai(ϕ)− εiAi(εϕ)

]
.

(4.94)

Then we may subtract ∂i
[
εiAi(εϕ)Peq(ϕ)

]
−1

2∂i∂j
[
εiεj Bij(εϕ)Peq(ϕ)

]
from ∂i

[
Ai(ϕ)Peq(ϕ)

]
−1

2∂i∂j
[
Bij(ϕ)Peq(ϕ)

]
to obtain ∑

i

∂

∂ϕi

[
Ii(ϕ)Peq(ϕ)

]
= 0 ⇒

∑
i

{
∂Ii(ϕ)

∂ϕi
+ Ii(ϕ)

∂ lnPeq(ϕ)

∂ϕi

}
= 0 . (4.95)

We may now write the second of Eqn. 4.93 as

Ri(ϕ) = 1
2∂j Bij(ϕ) + 1

2Bij(ϕ) ∂j lnPeq(ϕ) , (4.96)

or, assuming the matrix B is invertible,

∂k lnPeq(ϕ) = 2B−1
ki

(
Ri − 1

2∂jBij
)
≡ Zk(ϕ) . (4.97)

Since the LHS above is a gradient, the condition that Peq(ϕ) exists is tantamount to

∂Zi
∂ϕj

=
∂Zj
∂ϕi

(4.98)

for all i and j. If this is the case, then we have

Peq(ϕ) = exp

ϕ∫
dϕ′ · Z(ϕ′) . (4.99)

Because of the condition 4.98, the integral on the RHS may be taken along any path. The constant
associated with the undetermined lower limit of integration is set by overall normalization.

10See Gardiner, §6.3.5.
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Brownian motion in a local potential

Recall that the Brownian motion problem may be written as two coupled first order differential equa-
tions,

dx = v dt

dv = −

[
1

m
U ′(x) + γv

]
dt+

√
Γ dW (t) ,

(4.100)

where Γ = 2γkBT/m = 2γ2D, and where W (t) is a Wiener process. The first of these is an ODE and the
second an SDE. Viewed as a multicomponent SDE with

ϕ =

(
x
v

)
, Ai(ϕ) =

(
v

−U ′(x)
m − γv

)
, Bij(ϕ) =

(
0 0

0
2γkBT
m

)
. (4.101)

We have already derived in Eqn. 4.77 the associated Fokker-Planck equation for P (x, v, t).

The time reversal eigenvalues are ε1 = +1 for x and ε2 = −1 for v. We then have

R(ϕ) =

(
0
−γv

)
, I(ϕ) =

(
v

−U ′(x)
m

)
. (4.102)

As the B matrix is not invertible, we appeal to Eqn. 4.96. The upper component vanishes, and the lower
component yields

−γv =
γkBT

m

∂ lnPeq

∂v
, (4.103)

which says Peq(x, v) = F (x) exp(−mv2/2kBT ). To find F (x), we use Eqn. 4.95, which says

0 =

0︷︸︸︷
∂I1

∂x
+

0︷︸︸︷
∂I2

∂v
+I1

∂ lnPeq

∂x
+ I2

∂ lnPeq

∂v

= v
∂ lnF

∂x
− U ′(x)

m

(
− mv

kBT

)
⇒ F (x) = C e−U(x)/kBT .

(4.104)

Thus,
Peq(x, v) = C e−mv

2/2kBT e−U(x)/kBT . (4.105)

4.2.8 Multicomponent Ornstein-Uhlenbeck process

In §3.4.3 we considered the case of coupled SDEs,

dϕi = Ai(ϕ) dt+ βij(ϕ) dWj(t) , (4.106)
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where
〈
Wi(t)Wj(t

′)
〉

= δij min(t, t′). We showed in §3.4.3 that such a multicomponent SDE leads to the
Fokker-Planck equation

∂P

∂t
= − ∂

∂ϕi

(
Ai P

)
+

1

2

∂2

∂ϕi ∂ϕj

(
Bij P

)
, (4.107)

where B = ββt , i.e. Bij =
∑

k βikβjk .

Now consider such a process with

Ai(ϕ) = Aij ϕj , Bij(ϕ) = Bij , (4.108)

where Aij and Bij are independent of ϕ . The detailed balance conditions are written as εBε = B, and(
A+ εA ε

)
ϕ = B∇ lnPeq(ϕ) . (4.109)

This equation says that Peq(ϕ) must be a Gaussian, which we write as

Peq(ϕ) = Peq(0) exp
[
− 1

2 ϕiM
−1
ij ϕj

]
, (4.110)

Obviously we can take M−1 to be symmetric, since any antisymmetric part of M−1 is projected out
in the expression ϕiM

−1
ij ϕj . Thus M is also symmetric. Substituting this solution into the stationary

Fokker-Planck equation ∂i
[
AijϕjPeq

]
= 1

2 ∂i∂j
(
BijPeq

)
yields

TrA+ 1
2 Tr

(
BM−1

)
= ϕi

[
M−1A+ 1

2 M
−1BM−1

]
ij
ϕj = 0 . (4.111)

This must be satisfied for all ϕ, hence both the LHS and RHS of this equation must vanish separately.
This entails

A+MAtM−1 +BM−1 = 0 . (4.112)

We now invoke the detailed balance condition of Eqn. 4.109, which says

A+ εA ε+BM−1 = 0 . (4.113)

Combining this with our previous result, we conclude

εAM = (AM)tε , (4.114)

which are known as the Onsager conditions. If we define the phenomenological force

F = ∇ lnPeq = −M−1ϕ , (4.115)

then we have
d〈ϕ〉
dt

= A 〈ϕ〉 = −AMF , (4.116)

and defining L = −AM which relates the fluxes J = 〈ϕ̇〉 to the forces F , viz. Ji = Lik Fk, we have
the celebrated Onsager relations, εLε = Lt. A more general formulation, allowing for the presence of a
magnetic field, is

Lik(B) = εi εk Lki(−B) . (4.117)

We shall meet up with the Onsager relations again when we study the Boltzmann equation.
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Figure 4.2: Electrical circuit containing a fluctuating voltage source Vs(t) and a fluctuating current source
Is(t).

4.2.9 Nyquist’s theorem

Consider the electrical circuit in Fig. 4.2. Kirchoff’s laws say that the current flowing through the resistor
r is IS − IB , and that

(IS − IB) r =
Q

C
= VS − L

dIA

dt
−RIA (4.118)

and
dQ

dt
= IA + IB . (4.119)

Thus, we have the coupled ODEs for Q and IA,

dQ

dt
= IA −

Q

rC
+ IS(t)

dIA

dt
= −

RIA

L
− Q

LC
+
VS(t)

L
.

(4.120)

If we assume VS(t) and IS(t) are fluctuating sources each described by a Wiener process, we may write

VS(t) dt =
√
ΓV dWV (t) , IS(t) dt =

√
ΓI dWI(t) . (4.121)

Then

dQ =

(
− Q

rC
+ IA

)
dt+

√
ΓI dWI(t)

dIA = −
(
Q

LC
+
RIA

L

)
dt+

1

L

√
ΓV dWV (t) .

(4.122)
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We now see that Eqn. 4.122 describes a two component Ornstein-Uhlenbeck process, with ϕt = (Q, IA),
and

Aij = −
(

1/rC −1
1/LC R/L

)
, Bij =

(
ΓI 0
0 ΓV /L

2

)
. (4.123)

The ε matrix for this problem is ε =

(
1 0
0 −1

)
since charge is even and current odd under time reversal.

Thus,

A+ εAε = −
(

2/rC 0
0 2R/L

)
= −BM−1 , (4.124)

from which we may obtain M−1 and then

M =

(
ΓI rC/2 0

0 ΓV /2LR

)
. (4.125)

The equilibrium distribution is then

Peq(Q, IA) = N exp

{
− Q2

rCΓI
−
RLI2

A

ΓV

}
. (4.126)

We now demand that equipartition hold, i.e.〈
Q2

2C

〉
=

〈
LI2

A

2

〉
= 1

2kBT , (4.127)

which fixes
ΓV = 2RkBT , ΓI = 2kBT/r . (4.128)

Therefore, the current and voltage fluctuations are given by〈
VS(0)VS(t)

〉
= 2kBTR δ(t) ,

〈
IS(0) IS(t)

〉
=

2kBT

r
δ(t) ,

〈
VS(0) IS(t)

〉
= 0 . (4.129)

4.3 Master Equation

In §2.6.3 we showed that the differential Chapman-Kolmogorov equation with only jump processes
yielded the Master equation,

∂P (x, t |x′, t′)
∂t

=

∫
dy
[
W (x | y, t)P (y, t |x′, t′)−W (y |x, t)P (x, t |x′, t′)

]
. (4.130)

Here W (x | y, t) is the rate density of transitions from y to x at time t, and has dimensions T−1L−d. On
a discrete state space, we have

∂P (n, t |n′, t′)
∂t

=
∑
m

[
W (n |m, t)P (m, t |n′, t′)−W (m |n, t)P (n, t |n′, t′)

]
, (4.131)

where W (n |m, t) is the rate of transitions from m to n at time t, with dimensions T−1.
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4.3.1 Birth-death processes

The simplest case is that of one variable n, which represents the number of individuals in a population.
Thus n ≥ 0 and P (n, t |n′, t′) = 0 if n < 0 or n′ < 0. If we assume that births and deaths happen
individually and at with a time-independent rate, then we may write

W (n |m, t) = t+(m) δn,m+1 + t−(m) δn,m−1 . (4.132)

Here t+(m) is the rate for m→ m+ 1, and t−(m) is the rate for m→ m− 1. We require t−(0) = 0, since
the dying rate for an entirely dead population must be zero11. We then have the Master equation

∂P (n, t |n0, t0)

∂t
= t+(n−1)P (n−1, t |n0, t0)+t−(n+1)P (n+1, t |n0, t0)−

[
t+(n)+t−(n)

]
P (n, t |n0, t0) .

(4.133)
This may be written in the form

∂P (n, t |n0, t0)

∂t
+∆J(n, t |n0, t0) = 0 , (4.134)

where the lattice current operator on the link (n, n+ 1) is

J(n, t |n0, t0) = t+(n)P (n, t |n0, t0)− t−(n+ 1)P (n+ 1, t |n0, t0) . (4.135)

The lattice derivative ∆ is defined by

∆f(n) = f(n)− f(n− 1) , (4.136)

for any lattice function f(n). One then has

d〈n〉t
dt

=
∞∑
n=0

[
t+(n)− t−(n)

]
P (n, t |n0, t0) =

〈
t+(n)

〉
t
−
〈
t−(n)

〉
. (4.137)

Steady state solution

We now seek a steady state solution Peq(n), as we did in the case of the Fokker-Planck equation. This
entails ∆nJ(n) = 0, where we suppress the initial conditions (n0, t0). Now J(−1) = 0 because t−(0) = 0
and P (−1) = 0, hence 0 = J(0)− J(−1) entails J(0) = 0, and since 0 = ∆nJ(n) we have J(n) = 0 for all
n ≥ 0. Therefore

Peq(j + 1) =
t+(j)

t−(j + 1)
Peq(j) , (4.138)

which means

Peq(n) = Peq(0)
n∏
j=1

t+(j − 1)

t−(j)
. (4.139)

11We neglect here the important possibility of zombies.
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4.3.2 Examples: reaction kinetics

First example

Consider the example in Gardiner §11.1.2, which is the reaction

X
k2


k1

A . (4.140)

We assume the concentration [A] = a is fixed, and denote the number of X reactants to be n. The rates
are t−(n) = k2n and t+(n) = k1a, hence we have the Master equation

∂tP (n, t) = k2(n+ 1)P (n+ 1, t) + k1aP (n− 1, t)−
(
k2n+ k1a

)
P (n, t) , (4.141)

with P (−1, t) ≡ 0. We solve this using the generating function formalism, defining

P̃ (z, t) =

∞∑
n=0

zn P (n, t) . (4.142)

Note that P̃ (1, t) =
∑∞

n=0 P (n, t) = 1 by normalization. Multiplying both sides of Eqn. 4.141 by zn and
then summing from n = 0 to n =∞, we obtain

∂tP̃ (z, t) = k1a

zP (z,t)︷ ︸︸ ︷
∞∑
n=0

P (n− 1, t) zn − k1a

P (z,t)︷ ︸︸ ︷
∞∑
n=0

P (n, t) zn + k2

∂zP (z,t)︷ ︸︸ ︷
∞∑
n=0

(n+ 1)P (n+ 1, t) zn − k2

z∂zP (z,t)︷ ︸︸ ︷
∞∑
n=0

nP (n, t) zn

= (z − 1)
{
k1a P̃ (z, t)− k2 ∂zP̃ (z, t)

}
.

(4.143)

We now define the function Q̃(z, t) via

P̃ (z, t) = ek1az/k2 Q̃(z, t) , (4.144)

so that
∂tQ̃+ k2(z − 1) ∂zQ̃ = 0 , (4.145)

and defining w = − ln(1− z), this is recast as ∂tQ̃− k2∂wQ̃ = 0, whose solution is

Q̃(z, t) = F (w + k2t) , (4.146)

where F is an arbitrary function of its argument. To determine the function F (w), we invoke our initial
conditions,

Q̃(z, 0) = e−k1az/k2 P̃ (z, 0) = F (w) . (4.147)

We then have

F (w) = exp

{
− k1a

k2

(1− e−w)

}
P̃
(
1− e−w, 0

)
, (4.148)
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and hence

P̃ (z, t) = exp

{
− k1a

k2

(1− z)(1− e−k2t)
}
P̃
(
1− (1− z) e−k2t, 0

)
. (4.149)

We may then obtain P (n, t) via contour integration, i.e. by extracting the coefficient of zn in the above
expression:

P (n, t) =
1

2πi

∮
|z|=1

dz

zn+1
P̃ (z, t) . (4.150)

Note that setting t = 0 in Eqn. 4.149 yields the identity P̃ (z, 0) = P̃ (z, 0). As t→∞, we have the steady
state result

P̃ (z,∞) = ek1a(z−1)/k2 ⇒ P (n,∞) =
λn

n!
e−λ , (4.151)

where λ = k1a/k2, which is a Poisson distribution. Indeed, suppose we start at t = 0 with the Poisson
distribution P (n, 0) = e−α0αn0/n!. Then P̃ (z, 0) = exp

[
α0(z − 1)

]
, and Eqn. 4.149 gives

P̃ (z, t) = exp

{
− k1a

k2

(1− z)(1− e−k2t)
}

exp
{
− α0(1− z) e−k2t

}
= eα(t) (z−1) , (4.152)

where
α(t) = α0 e

−k2t +
k1

k2

a
(
1− e−k2t

)
. (4.153)

Thus, α(0) = α0 and α(∞) = k1a/k2 = λ. The distribution is Poisson all along, with a time evolv-
ing Poisson parameter α(t). The situation is somewhat reminiscent of the case of updating conjugate
Bayesian priors, where the prior distribution was matched with the likelihood function so that the up-
dated prior retains the same functional form.

If we start instead with P (n, 0) = δn,n0
, then we have P̃ (z, 0) = zn0 , and

P̃ (z, t) = exp

{
− k1a

k2

(1− z)(1− e−k2t)

}(
1− (1− z) e−k2t

)n0
. (4.154)

We then have 〈
n(t)

〉
=
∂P̃ (z, t)

∂z

∣∣∣∣
z=1

=
k1a

k2

(
1− e−k2t

)
+ n0 e

−k2t

〈
n2(t)

〉
=

(
∂2P̃ (z, t)

∂z2
+
∂P̃ (z, t)

∂z

)
z=1

= 〈n(t)〉2 + 〈n(t)〉 − n0 e
−2k2t

Var
[
n(t)

]
=

(
k1a

k2

+ n0 e
−k2t

)(
1− e−k2t

)
.

(4.155)

Second example

Gardiner next considers the reactions

X
k2


k1

A , B + 2X
k3


k4

3X , (4.156)
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Figure 4.3: Geometric interpretation of the ODE in Eqn. 4.160.

for which we have

t+(n) = k1a+ k3b n(n− 1)

t−(n) = k2n+ k4n(n− 1)(n− 2) .
(4.157)

The reason here is that for the second equation to proceed to the left, we need to select threeX molecules
to take part in the reaction, and there are n(n− 1)(n− 2) ordered triples (i, j, k). Now Eqn. 4.137 gives

d〈n〉
dt

= k1a+ k3

〈
n(n− 1)

〉
− k2〈n〉 − k4

〈
n(n− 1)(n− 2)

〉
. (4.158)

For a Poisson distribution Pn = e−λ λn/n! , it is easy to see that〈
n(n− 1) · · · (n− k + 1)

〉
=
〈
n
〉k (Poisson) . (4.159)

Suppose the distribution P (n, t) is Poissonian for all t. This is not necessarily the case, but we assume it
to be so for the purposes of approximation. Then the above equation closes, and with x = 〈n〉, we have

dx

dt
= −k4 x

3 + k3 x
2 − k2 x+ k1 a

= −k4(x− x1)(x− x2)(x− x3) ,
(4.160)

where x1,2,3 are the three roots of the cubic on the RHS of the top equation. Since the coefficients of this
equation are real numbers, the roots are either real or come in complex conjugate pairs. We know that
the product of the roots is x1x2x3 = k1a/k4 and that the sum is x1 + x2 + x3 = k3/k4 , both of which are
positive. Clearly when x is real and negative, all terms in the cubic are of the same sign, hence there can
be no real roots with x < 0. We assume three real positive roots with x1 < x2 < x3.

Further examining Eqn. 4.160, we see that x1 and x3 are stable fixed points and that x2 is an unstable
fixed point of this one-dimensional dynamical system. Thus, there are two possible stable equilibria. If
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x(0) < x2 the flow will be toward x1 , while if x(0) > x2 the flow will be toward x3. We can integrate
Eqn. 4.160 using the method of partial fractions. First, we write

1

(x− x1)(x− x2)(x− x3)
=

A1

x− x1

+
A2

x− x2

+
A3

x− x3

, (4.161)

with (x− x2)(x− x3)A1 + (x− x1)(x− x3)A2 + (x− x1)(x− x2)A3 = 1. This requires

0 = A1 +A2 +A3

0 = (x2 + x3)A1 + (x1 + x3)A2 + (x1 + x2)A3

1 = x2x3A1 + x1x3A2 + x1x2A3 ,

(4.162)

with solution

A1 =
1

(x2 − x1)(x3 − x1)
, A2 = − 1

(x2 − x1)(x3 − x2)
, A3 =

1

(x3 − x1)(x3 − x2)
. (4.163)

Thus, Eqn. 4.160 may be recast as

(x3−x2) d ln(x−x1)− (x3−x1) d ln(x−x2) + (x2−x1) d ln(x−x3) = −k4(x2−x1)(x3−x1)(x3−x2) dt .
(4.164)

The solution is given in terms of t(x):

t(x) =
1

k4(x2 − x1)(x3 − x1)
ln

(
x0 − x1

x− x1

)
(4.165)

− 1

k4(x2 − x1)(x3 − x2)
ln

(
x0 − x2

x− x2

)
+

1

k4(x3 − x1)(x3 − x2)
ln

(
x0 − x2

x− x3

)
,

where x0 = x(0).

Going back to Eqn. 4.139, we have that the steady state distribution is

Peq(n) = Peq(0)

n∏
j=1

t+(j − 1)

t−(j)
= Peq(0)

n∏
j=1

k1 a+ k3 b (j − 1) (j − 2)

k2 j + k4 j (j − 1) (j − 2)
. (4.166)

The product is maximized for when the last term with j = n is unity. If we call this value n∗, then n∗ is
a root of the equation

k1 a+ k3 b (n− 1) (n− 2) = k2 n+ k4 n (n− 1) (n− 2) . (4.167)

If n� 1 and all the terms are roughly the same size, this equation becomes k1 a+ k3 b n
2 = k2 n+ k4 n

3,
which is the same as setting the RHS of Eqn. 4.160 to zero in order to find a stationary solution.

4.3.3 Forward and reverse equations and boundary conditions

In §2.6.3 we discussed the forward and backward differential Chapman-Kolmogorov equations, from
which, with Aµ = 0 and Bµν = 0 , we obtain the forward and reverse Master equations,

∂P (n, t | · )
∂t

=
∑
m

{
W (n |m, t)P (m, t | · )−W (m |n, t)P (n, t | · )

}
−∂P ( · |n, t)

∂t
=
∑
m

W (m |n, t)
{
P ( · |m, t)− P ( · |n, t)

}
,

(4.168)
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where we have suppressed the initial conditions in the forward equation and the final conditions in the
backward equation. Consider the one-dimensional version, and take the transition rates to be

W (j′ | j, t) = t+(j) δj′,j+1 + t−(j) δj′,j−1 . (4.169)

We may then write

∂P (n, t | · )
∂t

= LP (n, t | · ) =

J(n−1 , t | · )︷ ︸︸ ︷{
t+(n− 1)P (n− 1, t | · )− t−(n)P (n, t | · )

}
−

J(n , t | · )︷ ︸︸ ︷{
t+(n)P (n, t | · )− t−(n+ 1)P (n+ 1, t | · )

}

−∂P ( · |n, t)
∂t

= L̃P ( · |n, t) = t+(n)

K( · |n+1 , t)︷ ︸︸ ︷{
P ( · |n+ 1, t)− P ( · |n, t)

}
− t−(n)

K( · |n , t)︷ ︸︸ ︷{
P ( · |n, t)− P ( · |n− 1, t)

}
,

(4.170)

where we have defined the quantities J(n, t | · ) and K( · |n, t) . Here (Lf)n = Lnn′ fn′ and (L̃f)n =

L̃nn′ fn′ , where L and L̃ are matrices, viz.

Lnn′ = t+(n′) δn′,n−1 + t−(n′) δn′,n+1 − t+(n′) δn′,n − t−(n′) δn′,n

L̃nn′ = t+(n) δn′,n+1 + t−(n) δn′,n−1 − t+(n) δn′,n − t−(n) δn′,n .

(4.171)

Clearly L̃nn′ = Ln′n, hence L̃ = Lt, the matrix transpose, if we can neglect boundary terms. For n, n′ ∈
Z , we could specify P (±∞, t | · ) = P ( · | ±∞, t) = 0 .

Consider now a birth-death process where we focus on a finite interval n ∈ {a, . . . , b}. Define the inner
product

〈 g | O | f 〉 =
b∑

n=a

g(n)
(
Of
)
(n) . (4.172)

One then has

〈 g | L | f 〉 − 〈 f | L̃ | g 〉 = t−(b+ 1) f(b+ 1) g(b)− t+(b) f(b) g(b+ 1)

+ t+(a− 1) f(a− 1) g(a)− t−(a) f(a) g(a− 1) .
(4.173)

Thus, if f(a−1) = g(a−1) = f(b+1) = g(b+1) = 0, we have L̃ = Lt = L†, the adjoint. In the suppressed
initial and final conditions, we always assume the particle coordinate n lies within the interval.

We now must specify appropriate boundary conditions on our interval. These conditions depend on
whether we are invoking the forward or backward Master equation:

Forward equation : For reflecting boundaries, we set t−(a) = 0 and t+(b) = 0, assuring that
a particle starting from inside the region can never exit. We also specify P (a − 1, t | · ) = 0
and P (b + 1, t | · ) = 0 so that no particles can enter from the outside. This is equivalent to
specifying that the boundary currents vanish, i.e. J(a− 1, t | · ) = 0 and J(b, t | · ) = 0, respec-
tively. For absorbing boundaries, we choose t+(a− 1) = 0 and t−(b+ 1) = 0 , which assures
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that a particle which exits the region can never reenter. This is equivalent to demanding
P (a− 1, t | · ) = 0 and P (b+ 1, t | · ) = 0, respectively.

Backward equation : From Eqn. 4.170, it is clear that the reflecting conditions t−(a) = 0
and t+(b) = 0 are equivalent to K( · | a, t) = 0 and K( · | b + 1, t) = 0, where these functions.
Neither of the quantities in the absorbing conditions t+(a− 1) = 0 and t−(b+ 1) = 0 enter in
the backward Master equation. The effect of these conditions on the data outside the interval
is to preserve P ( · | a− 1, t) = 0 and P ( · | b+ 1, t) = 0, respectively.

The situation is summarized in Tab. 4.3.3 below.

conditions equivalent conditions

equation boundary reflecting absorbing reflecting absorbing

FORWARD left t−(a) = 0 t+(a− 1) = 0 J(a− 1, t | · ) = 0 P (a− 1, t | · )

right t+(b) = 0 t−(b+ 1) = 0 J(b, t | · ) = 0 P (b+ 1, t | · )

BACKWARD left t−(a) = 0 t+(a− 1) = 0 K( · | a, t) = 0 P ( · | a− 1, t)

right t+(b) = 0 t−(b+ 1) = 0 K( · | b+ 1, t) = 0 P ( · | b+ 1, t)

Table 4.1: Absorbing and reflecting boundary conditions for the Master equation on the interval
{a, . . . , b}.

4.3.4 First passage times

The treatment of first passage times within the Master equation follows that for the Fokker-Planck equa-
tion in §4.2.5. If our discrete particle starts at n at time t0 = 0, the probability that it lies within the
interval {a, . . . , b} at some later time t is

G(n, t) =

b∑
n′=a

P (n′, t |n, 0) =

b∑
n′=a

P (n′, 0 |n,−t) , (4.174)

and therefore −∂tG(n, t) dt is the probability that the particle exits the interval within the time interval
[t, t+ dt]. Therefore the average first passage time out of the interval, starting at n at time t0 = 0, is

T (n) =

∞∫
0

dt t

(
− ∂G(n, t)

∂t

)
=

∞∫
0

dt G(n, t) . (4.175)
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Applying L̃, we obtain

L̃T (n) = t+(n)
{
T (n+ 1)− T (n)

}
− t−(n)

{
T (n)− T (n− 1)

}
= −1 . (4.176)

Let a be a reflecting barrier and b be absorbing. Since t−(a) = 0 we are free to set T (a−1) = T (a). At the
right boundary we have T (b+ 1) = 0, because a particle starting at b+ 1 is already outside the interval.
Eqn. 4.176 may be written

t+(n) ∆T (n)− t−(n) ∆T (n− 1) = −1 , (4.177)

with ∆T (n) ≡ T (n+ 1)− T (n). Now define the function

φ(n) =

n∏
j=a+1

t−(j)

t+(j)
, (4.178)

with φ(a) ≡ 1. This satisfies φ(n)/φ(n− 1) = t−(n)/t+(n) , and therefore Eqn. 4.177 may be recast as

∆T (n)

φ(n)
=

∆T (n− 1)

φ(n− 1)
− 1

t+(n)φ(n)
. (4.179)

Since ∆T (a) = −1/t+(a) from Eqn. 4.176, the first term on the RHS above vanishes for n = a. We then
have

∆T (n) = −φ(n)
n∑
j=a

1

t+(j)φ(j)
, (4.180)

and therefore, working backward from T (b+ 1) = 0, we have

T (n) =

b∑
k=n

φ(k)

k∑
j=a

1

t+(j)φ(j)
(a reflecting , b absorbing). (4.181)

One may also derive

T (n) =

n∑
k=a

φ(k)
b∑

j=k

1

t+(j)φ(j)
(a absorbing , b reflecting). (4.182)

Example

Suppose a = 0 is reflecting and b = N − 1 is absorbing, and furthermore suppose that t±(n) = t± are
site-independent. Then φ(n) = r−n, where r ≡ t+/t−. The mean escape time starting from site n is

T (n) =
1

t+

N−1∑
k=n

r−k
k∑
j=0

rj

=
1

(r − 1)2 t+

{
(N − n)(r − 1) + r−N − r−n

}
.

(4.183)
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If t+ = t−, so the walk is unbiased, then r = 1. We can then evaluate by taking r = 1 + ε with ε→ 0, or,
more easily, by evaluating the sum in the first line when r = 1. The result is

T (n) =
1

t+

{
1
2N(N − 1)− 1

2n(n+ 1) +N − n
}

(r = 1) . (4.184)

By taking an appropriate limit, we can compare with the Fokker-Planck result of Eqn. 4.61, which for
an interval [a, b] with a = 0 reflecting and b absorbing yields T (x) = (b2 − x2)/2D. Consider the Master
equation,

∂P (n, t)

∂t
= β

[
P (n+ 1, t) + P (n− 1, t)− 2P (n, t)

]
= β

∂2P

∂n2
+ 1

12β
∂4P

∂n4
+ . . . , (4.185)

where β = t+ = t−. Now define n ≡ Nx/b, and rescale both time t ≡ Nτ and hopping β ≡ Nγ ,
resulting in

∂P

∂τ
= D

∂2P

∂x2
+

Db2

12N2

∂4P

∂x4
+ . . . , (4.186)

where D = b2γ is the diffusion constant. In the continuum limit, N → ∞ and we may drop all terms
beyond the first on the RHS, yielding the familiar diffusion equation. Taking this limit, Eqn. 4.184 may
be rewritten as T (x)/N = (N/2t+b2)(b2− x2) = (b2− x2)/2D , which agrees with the result of Eqn. 4.61.

4.3.5 From Master equation to Fokker-Planck

Let us start with the Master equation,

∂P (x, t)

∂t
=

∫
dx′

[
W (x |x′)P (x′, t)−W (x′ |x)P (x, t)

]
, (4.187)

and define W (z | z0) ≡ t(z − z0 | z0), which rewrites the rate W (z | z0) from z0 to z as a function of z0

and the distance z − z0 to z. Then the Master equation may be rewritten as

∂P (x, t)

∂t
=

∫
dy
[
t(y |x− y)P (x− y, t)− t(y |x)P (x, t)

]
. (4.188)

Now expand t(y |x− y)P (x− y) as a power series in the jump distance y to obtain12

∂P (x, t)

∂t
=

∫
dy

∞∑
n=1

(−1)n

n!
yα1
· · · yαn

∂n

∂xα1
· · · ∂xαn

[
t(y |x)P (x, t)

]
=

∞∑
n=1

(−1)n

n!

∂n

∂xα1
· · · ∂xαn

[
Rα1···αn(x)P (x, t)

]
,

(4.189)

where
Rα1···αn(x) =

∫
dy yα1

· · · yαn t(y |x) . (4.190)

12We only expand the second argument of t(y |x− y) in y. We retain the full y-dependence of the first argument.
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For d = 1 dimension, we may write

∂P (x, t)

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂xn

[
Rn(x)P (x, t)

]
, Rn(x) ≡

∫
dy yn t(y |x) . (4.191)

This is known as the Kramers-Moyal expansion. If we truncate at order n = 2, we obtain the Fokker-
Planck equation,

∂P (x, t)

∂t
= − ∂

∂x

[
R1(x)P (x, t)

]
+

1

2

∂2

∂x2

[
R2(x)P (x, t)

]
. (4.192)

The problem is that the FPE here is akin to a Procrustean bed. We have amputated the n > 2 terms from
the expansion without any justification at all, and we have no reason to expect this will end well. A more
systematic approach was devised by N. G. van Kampen, and goes by the name of the size expansion. One
assumes that there is a large quantity lurking about, which we call Ω. Typically this can be the total
system volume, or the total population in the case of an ecological or epidemiological model. One
assumes that t(y |x) obeys a scaling form,

t(∆z | z0) = Ω τ

(
∆z
∣∣∣ z0

Ω

)
. (4.193)

From the second of Eqn. 4.191, we then have

Rn(x) = Ω

∫
dy yn τ

(
y
∣∣∣ x
Ω

)
≡ Ω R̃n(x/Ω) . (4.194)

We now proceed by defining
x = Ω φ(t) +

√
Ω ξ , (4.195)

where φ(t) is an as-yet undetermined function of time, and ξ is to replace x, so that our independent
variables are now (ξ, t). We therefore have

Rn(x) = Ω R̃n
(
φ(t) +Ω−1/2ξ

)
. (4.196)

Now we are set to derive a systematic expansion in inverse powers of Ω . We define P (x, t) = Π(ξ, t),
and we note that dx = Ω φ̇ dt+

√
Ω dξ, hence dξ

∣∣
x

= −
√
Ω φ̇ dt , which means

∂P (x, t)

∂t
=
∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π(ξ, t)

∂ξ
. (4.197)

We therefore have, from Eqn. 4.191,

∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π

∂ξ
=
∞∑
n=1

(−1)nΩ(2−n)/2

n!

∂n

∂ξn

[
R̃n
(
φ(t) +Ω−1/2ξ

)
Π(ξ, t)

]
. (4.198)

Further expanding R̃n(φ+Ω−1/2ξ) in powers of Ω−1/2, we obtain

∂Π(ξ, t)

∂t
−
√
Ω φ̇

∂Π

∂ξ
=
∞∑
k=0

∞∑
n=1

(−1)nΩ(2−n−k)/2

n! k!

dkR̃n(φ)

dφk

∣∣∣∣
φ(t)

∂n

∂ξn

[
ξkΠ(ξ, t)

]
. (4.199)
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Let’s define an index l ≡ n+ k, which runs from 1 to∞. Clearly n = l− k , which for fixed l runs from 1
to l. In this way, we can reorder the terms in the sum, according to

∞∑
k=0

∞∑
n=1

A(k, n) =
∞∑
l=1

l∑
n=1

A(l − n, n) . (4.200)

The lowest order term on the RHS of Eqn. 4.199 is the term with n = 1 and k = 0, corresponding to
l = n = 1 if we eliminate the k index in favor of l. It is equal to −

√
Ω R̃1

(
φ(t)

)
∂ξΠ , hence if we demand

that φ(t) satisfy
dφ

dt
= R̃1(φ) , (4.201)

these terms cancel from either side of the equation. We then have

∂Π(ξ, t)

∂t
=

∞∑
l=2

Ω(2−l)/2
l∑

n=1

(−1)n

n! (l − n)!
R̃(l−n)
n

(
φ(t)

) ∂n
∂ξn

[
ξl−nΠ(ξ, t)

]
, (4.202)

where R̃(k)
n (φ) = dkR̃n/dφ

k. We are now in a position to send Ω →∞ , in which case only the l = 2 term
survives, and we are left with

∂Π

∂t
= −R̃′1

(
φ(t)

) ∂ (ξΠ)

∂ξ
+ 1

2R̃2

(
φ(t)

) ∂2Π

∂ξ2
, (4.203)

which is a Fokker-Planck equation.

Birth-death processes

Consider a birth-death process in which the states |n 〉 are labeled by nonnegative integers. Let αn
denote the rate of transitions from |n 〉 → |n+ 1 〉 and let βn denote the rate of transitions from |n 〉 →
|n− 1 〉. The Master equation then takes the form13

dPn
dt

= αn−1Pn−1 + βn+1Pn+1 −
(
αn + βn

)
Pn , (4.204)

where we abbreviate Pn(t) for P (n, t |n0, t0) and suppress the initial conditions (n0, t0).

Let us assume we can write αn = Kᾱ(n/K) and βn = Kβ̄(n/K), where K � 1. Define x ≡ n/K, so the
Master equation becomes

∂P

∂t
= Kᾱ(x− 1

K )P (x− 1
K ) +Kβ̄(x+ 1

K )P (x+ 1
K )−K

(
ᾱ(x) + β̄(x)

)
P (x)

= − ∂

∂x

[(
ᾱ(x)− β̄(x)

)
P (x, t)

]
+

1

2K

∂2

∂x2

[(
ᾱ(x) + β̄(x)

)
P (x, t)

]
+O(K−2) .

(4.205)

If we truncate the expansion after the O(K−1) term, we obtain

∂P

∂t
= − ∂

∂x

[
f(x)P (x, t)

]
+

1

2K

∂2

∂x2

[
g(x)P (x, t)

]
, (4.206)

13We further demand βn=0 = 0 and P−1(t) = 0 at all times.
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where we have defined

f(x) ≡ ᾱ(x)− β̄(x) , g(x) ≡ ᾱ(x) + β̄(x) . (4.207)

This FPE has an equilibrium solution

Peq(x) =
A

g(x)
e−KΦ(x) , Φ(x) = −2

x∫
0

dx′
f(x′)

g(x′)
, (4.208)

where the constantA is determined by normalization. IfK is large, we may expand about the minimum
of Φ(x)

Φ(x) = Φ(x∗)− 2f(x∗)

g(x∗)
(x− x∗) +

2f(x∗) g′(x∗)− 2g(x∗) f ′(x∗)

g2(x∗)
(x− x∗)2 + . . .

= Φ(x∗)− 2f ′(x∗)

g(x∗)
(x− x∗)2 + . . . .

(4.209)

Thus, we obtain a Gaussian distribution

Peq(x) '
√

K

2πσ2
e−K(x−x∗)2/2σ2

with σ2 = − g(x∗)

2f ′(x∗)
. (4.210)

In order that the distribution be normalizable, we must have f ′(x∗) < 0.

In §4.3.6, we will see how the Fokker-Planck expansion fails to account for the large O(K) fluctuations
about a metastable equilibrium which lead to rare extinction events in this sort of birth-death process.

van Kampen treatment

We now discuss the same birth-death process using van Kampen’s size expansion. Assume the distribu-
tion Pn(t) has a time-dependent maximum at n = Kφ(t) and a width proportional to

√
K. We expand

relative to this maximum, writing n ≡ Kφ(t) +
√
K ξ and we define Pn(t) ≡ Π(ξ, t). We now rewrite

the Master equation in eqn. 4.204 in terms of Π(ξ, t). Since n is an independent variable, we set

dn = Kφ̇ dt+
√
K dξ ⇒ dξ

∣∣
n

= −
√
K φ̇ dt . (4.211)

Therefore
dPn
dt

= −
√
K φ̇

∂Π

∂ξ
+
∂Π

∂t
. (4.212)

We now write

αn−1 Pn−1 = K ᾱ
(
φ+K−1/2ξ −K−1

)
Π
(
ξ −K−1/2

)
βn+1 Pn+1 = K β̄

(
φ+K−1/2ξ +K−1

)
Π
(
ξ +K−1/2

)(
αn + βn

)
Pn = K ᾱ

(
φ+K−1/2ξ

)
Π(ξ) +K β̄

(
φ+K−1/2ξ

)
Π(ξ) ,

(4.213)
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and therefore Eqn. 4.204 becomes

−
√
K
∂Π

∂ξ
φ̇+

∂Π

∂t
=
√
K (β̄−ᾱ)

∂Π

∂ξ
+(β̄′−ᾱ′) ξ ∂Π

∂ξ
+(β̄′−ᾱ′)Π+ 1

2(ᾱ+β̄)
∂2Π

∂ξ2
+O

(
K−1/2

)
, (4.214)

where ᾱ = ᾱ(φ) and β̄ = β̄(φ). Equating terms of order
√
K yields the equation

φ̇ = f(φ) ≡ ᾱ(φ)− β̄(φ) , (4.215)

which is a first order ODE for the quantity φ(t). Equating terms of order K0 yields the Fokker-Planck
equation,

∂Π

∂t
= −f ′

(
φ(t)

) ∂
∂ξ

(
ξΠ
)

+ 1
2 g
(
φ(t)

) ∂2Π

∂ξ2
, (4.216)

where g(φ) ≡ ᾱ(φ) + β̄(φ). If in the limit t → ∞, eqn. 4.215 evolves to a stable fixed point φ∗, then the
stationary solution of the Fokker-Planck eqn. 4.216, Πeq(ξ) = Π(ξ, t =∞) must satisfy

−f ′(φ∗) ∂

∂ξ

(
ξ Πeq

)
+ 1

2 g(φ∗)
∂2Πeq

∂ξ2
= 0 ⇒ Πeq(ξ) =

1√
2πσ2

e−ξ
2/2σ2

, (4.217)

where

σ2 = − g(φ∗)

2f ′(φ∗)
. (4.218)

Now both α and β are rates, hence both are positive and thus g(φ) > 0. We see that the condition σ2 > 0 ,
which is necessary for a normalizable equilibrium distribution, requires f ′(φ∗) < 0, which is saying that
the fixed point in Eqn. 4.215 is stable.

We thus arrive at the same distribution as in Eqn. 4.210. The virtue of this latter approach is that we
have a better picture of how the distribution evolves toward its equilibrium value. The condition of nor-
malizability f ′(x∗) < 0 is now seen to be connected with the dynamics of location of the instantaneous
maximum of P (x, t), namely x = φ(t). If the dynamics of the FPE in Eqn. 4.216 are fast compared with
those of the simple dynamical system in Eqn. 4.215, we may regard the evolution of φ(t) as adiabatic so
far as Π(ξ, t) is concerned.

4.3.6 Extinction times in birth-death processes

In §4.3.1 we discussed the Master equation for birth-death processes,

dPn
dt

= t+(n− 1)Pn−1 + t−(n+ 1)Pn+1 −
[
t+(n) + t−(n)

]
Pn . (4.219)

At the mean field level, we have for the average population n̄ =
∑

n nPn ,

dn̄

dt
= t+(n̄)− t−(n̄) . (4.220)

Two models from population biology that merit our attention here:
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Susceptible-infected-susceptible (SIS) model : Consider a population of fixed total size
N , among which n individuals are infected and the remaining N − n are susceptible. The
number of possible contacts between infected and susceptible individuals is then n(N − n),
and if the infection rate per contact is Λ/N and the recovery rate of infected individuals is set
to unity14, then we have

t+(n) = Λn

(
1− n

N

)
, t−(n) = n . (4.221)

Verhulst model : Here the birth rate is B and the death rate is unity plus a stabilizing term
(B/N)n which increases linearly with population size. Thus,

t+(n) = Bn , t−(n) = n+
Bn2

N
. (4.222)

The mean field dynamics of both models is the same, with

dn̄

dt
= (Λ− 1)n̄− Λn̄2

N
(4.223)

for the SIS model; take Λ → B for the Verhulst model. This is known as the logistic equation: ˙̄n =
rn̄(K − n̄), with r = Λ/N the growth rate and K = (Λ − 1)/Λ the equilibrium population. If Λ > 1
then K > 0, in which case the fixed point at n̄ = 0 is unstable and the fixed point at n̄ = K is stable.
The asymptotic state is one of an equilibrium number K of infected individuals. At Λ = 1 there is a
transcritical bifurcation, and for 0 < Λ < 1 we have K < 0, and the unphysical fixed point at n̄ = K is
unstable, while the fixed point at n̄ = 0 is stable. The infection inexorably dies out. So the mean field
dynamics for Λ > 1 are a simple flow to the stable fixed point (SFP) at n̄ = K, and those for Λ < 1 are a
flow to the SFP at n̄ = 0. In both cases, the approach to the SFP takes a logarithmically infinite amount
of time.

Although the mean field solution for Λ > 1 asymptotically approaches an equilibrium number of in-
fected individuals K, the stochasticity in this problem means that there is a finite extinction time for the
infection. The extinction time is the first passage time to the state n = 0. Once the population of infected
individuals goes to zero, there is no way for new infections to spontaneously develop. The mean first
passage time was studied in §4.3.4. We have an absorbing boundary at n = 1 , since t+(0) = 0, and a
reflecting boundary at n = N , since t+(N) = 0 , and Eqn. 4.182 gives the mean first passage time for
absorption as

T (n) =

n∑
k=1

φ(k)

N∑
j=k

1

t+(j)φ(j)
, (4.224)

where15

φ(k) =

k∏
l=1

t−(l)

t+(l)
. (4.225)

14That is, we measure time in units of the recovery time.
15In §4.3.4, we defined φ(a) = 1 where a = 1 is the absorbing boundary here, whereas in Eqn. 4.225 we have φ(1) =

t+(1)/t−(1). Since the mean first passage time T (n) does not change when all φ(n) are multiplied by the same constant, we
are free to define φ(a) any way we please. In this chapter it pleases me to define it as described.
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The detailed analysis of T (n) is rather tedious, and is described in the appendices to C. Doering et al.,
Multiscale Model Simul. 3, 283 (2005). For our purposes, it suffices to consider the behavior of the
function φ(n). Let x ≡ n/N ∈ [0, 1]. Then with y ≡ j/N define

ρ(y) ≡ t+(j)

t−(j)
= Λ(1− y) , (4.226)

in which case, using the trapezoidal rule, and setting x ≡ n/N ,

− lnφ(n) =

n∑
l=1

ln ρ(l/N)

≈ −1
2 ln ρ(0)− 1

2 ln ρ(x) +N

x∫
0

du ln ρ(u)

= N
{

ln Λ−(1− x) ln Λ− (1− x) ln(1− x)− x
}
− ln Λ− 1

2 ln(1− x) .

(4.227)

In the N → ∞ limit, the maximum occurs at x∗ = (Λ − 1)/Λ, which for Λ > 1 is the scaled mean field
equilibrium population of infected individuals. For x ≈ x∗, the mean extinction time for the infection is
therefore

T (x∗) ∼ eNΦ(Λ) , Φ(Λ) = ln Λ− 1 + Λ−1 . (4.228)

The full result, from Doering et al., is

T (x∗) =
Λ

(Λ− 1)2

√
2π

N
eN(ln Λ−1+Λ−1) ×

(
1 +O(N−1)

)
(4.229)

The extinction time is exponentially large in the population size.

Below threshold, when Λ < 1, Doering et al. find

T (x) =
ln(Nx)

1− Λ
+O(1) , (4.230)

which is logarithmic in N . From the mean field dynamics ˙̄n = (Λ − 1)n̄ − Λn̄2, if we are sufficiently
close to the SFP at n̄ = 0 , we can neglect the nonlinear term, in which case the solution becomes n̄(t) =
n̄(0) e(Λ−1)t . If we set n̄(T ) ≡ 1 and n̄(0) = Nx , we obtain T (x) = ln(Nx)/(1 − Λ) , in agreement with
the above expression.

Fokker-Planck solution

Another approach to this problem is to map the Master equation onto a Fokker-Planck equation, as we
did in §4.3.5. The corresponding FPE is

∂P

∂t
= − ∂

∂x

(
fP
)

+
1

2N

∂2

∂x2

(
gP
)

, (4.231)
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where

f(x) = (Λ− 1)x− Λx2 = Λx (x∗ − x)

g(x) = (Λ + 1)x− Λx2 = Λx (x∗ + 2Λ−1 − x) .
(4.232)

The mean extinction time, from Eqn. 4.63, is

T (x) = 2N

x∫
0

dy

ψ(y)

1∫
y

dz
ψ(z)

g(z)
, (4.233)

where

ψ(x) = exp

{
2N

x∫
0

dy
f(y)

g(y)

}
≡ e2Nσ(x) (4.234)

and

σ(x) = x+ 2Λ−1 ln

(
x∗ + 2Λ−1 − x
x∗ + 2Λ−1

)
. (4.235)

Thus,

T (x) =
2N

Λ

x∫
0

dy

1∫
y

dz
e2Nσ(z) e−2Nσ(y)

z(x∗ + 2Λ−1 − z)
. (4.236)

The z integral is dominated by z ≈ x∗, and the y integral by y ≈ 0. Computing the derivatives for the
Taylor series,

σ(x∗) =
Λ− 1

Λ
− 2

Λ
ln

(
Λ + 1

2

)
, σ′(x∗) = 0 , σ′′(x∗) = −1

2Λ (4.237)

and also σ(0) = 0 and σ′(0) = (Λ− 1)/(Λ + 1). One then finds

T (x∗) ≈ Λ

(Λ− 1)2

√
2π

NΛ
e2Nσ(x∗) . (4.238)

Comparison of Master and Fokker-Planck equation predictions for extinction times

How does the FPE result compare with the earlier analysis of the extinction time from the Master equa-
tion? If we expand about the threshold value Λ = 1 , writing Λ = 1 + ε , we find

Φ(Λ) = ln Λ− 1 + Λ−1 = 1
2 ε

2 − 2
3 ε

3 + 3
4 ε

4 − 4
5 ε

5 + . . .

2σ(x∗) =
2(Λ− 1)

Λ
− 4

Λ
ln

(
Λ + 1

2

)
= 1

2 ε
2 − 2

3 ε
3 + 35

48 ε
4 − 181

240 ε
5 + . . .

(4.239)

The difference only begins at fourth order in ε viz.

lnTME(x∗)− lnT FPE(x∗) = N

(
ε4

48
− 11 ε5

240
+

11 ε6

160
+ . . .

)
+O(1) , (4.240)
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where the superscripts indicate Master equation (ME) and Fokker-Planck equation (FPE), respectively.
While the term inside the parentheses impressively small when ε � 1, it is nevertheless finite, and,
critically, it is multiplied by N . Thus, the actual mean extinction time, as computed from the original
Master equation, is exponentially larger than the Fokker-Planck result.

What are we to learn from this? The origin of the difference lies in the truncations we had to do in order
to derive the Fokker-Planck equation itself. The FPE fails to accurately capture the statistics of large
deviations from the metastable state. D. Kessler and N. Shnerb, in J. Stat. Phys. 127, 861 (2007), show
that the FPE is only valid for fluctuations about the metastable state whose size is O(N2/3) , whereas to
reach the absorbing state requires a fluctuation ofO(N) . As these authors put it, ”In order to get the correct
statistics for rare and extreme events one should base the estimate on the exact Master equation that describes the
stochastic process. . . ”. They also derive a real space WKB method to extract the correct statistics from
the Master equation. Another WKB-like treatment, and one which utilizes the powerful Doi-Peliti field
theory formalism, is found in the paper by V. Elgart and A. Kamenev, Phys. Rev. E 70, 041106 (2004).
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5.2 Equilibrium, Nonequilibrium and Local Equilibrium

Classical equilibrium statistical mechanics is described by the full N -body distribution,

f0(x1, . . . ,xN ; p1, . . . , pN ) =


Z−1
N ·

1
N ! e

−βĤN (p,x) OCE

Ξ−1 · 1
N ! e

βµNe−βĤN (p,x) GCE .

(5.1)

We assume a Hamiltonian of the form

ĤN =

N∑
i=1

p2
i

2m
+

N∑
i=1

v(xi) +

N∑
i<j

u(xi − xj), (5.2)

typically with v = 0, i.e. only two-body interactions. The quantity

f0(x1, . . . ,xN ; p1, . . . , pN )
ddx1 d

dp1

hd
· · ·

ddxN d
dpN

hd
(5.3)

is the probability, under equilibrium conditions, of finding N particles in the system, with particle #1
lying within d3x1 of x1 and having momentum within ddp1 of p1, etc. The temperature T and chemical
potential µ are constants, independent of position. Note that f({xi}, {pi}) is dimensionless.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equi-
librium, meaning that the distribution function is not given by the Boltzmann distribution above. For a
general nonequilibrium setting, it is hopeless to make progress – we’d have to integrate the equations
of motion for all the constituent particles. However, typically we are concerned with situations where
external forces or constraints are imposed over some macroscopic scale. Examples would include the
imposition of a voltage drop across a metal, or a temperature differential across any thermodynamic
sample. In such cases, scattering at microscopic length and time scales described by the mean free path
` and the collision time τ work to establish local equilibrium throughout the system. A local equilibrium
is a state described by a space and time varying temperature T (r, t) and chemical potential µ(r, t). As
we will see, the Boltzmann distribution with T = T (r, t) and µ = µ(r, t) will not be a solution to the
evolution equation governing the distribution function. Rather, the distribution for systems slightly out
of equilibrium will be of the form f = f0 + δf , where f0 describes a state of local equilibrium.

We will mainly be interested in the one-body distribution

f(r, p; t) =
N∑
i=1

〈
δ
(
xi(t)− r) δ(pi(t)− p

) 〉
= N

∫ N∏
i=2

ddxi d
dpi f(r,x2, . . . ,xN ; p, p2, . . . , pN ; t) .

(5.4)

In this chapter, we will drop the 1/~ normalization for phase space integration. Thus, f(r, p, t) has
dimensions of h−d, and f(r, p, t) d3r d3p is the average number of particles found within d3r of r and d3p
of p at time t.
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In the GCE, we sum the RHS above over N . Assuming v = 0 so that there is no one-body potential to
break translational symmetry, the equilibrium distribution is time-independent and space-independent:

f0(r, p) = n (2πmkBT )−3/2 e−p
2/2mkBT , (5.5)

where n = N/V or n = n(T, µ) is the particle density in the OCE or GCE. From the one-body distribution
we can compute things like the particle current, j, and the energy current, jε:

j(r, t) =

∫
ddp f(r, p; t)

p

m
(5.6)

jε(r, t) =

∫
ddp f(r, p; t) ε(p)

p

m
, (5.7)

where ε(p) = p2/2m. Clearly these currents both vanish in equilibrium, when f = f0, since f0(r, p)
depends only on p2 and not on the direction of p. In a steady state nonequilibrium situation, the above
quantities are time-independent.

Thermodynamics says that
dq = T ds = dε− µdn , (5.8)

where s, ε, and n are entropy density, energy density, and particle density, respectively, and dq is the
differential heat density. This relation may be case as one among the corresponding current densities:

jq = T js = jε − µ j . (5.9)

Thus, in a system with no particle flow, j = 0 and the heat current jq is the same as the energy current jε.

When the individual particles are not point particles, they possess angular momentum as well as linear
momentum. Following Lifshitz and Pitaevskii, we abbreviate Γ = (p,L) for these two variables for the
case of diatomic molecules, and Γ = (p,L, n̂ · L) in the case of spherical top molecules, where n̂ is the
symmetry axis of the top. We then have, in d = 3 dimensions,

dΓ =


d3p point particles
d3p L dLdΩL diatomic molecules
d3p L2 dLdΩL d cosϑ symmetric tops ,

(5.10)

where ϑ = cos−1(n̂ · L̂). We will call the set Γ the ‘kinematic variables’. The instantaneous number
density at r is then

n(r, t) =

∫
dΓ f(r, Γ ; t) . (5.11)

One might ask why we do not also keep track of the angular orientation of the individual molecules.
There are two reasons. First, the rotations of the molecules are generally extremely rapid, so we are
justified in averaging over these motions. Second, the orientation of, say, a rotor does not enter into
its energy. While the same can be said of the spatial position in the absence of external fields, (i) in
the presence of external fields one must keep track of the position coordinate r since there is physical
transport of particles from one region of space to another, and (iii) the collision process, which as we
shall see enters the dynamics of the distribution function, takes place in real space.
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5.3 Boltzmann Transport Theory

5.3.1 Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

f(r, p, t) d3r d3p ≡

{
# of particles with positions within d3r of
r and momenta within d3p of p at time t.

(5.12)

We now ask how the distribution functions f(r, p, t) evolves in time. It is clear that in the absence of
collisions, the distribution function must satisfy the continuity equation,

∂f

∂t
+ ∇·(uf) = 0 . (5.13)

This is just the condition of number conservation for particles. Take care to note that ∇ and u are six-
dimensional phase space vectors:

u = ( ẋ , ẏ , ż , ṗx , ṗy , ṗz ) (5.14)

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂px
,
∂

∂py
,
∂

∂pz

)
. (5.15)

The continuity equation describes a distribution in which each constituent particle evolves according to
a prescribed dynamics, which for a mechanical system is specified by

dr

dt
=
∂H

∂p
= v(p) ,

dp

dt
= −∂H

∂r
= Fext , (5.16)

where F is an external applied force. Here,

H(p, r) = ε(p) + Uext(r) . (5.17)

For example, if the particles are under the influence of gravity, then Uext(r) = mg · r and F = −∇Uext =
−mg.

Note that as a consequence of the dynamics, we have ∇ ·u = 0, i.e. phase space flow is incompressible,
provided that ε(p) is a function of p alone, and not of r. Thus, in the absence of collisions, we have

∂f

∂t
+ u ·∇f = 0 . (5.18)

The differential operator Dt ≡ ∂t + u ·∇ is sometimes called the ‘convective derivative’, because Dtf is
the time derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynam-
ics. In a collision process, a particle with momentum p and one with momentum p̃ can instantaneously
convert into a pair with momenta p′ and p̃′, provided total momentum is conserved: p + p̃ = p′ + p̃′.
This means that Dtf 6= 0. Rather, we should write

∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
=

(
∂f

∂t

)
coll

(5.19)
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where the right side is known as the collision integral. The collision integral is in general a function of r,
p, and t and a functional of the distribution f .

After a trivial rearrangement of terms, we can write the Boltzmann equation as

∂f

∂t
=

(
∂f

∂t

)
str

+

(
∂f

∂t

)
coll

, (5.20)

where (
∂f

∂t

)
str

≡ −ṙ · ∂f
∂r
− ṗ · ∂f

∂p
(5.21)

is known as the streaming term. Thus, there are two contributions to ∂f/∂t : streaming and collisions.

5.3.2 Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

∂f

∂t
+
∂ε

∂p
· ∂f
∂r
−∇Uext ·

∂f

∂p
= 0 . (5.22)

In order to gain some intuition about how the streaming term affects the evolution of the distribution
f(r, p, t), consider a case where Fext = 0. We then have

∂f

∂t
+
p

m
· ∂f
∂r

= 0 . (5.23)

Clearly, then, any function of the form

f(r, p, t) = ϕ
(
r − v(p) t , p

)
(5.24)

will be a solution to the collisionless Boltzmann equation, where v(p) = ∂ε
∂p . One possible solution would

be the Boltzmann distribution,
f(r, p, t) = eµ/kBT e−p

2/2mkBT , (5.25)

which is time-independent1. Here we have assumed a ballistic dispersion, ε(p) = p2/2m.

For a slightly less trivial example, let the initial distribution be ϕ(r, p) = Ae−r
2/2σ2

e−p
2/2κ2 , so that

f(r, p, t) = Ae−
(
r−pt

m

)2
/2σ2

e−p
2/2κ2 . (5.26)

Consider the one-dimensional version, and rescale position, momentum, and time so that

f(x, p, t) = Ae−
1
2

(x̄−p̄ t̄)2 e−
1
2
p̄2 . (5.27)

Consider the level sets of f , where f(x, p, t) = Ae−
1
2
α2

. The equation for these sets is

x̄ = p̄ t̄±
√
α2 − p̄2 . (5.28)

1Indeed, any arbitrary function of p alone would be a solution. Ultimately, we require some energy exchanging processes,
such as collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.
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Figure 5.1: Level sets for a sample f(x̄, p̄, t̄) = Ae−
1
2

(x̄−p̄t̄)2e−
1
2
p̄2 , for values f = Ae−

1
2
α2

with α in
equally spaced intervals from α = 0.2 (red) to α = 1.2 (blue). The time variable t̄ is taken to be t̄ = 0.0
(upper left), 0.2 (upper right), 0.8 (lower right), and 1.3 (lower left).

For fixed t̄, these level sets describe the loci in phase space of equal probability densities, with the
probability density decreasing exponentially in the parameter α2. For t̄ = 0, the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As t̄ increases, the
distribution widens in x̄ but not in p̄ – each particle moves with a constant momentum, so the set of
momentum values never changes. However, the level sets in the (x̄ , p̄) plane become elliptical, with a
semimajor axis oriented at an angle θ = ctn−1(t) with respect to the x̄ axis. For t̄ > 0, he particles at the
outer edges of the cloud are more likely to be moving away from the center. See the sketches in fig. 5.1

Suppose we add in a constant external force Fext. Then it is easy to show (and left as an exercise to the
reader to prove) that any function of the form

f(r, p, t) = Aϕ

(
r − p t

m
+
Fextt

2

2m
, p− Fextt

m

)
(5.29)

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).
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5.3.3 Collisional invariants

Consider a function A(r, p) of position and momentum. Its average value at time t is

A(t) =

∫
d3r d3p A(r, p) f(r, p, t) . (5.30)

Taking the time derivative,

dA

dt
=

∫
d3r d3p A(r, p)

∂f

∂t

=

∫
d3r d3p A(r, p)

{
− ∂

∂r
· (ṙf)− ∂

∂p
· (ṗf) +

(
∂f

∂t

)
coll

}

=

∫
d3r d3p

{(
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

)
f +A(r, p)

(
∂f

∂t

)
coll

}
.

(5.31)

Hence, if A is preserved by the dynamics between collisions, then2

dA

dt
=
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

= 0 . (5.32)

We therefore have that the rate of change of A is determined wholly by the collision integral

dA

dt
=

∫
d3r d3p A(r, p)

(
∂f

∂t

)
coll

. (5.33)

Quantities which are then conserved in the collisions satisfy Ȧ = 0. Such quantities are called collisional
invariants. Examples of collisional invariants include the particle number (A = 1), the components of
the total momentum (A = pµ) (in the absence of broken translational invariance, due e.g. to the presence
of walls), and the total energy (A = ε(p)).

5.3.4 Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The
first involves potential scattering, where a particle in state |Γ 〉 scatters, in the presence of an external
potential, to a state |Γ ′〉. Recall that Γ is an abbreviation for the set of kinematic variables, e.g. Γ = (p,L)
in the case of a diatomic molecule. For point particles, Γ = (px, py, pz) and dΓ = d3p.

We now define the function w
(
Γ ′|Γ

)
such that

w
(
Γ ′|Γ

)
f(r, Γ ; t) dΓ dΓ ′ =

{
rate at which a particle within dΓ of (r, Γ )

scatters to within dΓ ′ of (r, Γ ′) at time t.
(5.34)

2Recall from classical mechanics the definition of the Poisson bracket, {A,B} = ∂A
∂r ·

∂B
∂p −

∂B
∂r ·

∂A
∂p . Then from Hamilton’s

equations ṙ = ∂H
∂p and ṗ = − ∂H

∂r , where H(p,r, t) is the Hamiltonian, we have dA
dt

= {A,H}. Invariants have zero Poisson
bracket with the Hamiltonian.
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Figure 5.2: Left: single particle scattering process |Γ 〉 → |Γ ′〉. Right: two-particle scattering process
|ΓΓ1〉 → |Γ ′Γ ′1〉.

The units ofw dΓ are therefore 1/T . The differential scattering cross section for particle scattering is then

dσ =
w
(
Γ ′|Γ

)
n |v|

dΓ ′ , (5.35)

where v = p/m is the particle’s velocity and n the density.

The second class is that of two-particle scattering processes, i.e. |ΓΓ1〉 → |Γ ′Γ ′1〉. We define the scattering
function w

(
Γ ′Γ ′1 |ΓΓ1

)
by

w
(
Γ ′Γ ′1 |ΓΓ1

)
f2(r, Γ ; r, Γ1 ; t) dΓ dΓ1 dΓ

′ dΓ ′1 =


rate at which two particles within dΓ of (r, Γ )

and within dΓ1 of (r, Γ1) scatter into states within
dΓ ′ of (r, Γ ′) and dΓ ′1 of (r, Γ ′1) at time t ,

(5.36)
where

f2(r, p ; r′, p′ ; t) =
〈∑
i,j

δ
(
xi(t)− r) δ(pi(t)− p

)
δ
(
xj(t)− r′) δ(pj(t)− p′

) 〉
(5.37)

is the nonequilibrium two-particle distribution for point particles. The differential scattering cross sec-
tion is

dσ =
w
(
Γ ′Γ ′1 |ΓΓ1

)
|v − v1|

dΓ ′ dΓ ′1 . (5.38)

We assume, in both cases, that any scattering occurs locally, i.e. the particles attain their asymptotic
kinematic states on distance scales small compared to the mean interparticle separation. In this case we
can treat each scattering process independently. This assumption is particular to rarefied systems, i.e.
gases, and is not appropriate for dense liquids. The two types of scattering processes are depicted in fig.
5.2.

In computing the collision integral for the state |r, Γ 〉, we must take care to sum over contributions
from transitions out of this state, i.e. |Γ 〉 → |Γ ′〉, which reduce f(r, Γ ), and transitions into this state, i.e.
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|Γ ′〉 → |Γ 〉, which increase f(r, Γ ). Thus, for one-body scattering, we have

D

Dt
f(r, Γ ; t) =

(
∂f

∂t

)
coll

=

∫
dΓ ′

{
w(Γ |Γ ′) f(r, Γ ′; t)− w(Γ ′ |Γ ) f(r, Γ ; t)

}
. (5.39)

For two-body scattering, we have

D

Dt
f(r, Γ ; t) =

(
∂f

∂t

)
coll

=

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1

{
w
(
ΓΓ1 |Γ ′Γ ′1

)
f2(r, Γ ′; r, Γ ′1; t)

− w
(
Γ ′Γ ′1 |ΓΓ1

)
f2(r, Γ ; r, Γ1; t)

}
.

(5.40)

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since
the LHS involves the one-body distribution f ≡ f1 and the RHS involves the two-body distribution f2.
To close the equations, we make the approximation

f2(r, Γ ′; r̃, Γ̃ ; t) ≈ f(r, Γ ; t) f(r̃, Γ̃ ; t) . (5.41)

We then have

D

Dt
f(r, Γ ; t) =

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1

{
w
(
ΓΓ1 |Γ ′Γ ′1

)
f(r, Γ ′; t) f(r, Γ ′1; t)

− w
(
Γ ′Γ ′1 |ΓΓ1

)
f(r, Γ ; t) f(r, Γ1; t)

}
.

(5.42)

5.3.5 Detailed balance

Classical mechanics places some restrictions on the form of the kernel w
(
ΓΓ1 |Γ ′Γ ′1

)
. In particular, if

Γ T = (−p,−L) denotes the kinematic variables under time reversal, then

w
(
Γ ′Γ ′1 |ΓΓ1

)
= w

(
Γ TΓ T

1 |Γ ′TΓ ′1T
)
. (5.43)

This is because the time reverse of the process |ΓΓ1〉 → |Γ ′Γ ′1〉 is |Γ ′TΓ ′1T〉 → |ΓTΓT
1 〉.

In equilibrium, we must have

w
(
Γ ′Γ ′1 |ΓΓ1

)
f0(Γ ) f0(Γ1) d4Γ = w

(
Γ TΓ T

1 |Γ ′TΓ ′1T
)
f0(Γ ′T ) f0(Γ ′1

T ) d4Γ T (5.44)

where
d4Γ ≡ dΓ dΓ1 dΓ

′dΓ ′1 , d4Γ T ≡ dΓ T dΓ T
1 dΓ

′TdΓ ′1
T . (5.45)

Since dΓ = dΓ T etc., we may cancel the differentials above, and after invoking eqn. 5.43 and suppressing
the common r label, we find

f0(Γ ) f0(Γ1) = f0(Γ ′T ) f0(Γ ′1
T ) . (5.46)

This is the condition of detailed balance. For the Boltzmann distribution, we have

f0(Γ ) = Ae−ε/kBT , (5.47)
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where A is a constant and where ε = ε(Γ ) is the kinetic energy, e.g. ε(Γ ) = p2/2m in the case of point
particles. Note that ε(Γ T ) = ε(Γ ). Detailed balance is satisfied because the kinematics of the collision
requires energy conservation:

ε+ ε1 = ε′ + ε′1 . (5.48)

Since momentum is also kinematically conserved, i.e.

p+ p1 = p′ + p′1 , (5.49)

any distribution of the form
f0(Γ ) = Ae−(ε−p·V )/kBT (5.50)

also satisfies detailed balance, for any velocity parameter V . This distribution is appropriate for gases
which are flowing with average particle V .

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the
parity operation P , we have r → −r and p → −p. Note that a pseudovector such as L = r × p
is unchanged under P . Thus, Γ P = (−p,L). Under the combined operation of C = PT , we have
ΓC = (p,−L). If the microscopic Hamiltonian is invariant under C, then we must have

w
(
Γ ′Γ ′1 |ΓΓ1

)
= w

(
ΓCΓC

1 |Γ ′CΓ ′1C
)
. (5.51)

For point particles, invariance under T and P then means

w(p′, p′1 | p, p1) = w(p, p1 | p′, p′1) , (5.52)

and therefore the collision integral takes the simplified form,

Df(p)

Dt
=

(
∂f

∂t

)
coll

=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′, p′1 | p, p1)

{
f(p′) f(p′1)− f(p) f(p1)

}
,

(5.53)

where we have suppressed both r and t variables.

The most general statement of detailed balance is

f0(Γ ′) f0(Γ ′1)

f0(Γ ) f0(Γ1)
=
w
(
Γ ′Γ ′1 |ΓΓ1

)
w
(
ΓΓ1 |Γ ′Γ ′1

) . (5.54)

Under this condition, the collision term vanishes for f = f0, which is the equilibrium distribution.

5.3.6 Kinematics and cross section

We can rewrite eqn. 5.53 in the form

Df(p)

Dt
=

∫
d3p1

∫
dΩ |v − v1|

∂σ

∂Ω

{
f(p′) f(p′1)− f(p) f(p1)

}
, (5.55)
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where ∂σ
∂Ω is the differential scattering cross section. If we recast the scattering problem in terms of center-

of-mass and relative coordinates, we conclude that the total momentum is conserved by the collision,
and furthermore that the energy in the CM frame is conserved, which means that the magnitude of the
relative momentum is conserved. Thus, we may write p′−p′1 = |p−p1| Ω̂, where Ω̂ is a unit vector. Then
p′ and p′1 are determined to be

p′ = 1
2

(
p+ p1 + |p− p1| Ω̂

)
p′1 = 1

2

(
p+ p1 − |p− p1| Ω̂

)
.

(5.56)

5.3.7 H-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local (i.e. r-dependent)
quantity

ρϕ(r, t) ≡
∫
dΓ ϕ(Γ, f) f(Γ, r, t) . (5.57)

At this point, ϕ(Γ, f) is arbitrary. Note that the ϕ(Γ, f) factor has r and t dependence through its depen-
dence on f , which itself is a function of r, Γ , and t. We now compute

∂ρϕ
∂t

=

∫
dΓ

∂(ϕf)

∂t
=

∫
dΓ

∂(ϕf)

∂f

∂f

∂t

= −
∫
dΓ u ·∇(ϕf)−

∫
dΓ

∂(ϕf)

∂f

(
∂f

∂t

)
coll

= −
∮
dΣ n̂ · (uϕf)−

∫
dΓ

∂(ϕf)

∂f

(
∂f

∂t

)
coll

.

(5.58)

The first term on the last line follows from the divergence theorem, and vanishes if we assume f = 0 for
infinite values of the kinematic variables, which is the only physical possibility. Thus, the rate of change
of ρϕ is entirely due to the collision term. Thus,

∂ρϕ
∂t

=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1

{
w
(
Γ ′Γ ′1 |ΓΓ1

)
ff1 χ− w

(
ΓΓ1 |Γ ′Γ ′1

)
f ′f ′1 χ

}
=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w

(
Γ ′Γ ′1 |ΓΓ1

)
ff1 (χ− χ′) ,

(5.59)

where f ≡ f(Γ ), f ′ ≡ f(Γ ′), f1 ≡ f(Γ1), f ′1 ≡ f(Γ ′1), χ = χ(Γ ), with

χ =
∂(ϕf)

∂f
= ϕ+ f

∂ϕ

∂f
. (5.60)

We now invoke the symmetry
w
(
Γ ′Γ ′1 |ΓΓ1

)
= w

(
Γ ′1 Γ

′ |Γ1 Γ
)
, (5.61)

which allows us to write

∂ρϕ
∂t

= 1
2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w

(
Γ ′Γ ′1 |ΓΓ1

)
ff1 (χ+ χ1 − χ′ − χ′1) . (5.62)
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This shows that ρϕ is preserved by the collision term if χ(Γ ) is a collisional invariant.

Now let us consider ϕ(f) = ln f . We define h ≡ ρ
∣∣
ϕ=ln f

. We then have

∂h

∂t
= −1

2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w f

′f ′1 · x lnx , (5.63)

where w ≡ w
(
Γ ′Γ ′1 |ΓΓ1

)
and x ≡ ff1/f

′f ′1. We next invoke the result∫
dΓ ′
∫
dΓ ′1 w

(
Γ ′Γ ′1 |ΓΓ1

)
=

∫
dΓ ′
∫
dΓ ′1 w

(
ΓΓ1 |Γ ′Γ ′1

)
(5.64)

which is a statement of unitarity of the scattering matrix3. Multiplying both sides by f(Γ ) f(Γ1), then
integrating over Γ and Γ1, and finally changing variables (Γ, Γ1)↔ (Γ ′, Γ ′1), we find

0 =

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w

(
ff1 − f ′f ′1

)
=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w f

′f ′1 (x− 1) . (5.65)

Multiplying this result by 1
2 and adding it to the previous equation for ḣ, we arrive at our final result,

∂h

∂t
= −1

2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′1 w f

′f ′1 (x lnx− x+ 1) . (5.66)

Note that w, f ′, and f ′1 are all nonnegative. It is then easy to prove that the function g(x) = x lnx− x+ 1
is nonnegative for all positive x values4, which therefore entails the important result

∂h(r, t)

∂t
≤ 0 . (5.67)

Boltzmann’s H function is the space integral of the h density: H =
∫
d3r h.

Thus, everywhere in space, the function h(r, t) is monotonically decreasing or constant, due to collisions.
In equilibrium, ḣ = 0 everywhere, which requires x = 1, i.e.

f0(Γ ) f0(Γ1) = f0(Γ ′) f0(Γ ′1) , (5.68)

or, taking the logarithm,
ln f0(Γ ) + ln f0(Γ1) = ln f0(Γ ′) + ln f0(Γ ′1) . (5.69)

But this means that ln f0 is itself a collisional invariant, and if 1, p, and ε are the only collisional invari-
ants, then ln f0 must be expressible in terms of them. Thus,

ln f0 =
µ

kBT
+
V ·p
kBT

− ε

kBT
, (5.70)

where µ, V , and T are constants which parameterize the equilibrium distribution f0(p), corresponding
to the chemical potential, flow velocity, and temperature, respectively.

3See Lifshitz and Pitaevskii, Physical Kinetics, §2.
4The function g(x) = x lnx − x + 1 satisfies g′(x) = lnx, hence g′(x) < 0 on the interval x ∈ [0, 1) and g′(x) > 0 on

x ∈ (1,∞]. Thus, g(x) monotonically decreases from g(0) = 1 to g(1) = 0, and then monotonically increases to g(∞) = ∞,
never becoming negative.
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5.4 Weakly Inhomogeneous Gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and
Pitaevskii, §6. As the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equa-
tion of the form f = f0 + δf , where f0 is describes a local equilibrium. Recall that such a distribution
function is annihilated by the collision term in the Boltzmann equation but not by the streaming term,
hence a correction δf must be added in order to obtain a solution.

The most general form of local equilibrium is described by the distribution

f0(r, Γ ) = C exp

(
µ− ε(Γ ) + V · p

kBT

)
, (5.71)

where µ = µ(r, t), T = T (r, t), and V = V (r, t) vary in both space and time. Note that

df0 =

(
dµ+ p · dV + (ε− µ− V · p)

dT

T
− dε

)(
− ∂f0

∂ε

)

=

(
1

n
dp+ p · dV + (ε− h)

dT

T
− dε

)(
− ∂f0

∂ε

) (5.72)

where we have assumed V = 0 on average, and used

dµ =

(
∂µ

∂T

)
p

dT +

(
∂µ

∂p

)
T

dp

= −s dT +
1

n
dp ,

(5.73)

where s is the entropy per particle and n is the number density. We have further written h = µ + Ts,
which is the enthalpy per particle. Here, cp is the heat capacity per particle at constant pressure5. Finally,
note that when f0 is the Maxwell-Boltzmann distribution, we have

−∂f
0

∂ε
=

f0

kBT
. (5.74)

The Boltzmann equation is written(
∂

∂t
+
p

m
· ∂
∂r

+ F · ∂
∂p

)(
f0 + δf

)
=

(
∂f

∂t

)
coll

. (5.75)

The RHS of this equation must be of order δf because the local equilibrium distribution f0 is annihilated
by the collision integral. We therefore wish to evaluate one of the contributions to the LHS of this
equation,

∂f0

∂t
+
p

m
· ∂f

0

∂r
+ F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
1

n

∂p

∂t
+
ε− h
T

∂T

∂t
+mv ·

[
(v ·∇)V

]
+ v ·

(
m
∂V

∂t
+

1

n
∇p

)
+
ε− h
T

v ·∇T − F · v

}
.

(5.76)

5In the chapter on thermodynamics, we adopted a slightly different definition of cp as the heat capacity per mole. In this
chapter cp is the heat capacity per particle.
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To simplify this, first note that Newton’s laws applied to an ideal fluid give ρV̇ = −∇p, where ρ = mn
is the mass density. Corrections to this result, e.g. viscosity and nonlinearity in V , are of higher order.

Next, continuity for particle number means ṅ+ ∇·(nV ) = 0. We assume V is zero on average and that
all derivatives are small, hence ∇·(nV ) = V ·∇n+ n∇·V ≈ n∇·V . Thus,

∂ lnn

∂t
=
∂ ln p

∂t
− ∂ lnT

∂t
= −∇·V , (5.77)

where we have invoked the ideal gas law n = p/kBT above.

Next, we invoke conservation of entropy. If s is the entropy per particle, then ns is the entropy per unit
volume, in which case we have the continuity equation

∂(ns)

∂t
+ ∇ · (nsV ) = n

(
∂s

∂t
+ V ·∇s

)
+ s

(
∂n

∂t
+ ∇ · (nV )

)
= 0 . (5.78)

The second bracketed term on the RHS vanishes because of particle continuity, leaving us with ṡ + V ·
∇s ≈ ṡ = 0 (since V = 0 on average, and any gradient is first order in smallness). Now thermodynamics
says

ds =

(
∂s

∂T

)
p

dT +

(
∂s

∂p

)
T

dp

=
cp
T
dT − kB

p
dp ,

(5.79)

since T
(
∂s
∂T

)
p

= cp and
(
∂s
∂p

)
T

=
(
∂v
∂T

)
p
, where v = V/N . Thus,

cp
kB

∂ lnT

∂t
− ∂ ln p

∂t
= 0 . (5.80)

We now have in eqns. 5.77 and 5.80 two equations in the two unknowns ∂ lnT
∂t and ∂ ln p

∂t , yielding

∂ lnT

∂t
= −kB

cV
∇·V (5.81)

∂ ln p

∂t
= −

cp
cV

∇·V . (5.82)

Thus eqn. 5.76 becomes

∂f0

∂t
+
p

m
· ∂f

0

∂r
+ F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
ε(Γ )− h

T
v ·∇T +mvαvβ Qαβ

+
h− Tcp − ε(Γ )

cV /kB

∇·V − F · v
}
,

(5.83)

where

Qαβ =
1

2

(
∂Vα
∂xβ

+
∂Vβ
∂xα

)
. (5.84)
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Therefore, the Boltzmann equation takes the form{
ε(Γ )− h

T
v ·∇T +mvαvβ Qαβ −

ε(Γ )− h+ Tcp
cV /kB

∇·V − F · v
}

f0

kBT
+
∂ δf

∂t
=

(
∂f

∂t

)
coll

. (5.85)

Notice we have dropped the terms v · ∂ δf∂r and F · ∂ δf∂p , since δf must already be first order in smallness,

and both the ∂
∂r operator as well as F add a second order of smallness, which is negligible. Typically ∂ δf

∂t
is nonzero if the applied force F (t) is time-dependent. We use the convention of summing over repeated
indices. Note that δαβ Qαβ = Qαα = ∇ ·V . For ideal gases in which only translational and rotational
degrees of freedom are excited, h = cpT .

5.5 Relaxation Time Approximation

5.5.1 Approximation of collision integral

We now consider a very simple model of the collision integral,(
∂f

∂t

)
coll

= − f − f
0

τ
= −δf

τ
. (5.86)

This model is known as the relaxation time approximation. Here, f0 = f0(r, p, t) is a distribution function
which describes a local equilibrium at each position r and time t. The quantity τ is the relaxation time,
which can in principle be momentum-dependent, but which we shall first consider to be constant. In
the absence of streaming terms, we have

∂ δf

∂t
= −δf

τ
=⇒ δf(r, p, t) = δf(r, p, 0) e−t/τ . (5.87)

The distribution f then relaxes to the equilibrium distribution f0 on a time scale τ . We note that this
approximation is obviously flawed in that all quantities – even the collisional invariants – relax to their
equilibrium values on the scale τ . In the Appendix, we consider a model for the collision integral in
which the collisional invariants are all preserved, but everything else relaxes to local equilibrium at a
single rate.

5.5.2 Computation of the scattering time

Consider two particles with velocities v and v′. The average of their relative speed is

〈 |v − v′| 〉 =

∫
d3v

∫
d3v′ P (v)P (v′) |v − v′| , (5.88)

where P (v) is the Maxwell velocity distribution,

P (v) =

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
, (5.89)
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Figure 5.3: Graphic representation of the equation nσ v̄rel τ = 1, which yields the scattering time τ in
terms of the number density n, average particle pair relative velocity v̄rel, and two-particle total scatter-
ing cross section σ. The equation says that on average there must be one particle within the tube.

which follows from the Boltzmann form of the equilibrium distribution f0(p). It is left as an exercise for
the student to verify that

v̄rel ≡ 〈 |v − v′| 〉 =
4√
π

(
kBT

m

)1/2

. (5.90)

Note that v̄rel =
√

2 v̄, where v̄ is the average particle speed. Let σ be the total scattering cross section,
which for hard spheres is σ = πd2, where d is the hard sphere diameter. Then the rate at which particles
scatter is

1

τ
= n v̄rel σ . (5.91)

The particle mean free path is simply

` = v̄ τ =
1√

2nσ
. (5.92)

While the scattering length is not temperature-dependent within this formalism, the scattering time is
T -dependent, with

τ(T ) =
1

n v̄rel σ
=

√
π

4nσ

(
m

kBT

)1/2

. (5.93)

As T → 0, the collision time diverges as τ ∝ T−1/2, because the particles on average move more slowly
at lower temperatures. The mean free path, however, is independent of T , and is given by ` = 1/

√
2nσ.

5.5.3 Thermal conductivity

We consider a system with a temperature gradient ∇T and seek a steady state (i.e. time-independent)
solution to the Boltzmann equation. We assume Fα = Qαβ = 0. Appealing to eqn. 5.85, and using the
relaxation time approximation for the collision integral, we have

δf = −
τ(ε− cp T )

kBT
2

(v ·∇T ) f0 . (5.94)

We are now ready to compute the energy and particle currents. In order to compute the local density of
any quantity A(r, p), we multiply by the distribution f(r, p) and integrate over momentum:

ρ
A

(r, t) =

∫
d3pA(r, p) f(r, p, t) , (5.95)



5.5. RELAXATION TIME APPROXIMATION 147

For the energy (thermal) current, we letA = ε vα = ε pα/m, in which case ρ
A

= jα. Note that
∫
d3pp f0 = 0

since f0 is isotropic in p even when µ and T depend on r. Thus, only δf enters into the calculation of the
various currents. Thus, the energy (thermal) current is

jαε (r) =

∫
d3p ε vα δf

= − nτ

kBT
2

〈
vαvβ ε (ε− cp T )

〉 ∂T
∂xβ

,

(5.96)

where the repeated index β is summed over, and where momentum averages are defined relative to the
equilibrium distribution, i.e.

〈φ(p) 〉 =

∫
d3p φ(p) f0(p)

/∫
d3p f0(p) =

∫
d3v P (v)φ(mv) . (5.97)

In this context, it is useful to point out the identity

d3p f0(p) = nd3v P (v) , (5.98)

where

P (v) =

(
m

2πkBT

)3/2

e−m(v−V )2/2kBT (5.99)

is the Maxwell velocity distribution.

Note that if φ = φ(ε) is a function of the energy, and if V = 0, then

d3p f0(p) = nd3v P (v) = n P̃ (ε) dε , (5.100)

where
P̃ (ε) = 2√

π
(kBT )−3/2 ε1/2 e−ε/kBT , (5.101)

is the Maxwellian distribution of single particle energies. This distribution is normalized with
∞∫
0

dε P̃ (ε) =

1. Averages with respect to this distribution are given by

〈φ(ε) 〉 =

∞∫
0

dε φ(ε) P̃ (ε) = 2√
π

(kBT )−3/2

∞∫
0

dε ε1/2 φ(ε) e−ε/kBT . (5.102)

If φ(ε) is homogeneous, then for any α we have

〈 εα 〉 = 2√
π

Γ
(
α+ 3

2

)
(kBT )α . (5.103)

Due to spatial isotropy, it is clear that we can replace

vα vβ → 1
3v

2 δαβ =
2ε

3m
δαβ (5.104)

in eqn. 5.96. We then have jε = −κ∇T , with

κ =
2nτ

3mkBT
2
〈 ε2
(
ε− cp T

)
〉 =

5nτk2
BT

2m
= π

8n`v̄ cp , (5.105)

where we have used cp = 5
2kB and v̄2 = 8kBT

πm . The quantity κ is called the thermal conductivity. Note that
κ ∝ T 1/2.
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Figure 5.4: Gedankenexperiment to measure shear viscosity η in a fluid. The lower plate is fixed. The
viscous drag force per unit area on the upper plate is Fdrag/A = −ηV/d. This must be balanced by an
applied force F .

5.5.4 Viscosity

Consider the situation depicted in fig. 5.4. A fluid filling the space between two large flat plates at z = 0
and z = d is set in motion by a force F = F x̂ applied to the upper plate; the lower plate is fixed. It
is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the top have
an average x-component of their momentum 〈px〉 = mV . As these particles move downward toward
lower z values, they bring their x-momenta with them. Therefore there is a downward (−ẑ-directed)
flow of 〈px〉. Since x-momentum is constantly being drawn away from z = d plane, this means that
there is a −x-directed viscous drag on the upper plate. The viscous drag force per unit area is given
by Fdrag/A = −ηV/d, where V/d = ∂Vx/∂z is the velocity gradient and η is the shear viscosity. In
steady state, the applied force balances the drag force, i.e. F + Fdrag = 0. Clearly in the steady state the
net momentum density of the fluid does not change, and is given by 1

2ρV x̂, where ρ is the fluid mass
density. The momentum per unit time injected into the fluid by the upper plate at z = d is then extracted
by the lower plate at z = 0. The momentum flux density Πxz = n 〈 px vz 〉 is the drag force on the upper
surface per unit area: Πxz = −η ∂Vx

∂z . The units of viscosity are [η] = M/LT .

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second
type of viscosity, called second viscosity or bulk viscosity, which is measurable although not by the type
of experiment depicted in fig. 5.4.

The momentum flux tensor Παβ = n 〈 pα vβ 〉 is defined to be the current of momentum component pα in
the direction of increasing xβ . For a gas in motion with average velocity V, we have

Παβ = nm 〈 (Vα + v′α)(Vβ + v′β) 〉
= nmVαVβ + nm 〈 v′αv′β 〉

= nmVαVβ + 1
3nm 〈 v

′2 〉 δαβ
= ρ VαVβ + p δαβ ,

(5.106)

where v′ is the particle velocity in a frame moving with velocity V, and where we have invoked the ideal
gas law p = nkBT . The mass density is ρ = nm.
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When V is spatially varying,
Παβ = p δαβ + ρ VαVβ − σ̃αβ , (5.107)

where σ̃αβ is the viscosity stress tensor. Any symmetric tensor, such as σ̃αβ , can be decomposed into a
sum of (i) a traceless component, and (ii) a component proportional to the identity matrix. Since σ̃αβ
should be, to first order, linear in the spatial derivatives of the components of the velocity field V , there
is a unique two-parameter decomposition:

σ̃αβ = η

(
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2
3 ∇·V δαβ

)
+ ζ∇·V δαβ

= 2η
(
Qαβ − 1

3 Tr (Q) δαβ

)
+ ζ Tr (Q) δαβ .

(5.108)

The coefficient of the traceless component is η, known as the shear viscosity. The coefficient of the com-
ponent proportional to the identity is ζ, known as the bulk viscosity. The full stress tensor σαβ contains a
contribution from the pressure:

σαβ = −p δαβ + σ̃αβ . (5.109)

The differential force dFα that a fluid exerts on on a surface element n̂ dA is

dFα = −σαβ nβ dA , (5.110)

where we are using the Einstein summation convention and summing over the repeated index β. We
will now compute the shear viscosity η using the Boltzmann equation in the relaxation time approxima-
tion.

Appealing again to eqn. 5.85, with F = 0 and h = cpT , we find

δf = − τ

kBT

{
mvαvβ Qαβ +

ε− cp T
T

v ·∇T − ε

cV /kB

∇·V
}
f0 . (5.111)

We assume ∇T = ∇·V = 0, and we compute the momentum flux:

Πxz = n

∫
d3p pxvz δf

= −nm
2τ

kBT
Qαβ 〈 vx vz vα vβ 〉

= − nτ

kBT

(
∂Vx
∂z

+
∂Vz
∂x

)
〈mv2

x ·mv2
z 〉

= −nτkBT

(
∂Vz
∂x

+
∂Vx
∂z

)
.

(5.112)

Thus, if Vx = Vx(z), we have

Πxz = −nτkBT
∂Vx
∂z

(5.113)

from which we read off the viscosity,

η = nkBTτ = π
8nm`v̄ . (5.114)
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Figure 5.5: Left: thermal conductivity (λ in figure) of Ar between T = 800 K and T = 2600 K. The best
fit to a single power law λ = aT b results in b = 0.651. Source: G. S. Springer and E. W. Wingeier, J. Chem
Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (µ in figure) of He between T ≈ 15 K and
T ≈ 1000 K. The red line has slope 1

2 . The slope of the data is approximately 0.633. Source: J. Kestin and
W. Leidenfrost, Physica 25, 537 (1959).

Note that η(T ) ∝ T 1/2.

How well do these predictions hold up? In fig. 5.5, we plot data for the thermal conductivity of argon
and the shear viscosity of helium. Both show a clear sublinear behavior as a function of temperature,
but the slope d lnκ/dT is approximately 0.65 and d ln η/dT is approximately 0.63. Clearly the simple
model is not even getting the functional dependence on T right, let alone its coefficient. Still, our crude
theory is at least qualitatively correct.

Why do both κ(T ) as well as η(T ) decrease at low temperatures? The reason is that the heat current
which flows in response to ∇T as well as the momentum current which flows in response to ∂Vx/∂z
are due to the presence of collisions, which result in momentum and energy transfer between particles.
This is true even when total energy and momentum are conserved, which they are not in the relaxation
time approximation. Intuitively, we might think that the viscosity should increase as the temperature
is lowered, since common experience tells us that fluids ‘gum up’ as they get colder – think of honey
as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the
crystallization or glass transition which occurs in real fluids when they get sufficiently cold is completely
absent from our approach. In our calculation, viscosity results from collisions, and with no collisions
there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply
pass through each other, as though they were ghosts, then there would be no opposition to maintaining
an arbitrary velocity gradient.

5.5.5 Oscillating external force

Suppose a uniform oscillating external force Fext(t) = F e−iωt is applied. For a system of charged parti-
cles, this force would arise from an external electric field Fext = qE e−iωt, where q is the charge of each
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particle. We’ll assume ∇T = 0. The Boltzmann equation is then written

∂f

∂t
+
p

m
· ∂f
∂r

+ F e−iωt · ∂f
∂p

= −f − f
0

τ
. (5.115)

We again write f = f0 + δf , and we assume δf is spatially constant. Thus,

∂ δf

∂t
+ F e−iωt · v ∂f

0

∂ε
= −δf

τ
. (5.116)

If we assume δf(t) = δf(ω) e−iωt then the above differential equation is converted to an algebraic equa-
tion, with solution

δf(t) = − τ e−iωt

1− iωτ
∂f0

∂ε
F · v . (5.117)

We now compute the particle current:

jα(r, t) =

∫
d3p v δf

=
τ e−iωt

1− iωτ
·
Fβ
kBT

∫
d3p f0(p) vα vβ

=
τ e−iωt

1− iωτ
· nFα

3kBT

∫
d3v P (v) v2

=
nτ

m
· Fα e

−iωt

1− iωτ
.

(5.118)

If the particles are electrons, with charge q = −e, then the electrical current is (−e) times the particle
current. We then obtain

j(elec)α (t) =
ne2τ

m
· Eα e

−iωt

1− iωτ
≡ σαβ(ω) Eβ e

−iωt , (5.119)

where

σαβ(ω) =
ne2τ

m
· 1

1− iωτ
δαβ (5.120)

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons,
we should be using the Fermi distribution in place of the Maxwell-Boltzmann distribution for f0(p).
This affects the relation between n and µ only, and the final result for the conductivity tensor σαβ(ω) is
unchanged.

5.5.6 Quick and Dirty Treatment of Transport

Suppose we have some averaged intensive quantity φwhich is spatially dependent through T (r) or µ(r)
or V (r). For simplicity we will write φ = φ(z). We wish to compute the current of φ across some surface
whose equation is dz = 0. If the mean free path is `, then the value of φ for particles crossing this surface
in the +ẑ direction is φ(z − ` cos θ), where θ is the angle the particle’s velocity makes with respect to
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ẑ, i.e. cos θ = vz/v. We perform the same analysis for particles moving in the −ẑ direction, for which
φ = φ(z + ` cos θ). The current of φ through this surface is then

jφ = nẑ

∫
vz>0

d3v P (v) vz φ(z − ` cos θ) + nẑ

∫
vz<0

d3v P (v) vz φ(z + ` cos θ)

= −n` ∂φ
∂z
ẑ

∫
d3v P (v)

v2
z

v
= −1

3nv̄`
∂φ

∂z
ẑ ,

(5.121)

where v̄ =
√

8kBT
πm is the average particle speed. If the z-dependence of φ comes through the dependence

of φ on the local temperature T , then we have

jφ = −1
3 n`v̄

∂φ

∂T
∇T ≡ −K∇T , (5.122)

where
K = 1

3n`v̄
∂φ

∂T
(5.123)

is the transport coefficient. If φ = 〈ε〉, then ∂φ
∂T = cp, where cp is the heat capacity per particle at constant

pressure. We then find jε = −κ∇T with thermal conductivity

κ = 1
3n`v̄ cp . (5.124)

Our Boltzmann equation calculation yielded the same result, but with a prefactor of π8 instead of 1
3 .

We can make a similar argument for the viscosity. In this case φ = 〈px〉 is spatially varying through its
dependence on the flow velocity V (r). Clearly ∂φ/∂Vx = m, hence

jzpx = Πxz = −1
3nm`v̄

∂Vx
∂z

, (5.125)

from which we identify the viscosity, η = 1
3nm`v̄. Once again, this agrees in its functional dependences

with the Boltzmann equation calculation in the relaxation time approximation. Only the coefficients
differ. The ratio of the coefficients is KQDC/KBRT = 8

3π = 0.849 in both cases6.

5.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number

Suppose, under conditions of constant pressure, we add heat q per unit volume to an ideal gas. We
know from thermodynamics that its temperature will then increase by an amount ∆T = q/ncp. If a heat
current jq flows, then the continuity equation for energy flow requires

ncp
∂T

∂t
+ ∇ · jq = 0 . (5.126)

In a system where there is no net particle current, the heat current jq is the same as the energy current
jε, and since jε = −κ∇T , we obtain a diffusion equation for temperature,

∂T

∂t
=

κ

ncp
∇2T . (5.127)

6Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time approximation’.



5.6. DIFFUSION AND THE LORENTZ MODEL 153

Gas η (µPa · s) κ (mW/m ·K) cp/kB Pr

He 19.5 149 2.50 0.682

Ar 22.3 17.4 2.50 0.666

Xe 22.7 5.46 2.50 0.659

H2 8.67 179 3.47 0.693

N2 17.6 25.5 3.53 0.721

O2 20.3 26.0 3.50 0.711

CH4 11.2 33.5 4.29 0.74

CO2 14.8 18.1 4.47 0.71

NH3 10.1 24.6 4.50 0.90

Table 5.1: Viscosities, thermal conductivities, and Prandtl numbers for some common gases at T = 293 K
and p = 1 atm. (Source: Table 1.1 of Smith and Jensen, with data for triatomic gases added.)

The combination
a ≡ κ

ncp
(5.128)

is known as the thermal diffusivity. Our Boltzmann equation calculation in the relaxation time approxi-
mation yielded the result κ = nkBTτcp/m. Thus, we find a = kBTτ/m via this method. Note that the
dimensions of a are the same as for any diffusion constant D, namely [a] = L2/T .

Another quantity with dimensions of L2/T is the kinematic viscosity, ν = η/ρ, where ρ = nm is the mass
density. We found η = nkBTτ from the relaxation time approximation calculation, hence ν = kBTτ/m.
The ratio ν/a, called the Prandtl number, Pr = ηcp/mκ, is dimensionless. According to our calculations,
Pr = 1. According to table 5.1, most monatomic gases have Pr ≈ 2

3 .

5.6 Diffusion and the Lorentz model

5.6.1 Failure of the relaxation time approximation

As we remarked above, the relaxation time approximation fails to conserve any of the collisional invari-
ants. It is therefore unsuitable for describing hydrodynamic phenomena such as diffusion. To see this,
let f(r, v, t) be the distribution function, here written in terms of position, velocity, and time rather than
position, momentum, and time as befor7. In the absence of external forces, the Boltzmann equation in
the relaxation time approximation is

∂f

∂t
+ v · ∂f

∂r
= −f − f

0

τ
. (5.129)

The density of particles in velocity space is given by

ñ(v, t) =

∫
d3r f(r, v, t) . (5.130)

7The difference is trivial, since p = mv.
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In equilibrium, this is the Maxwell distribution times the total number of particles: ñ0(v) = NPM(v).
The number of particles as a function of time, N(t) =

∫
d3v ñ(v, t), should be a constant.

Integrating the Boltzmann equation one has

∂ñ

∂t
= − ñ− ñ0

τ
. (5.131)

Thus, with δñ(v, t) = ñ(v, t)− ñ0(v), we have

δñ(v, t) = δñ(v, 0) e−t/τ . (5.132)

Thus, ñ(v, t) decays exponentially to zero with time constant τ , from which it follows that the total
particle number exponentially relaxes to N0. This is physically incorrect; local density perturbations
can’t just vanish. Rather, they diffuse.

5.6.2 Modified Boltzmann equation and its solution

To remedy this unphysical aspect, consider the modified Boltzmann equation,

∂f

∂t
+ v · ∂f

∂r
=

1

τ

[
− f +

∫
dv̂

4π
f

]
≡ 1

τ

(
P − 1

)
f , (5.133)

where P is a projector onto a space of isotropic functions of v: PF =
∫
dv̂
4π F (v) for any function F (v).

Note that PF is a function of the speed v = |v|. For this modified equation, known as the Lorentz model,
one finds ∂tñ = 0.

The model in eqn. 5.133 is known as the Lorentz model8. To solve it, we consider the Laplace transform,

f̂(k, v, s) =

∞∫
0

dt e−st
∫
d3r e−ik·r f(r, v, t) . (5.134)

Taking the Laplace transform of eqn. 5.133, we find(
s+ iv · k + τ−1

)
f̂(k, v, s) = τ−1 P f̂(k, v, s) + f(k, v, t = 0) . (5.135)

We now solve for P f̂(k, v, s):

f̂(k, v, s) =
τ−1

s+ iv · k + τ−1
P f̂(k, v, s) +

f(k, v, t = 0)

s+ iv · k + τ−1
, (5.136)

which entails

P f̂(k, v, s) =

[∫
dv̂

4π

τ−1

s+ iv · k + τ−1

]
P f̂(k, v, s) +

∫
dv̂

4π

f(k, v, t = 0)

s+ iv · k + τ−1
. (5.137)

8See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.
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Now we have ∫
dv̂

4π

τ−1

s+ iv · k + τ−1
=

1∫
−1

dx
τ−1

s+ ivkx+ τ−1

=
1

vk
tan−1

(
vkτ

1 + τs

)
.

(5.138)

Thus,

P f(k, v, s) =

[
1− 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k, v, t = 0)

s+ iv · k + τ−1
. (5.139)

We now have the solution to Lorentz’s modified Boltzmann equation:

f̂(k, v, s) =
τ−1

s+ iv · k + τ−1

[
1− 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k, v, t = 0)

s+ iv · k + τ−1

+
f(k, v, t = 0)

s+ iv · k + τ−1
.

(5.140)

Let us assume an initial distribution which is perfectly localized in both r and v:

f(r, v, t = 0) = δ(v − v0) . (5.141)

For these initial conditions, we find∫
dv̂

4π

f(k, v, t = 0)

s+ iv · k + τ−1
=

1

s+ iv0 · k + τ−1
· δ(v − v0)

4πv2
0

. (5.142)

We further have that

1− 1

vkτ
tan−1

(
vkτ

1 + τs

)
= sτ + 1

3k
2v2τ2 + . . . , (5.143)

and therefore

f̂(k, v, s) =
τ−1

s+ iv · k + τ−1
· τ−1

s+ iv0 · k + τ−1
· 1

s+ 1
3v

2
0 k

2 τ + . . .
· δ(v − v0)

4πv2
0

+
δ(v − v0)

s+ iv0 · k + τ−1
.

(5.144)

We are interested in the long time limit t� τ for f(r, v, t). This is dominated by s ∼ t−1, and we assume
that τ−1 is dominant over s and iv · k. We then have

f̂(k, v, s) ≈ 1

s+ 1
3v

2
0 k

2 τ
· δ(v − v0)

4πv2
0

. (5.145)

Performing the inverse Laplace and Fourier transforms, we obtain

f(r, v, t) = (4πDt)−3/2 e−r
2/4Dt · δ(v − v0)

4πv2
0

, (5.146)
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where the diffusion constant is
D = 1

3v
2
0 τ . (5.147)

The units are [D] = L2/T . Integrating over velocities, we have the density

n(r, t) =

∫
d3v f(r, v, t) = (4πDt)−3/2 e−r

2/4Dt . (5.148)

Note that ∫
d3r n(r, t) = 1 (5.149)

for all time. Total particle number is conserved!

5.7 Linearized Boltzmann Equation

5.7.1 Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision
term in the linear approximation. We will assume time-reversal symmetry, in which case(

∂f

∂t

)
coll

=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′, p′1 | p, p1)

{
f(p′) f(p′1)− f(p) f(p1)

}
. (5.150)

The collision integral is nonlinear in the distribution f . We linearize by writing

f(p) = f0(p) + f0(p)ψ(p) , (5.151)

where we assume ψ(p) is small. We then have, to first order in ψ,(
∂f

∂t

)
coll

= f0(p) L̂ψ +O(ψ2) , (5.152)

where the action of the linearized collision operator is given by

L̂ψ =

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′, p′1 | p, p1) f0(p1)

{
ψ(p′) + ψ(p′1)− ψ(p)− ψ(p1)

}
=

∫
d3p1

∫
dΩ |v − v1|

∂σ

∂Ω
f0(p1)

{
ψ(p′) + ψ(p′1)− ψ(p)− ψ(p1)

}
,

(5.153)

where we have invoked eqn. 5.55 to write the RHS in terms of the differential scattering cross section.
In deriving the above result, we have made use of the detailed balance relation,

f0(p) f0(p1) = f0(p′) f0(p′1) . (5.154)

We have also suppressed the r dependence in writing f(p), f0(p), and ψ(p).
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From eqn. 5.85, we then have the linearized equation(
L̂− ∂

∂t

)
ψ = Y, (5.155)

where, for point particles,

Y =
1

kBT

{
ε(p)− cpT

T
v ·∇T +mvαvβ Qαβ −

kB ε(p)

cV
∇·V − F · v

}
. (5.156)

Eqn. 5.155 is an inhomogeneous linear equation, which can be solved by inverting the operator L̂− ∂
∂t .

5.7.2 Linear algebraic properties of L̂

Although L̂ is an integral operator, it shares many properties with other linear operators with which
you are familiar, such as matrices and differential operators. We can define an inner product9,

〈ψ1 |ψ2 〉 ≡
∫
d3p f0(p)ψ1(p)ψ2(p) . (5.157)

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor
f0(p) is included in the metric. This is necessary in order that L̂ be self-adjoint:

〈ψ1 | L̂ψ2 〉 = 〈 L̂ψ1 |ψ2 〉 . (5.158)

We can now define the spectrum of normalized eigenfunctions of L̂, which we write as φn(p). The eigen-
functions satisfy the eigenvalue equation,

L̂φn = −λn φn , (5.159)

and may be chosen to be orthonormal,

〈φm |φn 〉 = δmn . (5.160)

Of course, in order to obtain the eigenfunctions φn we must have detailed knowledge of the function
w(p′, p′1 | p, p1).

Recall that there are five collisional invariants, which are the particle number, the three components of
the total particle momentum, and the particle energy. To each collisional invariant, there is an associated
eigenfunction φn with eigenvalue λn = 0. One can check that these normalized eigenfunctions are

φn(p) =
1√
n

(5.161)

φpα(p) =
pα√
nmkBT

(5.162)

φε(p) =

√
2

3n

(
ε(p)

kBT
− 3

2

)
. (5.163)

9The requirements of an inner product 〈f |g〉 are symmetry, linearity, and non-negative definiteness.
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If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external
forces, then Y = 0 and the only changes to the distribution are from collisions. The linearized Boltzmann
equation becomes

∂ψ

∂t
= L̂ψ . (5.164)

We can therefore write the most general solution in the form

ψ(p, t) =
∑
n

′
Cn φn(p) e−λnt , (5.165)

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues
λn, aside from the five zero eigenvalues for the collisional invariants, must be positive. Any negative
eigenvalue would cause ψ(p, t) to increase without bound, and an initial nonequilibrium distribution
would not relax to the equilibrium f0(p), which we regard as unphysical. Henceforth we will drop the
prime on the sum but remember that Cn = 0 for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

j =

∫
d3p v f(p) =

∫
d3p f0(p) v ψ(p) = 〈 v |ψ 〉

jε =

∫
d3p v ε f(p) =

∫
d3p f0(p) v εψ(p) = 〈 v ε |ψ 〉

jq =

∫
d3p v (ε− µ) f(p) =

∫
d3p f0(p) v (ε− µ)ψ(p) = 〈 v (ε− µ) |ψ 〉 .

(5.166)

Note jq = jε − µj.

5.7.3 Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation
takes the form

L̂ψ = Y . (5.167)

We may expand ψ in the eigenfunctions φn and write ψ =
∑

nCn φn. Applying L̂ and taking the inner
product with φj , we have

Cj = − 1

λj
〈φj |Y 〉 . (5.168)

Thus, the formal solution to the linearized Boltzmann equation is

ψ(p) = −
∑
n

1

λn
〈φn |Y 〉 φn(p) . (5.169)

This solution is applicable provided |Y 〉 is orthogonal to the five collisional invariants.
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Thermal conductivity

For the thermal conductivity, we take ∇T = ∂zT x̂, and

Y =
1

kBT
2

∂T

∂x
·Xκ , (5.170)

where Xκ ≡ (ε− cpT ) vx. Under the conditions of no particle flow (j = 0), we have jq = −κ ∂xT x̂. Then
we have

〈Xκ |ψ 〉 = −κ ∂T
∂x

. (5.171)

Viscosity

For the viscosity, we take

Y =
m

kBT

∂Vx
∂y
·Xη , (5.172)

with Xη = vx vy. We then

Πxy = 〈mvx vy |ψ 〉 = −η ∂Vx
∂y

. (5.173)

Thus,

〈Xη |ψ 〉 = − η
m

∂Vx
∂y

. (5.174)

5.7.4 Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define Ĥ ≡ −L̂. We have that Ĥ is a positive
semidefinite operator, whose only zero eigenvalues correspond to the collisional invariants. We then
have the Schwarz inequality,

〈ψ | Ĥ |ψ 〉 · 〈φ | Ĥ |φ 〉 ≥ 〈φ | Ĥ |ψ 〉2 , (5.175)

for any two Hilbert space vectors |ψ 〉 and |φ 〉. Consider now the above calculation of the thermal
conductivity. We have

Ĥψ = − 1

kBT
2

∂T

∂x
Xκ (5.176)

and therefore

κ =
kBT

2

(∂T/∂x)2
〈ψ | Ĥ |ψ 〉 ≥ 1

kBT
2

〈φ |Xκ 〉
2

〈φ | Ĥ |φ 〉
. (5.177)

Similarly, for the viscosity, we have

Ĥψ = − m

kBT

∂Vx
∂y

Xη , (5.178)
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from which we derive

η =
kBT

(∂Vx/∂y)2
〈ψ | Ĥ |ψ 〉 ≥ m2

kBT

〈φ |Xη 〉
2

〈φ | Ĥ |φ 〉
. (5.179)

In order to get a good lower bound, we want φ in each case to have a good overlap with Xκ,η. One
approach then is to take φ = Xκ,η, which guarantees that the overlap will be finite (and not zero due to
symmetry, for example). We illustrate this method with the viscosity calculation. We have

η ≥ m2

kBT

〈 vxvy | vxvy 〉
2

〈 vxvy | Ĥ | vxvy 〉
. (5.180)

Now the linearized collision operator L̂ acts as

〈φ | L̂ |ψ 〉 =

∫
d3p g0(p)φ(p)

∫
d3p1

∫
dΩ

∂σ

∂Ω
|v − v1| f0(p1)

{
ψ(p) + ψ(p1)− ψ(p′)− ψ(p′1)

}
. (5.181)

Here the kinematics of the collision guarantee total energy and momentum conservation, so p′ and p′1
are determined as in eqn. 5.56.

Now we have
dΩ = sinχdχdϕ , (5.182)

where χ is the scattering angle depicted in Fig. 5.6 and ϕ is the azimuthal angle of the scattering. The
differential scattering cross section is obtained by elementary mechanics and is known to be

∂σ

∂Ω
=

∣∣∣∣d(b2/2)

d sinχ

∣∣∣∣ , (5.183)

where b is the impact parameter. The scattering angle is

χ(b, u) = π − 2

∞∫
rp

dr
b√

r4 − b2r2 − 2U(r)r4

m̃u2

, (5.184)

where m̃ = 1
2m is the reduced mass, and rp is the relative coordinate separation at periapsis, i.e. the

distance of closest approach, which occurs when ṙ = 0, i.e.

1
2m̃u

2 =
`2

2m̃r2
p

+ U(rp) , (5.185)

where ` = m̃ub is the relative coordinate angular momentum.

We work in center-of-mass coordinates, so the velocities are

v = V + 1
2u v′ = V + 1

2u
′ (5.186)

v1 = V − 1
2u v′1 = V − 1

2u
′ , (5.187)

with |u| = |u′| and û · û′ = cosχ. Then if ψ(p) = vxvy, we have

∆(ψ) ≡ ψ(p) + ψ(p1)− ψ(p′)− ψ(p′1) = 1
2

(
uxuy − u′xu′y

)
. (5.188)
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Figure 5.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact
parameter is b, and χ is the scattering angle. φ0 is the angle through which the relative coordinate moves
between periapsis and infinity.

We may write
u′ = u

(
sinχ cosϕ ê1 + sinχ sinϕ ê2 + cosχ ê3

)
, (5.189)

where ê3 = û. With this parameterization, we have

2π∫
0

dϕ 1
2

(
uαuβ − u′αu′β

)
= −π sin2χ

(
u2 δαβ − 3uαuβ

)
. (5.190)

Note that we have used here the relation

e1α e1β + e2α e2β + e3α e3β = δαβ , (5.191)

which holds since the LHS is a projector
∑3

i=1 |êi〉〈êi|.

It is convenient to define the following integral:

R(u) ≡
∞∫

0

db b sin2χ(b, u) . (5.192)

Since the Jacobian ∣∣∣∣ det (∂v, ∂v1)

(∂V , ∂u)

∣∣∣∣ = 1 , (5.193)

we have

〈 vxvy | L̂ | vxvy 〉 = n2

(
m

2πkBT

)3 ∫
d3V

∫
d3u e−mV

2/kBT e−mu
2/4kBT · u · 3π

2 uxuy ·R(u) · vxvy . (5.194)

This yields
〈 vxvy | L̂ | vxvy 〉 = π

40 n
2
〈
u5R(u)

〉
, (5.195)
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where 〈
F (u)

〉
≡
∞∫

0

duu2 e−mu
2/4kBT F (u)

/ ∞∫
0

duu2 e−mu
2/4kBT . (5.196)

It is easy to compute the term in the numerator of eqn. 5.180:

〈 vxvy | vxvy 〉 = n

(
m

2πkBT

)3/2 ∫
d3v e−mv

2/2kBT v2
x v

2
y = n

(
kBT

m

)2

. (5.197)

Putting it all together, we find

η ≥ 40 (kBT )3

πm2

/〈
u5R(u)

〉
. (5.198)

The computation for κ is a bit more tedious. One has ψ(p) = (ε− cpT ) vx, in which case

∆(ψ) = 1
2m
[
(V · u)ux − (V · u′)u′x

]
. (5.199)

Ultimately, one obtains the lower bound

κ ≥ 150 kB (kBT )3

πm3

/〈
u5R(u)

〉
. (5.200)

Thus, independent of the potential, this variational calculation yields a Prandtl number of

Pr =
ν

a
=
η cp
mκ

= 2
3 , (5.201)

which is very close to what is observed in dilute monatomic gases (see Tab. 5.1).

While the variational expressions for η and κ are complicated functions of the potential, for hard sphere
scattering the calculation is simple, because b = d sinφ0 = d cos(1

2χ), where d is the hard sphere diameter.
Thus, the impact parameter b is independent of the relative speed u, and one finds R(u) = 1

3d
3. Then

〈
u5R(u)

〉
= 1

3d
3
〈
u5
〉

=
128√
π

(
kBT

m

)5/2

d2 (5.202)

and one finds

η ≥ 5 (mkBT )1/2

16
√
π d2

, κ ≥ 75 kB

64
√
π d2

(
kBT

m

)1/2

. (5.203)

5.8 The Equations of Hydrodynamics

We now derive the equations governing fluid flow. The equations of mass and momentum balance are

∂ρ

∂t
+ ∇·(ρV ) = 0 (5.204)

∂(ρ Vα)

∂t
+
∂Παβ

∂xβ
= 0 , (5.205)
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where

Παβ = ρ VαVβ + p δαβ −

σ̃αβ︷ ︸︸ ︷{
η

(
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2
3 ∇·V δαβ

)
+ ζ∇·V δαβ

}
. (5.206)

Substituting the continuity equation into the momentum balance equation, one arrives at

ρ
∂V

∂t
+ ρ (V ·∇)V = −∇p+ η∇2V + (ζ + 1

3η)∇(∇·V ) , (5.207)

which, together with continuity, are known as the Navier-Stokes equations. These equations are supple-
mented by an equation describing the conservation of energy,

T
∂s

∂T
+ T ∇·(sV ) = σ̃αβ

∂Vα
∂xβ

+ ∇·(κ∇T ) . (5.208)

Note that the LHS of eqn. 5.207 is ρDV /Dt, where D/Dt is the convective derivative. Multiplying by
a differential volume, this gives the mass times the acceleration of a differential local fluid element. The
RHS, multiplied by the same differential volume, gives the differential force on this fluid element in
a frame instantaneously moving with constant velocity V . Thus, this is Newton’s Second Law for the
fluid.

5.9 Nonequilibrium Quantum Transport

5.9.1 Boltzmann equation for quantum systems

Almost everything we have derived thus far can be applied, mutatis mutandis, to quantum systems.
The main difference is that the distribution f0 corresponding to local equilibrium is no longer of the
Maxwell-Boltzmann form, but rather of the Bose-Einstein or Fermi-Dirac form,

f0(r, k, t) =

{
exp

(
ε(k)− µ(r, t)

kBT (r, t)

)
∓ 1

}−1

, (5.209)

where the top sign applies to bosons and the bottom sign to fermions. Here we shift to the more common
notation for quantum systems in which we write the distribution in terms of the wavevector k = p/~
rather than the momentum p. The quantum distributions satisfy detailed balance with respect to the
quantum collision integral(

∂f

∂t

)
coll

=

∫
d3k1

(2π)3

∫
d3k′

(2π)3

∫
d3k′1

(2π)3
w
{
f ′f ′1 (1± f) (1± f1)− ff1 (1± f ′) (1± f ′1)

}
(5.210)

where w = w(k, k1 | k′, k′1), f = f(k), f1 = f(k1), f ′ = f(k′), and f ′1 = f(k′1), and where we have
assumed time-reversal and parity symmetry. Detailed balance requires

f

1± f
· f1

1± f1

=
f ′

1± f ′
· f ′1

1± f ′1
, (5.211)
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where f = f0 is the equilibrium distribution. One can check that

f =
1

eβ(ε−µ) ∓ 1
=⇒ f

1± f
= eβ(µ−ε) , (5.212)

which is the Boltzmann distribution, which we have already shown to satisfy detailed balance. For the
streaming term, we have

df0 = kBT
∂f0

∂ε
d

(
ε− µ
kBT

)
= kBT

∂f0

∂ε

{
− dµ

kBT
− (ε− µ) dT

kBT
2

+
dε

kBT

}
= −∂f

0

∂ε

{
∂µ

∂r
· dr +

ε− µ
T

∂T

∂r
· dr − ∂ε

∂k
· dk

}
,

(5.213)

from which we read off

∂f0

∂r
= −∂f

0

∂ε

{
∂µ

∂r
+
ε− µ
T

∂T

∂r

}
∂f0

∂k
= ~v

∂f0

∂ε
.

(5.214)

The most important application is to the theory of electron transport in metals and semiconductors,
in which case f0 is the Fermi distribution. In this case, the quantum collision integral also receives a
contribution from one-body scattering in the presence of an external potential U(r), which is given by
Fermi’s Golden Rule:(

∂f(k)

∂t

)′
coll

=
2π

~
∑
k′∈ Ω̂

|
〈
k′
∣∣U ∣∣ k 〉|2 (f(k′)− f(k)

)
δ
(
ε(k)− ε(k′)

)
=

2π

~V

∫
Ω̂

d3k

(2π)3
| Û(k − k′)|2

(
f(k′)− f(k)

)
δ
(
ε(k)− ε(k′)

)
.

(5.215)

The wavevectors are now restricted to the first Brillouin zone, and the dispersion ε(k) is no longer the
ballistic form ε = ~2k2/2m but rather the dispersion for electrons in a particular energy band (typically
the valence band) of a solid10. Note that f = f0 satisfies detailed balance with respect to one-body
collisions as well11.

In the presence of a weak electric field E and a (not necessarily weak) magnetic fieldB, we have, within
the relaxation time approximation, f = f0 + δf with

∂ δf

∂t
− e

~c
v ×B · ∂ δf

∂k
− v ·

[
eE+

ε− µ
T

∇T

]
∂f0

∂ε
= −δf

τ
, (5.216)

10We neglect interband scattering here, which can be important in practical applications, but which is beyond the scope of
these notes.

11The transition rate from |k′〉 to |k〉 is proportional to the matrix element and to the product f ′(1− f). The reverse process
is proportional to f(1− f ′). Subtracting these factors, one obtains f ′ − f , and therefore the nonlinear terms felicitously cancel
in eqn. 5.215.
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where E = −∇(φ − µ/e) = E − e−1∇µ is the gradient of the ‘electrochemical potential’ φ − e−1µ. In
deriving the above equation, we have worked to lowest order in small quantities. This entails dropping
terms like v · ∂ δf∂r (higher order in spatial derivatives) and E · ∂ δf∂k (both E and δf are assumed small).
Typically τ is energy-dependent, i.e. τ = τ

(
ε(k)

)
.

We can use eqn. 5.216 to compute the electrical current j and the thermal current jq,

j = −2e

∫
Ω̂

d3k

(2π)3
v δf (5.217)

jq = 2

∫
Ω̂

d3k

(2π)3
(ε− µ) v δf . (5.218)

Here the factor of 2 is from spin degeneracy of the electrons (we neglect Zeeman splitting).

In the presence of a time-independent temperature gradient and electric field, linearized Boltzmann
equation in the relaxation time approximation has the solution

δf = −τ(ε) v ·
(
eE+

ε− µ
T

∇T

)(
−∂f

0

∂ε

)
. (5.219)

We now consider both the electrical current12 j as well as the thermal current density jq. One readily
obtains

j = −2e

∫
Ω̂

d3k

(2π)3
v δf ≡ L11 E− L12 ∇T (5.220)

jq = 2

∫
Ω̂

d3k

(2π)3
(ε− µ) v δf ≡ L21 E− L22 ∇T (5.221)

where the transport coefficients L11 etc. are matrices:

Lαβ11 =
e2

4π3~

∫
dε τ(ε)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|
(5.222)

Lαβ21 = TLαβ12 = − e

4π3~

∫
dε τ(ε) (ε− µ)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|
(5.223)

Lαβ22 =
1

4π3~T

∫
dε τ(ε) (ε− µ)2

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|
. (5.224)

If we define the hierarchy of integral expressions

J αβn ≡ 1

4π3~

∫
dε τ(ε) (ε− µ)n

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|
(5.225)

then we may write

Lαβ11 = e2J αβ0 , Lαβ21 = TLαβ12 = −eJ αβ1 , Lαβ22 =
1

T
J αβ2 . (5.226)

12In this section we use j to denote electrical current, rather than particle number current as before.
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Figure 5.7: A thermocouple is a junction formed of two dissimilar metals. With no electrical current
passing, an electric field is generated in the presence of a temperature gradient, resulting in a voltage
V = VA − VB.

The linear relations in eqn. (5.221) may be recast in the following form:

E= ρ j +Q∇T

jq = u j − κ∇T ,
(5.227)

where the matrices ρ, Q, u, and κ are given by

ρ = L−1
11 Q = L−1

11 L12 (5.228)

u = L21 L
−1
11 κ = L22 − L21 L

−1
11 L12 , (5.229)

or, in terms of the Jn,

ρ =
1

e2
J −1

0 Q = − 1

e T
J −1

0 J1 (5.230)

u = −1

e
J1 J

−1
0 κ =

1

T

(
J2 − J1 J

−1
0 J1

)
, (5.231)

These equations describe a wealth of transport phenomena:

• Electrical resistance (∇T = B = 0)
An electrical current j will generate an electric field E= ρj, where ρ is the electrical resistivity.

• Peltier effect (∇T = B = 0)
An electrical current j will generate an heat current jq = uj, where u is the Peltier coefficient.

• Thermal conduction (j = B = 0)
A temperature gradient ∇T gives rise to a heat current jq = −κ∇T , where κ is the thermal con-
ductivity.
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• Seebeck effect (j = B = 0)
A temperature gradient ∇T gives rise to an electric field E= Q∇T , where Q is the Seebeck coeffi-
cient.

One practical way to measure the thermopower is to form a junction between two dissimilar metals, A
and B. The junction is held at temperature T1 and the other ends of the metals are held at temperature
T0. One then measures a voltage difference between the free ends of the metals – this is known as the
Seebeck effect. Integrating the electric field from the free end of A to the free end of B gives

VA − VB = −
B∫

A

E · dl = (QB −QA)(T1 − T0) . (5.232)

What one measures here is really the difference in thermopowers of the two metals. For an absolute
measurement of QA, replace B by a superconductor (Q = 0 for a superconductor). A device which
converts a temperature gradient into an emf is known as a thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical current I
is passed through a junction between two dissimilar metals, A and B. Due to the difference in Peltier
coefficients, there will be a net heat current into the junction of W = (uA − uB) I . Note that this is
proportional to I , rather than the familiar I2 result from Joule heating. The sign of W depends on the
direction of the current. If a second junction is added, to make an ABA configuration, then heat absorbed
at the first junction will be liberated at the second. 13

5.9.2 The Heat Equation

We begin with the continuity equations for charge density ρ and energy density ε:

∂ρ

∂t
+ ∇ · j = 0 (5.233)

∂ε

∂t
+ ∇ · jε = j ·E , (5.234)

where E is the electric field14. Now we invoke local thermodynamic equilibrium and write

∂ε

∂t
=
∂ε

∂n

∂n

∂t
+
∂ε

∂T

∂T

∂t

= −µ
e

∂ρ

∂t
+ cV

∂T

∂t
, (5.235)

13To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the box.
14Note that it isE · j and not E · j which is the source term in the energy continuity equation.
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Figure 5.8: A sketch of a Peltier effect refrigerator. An electrical current I is passed through a junction
between two dissimilar metals. If the dotted line represents the boundary of a thermally well-insulated
body, then the body cools when uB > uA, in order to maintain a heat current balance at the junction.

where n is the electron number density (n = −ρ/e) and cV is the specific heat. We may now write

cV
∂T

∂t
=
∂ε

∂t
+
µ

e

∂ρ

∂t

= j · E −∇ · jε −
µ

e
∇ · j

= j · E−∇ · jq . (5.236)

Invoking jq = uj − κ∇T , we see that if there is no electrical current (j = 0), we obtain the heat equation

cV
∂T

∂t
= καβ

∂2T

∂xα ∂xβ
. (5.237)

This results in a time scale τT for temperature diffusion τT = CL2cV /κ, where L is a typical length scale
and C is a numerical constant. For a cube of size L subjected to a sudden external temperature change,
L is the side length and C = 1/3π2 (solve by separation of variables).

5.9.3 Calculation of Transport Coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symmetry) to render
all the transport coefficients multiples of the identity matrix. Under such conditions, we may write
J αβn = Jn δαβ with

Jn =
1

12π3~

∫
dε τ(ε) (ε− µ)n

(
−∂f

0

∂ε

)∫
dSε |v| . (5.238)
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The low-temperature behavior is extracted using the Sommerfeld expansion,

I ≡
∞∫
−∞

dεH(ε)

(
−∂f

0

∂ε

)
= πD csc(πD)H(ε)

∣∣∣
ε=µ

(5.239)

= H(µ) +
π2

6
(kBT )2H ′′(µ) + . . . (5.240)

where D ≡ kBT
∂
∂ε is a dimensionless differential operator.15

Let us now perform some explicit calculations in the case of a parabolic band with an energy-independent
scattering time τ . In this case, one readily finds

Jn =
σ0

e2
µ−3/2 πD cscπD ε3/2 (ε− µ)n

∣∣∣
ε=µ

, (5.241)

where σ0 = ne2τ/m∗. Thus,

J0 =
σ0

e2

[
1 +

π2

8

(kBT )2

µ2
+ . . .

]
J1 =

σ0

e2

π2

2

(kBT )2

µ
+ . . .

J2 =
σ0

e2

π2

3
(kBT )2 + . . . ,

(5.242)

from which we obtain the low-T results ρ = σ−1
0 ,

Q = −π
2

2

k2
BT

e εF

κ =
π2

3

nτ

m∗
k2
BT , (5.243)

and of course u = TQ. The predicted universal ratio

κ

σT
=
π2

3
(kB/e)

2 = 2.45× 10−8 V2 K−2 , (5.244)

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is unambiguously
negative. In actuality, several nearly free electron metals have positive low-temperature thermopowers
(Cs and Li, for example). What went wrong? We have neglected electron-phonon scattering!

5.9.4 Onsager Relations

Transport phenomena are described in general by a set of linear relations,

Ji = Lik Fk , (5.245)
15Remember that physically the fixed quantities are temperature and total carrier number density (or charge density, in the

case of electron and hole bands), and not temperature and chemical potential. An equation of state relating n, µ, and T is then
inverted to obtain µ(n, T ), so that all results ultimately may be expressed in terms of n and T .
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where the {Fk} are generalized forces and the {Ji} are generalized currents. Moreover, to each force Fi
corresponds a unique conjugate current Ji, such that the rate of internal entropy production is

Ṡ =
∑
i

Fi Ji =⇒ Fi =
∂Ṡ

∂Ji
. (5.246)

The Onsager relations (also known as Onsager reciprocity) state that

Lik(B) = ηi ηk Lki(−B) , (5.247)

where ηi describes the parity of Ji under time reversal:

JTi = ηi Ji , (5.248)

where JTi is the time reverse of Ji. To justify the Onsager relations requires a microscopic description of
our nonequilibrium system.

The Onsager relations have some remarkable consequences. For example, they require, for B = 0,
that the thermal conductivity tensor κij of any crystal must be symmetric, independent of the crystal
structure. In general,this result does not follow from considerations of crystalline symmetry. It also
requires that for every ‘off-diagonal’ transport phenomenon, e.g. the Seebeck effect, there exists a distinct
corresponding phenomenon, e.g. the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an external
magnetic field,

ραβ(B) = ρβα(−B) (5.249)

καβ(B) = κβα(−B) (5.250)

uαβ(B) = T Qβα(−B) . (5.251)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coefficients to first
order in B:

ραβ(B) = ρ δαβ + ν εαβγ B
γ (5.252)

καβ(B) = κ δαβ +$ εαβγ B
γ (5.253)

Qαβ(B) = Qδαβ + ζ εαβγ B
γ (5.254)

uαβ(B) = u δαβ + θ εαβγB
γ . (5.255)

Onsager reciprocity requires u = T Q and θ = T ζ. We can now write

E= ρ j + ν j ×B +Q∇T + ζ∇T ×B (5.256)

jq = u j + θ j ×B − κ∇T −$∇T ×B . (5.257)

There are several new phenomena lurking:
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• Hall effect (∂T∂x = ∂T
∂y = jy = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield an electric field E. The Hall coefficient is
RH = Ey/jxBz = −ν.

• Ettingshausen effect (∂T∂x = jy = jq,y = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield a temperature gradient ∂T
∂y . The Etting-

shausen coefficient is P = ∂T
∂y

/
jxBz = −θ/κ.

• Nernst effect (jx = jy = ∂T
∂y = 0)

A temperature gradient ∇T = ∂T
∂x x̂ and a field B = Bz ẑ yield an electric field E. The Nernst

coefficient is Λ = Ey
/
∂T
∂x Bz = −ζ.

• Righi-Leduc effect (jx = jy = Ey = 0)

A temperature gradient ∇T = ∂T
∂x x̂ and a field B = Bz ẑ yield an orthogonal temperature gradi-

ent ∂T∂y . The Righi-Leduc coefficient is L = ∂T
∂y

/
∂T
∂xBz = ζ/Q.

5.10 Appendix : Boltzmann Equation and Collisional Invariants

Problem : The linearized Boltzmann operator Lψ is a complicated functional. Suppose we replace L by
L, where

Lψ = −γ ψ(v, t) + γ

(
m

2πkBT

)3/2 ∫
d3u exp

(
− mu2

2kBT

)
×

{
1 +

m

kBT
u · v +

2

3

(
mu2

2kBT
− 3

2

)(
mv2

2kBT
− 3

2

)}
ψ(u, t) .

(5.258)

Show that L shares all the important properties of L. What is the meaning of γ? Expand ψ(v, t) in
spherical harmonics and Sonine polynomials,

ψ(v, t) =
∑
r`m

ar`m(t)Sr
`+

1
2

(x)x`/2 Y `
m(n̂), (5.259)

with x = mv2/2kBT , and thus express the action of the linearized Boltzmann operator algebraically on
the expansion coefficients ar`m(t).

The Sonine polynomials Snα(x) are a complete, orthogonal set which are convenient to use in the calcu-
lation of transport coefficients. They are defined as

Snα(x) =
n∑

m=0

Γ(α+ n+ 1) (−x)m

Γ(α+m+ 1) (n−m)!m!
, (5.260)

and satisfy the generalized orthogonality relation
∞∫

0

dx e−x xα Snα(x)Sn
′

α (x) =
Γ(α+ n+ 1)

n!
δnn′ . (5.261)
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Solution : The ‘important properties’ of L are that it annihilate the five collisional invariants, i.e. 1, v,
and v2, and that all other eigenvalues are negative. That this is true for L can be verified by an explicit
calculation.

Plugging the conveniently parameterized form of ψ(v, t) into L, we have

Lψ = −γ
∑
r`m

ar`m(t) Sr
`+

1
2

(x) x`/2 Y `
m(n̂) +

γ

2π3/2

∑
r`m

ar`m(t)

∞∫
0

dx1 x
1/2
1 e−x1

×
∫
dn̂1

[
1 + 2x1/2x

1/2
1 n̂·n̂1 + 2

3

(
x− 3

2

)(
x1 − 3

2

)]
Sr
`+

1
2

(x1) x
`/2
1 Y `

m(n̂1) ,

(5.262)

where we’ve used

u =

√
2kBT

m
x

1/2
1 , du =

√
kBT

2m
x
−1/2
1 dx1 . (5.263)

Now recall Y 0
0 (n̂) = 1√

4π
and

Y 1
1 (n̂) = −

√
3

8π
sin θ eiϕ Y 1

0 (n̂) =

√
3

4π
cos θ Y 1

−1(n̂) = +

√
3

8π
sin θ e−iϕ

S0
1/2(x) = 1 S0

3/2(x) = 1 S1
1/2(x) = 3

2 − x ,

which allows us to write

1 = 4π Y 0
0 (n̂)Y 0

0
∗
(n̂1) (5.264)

n̂·n̂1 =
4π

3

[
Y 1

0 (n̂)Y 1
0
∗
(n̂1) + Y 1

1 (n̂)Y 1
1
∗
(n̂1) + Y 1

−1(n̂)Y 1
−1
∗
(n̂1)

]
. (5.265)

We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and
Sonine polynomials:

∫
dn̂Y `

m(n̂)Y l′
m′
∗
(n̂) = δll′ δmm′ (5.266)

∞∫
0

dx e−x xα Snα(x)Sn
′

α (x) =
Γ(n+ α+ 1)

Γ(n+ 1)
δnn′ . (5.267)
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Integrating first over the direction vector n̂1,

Lψ = −γ
∑
r`m

ar`m(t) Sr
`+

1
2

(x) x`/2 Y `
m(n̂)

+
2γ√
π

∑
r`m

ar`m(t)

∞∫
0

dx1 x
1/2
1 e−x1

∫
dn̂1

[
Y 0

0 (n̂)Y 0
0
∗
(n̂1)S0

1/2(x)S0
1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑
m′=−1

Y 1
m′(n̂)Y 1

m′
∗
(n̂1)S0

3/2(x)S0
3/2(x1)

+ 2
3 Y

0
0 (n̂)Y 0

0
∗
(n̂1)S1

1/2(x)S1
1/2(x1)

]
Sr
`+

1
2

(x1) x
`/2
1 Y `

m(n̂1) ,

(5.268)

we obtain the intermediate result

Lψ = −γ
∑
r`m

ar`m(t) Sr
`+

1
2

(x) x`/2 Y `
m(n̂)

+
2γ√
π

∑
r`m

ar`m(t)

∞∫
0

dx1 x
1/2
1 e−x1

[
Y 0

0 (n̂) δl0 δm0 S
0
1/2(x)S0

1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑
m′=−1

Y 1
m′(n̂) δl1 δmm′ S

0
3/2(x)S0

3/2(x1)

+ 2
3 Y

0
0 (n̂) δl0 δm0 S

1
1/2(x)S1

1/2(x1)

]
Sr
`+

1
2

(x1) x
1/2
1 .

(5.269)

Appealing now to the orthogonality of the Sonine polynomials, and recalling that

Γ(1
2) =

√
π , Γ(1) = 1 , Γ(z + 1) = z Γ(z) , (5.270)

we integrate over x1. For the first term in brackets, we invoke the orthogonality relation with n = 0
and α = 1

2 , giving Γ(3
2) = 1

2

√
π. For the second bracketed term, we have n = 0 but α = 3

2 , and we
obtain Γ(5

2) = 3
2 Γ(3

2), while the third bracketed term involves leads to n = 1 and α = 1
2 , also yielding

Γ(5
2) = 3

2 Γ(3
2). Thus, we obtain the simple and pleasing result

Lψ = −γ
∑
r`m

′
ar`m(t) Sr

`+
1
2

(x) x`/2 Y `
m(n̂) (5.271)

where the prime on the sum indicates that the set

CI =
{

(0, 0, 0) , (1, 0, 0) , (0, 1, 1) , (0, 1, 0) , (0, 1,−1)
}

(5.272)

are to be excluded from the sum. But these are just the functions which correspond to the five collisional
invariants! Thus, we learn that

ψr`m(v) = Nr`m Sr
`+

1
2

(x)x`/2 Y `
m(n̂), (5.273)
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is an eigenfunction of Lwith eigenvalue −γ if (r, `,m) does not correspond to one of the five collisional
invariants. In the latter case, the eigenvalue is zero. Thus, the algebraic action of L on the coefficients
ar`m is

(La)r`m =

{
−γ ar`m if (r, `,m) /∈ CI

= 0 if (r, `,m) ∈ CI
(5.274)

The quantity τ = γ−1 is the relaxation time.

It is pretty obvious that L is self-adjoint, since

〈φ | Lψ 〉 ≡
∫
d3v f0(v)φ(v)L[ψ(v)]

= −γ n
(

m

2πkBT

)3/2∫
d3v exp

(
− mv2

2kBT

)
φ(v)ψ(v)

+ γ n

(
m

2πkBT

)3 ∫
d3v

∫
d3u exp

(
− mu2

2kBT

)
exp

(
− mv2

2kBT

)
× φ(v)

[
1 +

m

kBT
u · v +

2

3

(
mu2

2kBT
− 3

2

)(
mv2

2kBT
− 3

2

)]
ψ(u)

= 〈 Lφ |ψ 〉 ,

(5.275)

where n is the bulk number density and f0(v) is the Maxwellian velocity distribution.
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6.2 Diffusion

Diffusion is a ubiquitous phenomenon in the physical sciences. Here we briefly discuss some interesting
features. Several examples are adapted from the book by Krapivsky, Redner, and Ben-Naim, which we
abbreviate as KRB.

6.2.1 Return statistics

We have already studied the statistics of random walks in one dimension and also solutions of the
diffusion equation, ∂tP = D∇2P , in arbitrary dimensions,

P (x, t) = (4πDt)−d/2 e−x
2/4Dt , (6.1)

with P (x, 0) = δ(x). The variance of x at time t is

Var
[
x(t)

]
=

∫
ddx x2 P (x, t) = −∇2

k P̂ (k, t)
∣∣
k=0

= 2dDt , (6.2)

since P̂ (k, t) = P̂ (k, 0) exp(−Dk2t), and P̂ (k, 0) = 1 . Thus, the RMS distance of the particle from its
initial position, after a time t, is L(t) =

√
2dDt . The diffusion equation is a continuum limit of a Master

equation. The instantaneous position of the walker may be written as a sum over d unit vectors êµ with
coefficients that are integer multiples of the lattice spacing a , i.e.R = a

∑d
µ=1 nµêµ. The Master equation

is
∂P (R, t)

∂t
= γ

d∑
µ=1

[
P (R+ a êµ, t) + P (R− a êµ, t)− 2P (R, t)

]
, (6.3)

where γ is the hopping rate. If we Taylor expand P (R + a êµ, t) to second order in a, we recover the
diffusion equation with D = γa2 .

The number of sites visited over a time interval t is simply t, although a given site may be visited more
than once. The density of visited sites is then t/Ld(t) ∝ t1−d/2. Thus, for d > 2 the density decreases
with t, but for d < 2 the density increases, which means that we return to any given site with probability
unity. The case d = 2 is marginal, and as we shall now see, also yields an infinite number of returns.

We studied first passage problems in §4.2.5 and §4.3.5. For the discrete time random walk on a d-
dimensional cubic lattice, let P (R, t) be the probability that the walker is at position R at time t ∈ Z,
having started atR = 0 at time t = 0. We writeR(t) =

∑t
s=1 n̂(s) , where n̂(s) ∈ {±ê1, . . . ,±êd} . Define

F (R, t) to be the probability that the walker’s first move onto site R occurs at time step t. Then we must
have

P (R, t) = δR,0 δt,0 +
t∑

s=1

P (0, t− s)F (R, s) , (6.4)

with F (R, t = 0) ≡ 0. Now define

P̆ (R, z) =
∞∑
t=0

P (R, t) zt . (6.5)
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We then have

P̆ (R, z) = δR,0 + P̆ (0, z) F̆ (R, z) ⇒ F̆ (R, z) =
P̆ (R, z)− δR,0

P̆ (0, z)
. (6.6)

Now

P (R, t) =
〈
δR,R(t)

〉
=

∫
Ω̂

ddk

(2π)d
eik·R

〈
e−ik·R(t)

〉
=

∫
Ω̂

ddk

(2π)d
eik·R ψt(k) , (6.7)

where

ψ(k) =
1

d

d∑
µ=1

cos kµ , (6.8)

and Ω̂ is the first Brillouin zone of the d-dimensional cubic lattice, which is the d−cube defined by kµ ∈
[−π, π] for all µ ∈ {1, . . . , d}. We then have

P̆ (R, z) =

∫
Ω̂

ddk

(2π)d
eik·R

1− z ψ(k)
. (6.9)

The expected total number of visits the walker makes to site R is νd(R) =
∑

t P (R, t) = P̆ (R, 1), hence

νd(0) = P̆ (0, 1) =

∞∫
0

ds e−s
[
I0(s/d)

]d
, (6.10)

where I0(z) is the modified Bessel function. Note that I0(z) ∼ ez/
√

2πz for large z , so the integral
diverges for d ≤ 2. Numerically, one finds νd=3(0) = 1.517.

The probability that the walker eventually returns to R = 0 is

R =

∞∑
t=1

F (0, t) = F̆ (0, 1) = 1− 1

P̆ (0, 1)
. (6.11)

If P̆ (0, 1) is finite, then 0 < R < 1 . If on the other hand P̆ (0, 1) diverges, then R = 1 and the eventual
return is certain. As the first Brillouin zone itself is finite, the only possibility for divergence is associated
with the point k = 0. Taylor expanding the function ψ(k) about that point, we find

ψ(k) = 1− k2

2d
+

d∑
µ=1

k4
µ

24d
+O(k6) . (6.12)

Thus, 1− ψ(k) ∼ k2/2d as k → 0 , and P̆ (0, 1) diverges for d ≤ 2. For z ≈ 1, we may approximate

P̆ (0, z) =

∞∫
0

du e−u
∫
Ω̂

ddk

(2π)3
euzψ(k) ≈

∞∫
0

du e−u(1−z)

 ∞∫
−∞

dk

2π
e−uzk

2/2d e−k
2/2Λ2

d

=

(
d

2π

)d/2∞∫
0

du e−u(1−z) (zu+ dΛ−2
)−d/2

≈
(
d

2π

)d/2 ε(d−2)/2

1− d
2

+ finite ,

(6.13)
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where z ≡ 1− ε and Λ ∼ π is an ultraviolet cutoff, corresponding to the finite size of the Brillouin zone.
When d = 2, the expression ε(d−2)/2/(1− d

2) is replaced by ln(1/ε) , which follows from L’Hospital’s rule.
As advertised, we have a divergence in the limit ε→ 0 for d ≤ 2, hence the return probability isR = 1.

We now know that the number of visits to each site diverges as the number of steps t tends to infinity
with d ≤ 2. This prompts the question: for d ≤ 2, what is the frequency of these visits? Let’s compute
the number of visits to the origin within T time steps. We have

νd(0, T ) =
T∑
t=0

〈
δR(t),0

〉
=

∫
Ω̂

ddk

(2π)d
1− ψT+1(k)

1− ψ(k)
. (6.14)

The numerator now vanishes for k → 0 and so the integral is finite. To estimate its value, note that the
numerator behaves as

1−
(

1− k2

2d

)T+1

∼ 1− e−Tk2/2d (6.15)

where the RHS is valid for k2 = O(d/T ). This means that there is an effective infrared cutoff kmin ∼
T−1/2. The infrared divergence is thus cured, and

νd(0, T ) ∼
∫
kmin

dk kd−3 ∼ kd−2
min = T 1− d

2 . (6.16)

Therefore the average time between visits to the origin is τd(T ) = T
/
νd(0, T ) ∼ T d/2. As T → ∞ , this,

too, diverges. Note that for d = 2 we have νd=2(0, T ) ∼ lnT and τd=2(T ) ∼ T/ lnT .

So there is good news and bad news if you lose your keys in d ≤ 2 dimensions. The good news is that by
executing a random walk, asymptotically you will visit every possible place your keys could be hiding,
and each one of them a divergent number of times at that. The bad news is that your lifetime is finite.

6.2.2 Exit problems

Let Σ be a boundary surface (or point in d = 1 dimension), and consider the generalization of Eqn. 4.64,
viz.

GΣ(x, t) = −
∞∫
t

dt′
∫
Σ

dS′ n̂′ · J(x′, t′ |x, 0) , (6.17)

which is the probability that a particle starting at x at time t = 0 exits via the surface Σ sometime after
t. Applying the operator

L̃ = +Ai(x)
∂

∂xi
+

1

2
Bij(x)

∂2

∂xi ∂xj
(6.18)

to the previous equation, we have L̃J(x′, t |x, 0) = ∂tJ(x′, t |x, 0), and therefore

∂GΣ(x, t)

∂t
= L̃GΣ(x, t) =

∫
Σ

dS′ n̂′ · J(x′, t |x, 0) , (6.19)
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which says that the rate at which the probability GΣ(x, t) for exit via Σ changes is given by the in-
stantaneous integral of the probability current normal to the surface. If we set t = 0, we must have
J(x′, 0 |x, 0) = 0 if x /∈ Σ, which gives us an equation for the total exit probability via the surfaceΣ over
all time, L̃GΣ(x, 0) = 0. This equation is subject to the boundary condition that GΣ(x, 0) = 1 if x ∈ Σ
and GΣ(x, 0) = 0 if x ∈ Σ′ where Σ′ is an absorbing boundary. To simplify notation, we will define
GΣ(x) ≡ GΣ(x, 0). Thus, (

vD ·∇ +Dij ∇i∇j
)
GΣ(x) = 0 , (6.20)

where vD(x) = A(x) is the local drift velocity and Dij(x) = 1
2 Bij(x) is the local diffusion tensor. When

vD is constant and Dij(x) = D δij is constant and isotropic, we can define a length scale λ = D/vD.

In d = 1 dimension, assuming the homogeneity of space is broken only at the boundaries, Eqn. 6.20
takes the form ∂x

(
vDG+D∂xG) = 0. The solution is easily found to be

GΣ(x) = C1 e
−x/λ + C2 , (6.21)

whereC1,2 are constants of integration. Suppose we have an absorbing boundary at x = 0 andΣ denotes
the point x = L is the escape boundary. Then

GL(x) =
1− exp(−x/λ)

1− exp(−L/λ)
. (6.22)

In the limit λ→∞ , i.e. vD → 0 , we have GL(x, 0) = x/L. This solution assumes x ∈ [0, L] , and if x > L
we have GL(x) = e(L−x)/λ . If λ = ∞, this means GL(x > L) = 1, which means that starting anywhere
to the right of x = L, there is a 100% chance that the particle will eventually arrive at x = L. If x ∈ [0, L]
the probability is less than 100% because the particle may instead be absorbed at x = 0.

In d = 2 dimensions, if we assume isotropy and a radial drift vD = vDr̂, then from ∇2 = ∂2
r + 1

r ∂r we
have (

1

λ
+

1

r

)
∂GΣ(r)

∂r
+
∂2GΣ(r)

∂r2
= 0 , (6.23)

with λ = D/vD . We then define the function W (r) such that

∂ lnW

∂r
=

1

λ
+

1

r
⇒ W (r) = r er/λ , (6.24)

so that
∂

∂r

[
W (r)

∂GΣ(r)

∂r

]
= 0 , (6.25)

the solution of which is
GΣ(r) = C1E1(r/λ) + C2 , (6.26)

where E1(z) is the exponential integral,

E1(z) =

∞∫
z

dt
e−t

t
. (6.27)
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In the limit λ→∞ the solution takes the form GΣ(r) = C ′1 ln r +C ′2. If the circle r = a is absorbing and
the exit surface is the circle r = b, then for r ∈ [a, b] we have

Gb(r) =
E1(a/λ)− E1(r/λ)

E1(a/λ)− E1(b/λ)
−→
λ→∞

ln(r/a)

ln(b/a)
. (6.28)

If r > b, then for λ → ∞ we have Gb(r) = 1 as in the d = 1 case, but for finite λ the solution is given by
Gb(r) = E1(r/λ)

/
E1(b/λ).

Finally, consider the case d > 2, again assuming spatial isotropy away from the boundaries. We again
assume spherical symmetry and purely radial drift. The radial Laplacian is ∇2 = ∂2

r + d−1
r ∂r, hence we

again obtain Eqn. 6.25, but with W (r) = rd−1 er/λ. Define the generalized exponential integral,

Ek(z) =

∞∫
z

dt
e−t

tk
= Γ(1− k, z) , (6.29)

where Γ(a, z) is the incomplete gamma function. The general solution may now be written as

GΣ(r) = C1Ed−1(r/λ) + C2 . (6.30)

With an absorbing boundary at r = a and the exit boundary at r = b > a, we obtain

Gb(r) =
Ed−1(a/λ)− Ed−1(r/λ)

Ed−1(a/λ)− Ed−1(b/λ)
−→
λ→∞

(b/a)d−2 − (b/r)d−2

(b/a)d−2 − 1
. (6.31)

Starting at a point with r > b, the solution with λ→∞ is Gb(r) = (b/r)d−2, which is less than one. Thus,
there is a finite probability 1−Gb(r) that a diffusing particle with no drift will escape to r =∞ without
ever hitting the surface at r = b.

Mean exit times

The mean exit time from a region Ω via a boundary surface Σ, starting from some point x ∈ Ω, is

TΣ(x) =

∞∫
0

dt t

(
−
∂GΣ(x, t)

∂t

)
. (6.32)

This function satisfies the equation L̃TΣ(x) = −1 , subject to boundary conditions TΣ(x) = 0 if x ∈ Σ.

In fact, the moments T (n)
Σ (x) ≡ 〈tn〉 =

∞∫
0

dt tn−1GΣ(x, t) satisfy the hierarchical set of equations,

L̃T (n)
Σ (x) = −nT (n−1)

Σ (x) . (6.33)

As is clear, the n = 1 level is already closed, since T (0)
Σ (x) = 〈1〉 = 1.
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As an example, consider the case of pure diffusion in d dimensions. We ask what is the mean exit
time, starting at a radius r, to pass through a sphere of radius b > r. The conditions being rotationally
invariant, we solve the radial equation

∂2Tb(r)

∂r2
+
d− 1

r

∂Tb(r)

∂r
= − 1

D
, (6.34)

subject to Tb(b) = 0. We then have

Tb(r) =
b2 − r2

2dD
. (6.35)

6.2.3 Vicious random walks

Consider two random walkers on the same line, under the condition that the walkers annihilate if they
should meet. How long before this tragic event happens? Following KRB, we can think of the pair of
diffusing one-dimensional walkers as a single walker in two space dimensions. Annihilation occurs if
the two-dimensional walker hits the line x1 = x2.

Since only the distance to the line matters, it is convenient to recast the diffusion equation in terms of
relative and center-of-mass variables x = x2 − x1 and X = 1

2(x1 + x2), respectively. From classical
mechanics, it should be no surprise that the diffusion equation in these variables becomes

∂P

∂t
= 2D

∂2P

∂x2
+ 1

2D
∂2P

∂X2
. (6.36)

Since the value of X is irrelevant to the annihilation problem, we integrate over this variable, which
kills off the second term on the RHS above because it is a total derivative, leaving the diffusion equation
∂tP = 2D∂2

xP with a new diffusion constant D′ = 2D, and an absorbing boundary condition P (x =
0, t) = 0. With initial conditions x(0) = x0, we solve using the method of images, viz.

P (x, t) =
1√

8πDt

{
e−(x−x0)2/8Dt − e−(x+x0)2/8Dt

}
. (6.37)

Now as we have discussed in §4.2.5, the first passage probability density for a particle starting from
x0 > 0 to hit x = 0 is

F (0, t) = −J(0, t |x0, 0) = 2D∂xP (x, t |x0, 0)
∣∣
x=0

=
x0√

8πDt3
e−x

2
0/8Dt .

(6.38)

As t→∞, this decreases as t−3/2. We also define the survival probability S(t) as

S(t |x0, 0) = 1−
t∫

0

dt′ F (0, t′ |x0, 0) . (6.39)

For our problem, S(t |x0, 0) = erf
(
x0/
√

8Dt
)

, which decays as t−1/2 as t→∞.
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Figure 6.1: Two examples of diffusion problems. Left: vicious random walk. Right: diffusing particles
and an absorbing sphere.

6.2.4 Reaction rate problems

Consider an object Ω whose surface is absorbing for some diffusing particles. How does the concentra-
tion c(x, t) of diffusing particles evolve in the presence of the absorber? To answer this, we solve the
diffusion equation ∂tc = D∇2c subject to the initial conditions c(x /∈ ∂Ω, t = 0) = c0 and the boundary
condition c(x ∈ ∂Ω, t) = 0. It’s convenient to define the complementary function c̄(x, t) = c0 − c(x, t) ,
which satisfies

∂c̄

∂t
= D∇2c̄ , c̄(x ∈ ∂Ω, t) = c0 , c̄(x /∈ ∂Ω, t = 0) = 0 . (6.40)

Initially there is a discontinuity in c̄(x, t = 0) at the surface, resulting in a divergent second derivative at
that location for c̄. This causes c̄ to grow there, as the diffusion equation requires, and smooths out the
function. Eventually c̄(x, t) tends to a limiting function, and we define φ(x) = c̄(x,∞)/c0. The function
φ(x) then satisties

∇2φ(x) = 0 , φ(x ∈ ∂Ω) = 1 , φ(x→∞) = 0 . (6.41)

These are the same equations as for the electrostatic potential φ(x) of a conducting surface of unit elec-
trical potential. In electrostatics, the total surface charge is

Q = − 1

4π

∫
∂Ω

dS n̂ ·∇φ . (6.42)

The corresponding quantity for the reaction rate problem is the total incident flux of diffusing particles
on the surface,

K = −
∫
∂Ω

dS n̂ · J = −D
∫
∂Ω

dS n̂ ·∇φ . (6.43)

In electrostatics, the ratio of the surface charge to the surface potential is the capacitance, which is a
purely geometric quantity. Therefore, we have K = 4πDC, where C is the capacitance. For a sphere
of radius R, we have C = R. For a disc of radius R, we have C = 2R/π. KRB provide a couple of
other examples, for prolate and oblate ellipsoids of revolution1. Note that K as defined above has units

1For a sphere in d dimensions, the isotropic solution to Laplace’s equation with φ(R) = 1 is φ(r) = (R/r)d−2. We then
obtain the capacitance C = (d− 2)Rd−2.
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[K] = Ld T−1. Multiplying by the concentration c0 gives the number of diffusing particles per unit time
which hit the surface.

What happens in d ≤ 2 dimensions, where we know that random walks are recurrent? Consider, for
example, the one-dimensional problem,

∂c

∂t
= D

∂2c

∂x2
, c(x > 0, 0) = c0 , c(0, t) = 0 . (6.44)

The solution is c(x, t) = c0 erf
(
x/
√

4Dt
)
, hence c(x, t → ∞) = 0. A similar problem arises in d = 2

dimensions. KRB remark how the d ≤ 2 case can be understood in terms of effective time-dependent
boundary conditions. For a problem with spherical symmetry, we solve the Laplace equation ∇2c = 0
subject to the boundary conditions c(a) = 0 and c(b) = 1, with b =

√
Dt > a a moving boundary. This

yields

c(r, t) ' c0 r
2−d − c0 a

2−d

(
√
Dt)2−d − a2−d

(d < 2) , c(r, t) ' c0 ln(r/a)

ln
(√
Dt/a

) (d = 2) . (6.45)

As t→∞ , the reaction slows down, and one finds

Kd<2(t→∞) ' (2−d)ΩdDc0 (Dt)(d−2)/2 , Kd=2(t→∞) ' 4πDc0

ln
(
Dt/a2

) , Kd>2(t→∞) ' Dc0 a
d−2 ,

(6.46)
whereΩd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions. How can we understand these results?
Recall that a diffusing particle starting a distance outside a spherical surface has a 100% probability of
reaching the sphere. Thus, in the limit t→∞ , all the diffusing material eventually gets absorbed by the
sphere, leaving nothing! For d > 2, there is a finite probability not to hit the sphere, hence the asymptotic
solution c(x, t =∞) is not identically zero.

6.2.5 Polymers

Linear chain polymers are repeating structures with the chemical formula (A)x, where A is the formula
unit and x is the degree of polymerization. In many cases (e.g. polystyrene), x>∼ 105 is not uncommon. For
a very readable introduction to the subject, see P. G. de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of x values; this is known as polydisper-
sity. Various preparation techniques, such as chromatography, can mitigate the degree of polydisper-
sity. Another morphological feature of polymers is branching, in which the polymers do not form linear
chains.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocar-
bon with a −C− C− C− backbone. The angle between successive C− C bonds is fixed at θ ≈ 68◦, but
the azimuthal angle ϕ can take one of three possible low-energy values, as shown in the right panel of
fig. 6.3. Thus, the relative probabilities of gauche and trans orientations are

Prob (gauche)

Prob (trans)
= 2 e−∆ε/kBT (6.47)
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Figure 6.2: Some examples of linear chain polymers.

where ∆ε is the energy difference between trans and gauche configurations. This means that the polymer
chain is in fact a random coil with a persistence length

`p = `0 e
∆ε/kBT (6.48)

where `0 is a microscopic length scale, roughly given by the length of a formula unit, which is approxi-
mately a few Ångstroms (see fig. 6.4). Let L be the total length of the polymer when it is stretched into
a straight line. If `p > L, the polymer is rigid. If `p � L, the polymer is rigid on the length scale `p but
flexible on longer scales. We have

`p
L

=
1

N
e∆ε/kBT , (6.49)

where we now use N (rather than x) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time.
The persistence time τp is the time required for a trans-gauche transition. The rate for such transitions is
set by the energy barrier B separating trans from gauche configurations:

τp = τ0 e
B/kBT (6.50)

where τ0 ∼ 10−11 s. On frequency scales ω � τ−1
p the polymer is dynamically flexible. If ∆ε ∼ kBT � B

the polymer is flexible from a static point of view, but dynamically rigid. That is, there are many gauche
orientations of successive carbon bonds which reflect a quenched disorder. The polymer then forms a
frozen random coil, like a twisted coat hanger.
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Figure 6.3: Left: trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal
angle ϕ. There are three low energy states: trans (ϕ = 0) and gauche (ϕ = ±ϕ0).

Polymers as random walks

A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than `p, it
twists about randomly in space subject to the constraint that it doesn’t overlap itself. Before we consider
the mathematics of SAWs, let’s first recall some aspects of ordinary random walks which are not self-
avoiding, which we discussed in §6.2.1 above.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension d. Such
a lattice has coordination number 2d, i.e. there are 2d nearest neighbor separations, δ = ±a ê1 , ±a ê2 , . . . , ±a êd ,
where a is the lattice spacing. Consider now a random walk of N steps starting at the origin. Af-
ter N steps the position of the walker is RN =

∑N
j=1 δj , where δj takes on one of 2d possible val-

ues. The quantity N is no longer the degree of polymerization, but something approximating L/`p ,
which is the number of persistence lengths in the chain. We assume each step is independent, hence
〈δαj δ

β
j′〉 = (a2/d) δjj′δ

αβ and
〈
R2
N

〉
= Na2. The full distribution PN (R) is given by

PN (R) = (2d)−N
∑
δ1

· · ·
∑
δN

δR,
∑
j δj

= ad
π/a∫
−π/a

dk1

2π
· · ·

π/a∫
−π/a

dkd
2π

e−ik·R

[
1

d

d∑
µ=1

cos(kµa)

]N

= ad
∫
Ω̂

ddk

(2π)d
e−ik·R exp

[
N ln

(
1− 1

2d
k2a2 + . . .

)]

≈
(
a

2d

)d ∫
ddk e−Nk

2a2/2d e−ik·R =

(
d

2πN

)d/2
e−dR

2/2Na2 .

(6.51)

This is a simple Gaussian, with width
〈
R2
〉

= d ·(Na2/d) = Na2, as we have already computed. The
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quantity R defined here is the end-to-end vector of the chain. The RMS end-to-end distance is then
〈R2〉1/2 =

√
Na ≡ R0.

A related figure of merit is the radius of gyration, Rg , defined by

R2
g =

1

N

〈 N∑
n=1

(
Rn −RCM

)2〉
, (6.52)

where RCM = 1
N

∑N
j=1Rj is the center of mass position. A brief calculation yields

R2
g =

1

6

(
N + 3− 4N−1

)
a2 ∼ Na2

6
, (6.53)

in all dimensions.

The total number of random walk configurations with end-to-end vector R is then (2d)NPN (R), so the
entropy of a chain at fixed elongation is

S(R, N) = kB ln
[
(2d)NPN (R)

]
= S(0, N)− dkBR

2

2Na2
. (6.54)

If we assume that the energy of the chain is conformation independent, then E = E0(N) and

F (R, N) = F (0, N) +
dkBTR

2

2Na2
. (6.55)

In the presence of an external force Fext, the Gibbs free energy is the Legendre transform

G(Fext, N) = F (R, N)− Fext ·R , (6.56)

and ∂G/∂R = 0 then gives the relation〈
R(Fext, N)

〉
=

Na2

dkBT
Fext . (6.57)

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges ±e at each end, placed in an external electric field
of magnitude E = 30, 000 V/cm. Let N = 104, a = 2 Å, and d = 3. What is the elongation? From the
above formula, we have

R

R0

=
eER0

3kBT
= 0.8 , (6.58)

with R0 =
√
Na as before.

Structure factor

We can also compute the structure factor,

S(k) =
1

N

〈 N∑
m=1

N∑
n=1

eik·(Rm−Rn)
〉

= 1 +
2

N

N∑
m=1

m−1∑
n=1

〈
eik·(Rm−Rn)

〉
. (6.59)
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Figure 6.4: The polymer chain as a random coil.

For averages with respect to a Gaussian distribution,

〈
eik·(Rm−Rn)

〉
= exp

{
− 1

2

〈(
k · (Rm −Rn)

)2〉}
. (6.60)

Now for m > n we have Rm −Rn =
∑m

j=n+1 δj , and therefore

〈(
k · (Rm −Rn)

)2〉
=

m∑
j=n+1

〈
(k · δj)2

〉
=

1

d
(m− n) k2a2 , (6.61)

since 〈δαj δ
β
j′〉 = (a2/d) δjj′δ

αβ . We then have

S(k) = 1 +
2

N

N∑
m=1

m−1∑
n=1

e−(m−n)k2a2/2d =
N (e2µk − 1)− 2 eµk (1− e−Nµk)

N
(
eµk − 1

)2 , (6.62)

where µk = k2a2/2d. In the limit where N →∞ and a→ 0 with Na2 = R2
0 constant, the structure factor

has a scaling form, S(k) = Nf(Nµk) = (R0/a)2 f(k2R2
0/2d) , where

f(x) =
2

x2

(
e−x − 1 + x

)
= 1− x

3
+
x2

12
+ . . . . (6.63)

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of
mass points connected by springs, with a potential energy U = 1

2k
∑

n

(
xn+1 − xn

)2. This reproduces
the distribution of Eqn. 6.51 if we take the spring constant to be k = 3kBT/a

2 and set the equilibrium
length of each spring to zero. The equations of motion are then

M ẍn + γ ẋn = −k
(
2xn − xn−1 − xn+1

)
+ fn(t) , (6.64)

where n ∈ {1, . . . , N} and {fµn (t)} a set of Gaussian white noise forcings, each with zero mean, and〈
fµn (t) fνn′(t

′)
〉

= 2γkBT δnn′ δ
µν δ(t− t′) . (6.65)
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We define x0 ≡ x1 and xN+1 ≡ xN so that the end mass points n = 1 and n = N experience a restoring
force from only one neighbor. We assume the chain is overdamped and set M → 0. We then have

γ ẋn = −k
N∑

n′=1

Ann′ xn′ + fn(t) , (6.66)

where

A =



1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0

0 0 −1
. . . · · ·

...
...

. . . . . . 2 −1
0 · · · · · · 0 −1 1


. (6.67)

The matrix A is real and symmetric. Its eigenfunctions are labeled ψj(n), with j ∈ {0, . . . , N − 1}:

ψ0(n) =
1√
N

ψj(n) =

√
2

N
cos

(
(2n− 1)jπ

2N

)
, j ∈ {1, . . . , N − 1}

(6.68)

The completeness and orthonormality relations are

N−1∑
j=0

ψj(n)ψj(n
′) = δnn′ ,

N∑
n=1

ψj(n)ψj′(n) = δjj′ , (6.69)

with eigenvalues λj = 4 sin2
(
πj/2N

)
. Note that λ0 = 0.

We now work in the basis of normal modes {ηµj }, where

ηµj (t) =
N∑
n=1

ψj(n)xµn(t) , xµn(t) =
N−1∑
j=0

ψj(n) ηµj (t) . (6.70)

We then have
dηj
dt

= − 1

τj
ηj + gj(t) , (6.71)

where the jth relaxation time is
τj =

γ

4k sin2
(
πj/2N

) (6.72)

and

gµj (t) = γ−1
N∑
n=1

ψj(n) fµn (t) . (6.73)
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Note that 〈
gµj (t) gνj′(t

′)
〉

= 2γ−1kBT δjj′ δ
µν δ(t− t′) . (6.74)

Integrating Eqn. 6.71, we have for, j = 0,

η0(t) = η0(0) +

t∫
0

dt′ g0(t′) . (6.75)

For the j > 0 modes,

ηj(t) = ηj(0) e−t/τj +

t∫
0

dt′ gj(t
′) e(t′−t)/τj . (6.76)

Thus, 〈
ηµ0 (t) ην0 (t′)

〉
c

= 2γ−1kBT δ
µν min(t, t′)〈

ηµj (t) ηνj (t′)
〉

c
= γ−1kBT δ

µν τj

(
e−|t−t

′|/τj − e−(t+t′)/τj
)

,
(6.77)

where the ‘connected average’ is defined to be 〈A(t)B(t′)〉c ≡ 〈A(t)B(t′)〉−〈A(t)〉〈B(t′)〉. Transforming
back to the original real space basis, we then have

〈
xµn(t)xνn′(t

′)
〉

c
=

2kBT

Nγ
δµνmin(t, t′) +

kBT

γ
δµν

N−1∑
j=1

τj ψj(n)ψj(n
′)
(
e−|t−t

′|/τj − e−(t+t′)/τj
)

. (6.78)

In particular, the ‘connected variance’ of xn(t) is

CVar
[
xn(t)

]
≡
〈[
xn(t)

]2〉
c

=
6kBT

Nγ
t+

3kBT

γ

N−1∑
j=1

τj
[
ψj(n)

]2 (
1− e−2t/τj

)
. (6.79)

From this we see that at long times, i.e. when t � τ1 , the motion of xn(t) is diffusive, with diffusion
constant D = kBT/Nγ ∝ B−1, which is inversely proportional to the chain length. Recall the Stokes
result γ = 6πηR/M for a sphere of radius R and mass M moving in a fluid of dynamical viscosity η.
From D = kBT/γM , shouldn’t we expect the diffusion constant to be D = kBT/6πηR ∝ N−1/2, since
the radius of gyration of the polymer is Rg ∝ N1/2 ? This argument smuggles in the assumption that
the only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius Rg. In
fact, for a Gaussian random walk in three space dimensions, the density for r < Rg is ρ ∝ N−1/2 since
there are N monomers inside a region of volume

(√
N
)3. Accounting for Flory swelling due to steric

interactions (see below), the density is ρ ∼ N−4/5, which is even smaller. So as N → ∞, the density
within the r = Rg effective sphere gets small, which means water molecules can easily penetrate, in
which case the entire polymer chain should be considered to be in a dissipative environment, which is
what the Rouse model says – each monomer executed overdamped motion.

A careful analysis of Eqn. 6.79 reveals that there is a subdiffusive regime2 where CVar
[
xn(t)

]
∝ t1/2. To

see this, first take the N � 1 limit, in which case we may write τj = N2τ0/j
2, where τ0 ≡ γ/π2k and

2I am grateful to Jonathan Lam and Olga Dudko for explaining this to me.
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j ∈ {1, . . . , N − 1}. Let s ≡ (n− 1
2)/N ∈ [0, 1] be the scaled coordinate along the chain. The second term

in Eqn. 6.79 is then

S(s, t) ≡ 6kBT

γ
· τ1

N

N−1∑
j=1

cos2(πjs)

j2

(
1− e−2j2t/τ1

)
. (6.80)

Let σ ≡ (t/τ1)1/2. When t� τ1 , i.e. σ � 1, we have

S(s, t) ' 6kBT

γ
· τ1

N
σ

Nσ∫
0

du
cos2(πus/σ)

u2

(
1− e−2u2

)
. (6.81)

Since s/σ � 1, we may replace the cosine squared term by its average 1
2 . If we further assume Nσ � 1,

which means we are in the regime 1� t/τ0 � N2, after performing the integral we obtain the result

S(s, t) =
3kBT

γ

√
2πτ0t , (6.82)

provided s = O(1) , i.e. the site n is not on either end of the chain. The result in Eqn. 6.82 dominates the
first term on the RHS of Eqn. 6.79 since τ0 � t� τ1. This is the subdiffusive regime.

When t� τ1 = N2τ0, the exponential on the RHS of Eqn. 6.80 is negligible, and if we again approximate
cos2(πjs) ' 1

2 , and we extend the upper limit on the sum to infinity, we find S(t) = (3kBT/γ)(τ1/N)(π2/6) ∝
t0, which is dominated by the leading term on the RHS of Eqn. 6.79. This is the diffusive regime, with
D = kBT/Nγ.

Finally, when t � τ0, the factor 1 − exp(−2t/τj) may be expanded to first order in t. One then obtains
CVar

[
xn(t)

]
= (6kBT/γ) t, which is independent of the force constant k. In this regime, the monomers

don’t have time to respond to the force from their neighbors, hence they each diffuse independently. On
such short time scales, however, one should check to make sure that inertial effects can be ignored, i.e.
that t�M/γ.

One serious defect of the Rouse model is its prediction of the relaxation time of the j = 1 mode, τ1 ∝ N2.
The experimentally observed result is τ1 ∝ N3/2. We should stress here that the Rouse model applies to
ideal chains. In the theory of polymer solutions, a theta solvent is one in which polymer coils act as ideal
chains. An extension of the Rouse model, due to my former UCSD colleague Bruno Zimm, accounts for
hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain. Specifically, the
Zimm model is given by

dxµn
dt

=
∑
n′

Hµν(xn − xn′)
[
k
(
xνn′+1 + xνn′−1 − 2xνn′

)
+ fνn′(t)

]
, (6.83)

where
Hµν(R) =

1

6πηR

(
δµν + R̂µR̂ν

)
(6.84)

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid
at position R when a point force F = f δ(r) is applied at the origin. Typically one replaces H(R) by
its average over the equilibrium distribution of polymer configurations. Zimm’s model more correctly
reproduces the behavior of polymers in θ-solvents.
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Flory theory of self-avoiding walks

What is missing from the random walk free energy is the effect of steric interactions. An argument due
to Flory takes these interactions into account in a mean field treatment. Suppose we have a chain of
radius R. Then the average monomer density within the chain is c = N/Rd. Assuming short-ranged
interactions, we should then add a term to the free energy which effectively counts the number of near
self-intersections of the chain. This number should be roughly Nc. Thus, we write

F (R, N) = F0 + u(T )
N2

Rd
+ 1

2dkBT
R2

Na2
. (6.85)

The effective interaction u(T ) is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

0 =
∂F

∂R
= −duN

2

Rd+1
+
dkBTR

Na2
, (6.86)

which yields the result

RF(N) =

(
ua2

kBT

)1/(d+2)

N3/(d+2) ∝ Nν . (6.87)

Thus, we obtain ν = 3/(d+ 2). In d = 1 this says ν = 1, which is exactly correct because a SAW in d = 1
has no option but to keep going in the same direction. In d = 2, Flory theory predicts ν = 3

4 , which is
also exact. In d = 3, we have νd=3 = 3

5 , which is extremely close to the numerical value ν = 0.5880. Flory
theory is again exact at the SAW upper critical dimension, which is d = 4, where ν = 1

2 , corresponding
to a Gaussian random walk3. Best. Mean. Field. Theory. Ever.

How well are polymers described as SAWs? Fig. 6.5 shows the radius of gyration Rg versus molecular
weight M for polystyrene chains in a toluene and benzene solvent. The slope is ν = d lnRg/d lnM =
0.5936. Experimental results can vary with concentration and temperature, but generally confirm the
validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

Y (Fext, N) =

∫
ddR PN (R) eFext·R/kBT =

∫
ddx f(x) esn̂·x , (6.88)

where x = R/RF and s = kBT/RFFext and n̂ = F̂ext. One than has R(Fext) = RF Φ(RF/ξ), where
ξ = kBT/Fext and R(Fext) = FextR

2
F/kBT . For small values of its argument one has Φ(u) ∝ u. For large

u it can be shown that R(Fext) ∝ (FextRF/kBT )2/3.

On a lattice of coordination number z, the number of N -step random walks starting from the origin is
ΩN = zN . If we constrain our random walks to be self-avoiding, the number is reduced to

ΩSAW
N = CNγ−1 yN , (6.89)

3There are logarithmic corrections to the SAW result exactly at d = 4, but for all d > 4 one has ν = 1
2

.
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Figure 6.5: Radius of gyration Rg of polystyrene in a toluene and benzene solvent, plotted as a function
of molecular weight of the polystyrene. The best fit corresponds to a power law Rg ∝ Mν with ν =
0.5936. From J. Des Cloizeaux and G. Jannink, Polymers in Solution: Their Modeling and Structure
(Oxford, 1990).

where C and γ are dimension-dependent constants, and we expect y <∼ z − 1, since at the very least a
SAW cannot immediately double back on itself. In fact, on the cubic lattice one has z = 6 but y = 4.68,
slightly less than z − 1. One finds γd=2 '

4
3 and γd=3 '

7
6 . The RMS end-to-end distance of the SAW is

RF = aNν , (6.90)

where a and ν are d-dependent constants,with νd=1 = 1, νd=2 '
3
4 , and νd=3 '

3
5 . The distribution

PN (R) has a scaling form,

PN (R) =
1

RdF
f(R/RF) (a� R� Na) . (6.91)

One finds

f(x) ∼

{
xg x� 1

exp(−xδ) x� 1 ,
(6.92)

with g = (γ − 1)/ν and δ = 1/(1− ν).

Polymers and solvents

Consider a solution of monodisperse polymers of length N in a solvent. Let φ be the dimensionless
monomer concentration, so φ/N is the dimensionless polymer concentration and φs = 1 − φ is the
dimensionless solvent concentration. (Dimensionless concentrations are obtained by dividing the corre-
sponding dimensionful concentration by the overall density.) The entropy of mixing for such a system
is given by

Smix = −V kB

v0

·
{

1

N
φ lnφ+ (1− φ) ln(1− φ)

}
, (6.93)
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where v0 ∝ a3 is the volume per monomer. Accounting for an interaction between the monomer and
the solvent, we have that the free energy of mixing is

v0 Fmix

V kBT
=

1

N
φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ) . (6.94)

where χ is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a
mean field theory of the polymer-solvent system.

The osmotic pressure Π is defined by

Π = −∂Fmix

∂V

∣∣∣∣
Np

, (6.95)

which is the variation of the free energy of mixing with respect to volume holding the number of polymers
constant. The monomer concentration is φ = NNpv0/V , so

∂

∂V

∣∣∣∣
Np

= − φ2

NNp v0

∂

∂φ

∣∣∣∣
Np

. (6.96)

Now we have

Fmix = NNp kBT

{
1

N
lnφ+ (φ−1 − 1) ln(1− φ) + χ (1− φ)

}
, (6.97)

and therefore
Π =

kBT

v0

[
(N−1 − 1)φ− ln(1− φ)− χφ2

]
. (6.98)

In the limit of vanishing monomer concentration φ→ 0, we recover

Π =
φkBT

Nv0

, (6.99)

which is the ideal gas law for polymers.

For N−1 � φ� 1, we expand the logarithm and obtain

v0Π

kBT
=

1

N
φ+ 1

2(1− 2χ)φ2 +O(φ3)

≈ 1
2(1− 2χ)φ2 .

(6.100)

Note that Π > 0 only if χ < 1
2 , which is the condition for a ’good solvent’. The case χ = 1

2 is that of the
θ-solvent.

In fact, Eqn. 6.100 is only qualitatively correct. In the limit where χ � 1
2 , Flory showed that the indi-

vidual polymer coils behave much as hard spheres of radius RF. The osmotic pressure then satisfies
something analogous to a virial equation of state:

Π

kBT
=

φ

Nv0

+A

(
φ

Nv0

)2

R3
F + . . .

=
φ

Nv0

h(φ/φ∗) .

(6.101)
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This is generalized to a scaling form in the second line, where h(x) is a scaling function, and φ∗ =
Nv0/R

3
F ∝ N−4/5, assuming d = 3 and ν = 3

5 from Flory theory. As x = φ/φ∗ → 0, we must recover the
ideal gas law, so h(x) = 1 +O(x) in this limit. For x→∞, we require that the result be independent of
the degree of polymerization N . This means h(x) ∝ xp with 4

5p = 1, i.e. p = 5
4 . The result is known as

the des Cloiseaux law:
v0Π

kBT
= C φ9/4 , (6.102)

where C is a constant. This is valid for what is known as semi-dilute solutions, where φ∗ � φ � 1.
In the dense limit φ ∼ 1, the results do not exhibit this universality, and we must appeal to liquid state
theory, which is no fun at all.

6.2.6 Surface growth

We’ve explored the subject of stochastic differential equations in chapter 3 of these notes. Those exam-
ples all involved ordinary SDEs of the form

dx = f(x, t) dt+ g(x, t) dW (t) , (6.103)

where W (t) is a Wiener process. Many (most?) physical systems of interest are extended objects de-
scribed by space and time dependent fields. In such cases, we might consider an extension of stochastic
ordinary differential equations (SODEs) to stochastic partial differential equations (SPDEs), which can
be thought of as a continuum limit of coupled SODEs. For example, consider the system of coupled
SODEs described by the equations

dhR(t) = K
d∑

µ=1

[
hR+aµ

(t) + hR−aµ(t)− 2hR(t)
]
dt+

√
Γ a−d/2 dWR(t) , (6.104)

where each hR(t) lives on a site R of a d-dimensional cubic lattice, with aµ = a êµ and a being the lattice
constant. The Wiener processes

{
WR(t)

}
are independent at different sites, so〈

WR(t)WR′(t
′)
〉

= δR,R′ min(t, t′) . (6.105)

The a−d/2 factor in Eqn. 6.104 is in anticipation of the continuum limit where R → x and δR,R′ →
ad δ(x − x′). Expanding h(R + aµ) in a Taylor series, one finds that the first nonvanishing term in the
sum on the RHS is at second order, hence the continuum limit is

dh = D∇2h dt+
√
Γ dW (x, t) , (6.106)

where D = Ka2 and
〈
W (x, t)W (r′, t′)

〉
= δ(x − x′)min(t, t′). We can write this as a conventional

Langevin equation as well, viz.

∂h

∂t
= D∇2h+ η(x, t) ,

〈
η(x, t) η(x′, t′)

〉
= Γ δ(x− x′) δ(t− t′) . (6.107)

Note that this SPDE is linear in the field h(x, t). It is called the Edwards-Wilkinson equation, and has
been applied to the phenomenon of surface growth. In this application, the field h(x, t) = H(x, t) −
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〈〈H(x, t)〉〉 denotes the fluctuation in the surface height from its space and time average. We now consider
the evolution of this SPDE in different space dimensions.

Let the instantaneous variance of the height be the disorder average

w2(t) =
〈
h2(x, t)

〉
. (6.108)

Assuming spatial homogeneity, this average is independent of the location x. Without diffusion, the
height h(x, t) at each point in space executes its own independent Wiener process, and the local vari-
ance is proportional to the elapsed time t. The coefficient is divergent, however, and from the discrete
model is known to be Γ a−d, which diverges in the continuum limit a→ 0. For the continuum equation,
dimensional analysis says that [D] = L2T−1 and [Γ ] = Ld+2 T−1, hence there is a dimensionless param-
eter r ≡ D(d+2)/2 td/2/Γ , and we expect on dimensional grounds w2(t) = Dt f(r). Since we also expect
w2 ∝ Γ , we have f(r) = C/r with C a constant, which says

w2(t)
?
= CΓD−d/2 t(2−d)/2 . (6.109)

In d = 1 this is correct. In d = 2, as we shall see, a logarithm appears. For d > 2 this makes no sense
at all, since it says the height fluctuations decay with time. The problem, as we shall see, is that there
is another scale in the problem, arising from a short distance cutoff which we may take to be the lattice
constant a itself. This introduces a new dimensionless parameter which is Dt/a2.

The solution to Eqn. 6.107, with h(x, 0) = 0, is

h(x, t) =

∫
ddx1

t∫
0

dt1
[
4πD(t− t1)

]−d/2
exp

{
− (x− x1)2

4D(t− t1)

}
η(x1, t1) . (6.110)

From this we may derive a formal expression for the correlation function,

Cd(x, s ; t) ≡
〈
h(0, t)h(x, t+ s)

〉
. (6.111)

Note that the correlator does not depend on x, due to spatial isotropy, but does depend on both t and s
time variables4. We will consider the equal time (s = 0) correlator,

Cd(x, 0 ; t) =
〈
h(0, t)h(x, t)

〉
= Γ e−x

2/4Dt

∫
ddu

t∫
0

dτ
e−u

2/2Dτ e−x·u/2Dτ

(4πDτ)d

=
Γ |x|2−d

2πd/2D

∞∫
x2/8Dt

ds
e−s

s(4−d)/2
=
Γ |x|2−d

2πd/2D
E

2− d
2

(
x2/8Dt

)
,

(6.112)

where Ek(z) is familiar from Eqn. 6.29. It is also interesting to consider the correlation function for
height differences,

Rd(x, t) ≡
〈[
h(x, t)− h(0, t)

]2〉
= 2
[
Cd(0, 0 ; t)− Cd(x, 0 ; t)

]
. (6.113)

4We may assume, without loss of generality, that s ≥ 0.
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For d = 1, we integrate by parts once and obtain

C1(x, 0 ; t) =

(
Γ 2t

2πD

)1/2

e−x
2/8Dt − Γ |x|

4
√
πD

E1/2

(
x2/8Dt

)
. (6.114)

In the limit x → 0, the second term on the RHS vanishes, and we obtain C1(0 , 0 ; t) =
√

2
π Γ (t/D)1/2,

which agrees with the dimensional analysis. The height difference correlator R1(x, t) is then

R1(x, t) =

(
Γ 2t

2πD

)1/2(
1− e−x2/8Dt

)
+

Γ |x|
2
√
πD

E1/2

(
x2/8Dt

)
. (6.115)

As t → ∞, we have E1/2(0) =
√
π and thus R1(x, t → ∞) = Γ |x|/2D, which says that the height

function h(x, t→∞) is a random walk in the spatial coordinate x.

In d = 2, we have

C2(x, 0 ; t) =
Γ

2πD
E1(x2/8Dt) =

Γ

2πD

{
ln

(
8Dt

x2

)
− γE +O

(
x2/t

)}
, (6.116)

where the expansion is for the long time limit, and where γE ' 0.577215 is the Euler-Mascheroni con-
stant. This diverges logarithmically as t→∞ or x→ 0. For d > 2, the t→∞ limit yields

Cd(x, 0 ; t→∞) =
Γ(1

2d− 1)

2πd/2D
Γ |x|2−d , (6.117)

where one should take care to distinguish the Gamma function Γ(1
2d− 1) from the parameter Γ . This is

independent of time but diverges as x→ 0. The short distance divergence is a pathology which is cured
by the introduction of a new length scale a corresponding to an ultraviolet cutoff in the theory. One then
replaces x2 in these formulae for d ≥ 2 with max(x2, a2). We conclude then that for d > 2 the random
term does not roughen the interface, i.e. the height fluctuations do not diverge as t→∞.

We can derive a scaling form for the space and time dependent correlation function
〈
h(x, t)h(x, t′)

〉
in

the limit where t and t′ are both large. The Fourier transform of the EW equation is

−iωĥ(k, ω) = −Dk2 ĥ(k, ω) + η̂(k, ω) . (6.118)

In Fourier space, the correlations of the stochastic term are given by
〈
ĥ(k, ω)

〉
= 0 and〈

η̂(k, ω) η̂(k′, ω′)
〉

= (2π)d+1 Γ δ(k + k′) δ(ω + ω′) , (6.119)

from which we obtain 〈
ĥ(k, ω) ĥ(k′, ω′)

〉
=

(2π)d+1 Γ δ(k + k′) δ(ω + ω′)

(Dk2)2 + ω2
. (6.120)

Here we have neglected any transients, which is consistent with our assumption that we are in the late
time phase. Fourier transforming back to the space-time domain, we obtain the scaling form

〈
h(x, t)h(x′, t′)

〉
= Ad

Γ

D
|x− x′|2−d f

(
D|t− t′|
|x− x′|2

)
, (6.121)
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where Ad is a d-dependent constant and f(ζ) is given by

f(ζ) =

∞∫
0

du u(d−4)/2 J d
2
−1

(u) e−ζu
2

. (6.122)

The integral is convergent for d > 2, with f(ζ →∞) ∼ ζ(2−d)/2.

Generalized EW model

Consider now the more general case

−iωĥ(k, ω) = −B|k|p ĥ(k, ω) + η̂(k, ω) . (6.123)

Proceeding as before, we obtain

〈
h(x, t)h(x′, t′)

〉
=

(2π)d/2Γ

4B
|x− x′|p−d fd,p(ζ) , (6.124)

where ζ = B|t− t′|/|x− x′|p is the scaling variable and5

fd,p(ζ) =

∞∫
0

du u
d
2
−p J d

2
−1

(u) e−ζu
p

, (6.125)

which is convergent for d > p, with f(ζ →∞) ∼ ζ(p−d)/p.

For d ≤ p the integral is divergent. If we start with initial conditions h(x, 0) = 0, then we find

〈
h(x, t)h(x′, t′)

〉
=

(2π)d/2Γ

4B
|x− x′|p−d

[
fd,p(ζ)− fd,p(Z)

]
, (6.126)

where Z = B(t+ t′)/|x− x′|p. For d > p, when fd,p(w) converges, the second term is negligible as t and
t′ tend to infinity, with |t− t′| finite. For d ≤ p, we have that fd,p(w) is divergent, however, the difference,

fd,p(ζ)− fd,p(Z) =

∞∫
0

du u
d
2
−p J d

2
−1

(u)
[
e−ζu

p − e−Zup
]

(6.127)

converges. This amounts to imposing a lower limit cutoff on u in Eqn. 6.125 of umin ∼ Z−1/p when
Z � 1. The height-height correlator then behaves as (t+ t′)(p−d)/p , which diverges in the late time limit.
For p = d the correlator behaves as lnZ. Thus, for d ≤ p the surface roughens.

5To derive this result, we invoke ∫
dk̂

Ωd
eizk̂·n̂ = Γ(d/2)

(
2

z

)d
2
−1

J d
2
−1

(z) ,

where the integral is over the surface of a unit sphere in d space dimensions, and where n̂ is any unit vector. The RHS
approaches 1 in the limit z → 0.
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Kardar-Parisi-Zhang equation

The Edwards-Wilkinson equation is a linear stochastic partial differential equation. A nonlinear exten-
sion of the EW equation for surface growth was proposed by Kardar, Parisi, and Zhang, and accordingly
is known as the KPZ equation,

∂h

∂t
= D∇2h+ 1

2λ (∇h)2 + η , (6.128)

where η(x, t) is the same stochastic noise term. On physical grounds, the nonlinearity in this equation
is rather generic. It may be transformed to the Burgers equation with noise for a vorticity-free field, via
v ≡ −λ∇h , whence

∂v

∂t
+ (v ·∇)v = D∇2v − λ∇η(x, t) . (6.129)

Dimensionally, we still have [Γ ] = Ld+2 T−1 and [D] = L2 T−1, but now we add [λ] = LT−1 to the mix.
There are now two dimensionless parameters Γ 2/Dd+2 t2 and Γλd/Dd+1. However, because the trans-
verse coordinates x and the height h enter the equation in different ways, we should really distinguish
between these coordinates and define a transverse length scale L as well as a height length scale H . In
this case, we have

[Γ ] = LdH2 T−1 , [λ] = L2H−1 T−1 , [D] = L2 T−1 , (6.130)

and the only properly dimensionless combination is

κ =
Γ 2λ4

Dd+4
× t2−d . (6.131)

The instantaneous height variance w2(t) and the spatial correlation length ξ(t) should then scale with
units of H2 and L, respectively, hence we expect

w(t) =
D

λ
f(κ) , ξ(t) = (Dt)1/2g(κ) . (6.132)

Note in d = 1 we have κ = Γ 2 λ4 t/D5. Applied to the EW equation, where λ = 0, this analysis recovers
w(t) ∼ Γ 1/2D−d/4 t(2−d)/4 and ξ ∼ (Dt)1/2, but note that our earlier argument was rooted in the linearity
of the EW equation, which requires w ∝ Γ 1/2. The dimensional argument does not specifically invoke
linearity in this way.

There is not much more that can be said about the KPZ equation in dimensions d > 1 without resorting
to more sophisticated analysis, but in d = 1, much is known. For example, a nonlinear transformation
known as the Cole-Hopf transformation,

ψ(x, t) = exp

(
λ

2D
h(x, t)

)
, (6.133)

transforms KPZ to a linear SPDE,
∂ψ

∂t
= D

∂2ψ

∂x2
+

λ

2D
ψ η . (6.134)

This describes diffusion in the presence of a random potential.
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The probability distributionΠ
[
h(x), t

]
for the field h(x) at time t obeys a functional Fokker-Planck equation,

∂Π
[
h(x), t

]
∂t

=

∫
ddx′

(
1
2Γ

δ2

δh(x′)2
− δ

δh(x′)
J(x′)

)
Π
[
h(x), t

]
, (6.135)

where
J = D∇2h+ 1

2λ (∇h)2 . (6.136)

To make sense of this and avoid ill-defined expressions like δ′′(0), we may write the functional Fokker-
Planck equation as

∂Π
[
h(x), t

]
∂t

= lim
ε→0

∫
ddx′

(
1
2Γ

δ2

δh(x′) δh(x′ + ε)
− δ

δh(x′)
J(x′ + ε)

)
Π
[
h(x), t

]
, (6.137)

In one dimension, we have the stationary solution

Π
[
h(x)

]
= exp

{
− D

Γ

∞∫
−∞

dx

(
∂h

∂x

)2
}

. (6.138)

When λ = 0, this solution generalizes to arbitrary d, but for nonzero λ it is valid only for d = 1. Because
the asymptotic distribution there depends only on the ratio D/Γ , we conclude that the asymptotic be-
haviors of w(t) and ξ(t) must do the same, in which case we must have f(κ) ∝ κ1/3 and g(κ) ∝ κ1/6,
resulting in

w(t) ∼ (Γ/D)2/3 (λt)1/3 , ξ(t) ∼ (Γ/D)1/3 (λt)2/3 (6.139)

for the one-dimensional KPZ equation. The characteristic w ∼ t1/3 growth is called KPZ growth.

Scaling and exponents

The mean height of a surface is

h̄(t) = L−d
∫
ddx h(x, t) , (6.140)

where the integration is over a region of characteristic linear dimension L. The interface width w(L, t) is
given by

w(L, t) =

[
L−d
∫
ddx

(
h(x, t)− h̄(t)

)2
]1/2

. (6.141)

Given these intuitive and precise definitions, we introduce the following concepts. The growth exponent
β is defined such that for t� τ(L) the interface width grows as w(L, t� τ) ∼ tβ . The time τ(L) ∼ Lz is
a characteristic scale which increases as a power law with dynamical critical exponent z . In the long time
limit t � τ(L), the interface width goes as w(L, t � τ) ∼ Lα, where α is the roughness exponent. For
L→∞, the interface width obeys a scaling relation

w(L, t) ∼ Lα f
(
t/Lz

)
. (6.142)
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In order that w(L, t � τ) ∼ tβ , we must have f(u) ∼ uα/z , in which case we read off z = α/β, which is
a scaling relation.

For the EW equation, we may derive the exponents α, β, and z from our calculations of the correlation
functions. However there is a slicker way to do this, which is by scaling space x , time t , and height
h and demanding the EW equation retain its form. Let us write x → x′ = bx , h → h′ = bαh , and
t → t′ = bzt . Space derivatives scale as ∇ → ∇′ = b−1∇, time derivatives as ∂t → ∂t′ = b−z∂t, and the
noise as η → η′ = b−(d+z)/2η, because〈

η(bx, bzt) η(bx′, bzt′)
〉

= Γ δ(bx− bx′) δ(bzt− bzt′) = Γb−(d+z) δ(x− x′) δ(t− t′) . (6.143)

Under this rescaling, then, we have

bα−z
∂h

∂t
= bα−2D∇2h+ b−(d+z)/2η , (6.144)

and demanding that the EW equation retain its form means

α− z = α− 2 = −1
2(d+ z) ⇒ α =

2− d
2

, β =
2− d

4
, z = 2 , (6.145)

where we have used β = α/z. One can verify that these exponents describe our earlier exact solution.

What happens when we try to apply these scaling arguments to KPZ? Evidently we wind up with a
rescaled equation

bα−z
∂h

∂t
= bα−2D∇2h+ 1

2b
2α−2 λ (∇h)2 + b−(d+z)/2η , (6.146)

which yields three equations for the two unknowns α and z, viz.

α− z = α− 2 = 2α− 2 = −1
2(d+ z) . (6.147)

This is overdetermined – clearly something has gone wrong with our scaling arguments. The resolution
is that the coefficients D, λ, and Γ themselves are scale-dependent. A proper treatment requires the in-
vocation of renormalization group technology. Still we may argue on general grounds, from the Burgers
equation form of KPZ, that the convective derivative,

Dv

Dt
=
∂v

∂t
+ (v ·∇) v , (6.148)

must retain its form under rescaling. If we write6 v = −∇h instead of v = −λ∇h , then λ multiplies the
(v ·∇) v term, and if we set λ = 1 we conclude that λ should not change under rescaling. Thus leads to
the relation α + z = 2 in all dimensions. We still have β = α/z, so we need just one more equation to
determine all three exponents. In d = 1 , Eqn. 6.138 implies a roughening exponent of α = 1

2 , hence we
conclude for the KPZ equation in d = 1 that

α = 1
2 , β = 1

3 , z = 3
2 . (6.149)

These values have been confirmed numerically.

6Warning! Slick argument imminent!
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6.2.7 Lévy flights

We follow the discussion in KRB §2.3. We saw earlier in §1.4.2 how the sum of N independent random
variables X =

∑N
j=1 xj is distributed as a Gaussian in the N → ∞ limit, a consequence of the central

limit theorem. If p(x) is the single step distribution, thenPN (X) = (2πNσ2)−1/2 exp
[
−(X−Nµ)2/2Nσ2

]
,

where µ and σ are the mean and standard deviation of p(x), respectively. This presumes that µ and σ
exist. Suppose that

p(x) =

{
r x−(1+r) x ≥ 1

0 x < 1 .
(6.150)

Here we consider a process where each step is to the right (x > 0), but we could easily allow for
leftward steps as well. The distribution is normalized, and we exclude steps of length less than one so
we can retain a simple power law that is still normalizable. Clearly µ = 〈x〉 is finite only if r > 1 and
σ2 = 〈x2〉 − 〈x〉2 is finite only if r > 2 . What happens if r < 2 ?

For a walk ofN steps, the mean and standard deviation ofX will necessarily be finite, because each step
is itself finite. Let’s now ask: what is the typical value of the largest among the individual steps {xj}?
Suppose we demand that the largest of these values be x. Then the probability distribution for x is

MN (x) = N
[
1− P (x)

]N−1
p(x) , (6.151)

where P (x) =
∞∫
x
dx′ p(x′) is the probability that a given step lies in the range [x,∞) . The factor of N

above arises because any among the N steps could be the largest. Note that dP (x) = −p(x) dx, hence

∞∫
0

dxMN (x) = N

1∫
0

dP (1− P )N−1 = 1 , (6.152)

soMN (x) is normalized. If P (x) = O(N−1), we may write Eqn. 6.151 asMN (x) ≈ p(x) e−NP (x) and then

extract a typical value for the maximum step xmax(N) by setting NP (x) ≈ 1 , i.e. by setting
∞∫
x
dx′ p(x′) ∼

N−1. For the power law distribution in Eqn. 6.150, this yields xmax(N) ∼ N1/r. KRB compute the
average

〈
xmax(N)

〉
=

∞∫
0

dx xMN (x) = N

1∫
0

ds (1− s)N−1s−1/r ?
=

Γ(1− r−1) Γ(N + 1)

Γ(N + 1− r−1)
. (6.153)

ForN →∞ this yields
〈
xmax(N)

〉
= Γ(1−r−1)N1/r, which has the same dependence onN , but includes

a prefactor. Unfortunately, this prefactor arises from a divergent integral if r < 1, as the above equation
shows, but which KRB let pass without comment. Indeed, if the average single step length diverges, then
the average greatest step length among N steps surely diverges! A more sensible definition of xmax(N) is
obtained by setting the integral of MN (x) up to xmax(N) to some value α on the order of unity, such as
α = 1

2 :

N

xmax∫
0

dxMN (x) = α ⇒ xmax(N) =

(
N

ln(1/α)

)1/r

. (6.154)
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This again is proportional to N1/r, but with a finite coefficient for all r. We may then write xmax(N) =
CrN

1/r, where Cr is an r-dependent O(1) constant.

We may now approximate the single-step distribution for an N -step walk as

p̃(x) ≡ p(x) Θ(xmax − x)

/ xmax∫
0

dx′ p(x′)

=
r x−(1+r)

1− x−rmax
Θ(xmax − x) ' r x−(1+r) Θ(xmax − x) .

(6.155)

Then for large N one has

〈
x
〉

=


ArN

(1−r)/r if r < 1

lnN +A1 if r = 1

r/(r − 1) if r > 1

⇒
〈
X
〉

=


ArN

1/r if r < 1

N lnN +A1N if r = 1

rN/(r − 1) if r > 1 .

(6.156)

Similarly,

〈
x2
〉

=


A′rN

(2−r)/r if r < 2

lnN +A′1 if r = 2

r/(r − 2) if r > 2

⇒
〈
X2
〉
−
〈
X
〉2

=


A′rN

2/r if r < 2

N lnN +A′1N if r = 2

rN/(r − 2) if r > 2 .

(6.157)

These are examples of Lévy flights. The Lévy distribution Lα,β(x) is defined in terms of its Fourier trans-
form, L̂α,β(k) ,

L̂α,β(k) = exp

{
iµk −

(
1− iβ sgn(k)φ(k, α)

)
σα|k|α

}
, (6.158)

where

φ(k, α) =

{
tan
(

1
2πα

)
if α 6= 1

− 2
π ln |k| if α = 1 .

(6.159)

This is a four parameter distribution, specified by the index α ∈ [0, 2], which corresponds to r in Eqn.
6.150, the skewness β, the shift µ, and the scale σ. Of these, the shift and the scale are uninteresting,
because

Lα,β(x ; µ , σ) =

∞∫
−∞

dk

2π
L̂α,β(k) eikx = Lα,β

(x− µ
σ

; µ = 0 , σ = 1
)
. (6.160)

Without loss of generality, then, we may set µ = 0 and σ = 1, in which case we are left with the two-
parameter family,

L̂α,β(k) = exp

{
−
(

1− iβ sgn(k) tan(1
2πα)

)
|k|α

}
. (6.161)

When the skewness vanishes (β = 0), we obtain the symmetric Lévy distribution, L̂α,0(k) = exp
(
−|k|α

)
.

We can compute the inverse Fourier transform analytically in two cases:

L1,0(x) =
1

π

1

x2 + 1
, L2,0(x) =

1√
4π

e−x
2/4 , (6.162)
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Figure 6.6: Diffusion process (left) and a Lévy flight aith α = 3
2 (right). Both walks contain approx-

imately N = 7000 steps. The Lévy process is characterized by blobs connected by long steps and is
superdiffusive. From A. V. Chechkin et al. in Anomalous Transport: Foundations and Applications, R.
Klages et al., eds. (Wiley-VCH, 2008).

which are the Cauchy (Lorentzian) and the Gaussian distributions, respectively. Asymptotically, we
have

Lα,0(x) ∼
Γ(1 + α) sin(1

2απ)

π |x|1+α

(
|x| → ∞

)
. (6.163)

An example of an asymmetric Lévy distribution is the Lévy-Smirnoff form,

L 1
2
,1

(x) =
1√
2π

x−3/2 exp

(
− 1

2x

)
Θ(x) . (6.164)

A special property of the Lévy distributions is their stability, which means that the distribution of a sum
of N independent and identically distributed random Lévy variables itself is a Lévy distribution. If
P̂ (k) = L̂α,0(k) , for example, then for the sum X =

∑N
j=1 xj we have P̂N (k) = exp

(
−N |k|α

)
, and

PN (X) =
1

Nα
Lα,0

(
X

N1/α

)
. (6.165)

Note that the width of the distribution is N1/α, so for α < 2 we have N1/α �
√
N as N →∞, hence the

Lévy distribution is much broader than the usual Gaussian.

The Lévy flight arising from a power law distribution of step lengths is superdiffusive, with 〈x2〉 ∝ t2/r > t
and r < 2. What happens if the step length size is normally distributed, but the waiting time between
consecutive steps is power law distributed as ψ(τ) = r τ−(1+r) Θ(τ) ? Following KRB, the maximum
waiting time for an N -step process is then obtained from the extremal condition

r

∞∫
τmax

dτ τ−(1+r) ∼ 1

N
, (6.166)
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Figure 6.7: A physical example of a Lévy flight, a polymer in contact with a surface. The polymer often
leaves the surface to explore three-dimensional space, and touches down again a long distance away
from its previous point of contact.

whence τmax(N) ∼ N1/r. The average time to take a step and total time TN for N steps are then

〈t〉 ∼
τmax∫
0

dτ µ τ−r =


BrN

(1−r)/r if r < 1

lnN +B1 if r = 1

r/(r − 1) if r > 1

⇒ TN = N〈t〉 =


BrN

1/r if r < 1

N lnN +B1N if r = 1

rN/(r − 1) if r > 1

(6.167)
and therefore

〈
X2
〉
∼ N =


B′r T

r if r < 1

T/ lnT if r = 1

(r − 1)T/r if r > 1 .

(6.168)

For r < 1, this process is subdiffusive, spreading more slowly than ordinary diffusion.

6.2.8 Holtsmark distribution

Consider a distribution of equal mass objects, which we can imagine to be stars, which are equally dense
throughout the universe. We seek the distribution P (F ) of the force acting on any given star. We will
compute this by placing, without loss of generality, our ’test star’ at the origin r = 0 and then computing
the force on it from all stars within a radius R, then take R → ∞ at the end of the calculation. We have
that

F (R) =

N∑
j=1

fj = −
N∑
j=1

GM2 r̂j

r2
j

, (6.169)
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whereN is the number of other stars within a sphere of radiusR. Assuming the stars are independently
and identically distributed with number density n, we have

P (F ) = V −NR

∫
d3x1 · · ·

∫
d3xN δ

(
F −

N∑
j=1

fj

)
, (6.170)

with VR = 4
3πR

3, the Fourier transform of which is

P̂ (k) =

∫
d3F P (F ) e−ik·F =

V −1
R

∫
r<R

d3r e−iGM
2k·r̂/r2

N

=

1− n

N

∫
r<R

d3r
(

1− e−iGM2k·r̂/r2
)N = exp

(
− n Φ̂(k)

)
,

(6.171)

where we have taken the N →∞ limit with n = N/VR fixed, and where we have defined

Φ̂(k) =

∫
d3r
(

1− eiGM2k·r̂/r2
)
. (6.172)

This integral may be taken over all space, as we shall see. Note that k has dimensions of inverse force.

Integrating over the solid angle r̂, we have Φ̂(k) is isotropic, with

Φ̂(k) = 4π

∞∫
0

dr r2

(
1−

sin
(
GM2k/r2

)
GM2k/r2

)

= 2π(GM2k)3/2

∞∫
0

du
u− sinu

u7/2
= 4

15 (2π)3/2 (GM2)3/2 k3/2 .

(6.173)

We define the dimensional force unit F0 ≡ GM2n2/3 and the dimensionless wavevector κ ≡ F0 k . Then

P (F ) = F−3
0

∫
d3κ

(2π)3
eiκ·ξ e−Cκ

3/2
, (6.174)

where F ≡ F0 ξ, with C = 4
15(2π)3/2 = 4.12. Thus, the dimensionless force distribution P (w) = F 3

0 P (F )
is

P (ξ) =
1

2π2ξ

∞∫
0

dκ κ sin(κ ξ) exp
(
− Cκ3/2

)
. (6.175)

This expression has two limiting forms. In the weak force limit ξ → 0 , we may write sin(κ ξ) ≈ κ ξ in
which case

P (ξ � ξ0) =
1

2π2

∞∫
0

dκ κ2 exp
(
− Cκ3/2

)
=

1

3π2C2
=

75

128π5
= 1.9× 10−3 . (6.176)
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Thus, the distribution is flat for ξ � ξ0 ≡ C−2/3 = 0.384. In the opposite limit ξ � C−2/3, we expand the
exponential in Eqn. 6.175, write sin(κ ξ) = Im eiκξ, and introduce a convergence factor e−εk with ε → 0
at the end of the calculation. The final result is

P (ξ � ξ0) =
1

2π2ξ
Im lim

ε→0

∞∫
0

dκ κ eiκ ξ
(

1− Cκ3/2 + . . .
)
e−εκ = 1

2 ξ
−9/2 . (6.177)

For a central force f(r) = A r̂/rβ , one has n Φ̂(k) = Cβ (F0 k)3/β , with F0 = Anβ/3 and

Cβ =
4π

β

∞∫
0

du
u− sinu

u2+3/β
. (6.178)

We are now in position to compute moments of the force distribution. We have

〈F v〉 = 4πF v0

∞∫
0

dξ ξ2+v P (ξ) = Av F
v
0 , (6.179)

with

Av =
sin(πv/2) Γ(2 + v)

sin(2πv/3) Γ(1 + 2
3v)
· 4

3 C
v . (6.180)

The moments are finite provided v ∈
[
− 3 , 3

2

]
. In the strong force limit, the average force is dominated

by the statistically closest other star.

6.3 Aggregation

In the process of aggregation, two clusters of different size join irreversibly. Starting from an initial dis-
tribution of cluster sizes, the distribution coarsens under the sole constraint of total mass conservation.
Aggregation describes physical processes from the accretion of stellar matter to the coagulation of pro-
teins in the production of cheese. Here we follow the pellucid presentation in chapter five of KRB.

6.3.1 Master equation dynamics

The basic aggregation process is schematically described by the reaction

Ai +Aj
Kij−→Ai+j , (6.181)

whereAi denotes a cluster of size/mass i. We do not distinguish between different shapes of clusters; the
only relevant variable in describing the cluster is its total mass. The rate constants Kij have dimensions
Ld T−1 and, when multiplied by a concentration c whose dimensions are [c] = L−d, yield a reaction rate.
The matrix of rate constants is symmetric: Kij = Kji .
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i

i+j

j

Kij

Figure 6.8: Aggregation process in which two clusters of mass i and j combine to form a cluster of mass
i+ j.

Let cn(t) be the concentration of clusters of mass n at time t. The dynamics of the cluster size concentra-
tions is given, at the mean field level, by a set of nonlinear coupled ODEs,

dcn
dt

=
1

2

∞∑
i,j=1

Kij ci cj

{
δn,i+j − δn,i − δn,j

}
=

1

2

∑
i+j=n

Kij ci cj − cn
∞∑
j=1

Knj cj .

(6.182)

Several comments are in order here:

(i) The dynamics here are assumed to be spatially independent. A more realistic model invoking
diffusion would entail a set of coupled PDEs of the form

∂cn
∂t

= Dn∇2cn +
1

2

∑
i+j=n

Kij ci cj − cn
∑
j≥1

Knj cj , (6.183)

where Dn is the diffusion constant for clusters of mass n. If diffusion is fast, the different clusters
undergo rapid spatial homogenization, and we can approximate their dynamics by Eqn. 6.182.

(ii) Unlike the Master equation (see §2.5 and §2.6.3), the aggregation dynamics of Eqn. 6.182 are non-
linear in the concentrations. This represents an approximation to a much more complicated hier-
archy akin to the BBGKY hierarchy in equilibrium statistical physics. The probability of a reaction
Ai+Aj → Ai+j is proportional to the joint probability of finding a clusterAi and a clusterAj at the
same position in space at the same time. If cn(r, t) = P (n ; r, t) is the probability density to find a
cluster of mass n at position r at time t, and P (n1, n2 ; r, ; t) is the probability density for finding
two clusters of masses n1 and n2 at position r at time t , then we should write

∂P (n ; r, t)

∂t
= Dn∇2P (n ; r, t) +

1

2

∑
i+j=n

Kij P (i, j ; r, t)−
∑
j≥1

Knj P (n, j ; r, t) (6.184)

This is not a closed set of equations inasmuch as the dynamics of the single cluster distribution is
dependent on the two cluster distribution. At the next level of the hierarchy, the rate of change of
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the two cluster distribution will be given in terms of the three cluster distribution. To recover Eqn.
6.182, we approximate

P (i, j ; r, t) ≈ P (i ; r, t)P (j ; r, t) = ci(r, t) cj(r, t) . (6.185)

Assuming diffusion rapidly induces spatial uniformity of the cluster densities, we have cj(r, t) ≈
cj(t).

(iii) The factor of one half on the RHS of Eqn. 6.182 is explained as follows. The number of pairs
of clusters of masses i and j , with i 6= j, is NiNj , where Ni = V ci where V is the volume. The
number of pairs where both clusters have mass k is 1

2Nk(Nk−1) ≈ 1
2N

2
k , where the approximation

is valid in the thermodynamic limit. Note that there is no factor of one half for the j = n term in
the second sum on the RHS of Eqn. 6.182 because the reaction An + An → A2n results in the loss
of two An clusters, and this factor of two cancels with the above factor of one half.

(iv) Three body aggregation Ai + Aj + Ak → Ai+j+k is ignored on the presumption that the reactants
are sufficiently dilute. Note that the aggregation process itself leads to increasing dilution in terms
of the number of clusters per unit volume.

6.3.2 Moments of the mass distribution

Define the kth moment of the mass distribution,

νk(t) =

∞∑
n=1

nk cn(t) . (6.186)

Then from Eqn. 6.182 we have

dνk
dt

=
1

2

∞∑
i,j=1

Kij ci cj

{
(i+ j)k − ik − jk

}
. (6.187)

For k = 1 the RHS vanishes, hence ν̇1 = 0 and the total mass density ν1 is conserved by the dynamics.
This is of course expected, since mass is conserved in each reaction Ai +Aj → Ai+j .

6.3.3 Constant kernel model

The general equation 6.182 cannot be solved analytically. A great simplification arises if we assume a
constant kernel Kij is a constant, independent of i and j , as proposed by Smoluchowski (1917). What
justifies such a seemingly radical assumption? As KRB discuss, if we assume the aggregating clusters
are executing Brownian motion, then we can use the results of §6.2.4, which says that the rate constant
for a diffusing particle to hit a sphere of radius R is 4πDR , where D is the particle’s diffusion constant.
For two spherical particles of sizes i and j to meet, we have Kij ≈ 4π(Di + Dj)(Ri + Rj). Now the
diffusion constant for species i is Di = kBT/6πηRi , where η is the kinematic viscosity of the solvent in
which the clusters move. Thus,

Kij ≈
kBT

6πη

{
2 +

(
i

j

)1/3

+

(
j

i

)1/3
}

, (6.188)
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where we have used Ri ∝ i1/3 , for a particle of mass i. This kernel is not constant, but it does share a
scale invariance Ki,j = Kri,rj , for all r ∈ Z+ , with any constant kernel model. This feature is supposed
to give us a warm fuzzy feeling about the constant kernel model. Let’s assume, then, that Kij = 2α , so

1

α

dcn
dt

=
∑
i+j=n

ci cj − 2ν0cn =

n−1∑
j=1

cj cn−j − 2ν0cn , (6.189)

where ν0(t) =
∑∞

j=1 cj(t) is the total cluster concentration, accounting for all possible masses, at time t.
The resulting hierarchy is

α−1ċ1 = −2ν0 c1 α−1ċ4 = 2c1c3 + c2
2 − 2ν0 c4 (6.190)

α−1ċ2 = c2
1 − 2ν0 c2 α−1ċ5 = 2c1c4 + 2c2c3 − 2ν0 c5 (6.191)

α−1ċ3 = 2c1c2 − 2ν0 c3 α−1ċ6 = 2c1c5 + 2c2c4 + c2
3 − 2ν0 c6 . (6.192)

From Eqn. 6.187, ν0(t) obeys

ν̇0(t) = −αν2
0 ⇒ ν0(t) =

ν0(0)

1 + ν0(0)α t
. (6.193)

The k = 1 moment ν1(t) is conserved by the evolution. The equations for the higher moments νk(t) with
k > 1 are

ν̇k = α

k−1∑
l=1

(
k

l

)
νl νk−l . (6.194)

Generating function solution

Remarkably, the nonlinear hierarchy of the constant kernel model may be solved analytically via the
generating function formalism7. We define

c(z, t) =

∞∑
n=1

zn cn(t) . (6.195)

Multiplying both sides of Eqn. 6.189 by zn and summing on n , we obtain

∂c(z, t)

∂t
= α c2(z, t)− 2αν0(t) c(z, t) . (6.196)

Subtract from this the equation from ν̇0 = −αν2
0 , to obtain

∂h(z, t)

∂t
= −αh2(z, t) ⇒ h(z, t) =

h(z, 0)

1 + h(z, 0)α t
, (6.197)

where h(z, t) = ν0(t)− c(z, t). Therefore

c(z, t) =
ν0(0)

1 + ν0(0)α t
− ν0(0)− c(z, 0)

1 +
[
ν0(0)− c(z, 0)

]
α t

. (6.198)

7See §2.5.3 and §4.3.2.
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The cluster distribution cn(t) is the coefficient of zn in the above expression. Note that c(z, 0) =
∑

j z
j cj(0)

is given in terms of the initial cluster distribution, and that ν0(0) = c(z = 1, t = 0).

As an example, consider the initial condition cn(0) = κ δn,m . We then have c(z, 0) = κ zm and thus
ν0(0) = κ , and

c(z, t) =
κ

1 + κα t
− κ (1− zm)

1 + κα t (1− zm)
=
u (1− uα t) zm

1− uα t zm
, (6.199)

where u = κ/(1 + κα t). We can extract the distribution cn(t) by inspection. Note that c(z, t) contains
only integer powers of zm, because clusters whose mass is an integer multiple of m can only aggregate
to produce clusters whose mass is a larger integer multiple of m. One finds

clm(t) =
κ (κα t)l−1

(1 + κα t)l+1
=

1

κα2 t2

(
1 +

1

κα t

)−(l+1)

. (6.200)

Note that the RHS does not depend on m , which is a manifestation of the aforementioned scale invari-
ance of the constant kernel (and the diffusion model kernel). The total cluster density agrees with Eqn.
6.193:

ν0(t) =
∞∑
n=1

cn(t) =
κ

1 + κα t
. (6.201)

One can further check that the total mass density is conserved:

ν1(t) =
∞∑
n=1

n cn(t) =
∂c(z, t)

∂z

∣∣∣∣
z=1

= mκ . (6.202)

Asymptotically as t→∞with l fixed, we have clm(t) ' 1/κ(αt)2 , with a universal t−2 falloff. For l→∞
with t fixed, we have that clm(t) ∼ e−lλ , where λ = ln(1 + καt) − ln(καt). For t → ∞ and l → ∞ with
l ∝ t , we have

clm(t) ' 1

κα2 t2
exp

(
− l

κ α t

)
. (6.203)

KRB also discuss the case where the initial conditions are given by

cn(0) = κ (1− λ)λn ⇒ ν0(0) = κ , c(z, 0) =
κ (1− λ)

1− λz
. (6.204)

Solving for c(z, t) , one finds

c(z, t) =
κ

1 + κα t
· 1− λ

1 + λκα t− λ(1 + κα t)z
, (6.205)

from which we derive

cn(t) =
κ (1− λ)

(1 + κα t)2

(
1 + κα t

λ−1 + κα t

)n
. (6.206)

The asymptotic behavior is the same as for the previous case, where cn(0) = κ δn,m. The cluster densities
cn(t) fall off as t−2 as t→∞ .
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Figure 6.9: Results for the constant kernel model of aggregation with initial conditions cn(0) = κ δn,1.
Left panel: cluster densities cn(t) versus dimensionless time τ = καt. Note that κ−1cn=1(0) = 1 is off-
scale. Right panel: cluster densities cn(t) versus cluster mass n for different times. (Adapted from KRB
Fig. 5.2.)

Power law distribution

Consider now the power law distribution,

cn(0) =
κ

ζ(s)
n−s ⇒ ν0(0) = κ , c(z, 0) =

κ Lis(z)

ζ(s)
, (6.207)

where

Lis(z) =

∞∑
n=1

zn

ns
(6.208)

is the polylogarithm function, and ζ(s) = Lis(1) is the Riemann zeta function. One has8

Lis(z) = Γ(1− s)
(
− ln z

)s−1
+
∞∑
k=0

ζ(s− k)

k!

(
ln z
)k

= ζ(s) + Γ(1− s)
(
− ln z

)s−1
+O

(
ln z
)

,

(6.209)

for s /∈ Z+. Note also that z d
dz Lis(z) = Lis−1(z). If the zeroth moment ν0(0) is to converge, we must

have s > 1.
8See §25.12 of the NIST Handbook of Mathematical Functions.
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If the first moment ν1(t) , which is constant, converges, then the asymptotics of the cluster densities
cn(t) are of the familiar t−2 form. This is the case for s > 2. It is therefore interesting to consider the case
s ∈ [1, 2].

From the generating function solution Eqn. 6.198, we have

c(z, t) =
κ

1 + κα t
+

κ

κα t

{
1

1 + κα t− κα t Lis(z)/ζ(s)
− 1

}
. (6.210)

Now

1− Lis(z)

ζ(s)
= As (− ln z)s−1 +O(ln z) , (6.211)

with As = −Γ(1− s)/ζ(s) = −π
/

Γ(s) ζ(s) sin(πs) > 0 . For the asymptotic behavior as t→∞, we focus
on the first term on the RHS above. Then we must compute

cn>1(t) ≈ 1

α t

∮
dz

2πiz

1

zn
1

1 +As κα t (− ln z)s−1
=
f
(
n/ζ(t)

)
α t ζ(t)

, (6.212)

where
ζ(t) =

(
As κα t

)1/(s−1) (6.213)

and

f(w) = Re

iπζ∫
−iπζ

du

2πi

ewu

1 + us−1
. (6.214)

In the long time limit, the range of integration may be extended to the entire imaginary axis. Asymptot-
ically,

f(w) =

{
ws−2/Γ(s− 1) w → 0

−w−s/Γ(1− s) w →∞ .
(6.215)

6.3.4 Aggregation with source terms

Let’s now add a source to the RHS of Eqn. 6.189, viz.

dcn
dt

= α
∑
i+j=n

ci cj − 2αν0cn + γδn,m . (6.216)

This says that m-mers are fed into the system at a constant rate γ. The generating function is again
c(z, t) =

∑∞
n=1 z

ncn(t) and satisfies

∂c

∂t
= α c2 − 2αν0c+ γzm . (6.217)

We still have ν0 =
∑

n cn = c(z = 1, t), hence

∂ν0

∂t
= −αν2

0 + γ . (6.218)
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This may be integrated with the substitution ν0 = (γ/α)1/2 tanh θ, yielding the equation dθ =
√
αγ dt .

Assuming ν0(0) = 0, we have θ(0) = 0 and

ν0(t) =

√
γ

α
tanh

(√
αγ t

)
. (6.219)

As t → ∞ , the cluster density tends to a constant ν0(∞) =
√
γ/α . Note the difference between the

cluster dynamics with the source term and the results in Eqn. 6.193, where there is no source and
ν0(t) ∼ t−1 at late times. The limiting constant value in the present calculation reflects a dynamic
equilibrium between the source, which constantly introduces new m-mers into the system, and the
aggregation process, where Am +Ajm → A(j+1)m.

Subtracting c(z, t) from ν0(t) as before, we obtain

∂

∂t

(
ν0 − c

)
= −

(
ν0 − c

)2
+ γ(1− zm) , (6.220)

which can be integrated using the same substitution, resulting in

c(z, t) =

√
γ

α

{
tanh

(√
αγ t

)
−
√

1− zm tanh
(√

αγ (1− zm) t
)}

. (6.221)

For late times, we have

c(z, t→∞) =

√
γ

α

[
1−
√

1− zm
]

, (6.222)

and from the Taylor expansion

1−
√

1− ε =
1√
4π

∞∑
k=1

Γ(k − 1
2)

Γ(k + 1)
εk , (6.223)

we have

cjm(t→∞) =

(
γ

4πα

)1/2 Γ(j − 1
2)

Γ(j + 1)
'
(

γ

4πα

)1/2

j−3/2 , (6.224)

where the last expression is for j � 1 . Note that, as before, the RHS is independent ofm due to the scale
invariance of the constant kernel model.

While the zeroth moment of the asymptotic distribution cn(t → ∞) , i.e. ν0 , is finite, the quantities νk
for all integer k > 0 diverge. This is because clusters are being fed into the system at a constant rate.
Indeed, while the total mass density ν1(t) is conserved with no input, when γ 6= 0 we have ν̇1 = γm ,
hence ν1(t) = γmt , which diverges linearly with time, as it must.

Following KRB, we may utilize the identity

tanhx =
1

π

∞∑
j=−∞

x/π

(x/π)2 +
(
j + 1

2

)2 (6.225)
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to write

c(z, t) =
1

π

(
γ

α

)1/2 ∞∑
j=−∞

{
τ(

j + 1
2

)2
+ τ2

− (1− zm)τ(
j + 1

2

)2
+ τ2 − τ2zm

}

=
1

π

(
γ

α

)1/2 ∞∑
j=−∞

(
j + 1

2

)2 ∞∑
k=1

τ2k−1

Dk+1
j (τ)

zkm ,

(6.226)

where τ ≡ (αγ)1/2 t/π and Dj(τ) =
(
j + 1

2

)2
+ τ2. Thus,

ckm(t) =
1

π

(
γ

α

)1/2

τ2k−1
∞∑

j=−∞

(
j + 1

2

)2
Dk+1
j (τ)

. (6.227)

When τ →∞, we can replace

∞∑
j=−∞

(
j + 1

2

)2
Dk+1
j (τ)

≈
∞∫
−∞

du
u2

(u2 + τ2)k+1
=

√
π

2

Γ(k − 1
2)

Γ(k + 1)
τ1−2k , (6.228)

which, combined with the previous equation, recovers Eqn. 6.224.

When t→∞ and k →∞ such that k/t2 is constant, we write

D
−(k+1)
j (τ) = τ−2(k+1)

[
1 +

(
j + 1

2

)2
τ2

]−(k+1)

≈ τ−2(k+1) exp

(
−
(
j + 1

2

)2
k

τ2

)
(6.229)

and thus

ckm(t) ' π2

α2γ t3

∞∑
j=−∞

(
j + 1

2

)2
exp

(
−
(
j + 1

2

)2
k

τ2

)
. (6.230)

For k � τ2 we can retain only the j = 0 term, in which case

ckm(t) ' π2

4α2γ t3
exp

(
− π2k

4αγ t2

)
. (6.231)

6.3.5 Gelation

Consider a group of monomers, each of which has f functional end groups. If two monomers aggregate
into a dimer, one end group from each monomer participates in the fusion process, and the resulting
dimer has 2f − 2 functional end groups. Generalizing to the case of k monomers, the aggregated k-mer
has (f − 2)k + 2 functional end groups (see Fig. 6.10). We then expect the kernel Kij to be of the form

Kij ∝
[
(f − 2) i+ 2

][
(f − 2) j + 2

]
. (6.232)

When f → ∞, we have Kij ∝ ij, and here we consider the case Kij = α i j. The nonlinear growth of
Kij as a function of i and j leads to a phenomenon known as gelation, in which a cluster of infinite size
develops.
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Figure 6.10: Examples of k-mers, each with f functional end groups. The resulting aggregates have
l = (f − 2)k + 2 functional end groups. (Adapted from KRB Fig. 5.3.)

From the dynamical equations in 6.182, we have

1

α

dcn
dt

=
1

2

∑
i+j=n

(i ci)(j cj)− n cn

ν1=fixed︷ ︸︸ ︷
∞∑
j=1

j cj . (6.233)

We can solve this using a modified generating function, defined as

c(u, t) =
∞∑
n=1

n cn(t) e−nu , (6.234)

which satisfies

∂c

∂t
=

1

2
α
∞∑
i=1

∞∑
j=1

(i+ j)(i ci)(j cj) e
−(i+j)u − αν1

∞∑
n=1

n2cn e
−nu

= α(ν1 − c)
∂c

∂u
.

(6.235)

Writing q ≡ c− ν1, we have ∂tq + α q ∂uq = 0 , which is the inviscid Burgers equation. This may be solved
using the method of characteristics outlined in §2.10. We introduce a variable s and solve

dt

ds
=

1

α
,

du

ds
= c− ν1 ,

dc

ds
= 0 . (6.236)

The solution is t = s/α and u = (c− ν1)αt+ ζ, where ζ encodes the initial conditions, which are

c(u, t = 0) =
∞∑
n=1

n cn(0) e−nu . (6.237)

We assume cn(t = 0) = κ δn,1, in which case c(u, 0) = κ e−u, and therefore ζ = − ln(c/κ). We then have
the implicit solution

c(u, t) e−α t c(u,t) = e−καt e−u . (6.238)
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It is convenient to measure cn(t) and c(u, t) in units of κ, so we define c̄n(t) = cn(t)/κ and c̄(u, t) =
c(u, t)/κ. We further define the dimensionless time variable τ ≡ κα t, so that

c̄ e−τ c̄ = e−(u+τ) . (6.239)

To obtain the c̄n(τ), we must invert this to find c̄(u, τ) , extract the coefficient of e−nu , and then divide
by n.

To invert the above equation, we invoke a method due to Lagrange. Suppose we have a function y(x) =∑∞
n=1An x

n and we wish to invert this to obtain x(y) =
∑∞

n=1Bn y
n . We have

Bn =

∮
dy

2πi

x(y)

yn+1
=

∮
dx

2πi

dy

dx

x(y)

yn+1
=

∮
dx

2πi

x y′(x)[
y(x)

]n+1 . (6.240)

Using our equation as an example, we have x ≡ τ c̄ , y(x) = x e−x , and y = τ e−(u+τ). Then f ′(x) =
(1− x) e−x and the expansion coefficients Bn are

Bn =

∮
dx

2πi

x (1− x) e−x

xn+1 e−(n+1)x
=

∮
dx

2πi

1− x
xn

enx

=
nn−1

(n− 1)!
− nn−2

(n− 2)!
=
nn−1

n!
.

(6.241)

Thus,

c̄(u, τ) =

∞∑
n=1

nn−1

n!
τn−1 e−nτ e−nu , (6.242)

from which we extract

c̄n(τ) =
nn−2

n!
τn−1 e−nτ . (6.243)

For n� 1 we may use Stirling’s expansion,

lnn! = n lnn− n+ 1
2 ln(2πn) +O

(
n−1

)
(6.244)

to obtain

c̄n(τ) ' n−5/2

√
2π

τ−1 en(1−τ+ln τ) . (6.245)

The function f(τ) ≡ 1 − τ + ln τ is concave and nonpositive over τ ∈ (0,∞), with a local maximum at
τ = 1 where f(τ) = −1

2(1− τ)2 + . . . . At the gelation time τ = 1, the cluster density distribution becomes
a power law cn(τ = 1) ∝ n−5/2, which means that the second and all higher moments are divergent at
this point. For both τ < 1 and τ > 1 there is an exponential decrease with n, but for τ > 1 an infinite
cluster is present. This is the gel.

We define the gel fraction by

g ≡ 1− c̄(0, t) = 1−
∞∑
n=1

n c̄n(t) . (6.246)
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Figure 6.11: Gelation model time evolution, showing gel fraction g(τ) and dimensionless moments ν̃2(τ)
and ν̃3(τ) in terms of dimensionless time τ = καt, with initial conditions cn(t = 0) = κ δn,1. (Adapted
from KRB Fig. 5.4.)

If we plug this into Eqn. 6.239, we obtain

c̄(0, τ) = 1− g = e−gτ , (6.247)

which is an implicit equation for the time-dependent gelation fraction g(τ). This equation always has
the solution g = 0, but for τ > 1 there is a second solution with g ∈ (0, 1). The solution g(τ) for all
τ ∈ [0,∞) is shown as the blue curve in Fig. 6.11. We also show the moments ν̃2(τ) and ν̃3(τ), where

ν̃k(τ) =

∞∑
n=1

nk c̄n(τ) =

(
− ∂

∂u

)k−1

c̄(u, τ)
∣∣∣
u=0

. (6.248)

From Eqn. 6.239 we have
τ c̄− ln c̄ = u+ τ (6.249)

and therefore

ν̃2(τ) = − ∂c̄
∂u

∣∣∣∣
u=0

=
c̄(0, τ)

1− c̄(0, τ) τ
=

{
(1− τ)−1 if τ < 1

(egτ − τ)−1 if τ > 1 .
(6.250)

Similarly,

ν̃3(t) =
∂2c̄(u, t)

∂u2

∣∣∣∣
u=0

=
ν̃3

2(τ)

c̄2(0, τ)
. (6.251)

The functions g(τ), ν̃2(τ), and ν̃3(τ) are plotted in Fig. 6.11.


