PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT \#5 : APPLICATIONS

(1) Consider the gambler's ruin problem in which two players A and B gamble repeatedly against each other by betting $\$ 1$ on each trial. The probability of A winning in any given trial is p. Assume A starts with n dollars and B with $N-n$ dollars, and that the game ends when one player runs out of money.
(i) What is the probability that player A eventually wins?
(ii) How long does the game last?
(iii) Given that A wins, how long does the game last?
(2) Consider aggregation with the kernel $K_{i j}=\alpha(i+j)$.
(i) Derive the dynamical system for the concentrations $c_{n}(t)$.
(ii) Obtain and solve the rate equations for the first four moments $\nu_{k}(t)=\sum_{n=1}^{\infty} n^{k} c_{n}(t)$, assuming initial conditions $c_{n}(0)=\kappa \delta_{n, 1}$.
(iii) Assuming the same initial conditions, obtain the exact solution for $c_{n}(t)$.

