Yinming Shat

1. (FF 4.16)

(a) Let $\eta_{i j}$ denote the small transurse displacements of the masses.

$$
K E=\frac{1}{2} m \sum_{i=1}^{N} \sum_{j=1}^{N} \dot{\eta}_{i j}^{2}
$$

$\rightarrow_{\hat{x}}$

$$
\begin{aligned}
P E & =\frac{1}{2} k\left[\left(\Delta^{x} \eta\right)^{2}+\left(e^{y} \eta\right)^{2}\right] \quad k \rightarrow \frac{\tau}{a} \\
& =\frac{\tau}{N}=\sum_{j=1}^{N} \quad\left\{\begin{array}{l}
\Delta \eta=\sum_{i=1}^{N} \sum_{j==}^{N}\left(\eta_{i j+1}-\eta_{i j}\right)^{2} \\
\Delta^{y} \eta=\sum_{j=1}^{N} \sum_{i=0}^{N}\left(\eta_{i+1 j}-\eta_{i j}\right)^{2}
\end{array}\right.
\end{aligned}
$$

$$
L=T-V
$$

$$
=\frac{1}{2} m \sum_{i=1}^{N} \sum_{j=1}^{N} \dot{\eta}_{i j}^{2}-\frac{\tau}{2 a}\left[\sum_{i=1}^{N} \sum_{j=0}^{N}\left(\eta_{i j+1}-\eta_{i j}\right)^{2}+\sum_{j=1}^{N} \sum_{i=0}^{N}\left(\eta_{i+1 j}-\eta_{i j}\right)^{2}\right]
$$

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\eta}_{i j}}=m \ddot{\eta}_{i j} \\
& \frac{\partial L}{\partial \eta_{i j}}=-\frac{\tau}{a}\left[-\left(\eta_{i j+1}-\eta_{i j}\right)+\left(\eta_{i j}-\eta_{i j-1}\right)-\left(\eta_{i+j}-\eta_{i j}\right)+\left(\eta_{i j}-\eta_{i-1 j}\right)\right. \\
& E O M: m \ddot{\eta}_{i j}+\frac{4 \tau}{a} \eta_{i j}-\frac{\tau}{a}\left(\eta_{i j+1}+\eta_{i j-1}+\eta_{i+1}+\eta_{i-j}\right)=0
\end{aligned}
$$

Let $x_{i}=i a, y_{j}=j a$ trial solution: $\eta_{i j}=\eta\left(x_{i}, y_{j}, t\right)=A e^{i\left(k_{x} x_{i}+k_{y} y_{j}-\omega t\right)}$ Plug into EOM (*):

$$
-m \omega^{2} \eta+\frac{4 c}{a} y-\frac{c}{a}\left(e^{i k_{x} a}+e^{-i k_{x} a}+e^{i k g a}+e^{-i \lg a}\right) \eta=0
$$

So:

$$
\begin{aligned}
\omega^{2} & =\frac{4 c}{m a}-\frac{c}{m a}\left(2 \cos k_{x} a+2 \cos k_{y} a\right) \\
& =\frac{2 \tau}{m a}\left[2-\cos k_{x} a-\cos k_{y} a\right] \\
& =\frac{4 c}{m a}\left(\sin ^{2} \frac{k_{x} a}{2}+\sin ^{2} \frac{k_{y} a}{2}\right)
\end{aligned}
$$

Dispersion relation: $\omega(\vec{k})=\sqrt{\frac{4 \tau}{m a}\left(\sin ^{2} \frac{k_{x} a}{2}+\sin ^{2} \frac{k_{y} a}{2}\right)} \quad \vec{k}=k_{x} \hat{x}+k_{y} \hat{y}$
(b) Continuum mass distribution.

$$
\eta\left(x_{i}, y_{j}, t\right) \rightarrow u(x, y, t) \quad, \quad a \rightarrow 0
$$

mass density of string $=\frac{m}{a}=0=$ const.
$\pm O K=\quad \ddot{\eta}_{i j}=\frac{\tau}{\sigma}\left[\frac{1}{a}\left(\frac{\eta_{i j+1}-\eta_{i j}}{a}-\frac{\eta_{i j}-\eta_{i j-1}}{a}\right)+\frac{1}{a}\left(\frac{\eta_{i+1 j}-\eta_{i j}}{a}-\frac{\eta_{i j}-\eta_{i-j}}{a}\right)\right]$

$$
\begin{aligned}
& \frac{\eta_{i j+1}-\eta_{i j}}{a}=\frac{\eta_{i j+1}-\eta_{i j}}{y_{i j+1}-y_{j}} \xrightarrow{a \rightarrow 0} \frac{\partial u}{\partial y} \\
& \frac{\eta_{i+1 j}-\eta_{i j}}{a}=\frac{\eta_{i+j}-\eta_{i j}}{x_{i+1}-x_{i}} \xrightarrow{a \rightarrow 0} \frac{\partial u}{\partial x} \quad \ddot{\eta}_{i j}=\frac{\partial^{2} u}{\partial t^{2}} \\
\Rightarrow & \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \quad \rightarrow 2 D \text { - wave Eq. } \\
& \rightarrow c^{2}=\tau / \sigma
\end{aligned}
$$

Dispersion relation:

$$
\begin{aligned}
\omega^{2} & =\frac{4 \tau}{m a} \cdot \frac{1}{4}\left(k_{x}^{2} a^{2}+\frac{1}{4} k_{y}^{2} a^{2}\right) \\
& =\frac{4 \tau a}{m}\left(k_{x}^{2}+k_{y}^{2}\right)=c^{2} k^{2}
\end{aligned}
$$

$\omega=c|\vec{k}| \quad$ travelling waves.

FL 4.16
(c) $\omega=\sqrt{\frac{c}{6}}|\vec{k}|=c|\vec{k}| \rightarrow$ isotropic
ω only depends on the length of the wave vector $\left(\vec{k}=k_{x} \hat{x}+k_{y} \hat{y}\right)$

$$
w=\sqrt{\frac{4 c}{m a}}: \sqrt{\sin ^{2}\left(\frac{k_{x} a}{2}\right)+\sin ^{2}\left(\frac{k_{j} a}{2}\right)} \rightarrow \text { anisotropic }
$$

ω depends on direction of \vec{k} in the $x-y$ plane.
(d) Finite system, find exact normal-mode frequencies. Let $\eta\left(x_{i}, y_{j}, t\right)=B e^{-j \omega t}\left[e^{i k_{x} x_{i}+i k_{y} y_{j}}-e^{-i k_{x} x_{i}+i k_{g} y_{j}}+e^{-i k_{x} x_{i}-i k_{g} y_{j}}-e^{i k_{x} x_{i}-i k_{j} y_{j}}\right]$

So that $\eta\left(0, y_{j}\right)=0 \& \quad \eta\left(x_{i}, 0\right)=0$ are automatically satisfied. another two b.c. $\quad \eta\left((N+1) a, y_{j}\right)=0$

$$
\begin{equation*}
\eta\left(x_{i},(N+1) a\right)=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { (1) } \rightarrow\left(e^{i k_{x}(N+1) a}-e^{-i k_{x}(N+1) a}\right)\left(e^{i k_{y} y_{i}}-e^{-i k_{y} y_{j}}\right)=0 \tag{2}
\end{equation*}
$$

valor for any y_{j}
So: $\quad \sin k_{x}(N+1) a=0$

$$
k_{x}=\frac{n \pi}{(N+1) a}(n=1,2, \ldots N)
$$

(2) \rightarrow.

$$
k_{y}=\frac{m \pi}{(N+1) a}(m=1,2, \cdots N)
$$

Normal mode freq. $\omega_{n m}=\sqrt{\frac{4 \tau}{m a}} \cdot \sqrt{\sin ^{2} \frac{n \pi}{2(N+1)}+\sin ^{2} \frac{m \pi}{2(N+1)}}$

Continuum limit:

$$
\begin{aligned}
\omega_{n m}^{2} & \approx \frac{4 c}{m a} \cdot\left(\left[\frac{n \pi}{2(N+1)}\right]^{2}+\left[\frac{m \pi}{2(N+1)}\right]^{2}\right) & \\
& =\frac{\tau}{m a} \cdot a^{2} \cdot\left[\left(\frac{n \pi}{l x}\right)^{2}+\left(\frac{m \pi}{l y}\right)^{2}\right] & (x=(N+1) a=6 y \\
& =c^{2}\left(k_{x}^{2}+\frac{c}{c}=\frac{\tau}{\sigma}\right) &
\end{aligned}
$$

(e) Discrete Lagrangian

$$
L=\frac{m}{2 a^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} a^{2} \dot{\eta}_{i j}^{2}-\frac{\tau}{2}\left[\sum_{i=1}^{N} \sum_{j=0}^{N} a^{2}\left(\frac{\eta_{i+1}-\eta_{i j}}{a}\right)^{2}+\sum_{j=1}^{N} \sum_{i=0}^{N} a^{2}\left(\frac{\eta_{i+j}-\eta_{i j}}{a}\right)^{2}\right]
$$

Continuum limit: $N \rightarrow \infty, a \rightarrow 0, \eta_{i j} \rightarrow u(x, y, t)$
$\frac{m}{a^{2}} \rightarrow \mu$, mass density

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a^{2} \rightarrow \sum_{i} \Delta x_{i} \sum_{j} \Delta y_{j}=\int_{0}^{1} d x \int_{0}^{l} d y \quad l=(N+1) a
$$

So: $\quad L=\frac{\mu}{2} \int_{0}^{l} \int_{0}^{l} u_{t}^{2} d x d y-\frac{\tau}{2} \int_{0}^{l} \int_{0}^{l}\left(u_{x}^{2}+u_{y}^{2}\right) d x d y$
Lagrangian den sity: $\mathcal{L}=\frac{\mu}{2} u_{t}^{2}-\frac{\tau}{2} u_{x}^{2}-\frac{\tau}{2} u_{y}^{2}$
plug into lagrangras eq. $\frac{\partial \mathcal{L}}{\partial u}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial u_{t}}-\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_{x}}-\frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_{y}}=0$

$$
\begin{aligned}
& \Rightarrow \quad 0 u_{t t}-\tau u_{x x}-\tau u_{y y}=0 \\
& \Rightarrow \quad \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
\end{aligned}
$$

4.6 $E=\frac{1}{2} m\left(r^{2}+r^{2} \phi^{2}\right)+V(r)$ for a central potential
(b) Have $r \rightarrow r_{0}+\delta r, \phi \rightarrow(\Omega+\delta \Omega) t$

Bes Have $r \rightarrow l=m r^{2}=$ con shat for our case
$V_{\text {eoe }}(r)=V(r)+\frac{l^{2}}{2 m r^{2}}$, where l

$$
\begin{aligned}
& \text { any mex content by derigh } \\
& \text { zero of retential } \\
& E \approx \frac{1}{2} m \delta r^{2}+\frac{1}{2} V_{e c t}^{\prime \prime} \delta r^{2}
\end{aligned}
$$

$\overleftrightarrow{\omega} \omega^{2}=\left.\frac{d^{2} V_{e r}}{d r^{2}}\right|_{r_{0}}>0$ for stability
$V_{\text {elf }}^{\prime}=0$ fer a circular ab it

$$
\begin{aligned}
& V_{\text {eff }}^{\prime}=V^{\prime}(r)-\frac{L^{2}}{m r^{3}}=0 \rightarrow \frac{d V}{d r}=\frac{L^{2}}{m r^{r}} \\
& V_{\text {eff }}^{\prime \prime}=V^{\prime \prime}+\frac{3}{r} \frac{d V}{d r}=\frac{1}{r} \frac{d}{d r}\left(\left.r^{3} \frac{d V}{d r}\right|_{r_{0}}\right\rangle_{0}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& V=-\lambda r^{-n} \\
& V^{\prime}=n \lambda r^{-n-1} \\
& \frac{1}{r^{3}} \frac{d}{d r}\left(r^{3} n \lambda r^{-n^{-1}}\right)=\frac{1}{r^{3}} \frac{d}{r}\left(n \lambda r^{-n+2}\right)=n \lambda \frac{1}{r^{3}}(2-n)(0) r^{-n+1}=n \lambda(2-n) r^{-n-2}>0 \\
& \text { Given } \lambda>0 \text {, thisis only true for } n<2
\end{aligned}
$$

Tucker Elleflot
7) $y(x)=u(x, 0)= \begin{cases}\frac{2 h x}{l} & 0 \leq x \leq \frac{1}{2} l \\ \frac{2 h(l-x)}{l} & \frac{1}{2} l \leq x \leq l\end{cases}$

$y(x)$ can be decomposed into normal modes

$$
y(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

$$
b_{n}=\frac{2}{l} \int_{0}^{l} y(x) \sin \left(\frac{n \pi x}{e}\right) d x
$$

$$
=\frac{2}{l} \int_{0}^{l / 2} \frac{2 h x}{l} \sin \frac{n \pi x}{e} d x+\frac{2}{l} \int_{l / 2}^{l} \frac{2 h(l-x)}{l} \sin \frac{n \pi x}{l} d x
$$

$$
\begin{aligned}
& \rightarrow b_{n}=\frac{4 h}{e^{2}}\left(-\left.\frac{e x}{n \pi} \cos \frac{n \pi x}{e}\right|_{0} ^{e / 2}+\left.\frac{l^{2}}{\pi^{2} n^{2}} \sin \frac{n \pi x}{e}\right|_{0} ^{e / 2}+\left.\frac{l x}{n \pi} \cos \frac{n \pi x}{e}\right|_{e / 2} ^{e}\right. \\
& \left.-\left.\frac{e^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{e}\right|_{e / 2} ^{e}-\left.\frac{e^{2}}{n \pi} \cos \frac{n \pi x}{e}\right|_{e / 2} ^{e}\right) \\
& =\frac{8 h}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \\
& = \begin{cases}\frac{8 h}{n^{2} \pi^{2}}(-1)^{\frac{n+3}{2}} & n \text { odd } \\
0 & \text { seven }\end{cases} \\
& d u_{n}=\frac{1}{2} \tau\left(\frac{d y_{n}}{d x}\right)^{2} d x=\frac{T}{2} b_{n}^{2}\left(\frac{\pi n}{l}\right)^{2} \cos ^{2} \frac{n \pi x}{e} d x \\
& U_{1}=\frac{T}{2} b_{n}^{2}\left(\frac{\pi n}{e}\right)^{2} \int_{0}^{e} \cos ^{2} \frac{n \pi x}{e} d x \\
& =\left.\frac{T}{2} b_{r}^{2}\left(\frac{\pi n}{e}\right)^{2}\left(\frac{x}{2}+\frac{\sin \left(2 \frac{n \pi x}{e}\right)}{4 n \pi / e}\right)\right|_{0} ^{l} \\
& = \begin{cases}\frac{16 T h^{2}}{\pi^{2} l^{2}} \frac{1}{n^{2}} & n \cdot \text { odd } \\
0 & n \text { even }\end{cases}
\end{aligned}
$$

b) d'Alembert's solution:

$$
u(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\xi) d \xi
$$

$$
\text { Initial conditions: } u(x, 0)=f(x)
$$

$$
\dot{u}(x, 0)=g(x)=0
$$

$$
f(x-c t)= \begin{cases}\frac{2 h(x-c t)}{l} & c t \leq x \leq l / 2+c t \\ \frac{2 h(l-x+c t)}{l} & c t+\frac{l}{2} \leq x \leq c t+l\end{cases}
$$

$$
f(x+c t)= \begin{cases}\frac{2 h(x+c t)}{l} & -c t \leq x \leq l / 2-c t \\ \frac{2 h(l+c t-x)}{l} & \frac{e}{2}-c t \leq x \leq l-c t\end{cases}
$$

-

Physics 200A Homework 6.4

Mark Derdzinski

December 2, 2013

Problem 4 Solution

Recall the Lagrangian density for a continuous string of length L with constant density μ and tension τ clamped at both ends:

$$
\begin{equation*}
\mathfrak{L}=\frac{\mu}{2} y_{t}^{2}-\frac{\tau}{2} y_{x}^{2} \tag{1}
\end{equation*}
$$

where y_{t} and y_{x} are the derivatives of the position $y(x, t)$ with respect to t or x. We want to express the Lagrangian, and eventually the Hamiltonian, in terms of fourier coefficients. We will expand $y(x, t)$ in the (complete) basis of spatial eigenfunctions

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} C_{n} \rho_{n}(x) \cos \left(\omega_{n} t+\phi_{n}\right)=\sum_{n=1}^{\infty} A_{n}(t) \rho_{n}(x) \tag{2}
\end{equation*}
$$

Where the spatial eigenfunctions $\rho_{n}(x)$ are given by

$$
\begin{equation*}
\rho_{n}(x)=\sum_{n=1}^{\infty}\left(\frac{2}{L \mu}\right)^{\frac{1}{2}} \sin \left(k_{n} x\right) \tag{3}
\end{equation*}
$$

Note our spatial eigenfunctions satisfy the orthonormality condition

$$
\begin{equation*}
\int_{0}^{L} \rho_{n}(x) \rho_{m}(x) \sigma d x=\delta_{n m} \tag{4}
\end{equation*}
$$

We are now equipped to describe the system in terms of the time-dependent fourier coefficients. Suppressing x and t for clarity, the Lagrangian density expanded in fourier series becomes

$$
\begin{equation*}
\mathfrak{L}=\frac{\mu}{2}\left[\sum_{n=1}^{\infty} \dot{A}_{n} \rho_{n}\right]\left[\sum_{m=1}^{\infty} \dot{A}_{m} \rho_{m}\right]-\frac{\tau}{2}\left[\sum_{n=1}^{\infty} A_{n} \frac{d \rho_{n}}{d x}\right]\left[\sum_{m=1}^{\infty} A_{m} \frac{d \rho_{m}}{d x}\right] \tag{5}
\end{equation*}
$$

If we integrate over x to find the full Lagrangian, we can exploit the orthonormality of the ρ_{n} to simplify the product of sums:

$$
\begin{equation*}
L\left(A_{n}, \dot{A_{n}}, t\right)=\int_{0}^{L} \mathfrak{L} d x=\frac{1}{2} \sum_{n=1}^{\infty}\left[\dot{A}_{n}^{2}-\frac{\tau k_{n}^{2}}{\mu} A_{n}^{2}\right]=\frac{1}{2} \sum_{n=1}^{\infty}\left[\dot{A}_{n}^{2}-\omega_{n}^{2} A_{n}^{2}\right] \tag{6}
\end{equation*}
$$

Where we have used the fact $\frac{\tau k_{n}^{2}}{\mu}=c^{2} k_{n}^{2}=w_{n}^{2}$. We are now equipped to find the Hamiltonian in terms of the fourier coefficients. The generalized momentum is

$$
\begin{equation*}
\pi_{n}=\frac{d L}{d \dot{A_{n}}}=\dot{A_{n}} \tag{7}
\end{equation*}
$$

And so the Hamiltonian is given by

$$
\begin{equation*}
H\left(A_{n}, \dot{A}_{n}, t\right)=\sum_{n}^{\infty} \pi_{n} \dot{A}_{n}-L=\frac{1}{2} \sum_{n=1}^{\infty}\left[\pi_{n}^{2}+\omega_{n}^{2} A_{n}^{2}\right] \tag{8}
\end{equation*}
$$

The Hamiltonian EOM for the fourier coefficients is now simply

$$
\begin{align*}
\dot{\pi}_{n} & =-\frac{d H}{d A_{n}} \\
\Longrightarrow \ddot{A}_{n} & =-\omega_{n}^{2} A_{n} \tag{9}
\end{align*}
$$

Note the Hamiltonian can be expressed in terms of

$$
\begin{align*}
a_{n}^{+} & =\pi_{n}+\imath \omega_{n} A_{n} \\
a_{n}^{-} & =\pi_{n}-\imath \omega_{n} A_{n} \\
\Longrightarrow H & =\frac{1}{2} \sum_{n}^{\infty} a_{n}^{+} a_{n}^{-} \tag{10}
\end{align*}
$$

The a_{n}^{+}and a_{n}^{-}are analogous to creation and annihilation operators for our purely classical system, where the zero-point energy is vanishing due to the classical commutator $\left[\pi_{n}, A_{n}\right]=0$.

$$
\begin{aligned}
& \text { 5) sat } \frac{1}{2} \sigma \dot{f}^{2}=T \text { if } f(x, y) \text { describes the worturel } \\
& n=T \delta A=T(d S-d A) . \quad d A=\hat{z} \cdot(\hat{n} d s) \\
& \hat{n} \text { is } \begin{array}{c}
\text { normal vector of the } \\
\text { sirfuce elemat }
\end{array} \\
& \text { where } \hat{n} \text { is given by } \nabla(z-f(x, y))=\hat{z}-\nabla f \text { sirfuce elemat } \\
& \Rightarrow d A=\frac{d S}{\sqrt{1+(A)^{2}}} \Rightarrow u_{\text {desitit }} T\left(\sqrt{1+(D A)^{2}}-1\right) \\
& \rightarrow \mathcal{L}=\frac{1}{2} \sigma \dot{f}^{2}-T\left(\sqrt{1+(T)^{2}}-1\right) \text { and lyrange eos yid } \\
& \sigma f_{t t}=\nabla \cdot\left(\frac{T \nabla f}{\sqrt{1+(\nabla f)^{2}}}\right) \text { nonlinear ware eq. } \\
& \text { for small oscillations, this reduces to } \\
& \sigma f_{t t}=T \nabla^{2} f \\
& \text { now consider } \quad \mu=\pi f-\mathcal{Z} ; \quad \pi=\frac{\partial \mathcal{L}}{\partial f} \\
& \frac{d \mu}{d t}=\pi \ddot{f}+\pi \dot{f}-\frac{\mu z}{d t}=\pi \dot{f}+\pi \dot{f}-\left(\frac{\partial z}{\partial f} \dot{f}+\frac{\partial \mathscr{f}}{\partial f}+\frac{\partial x}{\partial f}(\pi f)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial z}{\partial f}+\nabla \cdot \frac{\partial z}{\partial f f}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d \not \mathscr{L}}{d t}=-\nabla \cdot \frac{\partial \mathcal{Z}}{\partial \dot{f}}-\frac{\partial z}{\partial f} \nabla(\dot{f})=\nabla \cdot\left(\frac{\partial \mathcal{L}}{\partial \nabla f}\right) \\
& \Rightarrow \frac{d H}{d t}+\nabla \cdot(\underbrace{\left.\frac{\partial z}{\partial \nabla f} f\right)}_{\equiv S}=0 \quad \underbrace{\text { Energy runservation }}_{\frac{d H}{d t}+D \cdot S=0} \\
& \text { for momentum conservation, consider } \frac{d s}{d t} \\
& \text { let } \quad P_{\text {wave }} \equiv \frac{s}{v_{p h}^{2}}, v_{p h} \equiv \frac{T}{\sigma} . \quad \frac{d p}{d t}=\frac{1}{v_{p h}^{2}} \frac{d s}{d t} \\
& =\frac{\sigma}{T}\left[\partial_{t}\left(\frac{\partial \mathcal{L}}{\partial \nabla f}\right) \dot{f}+\ddot{f} \frac{\partial \mathcal{L}}{\partial \nabla f}\right] \text {; use } \quad \dot{f}=\frac{T}{\sigma} \nabla^{2} f \quad \& \quad \frac{\partial \mathcal{Z}}{\partial \nabla f}=-T \nabla f \\
& \Rightarrow \quad \frac{\sigma}{T}\left[-T \partial_{t}(\nabla f) \dot{f}-T \nabla f \frac{T}{\sigma} \nabla^{2} f\right] \\
& =-\left[\nabla f \nabla^{2} f+\sigma \dot{f} \nabla \dot{f}\right]=-\nabla \cdot\left[\frac{T(\nabla f)^{2}}{2}+\frac{\sigma(\dot{f})^{2}}{2}\right] \\
& \text { so we have }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \partial_{t} P_{\text {wave }}+\nabla \cdot \underline{\varepsilon}=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { actually, have to be a little more careful } \\
\text { defining a }
\end{array} \\
& S_{x}=f_{t} \frac{\partial z}{\partial f_{x}} \text { so } \frac{d}{d t} S_{x}=f_{t t} \frac{\partial z}{\partial f_{x}}+f_{t} \partial_{t} \frac{\partial z}{\partial f_{x}} \\
& \frac{l}{d t} S_{x}=\frac{T}{\sigma}\left(f_{x x}+f_{y y}\right)-T f_{x}+f_{t}\left(-T f_{x t}\right) \\
& =-\frac{T}{\sigma}\left(T\left(f_{x x} f_{x}+f_{y y} f_{x}\right)+\sigma f_{t} f_{x t}\right) \\
& =-\frac{I}{\sigma}\left(\pi \partial_{x}\left(\frac{f_{x}^{2}}{2}+\frac{\sigma f_{t}^{2}}{2}\right)+T f_{y y} f_{x}\right) \\
& =-\frac{T}{\sigma}\left[\frac{\partial}{\partial x}\left(T \frac{f_{x}^{2}}{2}+\frac{\sigma f_{t}^{2}}{2}-\frac{T f_{y}^{2}}{2}\right)+\frac{\partial}{\partial y}\left(T f_{y} f_{x}\right)\right] \\
& \text { similarly, } \frac{\lambda S y}{\partial t}=-\frac{I}{r}\left[\frac{\partial}{\partial y}\left(\frac{T f_{y}^{2}}{2}+\frac{r f_{t}^{2}}{2}-\frac{T f_{x}^{2}}{2}\right)+\frac{\partial}{\partial x}\left(T f_{x} f_{y}\right)\right] \\
& \rightarrow \\
& \underline{\varepsilon}=\left(\begin{array}{ll}
T\left[\frac{f_{y}^{2}}{2}-\frac{f_{y}^{2}}{2}\right]+\frac{\sigma f_{t}^{2}}{2} & T f_{x} f_{y} \\
+f_{x} f_{y} & \frac{T}{2}\left[f_{y}^{2}-f_{4}^{2}\right]+\frac{\sigma f_{x}^{2}}{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { And if we want we can write } \\
& \left.\partial_{\mu} T^{\mu \nu}=0 \quad \text { wee when } \quad \partial_{\mu}=\left(\frac{1}{v_{p h}} \frac{\partial}{\partial t}\right) \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \\
& T^{\mu \nu}=\left(\begin{array}{ccc}
\mu & s_{x} / v_{p h} & s_{y} / v_{p h} \\
s_{x /} / v_{p h} & \varepsilon_{x x} & \varepsilon_{x y} \\
s_{y / v_{p h}} & \varepsilon_{y x} & \varepsilon_{y y}
\end{array}\right)
\end{aligned}
$$

