Homework 2

$$
\begin{aligned}
& \text { 1. a) } V(x, y)=\frac{C}{n(x, y)} \\
& T=\int_{1}^{2} d t=\frac{1}{c} \int \frac{c}{v} \frac{d s}{d t} d t=\frac{1}{c} \int n(x, y) d s \\
& =\frac{1}{c} \int n(y(x)) d x \sqrt{1+y^{\prime 2}} \quad y^{\prime}=\frac{d y}{d x} \\
& =\frac{1}{c} \int d x \underbrace{\underline{L}}_{\equiv \underline{n}(y) \sqrt{1+y^{\prime 2}}} \\
& \delta T=0=\delta \frac{1}{c} \int d x \mathcal{L}=\frac{1}{c} \int d x \delta \mathcal{L} \\
& =\frac{1}{c} \int\left[\frac{\partial \mathcal{f}}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}\right] d x \\
& =\frac{1}{c} \int\left[\frac{\partial n}{\partial y}\left(1+y^{2}\right)^{1 / 2} \delta y^{+} n\left(1+y^{12}\right)^{-1 / 2} y^{\prime} \delta y^{1}\right] d x \\
& \left.=\frac{1}{c} \int\left[\frac{\partial n}{\partial y}\left(1+y^{(21}\right)^{1 / 2} \delta y-\frac{d}{d x}\left[n\left(1+y^{12}\right)^{-1 / 2} y^{1}\right] \delta y\right] d x+n\left(1+y^{2}\right)^{2}\right)^{\prime} y^{\prime} \delta y \\
& =\frac{1}{c} \int d x \delta y\left[\frac{\partial}{\partial y}\left(n\left(1+y^{2}\right)^{1 / c}\right)-\frac{d}{d x} \frac{\partial}{\partial y^{\prime}}\left(n\left(1+y^{2}\right)^{1 / 2}\right)\right]=0 \\
& \Rightarrow \frac{\partial}{\partial y}\left[n\left(1+y^{12}\right)^{1 / 2}\right]-\frac{d}{d x} \frac{\partial}{\partial y^{\prime}}\left[n\left(1+y^{12}\right)^{1 / 2}\right]=0
\end{aligned}
$$

gives the path $y(x)$ for shor test time
b) $\frac{\partial}{\partial x}\left[n\left(1+x^{\prime 2}\right)^{1 / 2}\right]-\frac{d}{d y} \frac{\partial}{2 x^{\prime}}\left[n\left(1+x^{\prime 2}\right)^{1 / 2}\right]=0 \quad$ for $x^{\prime}=\frac{d x}{d y}$ is the same thing as above
for constant n :

$$
O-\frac{d}{d y}[\underbrace{n\left(1+x^{12}\right)^{-1 / 2} x^{1}}_{\substack{\text { constant value } \rightarrow \text { constant slope } \\ \\ \Rightarrow \text { straight line }}}]=0
$$

now using

$$
\frac{\partial}{\partial y}\left[n\left(1+y^{\prime 2}\right)^{1 / 2}\right]-\frac{d}{d x} \frac{\partial}{\partial y^{\prime}}\left[n\left(1+y^{\prime 2}\right)^{1 / 2}\right]=0
$$

$n=n(x)$ does not depend on y sofirstermis 0

$$
0-\frac{d}{d x} \underbrace{\frac{\partial}{\partial y^{\prime}}\left[n\left(1+y^{\prime}\right) / 2\right]}_{\text {constant }}=0
$$

$$
\frac{\partial}{\partial y^{y}}\left[n\left(1+y^{2}\right)^{1 / 2}\right]=\frac{n y^{!}}{\sqrt{1+y^{\prime 2}}}=\frac{n d y}{\sqrt{d x^{2}+d y^{2}}}=n \sin \theta
$$

where θ is defined as the angle above the horizontal
\Rightarrow since true for all x_{1}

$$
\Rightarrow n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Physics 200A Homework 2.2

Mark Derdzinski

October 15, 2013

Problem 2 Solution

Part (a)

We begin with the Lagrangian density:

$$
\begin{equation*}
\mathfrak{L}=-\frac{\hbar^{2}}{2 m}\left(\frac{d \Psi^{*}}{d x}\right)\left(\frac{d \Psi}{d x}\right)-\Psi^{*}(U-E) \Psi . \tag{1}
\end{equation*}
$$

The Euler-Lagrange Equation corresponding to Ψ^{*} is given by

$$
\begin{align*}
& \frac{d}{d x} \frac{\partial \mathfrak{L}}{\partial \frac{d \Psi^{*}}{d x}}-\frac{\partial \mathfrak{L}}{\partial \Psi^{*}}=0 \\
\Longrightarrow & \frac{d}{d x}\left(-\frac{\hbar^{2}}{2 m} \frac{d \Psi}{d x}\right)-(-\Psi(U-E))=0 \\
\Longrightarrow & -\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+U \Psi=E \Psi \tag{2}
\end{align*}
$$

Thus we recover the SE for Ψ.

Part (b)

Consider the probability $P=\Psi^{*} \Psi$. It is invariant under the following symmetry:

$$
\begin{aligned}
& \Psi \rightarrow e^{\frac{2 \theta}{\hbar}} \Psi \\
& \Psi^{*} \rightarrow e^{\frac{-2 \theta}{\hbar}} \Psi^{*}
\end{aligned}
$$

Such a complex phase rotation preserves the Lagrangian, so we can apply Noether's Theorem. In the infitesimal limit where $\theta \rightarrow \delta \theta$,

$$
\begin{aligned}
& \Psi \rightarrow \Psi+\frac{\imath}{\hbar} \Psi(\delta \theta)=\Psi+(\delta \theta) Q_{\Psi} \\
& \Psi^{*} \rightarrow \Psi^{*}-\frac{\imath}{\hbar} \Psi^{*}(\delta \theta)=\Psi^{*}+(\delta \theta) Q_{\Psi^{*}}
\end{aligned}
$$

Where we identify the generators of our coordinates,

$$
\begin{aligned}
& Q_{\Psi}=\frac{\imath}{\hbar} \Psi \\
& Q_{\Psi^{*}}=-\frac{\imath}{\hbar} \Psi^{*}
\end{aligned}
$$

By Noether's Theorem, the quantity

$$
\begin{align*}
\jmath & =-\left(\frac{\partial \mathfrak{L}}{\partial \frac{d \Psi}{d x}}\right) Q_{\Psi}-\left(\frac{\partial \mathfrak{L}}{\partial \frac{d \Psi^{*}}{d x}}\right) Q_{\Psi^{*}} \\
& =\frac{\imath \hbar}{2 m} \frac{d \Psi^{*}}{d x} \Psi-\frac{\imath \hbar}{2 m} \frac{d \Psi}{d x} \Psi^{*} \\
& =\frac{\hbar}{2 m \imath}\left[\Psi^{*} \frac{d \Psi}{d x}+\frac{d \Psi^{*}}{d x} \Psi\right] \tag{3}
\end{align*}
$$

which we identify as the probability current, is conserved (i.e. $\frac{\partial \partial}{\partial x}=0$). We now return to the time derivative of probability:

$$
\begin{align*}
\frac{\partial P}{\partial t} & =\frac{\partial\left(\Psi^{*} \Psi\right)}{\partial t} \\
& =\frac{\partial \Psi^{*}}{\partial t} \Psi+\Psi^{*} \frac{\partial \Psi}{\partial t} \tag{4}
\end{align*}
$$

Using the explicit expression for $E=\imath \hbar \frac{\partial}{\partial t}$ in the SE, we can rearrange Eqn. 2 to solve for $\frac{\partial \Psi}{\partial t}$:

$$
\begin{equation*}
\frac{d \Psi}{d t}=\frac{1}{\imath \hbar}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+U \Psi\right] \tag{5}
\end{equation*}
$$

If $U \in \Re$, plugging this and the conjugate equation into Eqn. 4 yields the continuity equation:

$$
\begin{align*}
\frac{\partial P}{\partial t} & =\frac{1}{\imath \hbar}\left[\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi^{*}}{d x^{2}} \Psi-U \Psi^{*} \Psi-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}} \Psi^{*}+U \Psi^{*} \Psi\right] \\
& =\frac{\hbar}{2 m \imath}\left[\frac{d^{2} \Psi^{*}}{d x^{2}} \Psi-\Psi^{*} \frac{d^{2} \Psi}{d x^{2}}\right] \\
& =\frac{\hbar}{2 m \imath} \frac{d}{d x}\left[\frac{d \Psi^{*}}{d x} \Psi-\Psi^{*} \frac{d \Psi}{d x}\right]=-\frac{d \jmath}{d x} \tag{6}
\end{align*}
$$

Thus the time derivative of probability is equal to the divergence of the probability current, which, by Noether's theorem, is zero.

$$
\begin{aligned}
& \text { (3) } \delta S=\delta \int_{t_{1}}^{t_{2}} L(q, \dot{q}, \ddot{q}, t) d t=0 \\
& \Rightarrow \int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}+\frac{\partial L}{\partial \ddot{q}} \delta \ddot{q}\right) d t=0
\end{aligned}
$$

Integrate by parts: (recall $\int_{a}^{b} f g^{\prime}=-\int_{a}^{b} f^{\prime} g+\left.f g\right|_{a} ^{b}$)

$$
\left.0=\left[\left.\frac{\partial L}{\partial \dot{q}} \right\rvert\, \delta \dot{q}\right]_{t_{1}}^{t_{2}}+\left[\left.\frac{\partial L}{\partial \dot{q}} \right\rvert\, \delta q\right]_{t_{1}}^{t_{2}}+\int_{t_{1}}^{t_{2}}\left[\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \ddot{q}}\right) \delta \dot{q}\right] d t\right]\left(\delta _ { 0 , \text { as usual } } \text { , since } \phi \left(t_{1}\left(t_{1}\right)=0=\delta_{q}\left(t_{2}\right)=0\right.\right.
$$

So, integrate by parts again:

$$
0=\begin{gathered}
\int_{t_{1}}^{t_{2}}\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}}\right)\right] \delta q d t+\left[\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}} \int_{0} \delta q\right]_{c}^{t_{n}} \\
\text { Must }=0 \text { for all } \delta q(t)
\end{gathered}
$$

Therefore, $\sqrt{\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}_{i}}\right)}=0$

$$
\text { (b) } \frac{d L}{d t}=\sum \frac{\partial L}{\partial q_{i}} \dot{q}_{i}+\sum \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}+\sum \frac{\partial L}{\partial \ddot{q}} \ddot{q}+\left(\frac{\ddot{D}}{\partial t}\right)
$$

In normal case, use Lagrange equ. to eliminate $\frac{\partial L}{\partial q_{i}}$:

$$
\begin{aligned}
& \frac{d L}{d t}=\sum\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{d^{2}}{d t^{2}} \frac{\partial L}{\partial \dot{q}_{i}}\right) \dot{q}_{i}+\sum \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}+\sum \frac{\partial L}{\partial \ddot{q}_{i}} \ddot{q}_{i} \\
& \left.=\sum \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right)+\sum \frac{d}{d t}\left(\ddot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}-\dot{q} \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right)\right]
\end{aligned}
$$

5

Consider a system with Lagrangian in Cartesian coordinates which is given by:

$$
L=\frac{1}{2} \sum_{a} m_{a}\left(\dot{x}_{a}^{2}+\dot{y}_{a}^{2}+\dot{z}_{a}^{2}\right)-U
$$

Now, if this is more conveniently expressed in terms of generalized coordinates ($q_{1}, q_{2}, \ldots, q_{s}$), use the transformations:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{f}\left(q_{1}, q_{2}, \ldots, q_{s}\right) \\
& \dot{\mathbf{x}}=\sum_{c} \frac{\partial \mathbf{f}}{\partial q_{c}} \dot{q}_{c}
\end{aligned}
$$

(a) What is the most general form of L in terms of the q 's?
T is given in general by

$$
\begin{equation*}
T=\frac{1}{2} \sum_{a} m_{a}\left(\sum_{b} \frac{\partial \mathbf{f}_{a}}{\partial q_{b}} \dot{b}_{c}\right)^{2} \tag{1}
\end{equation*}
$$

where the sums a and b are over the number of particles and generalized coordinates respectively. $U(\mathbf{x})$ simply becomes $U(\mathbf{f})$.
(b) Specify the form of the kinetic energy as fully as possible.

If \mathbf{f} does not depend on time explicitly, the expression for T in generalized coordinates will have the form

$$
\begin{equation*}
T=\frac{1}{2} \sum_{j, k} M_{j k} \dot{q}_{j} \dot{q}_{k} \tag{2}
\end{equation*}
$$

A comparison between (1) and (2) shows that

$$
\begin{equation*}
M_{j k}=\sum_{a} m_{a} \frac{\partial \mathbf{f}_{a}}{\partial q_{j}} \cdot \frac{\partial \mathbf{f}_{a}}{\partial q_{k}} . \tag{3}
\end{equation*}
$$

Note also that $M_{j k}$ is symmetric in its indicies.
(c) Derive the Lagrangian EOMs

$$
\begin{aligned}
\frac{\partial L}{\partial q_{m}} & =-\sum_{a} \frac{\partial \mathbf{f}_{a}}{\partial q_{m}} \cdot \frac{\partial U}{\partial \mathbf{f}_{a}} \equiv Q_{m} \\
\frac{\partial L}{\partial \dot{q}_{m}} & =M_{j m} \dot{q}_{j} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{m}} & =M_{j m} \ddot{q}_{j}+\frac{d M_{j m}}{d t} \dot{q}_{j}
\end{aligned}
$$

where $d M_{j m} / d t$ is can be obtained using the chain rule. The EOM is then

$$
\begin{equation*}
M_{j m} \ddot{q}_{j}+\frac{d M_{j m}}{d t} \dot{q}_{j}=Q_{m} \tag{4}
\end{equation*}
$$

